KR20220141133A - Aluminium boat for testing of wind resist by wind turbine blade - Google Patents

Aluminium boat for testing of wind resist by wind turbine blade Download PDF

Info

Publication number
KR20220141133A
KR20220141133A KR1020210047297A KR20210047297A KR20220141133A KR 20220141133 A KR20220141133 A KR 20220141133A KR 1020210047297 A KR1020210047297 A KR 1020210047297A KR 20210047297 A KR20210047297 A KR 20210047297A KR 20220141133 A KR20220141133 A KR 20220141133A
Authority
KR
South Korea
Prior art keywords
ship
wind turbine
hull
air resistance
wind
Prior art date
Application number
KR1020210047297A
Other languages
Korean (ko)
Inventor
김광중
Original Assignee
주식회사 번영중공업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 번영중공업 filed Critical 주식회사 번영중공업
Priority to KR1020210047297A priority Critical patent/KR20220141133A/en
Publication of KR20220141133A publication Critical patent/KR20220141133A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/322Other means for varying the inherent hydrodynamic characteristics of hulls using aerodynamic elements, e.g. aerofoils producing a lifting force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/32Wind motors specially adapted for installation in particular locations on moving objects, e.g. vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2209/00Energy supply or activating means
    • B63B2209/20Energy supply or activating means wind energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • F05B2240/931Mounting on supporting structures or systems on a structure floating on a liquid surface which is a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels
    • Y02T70/5236Renewable or hybrid-electric solutions

Abstract

The present invention relates to an aluminum hull electric propulsion ship. More particularly, the present invention, as a method for increasing the energy efficiency of electric propulsion power, relates to a ship manufactured for the purpose of examining the feasibility of economic feasibility and future development by determining whether air resistance is reduced when wind turbine blades are installed. According to the present invention, the ship tests air resistance by attaching wind turbine blades to an electric propulsion ship with an aluminum hull.

Description

풍력발전기 날개의 저항 시험용 알루미늄 선박{Aluminium boat for testing of wind resist by wind turbine blade}Aluminum boat for testing of wind resist by wind turbine blade

알루미늄 선체 보트는 다른 종류의 선박과 비교되는 특징이 있다. Aluminum hull boats are characterized by comparison with other types of ships.

1) FRP선체 선박에 비해 상대적으로 고가이나 우수한 내구성 및 재활용이 가능하다.1) It is relatively expensive compared to FRP hull ships, but excellent durability and recycling are possible.

: FRP선박 대비 상대적으로 고가이나, 강도 및 내구성이 우수하여 안전하고, 폐선 시 재활이 가능하다는 장점이 있다.: It is relatively expensive compared to FRP ships, but it has the advantages of being safe due to its excellent strength and durability, and that it can be rehabilitated when it is decommissioned.

2) FRP선체 선박에 비해 작은 동력으로 운용이 가능하여 에너지 효율이 높다.2) Compared to FRP hull ships, it is possible to operate with less power, so energy efficiency is high.

: 16ft급 선박의 경우 FRP선체 선박은 90마력대가 적용되는 반면, 알루미늄 선체 선박은 50-60마력이 일반적으로 적용되며, 상대적으로 작은 동력으로 운용이 가능해 에너지 효율이 높다는 장점이 있다.: In the case of 16ft class ships, FRP hull ships use 90 horsepower, whereas aluminum hull ships generally use 50-60 horsepower.

3) 크기에 비해 공간이 넓다.3) It is spacious for its size.

: 재질의 특성으로 인하여 FRP선체 선박 대비 동일 길이라면 20-30% 정도 공간이 넓다. 이는 공간 활용을 극대화해야 하는 선박의 특성에서 중요한 장점이 된다.: Due to the characteristics of the material, the space is 20-30% wider than that of the FRP hull ship if it is the same length. This is an important advantage in terms of the characteristics of a ship that must maximize space utilization.

4) 무게가 가볍다.4) Light weight.

: 무게가 가볍기 때문에 에너지 소모가 적고, 민첩하다. FRP선체 선박은 진입이 불가능한 영역도 알루미늄 선체선박은 거침없이 진입이 가능하다는 장점이 있다.: Light weight, low energy consumption and agility. FRP hull ships have the advantage of being able to enter areas where it is impossible for aluminum hull ships to enter without hesitation.

5) 내구성이 좋다.5) Good durability.

: FRP선체 선박의 경우 운행 중 사고로 보트가 험프 등에 접촉 사고를 냈을 경우 파손이 되어 폐선을 해야 하는 경우가 발생하지만 알루미늄은 찌그러지는 정도로 피해가 적다.: In the case of FRP hull ships, if the boat crashes into a hump due to an accident during operation, it may be damaged and have to be discontinued, but the damage is small enough to be crushed by aluminum.

선박이 추진하는 데 필요한 에너지의 사용량을 줄이기 위한 다양한 방법들이 고안되어 사용되고 있으며, 화석연료의 고갈 및 지구온난화 문제에 대응하기 위한 다양한 연구와 시도가 이뤄지고 있는 실정이다.Various methods have been devised and used to reduce the amount of energy required to propel a ship, and various studies and attempts are being made to cope with the depletion of fossil fuels and global warming.

선박이 추진하는 데 영향을 주는 요소들은 연료, 선체의 재질, 선박의 구조 및 형상, 운용 시스템 등에 의해 결정되며, 해수와의 마찰 저항 및 공기의 저항을 주요 변수로 인식하여 다루고 있다.Factors that affect the propulsion of a ship are determined by fuel, hull material, structure and shape of the ship, and operating system, and are treated by recognizing frictional resistance with seawater and air resistance as major variables.

선박의 연료 변경에 따른 선형의 설계 변경 및 구조변경이 필수적이기 때문에 연료의 변경은 선박의 미래를 예측하는데 지대한 영향을 미치는 요소이다. 전기추진선의 사용이 늘고 있는 점은 이러한 요소들이 반영된 결과라고 할 것이다. Since it is essential to change the design and structure of the ship according to the fuel change of the ship, the change of fuel is a factor that has a great influence on predicting the future of the ship. The increase in the use of electric propulsion lines is a result of these factors being reflected.

선박의 저항을 낮추기 위한 노력들의 대표적인 사례들로는 선수 벌브, 유선형의 선형설계, 선체 표면의 나노구조물 형성, 선측의 유체 통로 설치, 프로펠러의 표면 설계, 선미 유동저항 감소 설계 등의 선체 구조와 관련된 분야가 주로 다뤄지며, 저항감소용 도료 사용, 선박의 재질 변경 등의 사항을 고려하여 변경하는 사례들도 많다. Representative examples of efforts to lower the resistance of a ship are the fields related to the hull structure such as bow bulb, streamlined linear design, formation of nanostructures on the hull surface, installation of fluid passages on the side of the ship, surface design of propellers, and design to reduce stern flow resistance. It is mainly dealt with, and there are many cases of change in consideration of the use of paint for resistance reduction and change of the material of the ship.

따라서, 알루미늄 선박에 전기추진시스템을 갖추는 것은 미래의 선박시장에서 차지하는 비중이 높아질 가능성이 크다고 할 것이다.Therefore, equipping an aluminum ship with an electric propulsion system is likely to increase its share in the future ship market.

레져 보트 등의 소형 선박에 적용하는 전기추진용 선외기의 일반적인 적용 상황은 다음과 같다.The general application situation of electric propulsion outboard motors applied to small ships such as leisure boats is as follows.

- 전기추진 선외기의 주요 구성은 크게 상부에 파워 헤드(power head), 중앙부(mid section) 및 하부에 로워 유닛(lower unit)으로 구성된다.- The main configuration of the electric propulsion outboard machine is largely composed of a power head in the upper part, a mid section, and a lower unit in the lower part.

- 상부의 파워 헤드(power head)는 주 동력원인 전기모터 구성품이 위치하고 있으며, 중앙부(mid section)의 주 기능은 전기모터의 동력을 하부인 로워 유닛으로 전달하면서 선외기를 선박의 선미에 고정시키는 역할을 하게 되며 이에 관계된 동력전달 샤프트 등이 위치한다.- In the upper power head, the main power source, the electric motor component, is located, and the main function of the mid section is to transfer the electric motor power to the lower unit, which is the lower part, and to fix the outboard unit to the stern of the ship. and the related power transmission shaft is located.

- 전기추진 선외기의 주요 구성부에 해당되는 로워 유닛(lower unit)의 경우 전기 모터로부터 전달받은 동력을 추진력으로 전환하는 기능 및 이를 위해 프로펠러, 기어박스 등이 위치하고 있다.- In the case of the lower unit, which corresponds to the main component of the electric propulsion outboard, the function of converting the power received from the electric motor into propulsion, and for this purpose, a propeller, a gearbox, etc. are located.

- 전기추진 선외기가 장착된 알루미늄 선박의 경우 전진, 정지, 역전 등 조작성이 매우 우수하여 양식장 관리어선, 유어선 등 소형 어선에 적합하며, 특히, 후진에도 전진과 같은 힘을 신속히 낼 수 있어서 도서지방의 제한된 해역에서 운전이 용이할 것으로 전망한다.- In the case of an aluminum vessel equipped with an electric propulsion outboard, it has excellent maneuverability such as moving forward, stopping, and reversing, making it suitable for small fishing vessels such as farm management fishing boats and fishing boats. It is expected to be easy to drive in the limited waters of

대한민국 등록특허 2016-0134261 선박의 마찰저항 감소방법 및 이에 사용되는 시트Republic of Korea Patent Registration 2016-0134261 Method for reducing frictional resistance of ships and sheets used therefor 대한민국 공개특허 2015-0041881 선박의 마찰저항 감소 시스템 및 감소방법Republic of Korea Patent Publication No. 2015-0041881 System and method for reducing frictional resistance of ships 대한민국 공개특허 2004-0046263 선박의 표면마찰 저항 감소방법Korean Patent Laid-Open Patent Publication 2004-0046263 Method for reducing surface friction resistance of ships 대한민국 공개특허 2002-0077112 선박의 선체표면 난류제어에 의한 항력감소 방법 및 장치Korean Patent Laid-Open Patent Publication 2002-0077112 Method and apparatus for reducing drag by controlling hull surface turbulence of a ship 대한민국 공개특허 2003-0077451 수중마찰저항이 작은 도막 및 지지체의 수중마찰 감소방법Korean Patent Laid-Open Patent 2003-0077451 Method for reducing friction in water of a coating film and support with low friction resistance in water 대한민국 공개 실용신안 20-0435347 생산저장선박의 공기저항 감소장치Republic of Korea Public Utility Model 20-0435347 Air resistance reduction device for production and storage vessels 대한민국 공개특허 10-1941061 유동저항 감소를 위한 선박의 선미구조Korean Patent Laid-Open Patent No. 10-1941061 Ship's stern structure for reducing flow resistance 대한민국 공개특허 10-2099523 선체마찰저항 저감장치 및 선박Korean Patent Laid-Open Patent No. 10-2099523 Hull friction resistance reduction device and ship 대한민국 공개특허 10-1259626 마찰저항 감소선박Republic of Korea Patent Laid-Open Patent No. 10-1259626 Friction Resistance Reduced Vessel 대한민국 공개특허 10-2014-0120149 가변형 선수벌브를 이용한 선박의 저항 절감장치 및 방법Korean Patent Laid-Open Patent No. 10-2014-0120149 Apparatus and method for reducing resistance of ships using variable bow bulbs 대한민국 등록특허 10-1475267 선박의 저항 감소장치Republic of Korea Patent Registration 10-1475267 A device for reducing the resistance of a ship 대한민국 공개특허 10-2011-0053629 저항감소 바퀴가 구비된 선박Korean Patent Laid-Open Patent Publication No. 10-2011-0053629 Vessel equipped with wheels for reducing resistance 대한민국 공개특허 10-0529664 유체마찰력 감소장치 및 방법Korean Patent Laid-Open Patent No. 10-0529664 Fluid friction reducing device and method 대한민국 공개특허 10-16165655 장기방오성 및 우수한 마찰저항 저감성능을 갖는 방오도료 조성물 및 이의 제조방법Korean Patent Laid-Open Patent No. 10-16165655 Antifouling paint composition having long-term antifouling properties and excellent frictional resistance reduction performance and method for manufacturing the same

알루미늄 선체 선박은 알루미늄의 재질 특성상 선체의 하중을 줄일 수 있기 때문에 엔진의 추진효율도 좋아져서 선박의 에너지 절감에 기여하는 것은 당연한 것이다. 다만, 전기추진 선박의 경우에 축전지의 축전용량의 한계 등으로 인해서 선박운용의 제한이 따르는 것이 사실이다. 따라서, 육상에서 충전한 축전지를 선박에서 사용하는 방식으로는 선박의 운용이 자유롭지 못한 문제점이 있다. Since aluminum hull ships can reduce the load on the hull due to the characteristics of the material of aluminum, it is natural that the engine's propulsion efficiency also improves, thereby contributing to the energy saving of the ship. However, in the case of electric powered ships, it is true that there are restrictions on the operation of ships due to the limitation of the storage capacity of the storage battery. Therefore, there is a problem in that the operation of the ship is not free in the method of using the storage battery charged on land in the ship.

또한, 축전에 의한 전기사용은 에너지 효율의 측면에서 볼 때, 에너지 사용량을 증가시키는 문제점이 상존한다. 원유의 역률이 0.99 인데 비해서 전기의 역률은 0.25이기 때문에 동일한 힘을 얻기 위해서는 전력발생량을 대폭 증가해야 하는 이율배반적인 상황에 마주하게 되는 것이다. In addition, in terms of energy efficiency, electricity use by storage always has a problem of increasing energy consumption. Since the power factor of crude oil is 0.99, the power factor of electricity is 0.25, so in order to obtain the same power, the amount of power generated must be greatly increased.

본 발명은 이러한 문제점을 해결하고자 선박 추진시의 에너지 효율을 높이는 방법을 찾아본 결과 공기저항을 줄이는 방법에 대해서 착안하게 되었으며, 풍력발전 날개를 설치하는 것이 가장 효과적인 방안이라는 점을 도출하였다. 따라서, 풍력발전기 날개의 구조 형상 및 설치 위치 등의 요소들을 시험하는 선박이 필수적이다.In order to solve this problem, the present invention came up with a method for reducing air resistance as a result of finding a method for increasing energy efficiency during ship propulsion, and it was derived that installing wind turbine blades is the most effective method. Therefore, it is essential to have a ship that tests elements such as the structural shape and installation location of the wind turbine blades.

일반적으로 선체에 작용하는 유체의 영향에 대한 다양한 연구가 진행되어 왔으며, 에너지 밀도가 높은 물과 선체의 관련성에 대한 연구가 집중되었던 것이 사실이다. 그 결과로 선수 벌브, 유선형 선형설계, 선체 표면의 나노구조물, 선측의 유체 통로, 프로펠러의 표면 설계, 선미 유동저항 감소 설계 등의 선체 구조와 관련된 분야가 주로 다뤄지며, 저항감소용 도료 사용 등의 적용 사례들이 다수 존재한다. 다만, 공기저항과 선체의 연관성에 대한 연구는 지지부진한 실정이라고 할 수 있다.In general, various studies have been conducted on the effects of fluids acting on the hull, and it is true that studies on the relationship between water with high energy density and the hull have been focused. As a result, the fields related to the hull structure such as bow bulb, streamlined linear design, nanostructure on the hull surface, fluid passage on the side of the ship, propeller surface design, and stern flow resistance reduction design are mainly dealt with, and the application of paint for reducing resistance Many examples exist. However, it can be said that the research on the relationship between air resistance and the hull is sluggish.

본 발명은 공기저항을 줄여서 선박의 추진효율을 줄이기 위한 방법으로 선체에서 공기저항을 가장 많이 받는 곳을 선택하여 풍력발전기 날개를 설치하여 공기저항의 감소 여부를 알아보는 것이다. 이때, 기존의 풍력발전기 날개를 설치하는 것은 제외한다. 기존의 풍력발전기 날개의 단면적은 최대 12%에 불과하여 공기저항을 줄이는 효과를 기대할 수 없기 때문이다. 따라서, 풍력발전기의 단면적이 커서 공기의 저항이 선체에 직접 접촉하지 않도록 하는 것이 본 발명의 주요 목적이며, 공기저항의 여부를 시험하는 핵심 요소이다.The present invention is a method for reducing the propulsion efficiency of a ship by reducing the air resistance, by selecting a place that receives the most air resistance in the hull and installing the wind turbine blades to find out whether the air resistance is reduced. At this time, the installation of the existing wind turbine blades is excluded. This is because the cross-sectional area of the existing wind turbine blades is only 12%, so the effect of reducing air resistance cannot be expected. Therefore, the main object of the present invention is to prevent the air resistance from directly contacting the hull due to the large cross-sectional area of the wind turbine, and it is a key element for testing the air resistance.

공기의 저항을 받는 선체에 풍력발전기 날개를 설치하여서 공기 저항의 발생특성을 연구함으로써 전기추진선박의 에너지 저감 효과를 시험하는 선박의 필요성을 확보하는 효과가 있다.It has the effect of securing the need for a ship that tests the energy reduction effect of an electric powered ship by installing a wind turbine blade on the hull that receives air resistance and studying the characteristics of air resistance.

도 1은 알루미늄 선체 선박의 정면도로써, 정면에서 볼 때 단면적이 큰 풍력발전기 날개의 배치를 보여준다.

Figure pat00001

< 20 ~ 정면도 >
도 2는 선박의 측면에서 풍력발전기 날개의 배치를 보여준다.
Figure pat00002

< 30 ~ 측면도 >
도 3은 단면적이 큰 풍력발전기 날개의 예시를 보여준다.
Figure pat00003

< 40 ~ 단면적이 큰 풍력발전기 날개 예시 > 1 is a front view of an aluminum hull ship, showing the arrangement of a wind turbine blade having a large cross-sectional area when viewed from the front.
Figure pat00001

< 20 ~ Front view >
Figure 2 shows the arrangement of the wind turbine blades from the side of the ship.
Figure pat00002

< 30 ~ side view >
3 shows an example of a wind turbine blade having a large cross-sectional area.
Figure pat00003

< 40 ~ Example of a wind turbine blade with a large cross-sectional area >

본 발명은 정면도(도 1)와 측면도(도 2)에 표현한 바와 같이 풍력발전기 날개(도 3)를 선체의 각 부에 설치하고 CFD 기술을 활용할 수 있도록 기본 시험을 실시한다.In the present invention, as expressed in the front view (FIG. 1) and the side view (FIG. 2), a wind turbine blade (FIG. 3) is installed in each part of the hull and a basic test is performed so that the CFD technology can be utilized.

공기저항과 선체의 영향 특성을 기본적 요소로 반영하는 CFD 프로그램을 활용하여 풍향에 따른 선형의 최적화 및 풍력발전기 날개의 설치 위치를 조절할 수 있으며, 이로 인하여 풍력발전기의 날개가 공기저항 감소에 기여할 수 있는지 도출해 내게 된다.By using the CFD program that reflects the air resistance and the influence characteristics of the hull as a basic factor, it is possible to optimize the alignment according to the wind direction and adjust the installation position of the wind turbine blades. will derive

10 : 알루미늄 전기 추진선박의 선체
20 : 정면도
30 : 측면도
40 : 풍력발전기 날개
101 : 조타실 풍력발전기 날개
201 : 선외변 풍력발전기 날개
10: Hull of aluminum electric propulsion ship
20: front view
30: side view
40: wind turbine blades
101: wheelhouse wind generator wing
201: outboard wind turbine blades

Claims (4)

알루미늄 선체의 전기추진 선박에서 풍력발전기 날개를 부착하여 공기저항을 시험하는 선박. A ship that tests air resistance by attaching a wind turbine blade to an aluminum hull electric propulsion ship. 청구항 1에 있어서,
선체에 공기가 직접 접촉하는 부위에 부착하는 풍력발전기 날개는 단면적을 크게 하여서 공기저항을 분산되게 하는 선박.
The method according to claim 1,
The wind turbine blade attached to the part where the air is in direct contact with the hull has a large cross-sectional area so that air resistance is dispersed.
청구항 1에 있어서,
선체에 공기가 직접 접촉하는 부위에 부착하는 풍력발전기 날개는 조타실 전면 또는 선수 및 또는 선측에 부착하여 공기저항을 분산되게 하는 선박.
The method according to claim 1,
A ship that distributes air resistance by attaching the wind turbine blades attached to the part in direct contact with the hull to the front of the wheelhouse or the bow and/or side of the ship.
청구항 2에 있어서,
풍력발전기 날개는 운전자의 시야를 방해하지 않기 위해서 투명재질로 제작하여서 공기저항을 분산되게 하는 선박.
3. The method according to claim 2,
Wind turbine blades are made of transparent material so as not to obstruct the driver's view, so that air resistance is dispersed.
KR1020210047297A 2021-04-12 2021-04-12 Aluminium boat for testing of wind resist by wind turbine blade KR20220141133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210047297A KR20220141133A (en) 2021-04-12 2021-04-12 Aluminium boat for testing of wind resist by wind turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210047297A KR20220141133A (en) 2021-04-12 2021-04-12 Aluminium boat for testing of wind resist by wind turbine blade

Publications (1)

Publication Number Publication Date
KR20220141133A true KR20220141133A (en) 2022-10-19

Family

ID=83804423

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210047297A KR20220141133A (en) 2021-04-12 2021-04-12 Aluminium boat for testing of wind resist by wind turbine blade

Country Status (1)

Country Link
KR (1) KR20220141133A (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020077112A (en) 2001-03-29 2002-10-11 삼성중공업 주식회사 Method and device for diminish in drag by turbulent flow control of hull surface of ship
KR20030077451A (en) 2002-03-26 2003-10-01 닛뽕 뻬인또 가부시키가이샤 Low friction resistance coating film in water and the method of reducing the friction on a substrate in water
KR20040046263A (en) 2002-11-26 2004-06-05 학교법인 포항공과대학교 Method for reducing a skin friction resistance of a ship
KR100529664B1 (en) 2001-10-11 2005-11-21 가부시끼가이샤 도시바 Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
KR200435347Y1 (en) 2006-09-07 2007-01-17 삼성중공업 주식회사 Apparatus for air resistance reduction of floating production storage offloading ship
KR20110053629A (en) 2009-11-16 2011-05-24 정 케이 박 존 Ship having rolling wheel for decrease resistance
KR101259626B1 (en) 2011-04-18 2013-04-29 삼성중공업 주식회사 Drag reducing vessel
KR20140120149A (en) 2013-04-02 2014-10-13 에스티엑스조선해양 주식회사 energy saving device and method using dynamic bulbous bow
KR101475267B1 (en) 2012-07-06 2014-12-22 삼성중공업 주식회사 Resistance reducing apparatus of ship
KR20150041881A (en) 2013-10-10 2015-04-20 대우조선해양 주식회사 System and Method for Reducing Friction Resistance of Ship
KR101615655B1 (en) 2014-07-11 2016-04-27 비엔케미칼(주) Antifouling coating composition with long-term antifouling property and excellent friction-resistance reduction property, and preparation method thereof
KR20160134261A (en) 2015-05-15 2016-11-23 삼성중공업 주식회사 Method for reducing skin friction resistance of ship and sheet used therein
KR101941061B1 (en) 2017-07-03 2019-01-22 한윤주 Stern structure of a vessel for reducing flow resistances
KR102099523B1 (en) 2016-03-31 2020-04-09 미츠비시 쥬고교 가부시키가이샤 Hull friction resistance reduction device and ship

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020077112A (en) 2001-03-29 2002-10-11 삼성중공업 주식회사 Method and device for diminish in drag by turbulent flow control of hull surface of ship
KR100529664B1 (en) 2001-10-11 2005-11-21 가부시끼가이샤 도시바 Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
KR20030077451A (en) 2002-03-26 2003-10-01 닛뽕 뻬인또 가부시키가이샤 Low friction resistance coating film in water and the method of reducing the friction on a substrate in water
KR20040046263A (en) 2002-11-26 2004-06-05 학교법인 포항공과대학교 Method for reducing a skin friction resistance of a ship
KR200435347Y1 (en) 2006-09-07 2007-01-17 삼성중공업 주식회사 Apparatus for air resistance reduction of floating production storage offloading ship
KR20110053629A (en) 2009-11-16 2011-05-24 정 케이 박 존 Ship having rolling wheel for decrease resistance
KR101259626B1 (en) 2011-04-18 2013-04-29 삼성중공업 주식회사 Drag reducing vessel
KR101475267B1 (en) 2012-07-06 2014-12-22 삼성중공업 주식회사 Resistance reducing apparatus of ship
KR20140120149A (en) 2013-04-02 2014-10-13 에스티엑스조선해양 주식회사 energy saving device and method using dynamic bulbous bow
KR20150041881A (en) 2013-10-10 2015-04-20 대우조선해양 주식회사 System and Method for Reducing Friction Resistance of Ship
KR101615655B1 (en) 2014-07-11 2016-04-27 비엔케미칼(주) Antifouling coating composition with long-term antifouling property and excellent friction-resistance reduction property, and preparation method thereof
KR20160134261A (en) 2015-05-15 2016-11-23 삼성중공업 주식회사 Method for reducing skin friction resistance of ship and sheet used therein
KR102099523B1 (en) 2016-03-31 2020-04-09 미츠비시 쥬고교 가부시키가이샤 Hull friction resistance reduction device and ship
KR101941061B1 (en) 2017-07-03 2019-01-22 한윤주 Stern structure of a vessel for reducing flow resistances

Similar Documents

Publication Publication Date Title
EP2139757B1 (en) Vessel with retractable motor/generator assembly
CA2810002C (en) Energy generation apparatus for ships
CN102001431B (en) Three-blade propulsion and power generation two-purpose wind surf
Dang et al. Hydrodynamic aspects of steerable thrusters
CN105143033A (en) Propulsion system for a vessel
CN101927822B (en) Darrieus propulsion power generating dual-purpose type sail
GB2525049A (en) Water-borne vessel
CN102001416A (en) Stem wave elimination device
KR20220141133A (en) Aluminium boat for testing of wind resist by wind turbine blade
CN111486050B (en) Deformable power generation sail and unmanned exploration ship carrying same
CN104863796A (en) Wind and current combined power generation energy-saving device for fishing boat
RU180240U1 (en) SHIP MARINE INSTALLATION
Tamunodukobipi et al. Design analysis of a lightweight solar powered system for recreational marine craft
CN114408117B (en) Design and characteristic analysis system for main power system of wind wing navigation-aiding ship and use method
US20130157527A1 (en) Watercraft Propulsion Apparatus
JP3119959U (en) Small vessels equipped with fuel cells and solar cells (business boats, pleasure boats, fishing boats, etc.)
CN220535934U (en) Integrated automatically controlled permanent magnet motor integral type electronic bamboo raft string propeller
CN202213707U (en) Conch-type sail navigation-assisted mechanical device
JP3942625B1 (en) Battery powered ship
RU2297361C2 (en) Device for increase of ship thrust
Bentin et al. Perspectives for a wind assisted ship propulsion
Tamunodukobipi et al. Design Analysis of a Lightweight Solar Powered System for Recreational Marine Craft Design Analysis of a Lightweight Solar Powered System for Recreational Marine Craft
CN220905281U (en) Wave power generation glider device compatible with armoured cable
JP3162354U (en) Small vessels equipped with fuel cells and solar cells (business boats, pleasure boats, fishing boats, etc.)
Yue et al. The aerodynamic performances of the wing-shaped poop sail

Legal Events

Date Code Title Description
E601 Decision to refuse application