KR20220140440A - Hydrogel comprising cellulose modified by phenol derivatives and uses thereof - Google Patents

Hydrogel comprising cellulose modified by phenol derivatives and uses thereof Download PDF

Info

Publication number
KR20220140440A
KR20220140440A KR1020220044173A KR20220044173A KR20220140440A KR 20220140440 A KR20220140440 A KR 20220140440A KR 1020220044173 A KR1020220044173 A KR 1020220044173A KR 20220044173 A KR20220044173 A KR 20220044173A KR 20220140440 A KR20220140440 A KR 20220140440A
Authority
KR
South Korea
Prior art keywords
hydrogel
cellulose
confirmed
modified
cmc
Prior art date
Application number
KR1020220044173A
Other languages
Korean (ko)
Inventor
조승우
최이선
전지훈
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to PCT/KR2022/005204 priority Critical patent/WO2022216134A1/en
Publication of KR20220140440A publication Critical patent/KR20220140440A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/288Alkyl ethers substituted with nitrogen-containing radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0015Medicaments; Biocides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0031Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0042Materials resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/08Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Surgery (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Biochemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention relates to a hydrogel containing cellulose modified with a phenol derivative, uses thereof and a manufacturing method thereof. The physical properties of the hydrogel can be controlled by controlling the concentration and oxidation conditions of cellulose modified with the phenol derivative. In addition, the hydrogel of the present invention has the potential to be used in various fields due to properties such as hemostasis, blood coagulation promotion, tissue adhesion, cell culture, cell transplantation, drug delivery and the like.

Description

페놀 유도체로 수식된 셀룰로오스를 포함하는 하이드로젤 및 이의 용도 {HYDROGEL COMPRISING CELLULOSE MODIFIED BY PHENOL DERIVATIVES AND USES THEREOF}Hydrogel containing cellulose modified with a phenol derivative and use thereof {HYDROGEL COMPRISING CELLULOSE MODIFIED BY PHENOL DERIVATIVES AND USES THEREOF}

본 발명은 페놀 유도체로 수식된 셀룰로오스를 포함하는 하이드로젤, 이의 용도 및 이의 제조방법에 관한 것이다.The present invention relates to a hydrogel comprising cellulose modified with a phenol derivative, a use thereof, and a method for preparing the same.

외과적 수술 및 치료에 있어 기능성 의료용 제제의 필요성이 갈수록 증가하고 있으며, 이미 다양한 종류의 제품들이 개발되어 임상적으로 사용되고 있다. The need for functional medical preparations is increasing in surgical operations and treatments, and various types of products have already been developed and used clinically.

그 중에서, 현재 시판되는 지혈제 대부분은 피브린 계열의 유도체로 구성되어 있고, 피브리노겐 단백질 용액과 트롬빈 단백질 용액을 혼합하여 반응시킴으로써 피브린 덩어리를 형성하여 출혈 부위를 물리적으로 막는 단순 응고 방식으로 작용한다. 이 경우 충분한 지혈 효과를 얻기 위해서는 많은 양의 지혈제가 요구되고, 그로 인해 형성된 피브린 덩어리는 상처 재생을 더디게 하거나 이후 주변 조직과 유착을 유발하는 부작용이 발생할 가능성이 존재한다.Among them, most of the hemostatic agents currently on the market are composed of fibrin-based derivatives, and by reacting a mixture of fibrinogen protein solution and thrombin protein solution, a fibrin mass is formed and acts as a simple coagulation method to physically block the bleeding site. In this case, in order to obtain a sufficient hemostatic effect, a large amount of hemostatic agent is required, and the fibrin mass formed thereby may have a side effect of slowing wound regeneration or causing adhesion with surrounding tissues.

이러한 물리적으로 지혈을 유도하는 종래의 지혈제가 갖는 문제점을 극복하기 위해 지혈제의 지혈 성능을 개선하고, 과도한 피브린 덩어리에 의해 발생되는 부작용을 해결할 수 있는 새로운 기술의 필요성이 증대되고 있으며, 나아가 단일 제품으로 상기한 복합적인 기능을 수행할 수 있는 기능성 의료용 제제의 필요성이 증가하고 있다.In order to overcome the problems of conventional hemostatic agents that physically induce hemostasis, the need for a new technology that can improve the hemostatic performance of the hemostatic agent and solve the side effects caused by excessive fibrin mass is increasing, and furthermore, as a single product The need for functional medical preparations capable of performing the above-described complex functions is increasing.

한국공개특허 제10-2014-0127286호Korean Patent Publication No. 10-2014-0127286

본 발명은 페놀 유도체로 수식된 셀룰로오스를 포함하는 하이드로젤을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a hydrogel comprising cellulose modified with a phenol derivative.

본 발명은 상기 하이드로젤을 포함하는 지혈제 조성물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a hemostatic composition comprising the hydrogel.

본 발명은 상기 하이드로젤을 포함하는 조직 접착제 조성물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a tissue adhesive composition comprising the hydrogel.

본 발명은 상기 하이드로젤을 포함하는 세포 배양 및 이식용 조성물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a composition for cell culture and transplantation comprising the hydrogel.

본 발명은 상기 하이드로젤을 포함하는 약물 전달용 조성물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a composition for drug delivery comprising the hydrogel.

본 발명은 a) 카복시메틸셀룰로오스의 히드록시기 (-OH)를 페놀 유도체로 치환하는 단계 및 b) 치환된 카복시메틸셀룰로오스를 가교 결합 (cross-linking)하여 하이드로젤을 형성하는 단계를 포함하는 페놀 유도체로 수식된 셀룰로오스를 포함하는 하이드로젤 제조방법을 제공하는 것을 목적으로 한다.The present invention provides a phenol derivative comprising the steps of: a) replacing the hydroxyl group (-OH) of carboxymethylcellulose with a phenol derivative; and b) cross-linking the substituted carboxymethylcellulose to form a hydrogel. An object of the present invention is to provide a method for preparing a hydrogel comprising modified cellulose.

본 발명의 일 양상은 페놀 유도체로 수식된 셀룰로오스를 포함하는 하이드로젤을 제공한다. One aspect of the present invention provides a hydrogel comprising cellulose modified with a phenol derivative.

본 발명의 일 구체예로 상기 페놀 유도체는 도파민 (

Figure pat00001
) 또는 5-히드록시도파민 (
Figure pat00002
)이고,In one embodiment of the present invention, the phenol derivative is dopamine (
Figure pat00001
) or 5-hydroxydopamine (
Figure pat00002
)ego,

상기 셀룰로오스는 카복시메틸셀룰로오스, 하이드록시프로필 메틸셀룰로오스, 셀룰로오스 아세테이트프탈레이트, 하이드록시프로필메틸셀룰로오스아세테이트/석시네이트, 하이드록시에틸 셀룰로오스, 에틸메틸 셀룰로오스, 하이드록시프로필 셀룰로오스, 셀룰로오스 프로피온 에스테르 및 셀룰로오스 아세테이트 뷰티레이트 중 어느 하나 이상일 수 있다. The cellulose is carboxymethyl cellulose, hydroxypropyl methyl cellulose, cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate / succinate, hydroxyethyl cellulose, ethyl methyl cellulose, hydroxypropyl cellulose, cellulose propion ester and cellulose acetate butyrate. It may be any one or more.

본 발명에서 "도파민 (dopamine)"은 카테콜아민 계열 유기 화합물로 뇌신경 세포들 간의 신호 전달을 위해 분비되는 신경전달물질의 일종이다. 도파민은 티로신에서부터 만들어진 카테콜아민 계열 화합물이라는 점에서 생화학적 과정으로 노르에피네프린, 에피네프린으로 변환되므로 중추 신경계뿐 아니라 신장, 호르몬, 심혈관계에서 중요한 역할을 해 많은 연구가 되어 왔다.또한, 도파민은 산화되면서 퀴논 구조체를 형성하여 우수한 접착성을 가지며, 이후 이 퀴논이 중합되며 형성되는 폴리도파민의 경우 가교 역할을 수행하기도 한다.In the present invention, "dopamine" is a catecholamine-based organic compound and is a kind of neurotransmitter secreted for signal transmission between brain nerve cells. Since dopamine is a catecholamine-based compound made from tyrosine, it is converted into norepinephrine and epinephrine through a biochemical process, so it plays an important role in the central nervous system as well as the kidneys, hormones, and cardiovascular systems. It has excellent adhesion by forming a structure, and then, in the case of polydopamine formed by polymerization of this quinone, it also functions as a crosslinking agent.

본 발명에서 "카복시메틸셀룰로오스 (Carboxymethyl cellulose, CMC)"는 산화처리한 산화 셀룰로오스의 일종으로, 안전성 및 효능이 검증된 셀룰로오스 유도체로서 인허가가 용이하고, 자연분해가 가능하고, 인체에 무해한 원료로서 기존 흡수성 화학제품을 대체할 수 있다. 카복시메틸셀룰로오스 (CMC)는 목재계 셀룰로오스를 NaOH 알칼리 처리 후 MCA (Mono Chloroacetic Acid)로 반응시켜 얻어지는 물질로서, 이미 식품 산업에서의 점도 조절제, 첨가제 등으로 많이 사용되고 있다.In the present invention, "Carboxymethyl cellulose (CMC)" is a type of oxidized cellulose that has been subjected to oxidation treatment. It is a cellulose derivative whose safety and efficacy have been verified. It can replace absorbent chemicals. Carboxymethyl cellulose (CMC) is a material obtained by reacting wood-based cellulose with NaOH alkali treatment with MCA (Mono Chloroacetic Acid), and is already widely used as a viscosity modifier and additive in the food industry.

본 발명에서, "하이드로젤 (hydrogel)"은 분산매가 물이거나 물이 기본 성분으로 들어 있는 젤로서, 본 발명에서의 하이드로젤은 페놀 유도체로 수식된 셀룰로오스를 포함하는 것을 특징으로 한다.In the present invention, "hydrogel" is a dispersion medium is water or a gel containing water as a basic component, the hydrogel in the present invention is characterized in that it contains cellulose modified with a phenol derivative.

또한, 하이드로젤의 탄성, 점착성 등의 물성은 더 높은 하중에 노출되는 소정의 조직, 예컨대, 관절 연골 또는 뼈의 결함의 치료를 위한 지지체로 사용되는 하이드로젤에 매우 중요한 요소이며, 본 발명의 하이드로젤은 산화 조건의 조절을 통해 물성을 조절할 수 있는 바, 조건에 맞추어 제작하여 사용할 수 있다.In addition, the physical properties of the hydrogel, such as elasticity and adhesion, are very important factors for the hydrogel used as a support for the treatment of defects in certain tissues exposed to higher loads, such as articular cartilage or bone, and the hydrogel of the present invention The gel can be manufactured and used according to the conditions as the physical properties can be controlled by controlling the oxidation conditions.

본 발명의 일 구체예로 상기 하이드로젤은 하기 화학식 1로 표시되는 구조를 포함하는 것일 수 있다:In one embodiment of the present invention, the hydrogel may include a structure represented by the following Chemical Formula 1:

[화학식 1][Formula 1]

Figure pat00003
Figure pat00003

상기 화학식에서, R1

Figure pat00004
또는
Figure pat00005
이다.In the above formula, R 1 is
Figure pat00004
or
Figure pat00005
to be.

본 발명의 일 구체예로 상기 하이드로젤은 혈액 응고 촉진, 지혈, 세포 분화 촉진, 세포 배양, 세포 이식 및 약물 전달로 이루어진 군에서 선택되는 하나 이상의 용도를 나타내는 것일 수 있고, 상기 하이드로젤은 접착성인 것일 수 있으며, 상기 하이드로젤은 생분해성인 것일 수 있다. In one embodiment of the present invention, the hydrogel may exhibit one or more uses selected from the group consisting of promoting blood coagulation, hemostasis, promoting cell differentiation, cell culture, cell transplantation, and drug delivery, and the hydrogel is adhesive. It may be one, and the hydrogel may be biodegradable.

본 발명의 일 구체예로, 상기 페놀 유도체와 셀룰로오스는 몰비 1:3 내지 3:1, 구체적으로는 1:2 내지 1:1 더욱 구체적으로는 1:2 일 수 있다. In one embodiment of the present invention, the molar ratio of the phenol derivative and cellulose may be 1:3 to 3:1, specifically 1:2 to 1:1, more specifically 1:2.

본 발명의 다른 일 양상은 상기 하이드로젤을 포함하는, 지혈제 조성물을 제공한다. 구체적으로 상기 지혈제는 출혈을 막고, 혈전 형성을 유도하는 것일 수 있다. Another aspect of the present invention provides a hemostatic composition comprising the hydrogel. Specifically, the hemostatic agent may prevent bleeding and induce thrombus formation.

본 발명의 일 구체예로, 상기 지혈제는 접착성 패치 또는 필름 형태일 수 있다. 본 발명의 일 실시예에서 접착이 가능한 형태로 동물 모델에 적용하였을 때 우수한 지혈 효과를 나타내는 것을 확인하여 표면에 부착될 수 있는 형태로 적용 가능하다. 상기 표면은 신체 모든 조직의 표면일 수 있으며, 특정 부위에 한정되지 않는다.In one embodiment of the present invention, the hemostatic agent may be in the form of an adhesive patch or film. In an embodiment of the present invention, it can be applied in a form that can be attached to a surface by confirming that it exhibits an excellent hemostatic effect when applied to an animal model in an adhesive form. The surface may be a surface of any body tissue, and is not limited to a specific region.

본 발명의 다른 일 양상은 상기 하이드로젤을 포함하는, 조직 접착제 조성물을 제공한다. 상기 하이드로젤은 전술한 바와 같이 접착성을 나타내어 조직간의 접착에 사용할 수 있다. Another aspect of the present invention provides a tissue adhesive composition comprising the hydrogel. The hydrogel exhibits adhesiveness as described above and can be used for adhesion between tissues.

본 발명의 일 양상은 상기 하이드로젤을 포함하는, 세포 배양 및 이식용 조성물을 제공한다. 구체적으로 상기 배양은 3차원 배양일 수 있으며, 상기 배양 및 이식 대상이 되는 세포는 줄기세포, 조혈모세포, 간세포, 섬유세포, 상피세포, 중피세포, 내피세포, 근육세포, 신경세포, 면역세포, 지방세포, 연골세포, 골세포, 혈액세포 또는 피부세포일 수 있으나, 상기에 제한되는 것은 아니며 세포 종류에 관계없이 본 발명의 하이드로젤에서 성장이 가능한 모든 세포에 적용 가능하다. 더욱 구체적으로, 상기 배양은 2종 이상 세포의 동시 배양일 수 있다.One aspect of the present invention provides a composition for cell culture and transplantation, comprising the hydrogel. Specifically, the culture may be a three-dimensional culture, and the cells to be cultured and transplanted are stem cells, hematopoietic stem cells, hepatocytes, fibroblasts, epithelial cells, mesothelial cells, endothelial cells, muscle cells, nerve cells, immune cells, It may be adipocytes, chondrocytes, osteocytes, blood cells, or skin cells, but is not limited thereto, and it is applicable to all cells capable of growth in the hydrogel of the present invention, regardless of cell types. More specifically, the culture may be a simultaneous culture of two or more types of cells.

본 발명의 일 양상은 상기 하이드로젤을 포함하는, 약물 전달용 조성물을 제공한다. One aspect of the present invention provides a composition for drug delivery comprising the hydrogel.

본 발명의 일 구체예로, 상기 약물은 하이드로젤 내에 포함되는 것일 수 있다. In one embodiment of the present invention, the drug may be included in the hydrogel.

본 발명의 일 구체예로, 상기 약물은 면역세포 활성화제, 항암제, 치료용 항체, 항생제, 항박테리아제, 항바이러스제, 항염증제, 조영제, 단백질 의약품, 성장인자, 사이토카인, 펩티드 약물, 발모제, 마취제 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있다. In one embodiment of the present invention, the drug is an immune cell activator, anticancer agent, therapeutic antibody, antibiotic, antibacterial agent, antiviral agent, anti-inflammatory agent, contrast agent, protein drug, growth factor, cytokine, peptide drug, hair growth agent, anesthetic agent And it may include one selected from the group consisting of combinations thereof.

본 발명의 다른 일 양상은 a) 셀룰로오스를 페놀 유도체로 치환하는 단계; 및 b) 치환된 셀룰로오스를 가교 결합 (cross-linking)하여 하이드로젤을 형성하는 단계를 포함하는 페놀 유도체로 수식된 셀룰로오스를 포함하는 하이드로젤 제조방법을 제공한다. Another aspect of the present invention comprises the steps of: a) replacing cellulose with a phenol derivative; and b) cross-linking the substituted cellulose to form a hydrogel.

전술한 바와 같이 상기 셀룰로오스는 카복시메틸셀룰로오스, 하이드록시프로필 메틸셀룰로오스, 셀룰로오스 아세테이트프탈레이트, 하이드록시프로필메틸셀룰로오스아세테이트/석시네이트, 하이드록시에틸 셀룰로오스, 에틸메틸 셀룰로오스, 하이드록시프로필 셀룰로오스, 셀룰로오스 프로피온 에스테르 및 셀룰로오스 아세테이트 뷰티레이트 중 어느 하나 이상일 수 있고, 상기 페놀 유도체는 도파민 (

Figure pat00006
) 또는 5-히드록시도파민 (
Figure pat00007
)일 수 있다.As described above, the cellulose includes carboxymethylcellulose, hydroxypropyl methylcellulose, cellulose acetate phthalate, hydroxypropylmethylcellulose acetate/succinate, hydroxyethyl cellulose, ethylmethyl cellulose, hydroxypropyl cellulose, cellulose propionate, and cellulose. It may be any one or more of acetate butyrate, and the phenol derivative is dopamine (
Figure pat00006
) or 5-hydroxydopamine (
Figure pat00007
) can be

본 발명의 일 구체예로, 상기 a) 셀룰로오스를 페놀 유도체로 치환하는 단계는, 셀룰로오스의 히드록시기 (-OH)를 R1으로 치환하여, 하기 화학식 1로 표시되는 화합물을 제조하는 것일 수 있다:In one embodiment of the present invention, the step a) substituting the phenol derivative for cellulose may be to prepare a compound represented by the following formula (1) by substituting R 1 for a hydroxyl group (-OH) of cellulose:

[화학식 1][Formula 1]

Figure pat00008
Figure pat00008

상기 화학식에서, In the above formula,

R1

Figure pat00009
또는
Figure pat00010
이다.R 1 is
Figure pat00009
or
Figure pat00010
to be.

구체적으로, 카복시메틸셀룰로오스에서 R1 자리에 위치하던 히드록시기를 R1의 페놀 유도체로 치환하는 것으로, 카복시메틸셀룰로오스 및 R1의 페놀 유도체를 혼합한 뒤 EDC/NHS를 24시간 상온 처리하여 치환시킬 수 있다. 상기 치환은 구체적으로, 카복시메틸셀룰오로스를 EDC/NHS와 혼합하고, pH 4 내지 8, 더욱 구체적으로 pH 5.0 내지 6.0 에서 교반한 뒤, 페놀 유도체를 첨가한 뒤 pH 3.8 내지 6.0, 페놀 유도체가 도파민인 경우 구체적으로 pH 4.5 내지 5.0, 또는 페놀 유도체가 5-히드록시도파민인 경우 구체적으로 pH 3.8 내지 5.0로 조정한 뒤 교반하여 치환시킬 수 있다. Specifically, by substituting the hydroxy group positioned at the R 1 site in carboxymethylcellulose with the phenol derivative of R 1 , it can be substituted by mixing carboxymethylcellulose and the phenol derivative of R 1 and then treating EDC/NHS at room temperature for 24 hours. have. The substitution is specifically, carboxymethylcellulose is mixed with EDC/NHS, stirred at pH 4 to 8, more specifically pH 5.0 to 6.0, and then a phenol derivative is added, followed by pH 3.8 to 6.0, the phenol derivative is Specifically, in the case of dopamine, pH 4.5 to 5.0, or in the case of 5-hydroxydopamine, the phenol derivative may be specifically adjusted to pH 3.8 to 5.0 and then substituted by stirring.

본 발명의 일 구체예로, 상기 b) 치환된 셀룰로오스를 가교 결합 (cross-linking)하여 하이드로젤을 형성하는 단계는 치환된 셀룰로오스기에 NaOH, NaIO4, Na2S2O8, Fe3+, HNO3, MnO4 2- 및 H2SO4중 어느 하나 이상으로 처리하는 것일 수 있다.In one embodiment of the present invention, the step of b) cross-linking the substituted cellulose to form a hydrogel is NaOH, NaIO 4 , Na 2 S 2 O 8 , Fe 3+ to the substituted cellulose group. HNO 3 , MnO 4 2- , and H 2 SO 4 It may be treated with any one or more.

구체적으로, 치환된 카복시메틸셀룰로오스의 페놀 유도체 사이에 가교결합 (cross-linking)하는 것일 수 있고, 페놀 유도체 사이의 가교결합 결과 퀴논 (quinone), 세미 퀴논 중간체 (semi-quinone intermediate), 페녹시 라디컬 (phenoxy radical) 등이 형성될 수 있다. Specifically, it may be cross-linking between phenol derivatives of substituted carboxymethyl cellulose, and as a result of cross-linking between phenol derivatives, quinone, semi-quinone intermediate, phenoxy radical Curls (phenoxy radicals) and the like may be formed.

본 발명의 페놀 유도체로 수식된 셀룰로오스를 포함하는 하이드로젤은 페놀기 수식 정도, 셀룰로오스의 농도 및 산화 조건 조절을 통해 하이드로젤의 물성을 조절하여 사용할 수 있다.The hydrogel containing cellulose modified with the phenol derivative of the present invention can be used by controlling the physical properties of the hydrogel by controlling the degree of phenol group modification, the concentration of cellulose, and the oxidation conditions.

또한, 본 발명의 하이드로젤은 지혈, 혈액 응고 촉진, 세포 이식, 약물 전달, 세포 분화 촉진 등 다양한 효과를 나타내어 단일 또는 복합 용도로서 활용할 수 있다. 나아가, 본 발명은 세포 독성이 거의 없으면서도 생분해가 가능하여 생체 적합성이 매우 우수하여 활용 가능성이 매우 높다.In addition, the hydrogel of the present invention exhibits various effects such as hemostasis, blood coagulation promotion, cell transplantation, drug delivery, and cell differentiation promotion, and thus can be used as a single or combined use. Furthermore, the present invention has very good biocompatibility because it is biodegradable while having little cytotoxicity, and thus has a very high application potential.

도 1은 페놀 유도체 (카테콜기) 로 수식된 셀룰로오스 합성과정 (도 1A), 페놀 유도체 (카테콜기) 수식 셀룰로오스의 1H-NMR 분석 결과 (도 1B) 및 치환도를 확인한 결과 (도 1C) 이다.
도 2는 페놀 유도체 (카테콜기) 수식 셀룰로오스의 가교결합 과정을 나타낸 그림 (도 2A), 가교결합된 페놀 유도체 (카테콜기) 수식 셀룰로오스의 구조를 확인할 수 있는 UV-vis 분석 결과 (도 2B) 및 FT-IR 분석 결과 (도 2C)를 나타낸 것이다.
도 3은 산화를 통해 가교된 페놀 유도체 (카테콜기) 수식 셀룰로오스 하이드로젤 (도 3A) 및 페놀 유도체 (카테콜기) 수식 셀룰로오스의 농도 (도 3B) 및 pH 조건 (도 3C)에 따른 가교속도 (용액-젤 변화시간 및 하이드로젤 형성 완료 시간)를 측정한 결과이다.
도 4는 페놀 유도체 (카테콜기) 수식 셀룰로오스의 농도 별 제조된 하이드로젤의 탄성계수를 측정한 결과 (도 4 A 내지 C) 및 팽윤 양상을 분석한 결과 (도 4D)이다.
도 5는 페놀 유도체 (카테콜기) 수식 셀룰로오스 농도 별 제조된 하이드로젤의 금속 플레이트에 대한 접착력을 분석한 결과 (도 5 A), 간 조직에 대한 접착력을 분석한 결과 (도 5B, C)이다.
도 6은 페놀 유도체 (카테콜기) 수식 셀룰로오스 농도 별 제조된 하이드로젤의 장 조직에 대한 접착력을 분석한 결과이다.
도 7는 페놀 유도체 (카테콜기) 수식 셀룰로오스 농도 별 제조된 하이드로젤의 내부 구조를 확인한 사진이다.
도 8은 3차원 세포 배양을 통한 생체 적합성을 평가한 결과로서, 도 8A는 페놀 유도체 (카테콜기) 수식 셀룰로오스 하이드로젤 내에서 배양된 인간 지방유래 줄기세포에 대한 Live/Dead 염색결과이고, 도 8B는 도 8A를 정량화한 세포 생존율 결과이며, 도 8C는 페놀 유도체 (카테콜기) 수식 셀룰로오스 하이드로젤과 공배양된 대식세포로부터의 TNF-α 분비량을 확인한 것이다.
도 9는 생체 내 독성을 분석한 결과로서, 도 9A은 페놀 유도체 (카테콜기) 수식 셀룰로오스 하이드로젤이 이식된 조직 부위에 대한 헤마톡실린&에오신 (H&E) 염색 결과이고, 도 9B는 톨루이딘 블루 염색 결과를 나타낸 것이다.
도 10은 본 발명의 하이드로젤을 지혈제 조성물로 제조하고 이의 지혈 성능을 출혈 모델에서 확인한 결과로서, 도 10A 및 10B는 지혈능을 확인한 실험 결과사진 및 이를 정량화한 그래프이다. 도 10C은 H&E 조직학 분석 결과이다.
도 11은 본 발명의 하이드로젤을 패치 형태로 제작하고, 이의 유용성을 확인한 결과로서, 도 11A는 페놀 유도체 셀룰로오스의 가교결합 (oxidation) 전후 패치의 모습을 나타낸 사진이고, 도 11B 내지 D는 패치의 물성을 확인한 결과이다.
도 12은 페놀 유도체 (갈롤기) 로 수식된 셀룰로오스 합성과정 (도 12A), 1H-NMR 분석 결과 (도 12B) 및 치환도를 확인한 결과 (도 12C)를 나타내는 그래프이다.
도 13은 페놀 유도체 (갈롤기) 수식 셀룰로오스의 가교결합 과정을 나타낸 그림 (도 13A), UV-vis 분석 결과 (도 13B, C) 및 FT-IR 분석 결과 (도 13D)를 나타낸 것이다.
도 14는 페놀 유도체 (갈롤기) 수식 셀룰로오스의 농도 및 산화제별 제조된 하이드로젤의 탄성계수를 측정한 결과이다.
도 15은 페놀 유도체 (갈롤기) 수식 셀룰로오스의 농도 및 산화제별 제조된 하이드로젤의 팽윤 양상을 분석한 결과 (도 15A) 및 하이드로젤의 내부 구조를 확인한 사진 (도 15B)이다.
도 16은 페놀 유도체 (갈롤기) 수식 셀룰로오스 농도 별 제조된 하이드로젤의 접착력을 분석한 결과이다.
도 17 및 18은 하이드로젤의 pH 감응성을 확인한 것으로, 도 17A 및 B는 pH 조건에 따른 하이드로젤 크기변화를 확인할 수 있는 것이고, 도 18A 및 B는 pH 조건에 따른 하이드로젤 내부 구조 및 공극 크기를 확인할 수 있는 도면이다.
도 19는 하이드로젤의 pH 감응성 약물전달 시스템으로서의 활용 가능성을 확인한 것으로, pH 변화에 따른 BSA 방출량을 확인한 것이다.
도 20는 하이드로젤의 생체 적합성을 분석한 결과로서, 페놀 유도체 (갈롤기) 수식 셀룰로오스 하이드로젤 내 삼차원 배양된 인간 지방유래 줄기세포를 Live/dead로 염색한 결과 (도 20A) 및 이를 정량화 한 세포 생존율 그래프 (도 20B)이다.
도 21 및 22는 본 발명 하이드로젤의 활용 가능성을 확인할 수 있는 것으로, 도 21은 필러 소재로서의 활용 가능성 및 도 22은 세포 이식용 소재로서의 활용 가능성을 확인한 것이다.
도 23 및 24는 본 발명의 하이드로젤 (CMC-PG)의 활용 가능성을 확인할 수 있는 것으로, 도 23은 패치 제작 및 특성을 확인한 결과이고, 도 24는 지혈제로서의 활용 가능성을 확인한 결과이다.
1 is a cellulose synthesis process (FIG. 1A) modified with a phenol derivative (catechol group), 1 H-NMR analysis result of phenol derivative (catechol group)-modified cellulose (FIG. 1B) and a result of confirming the degree of substitution (FIG. 1C) .
Figure 2 is a figure showing the crosslinking process of the phenol derivative (catechol group)-modified cellulose (Figure 2A), the UV-vis analysis result to confirm the structure of the crosslinked phenol derivative (catechol group)-modified cellulose (Figure 2B) and FT-IR analysis results (FIG. 2C) are shown.
3 is a phenol derivative (catechol group)-modified cellulose hydrogel (FIG. 3A) and a phenol derivative (catechol group)-modified cellulose crosslinked through oxidation (FIG. 3B) and pH conditions (FIG. 3C) according to the crosslinking rate (solution) -The gel change time and hydrogel formation completion time) are measured.
4 is a result of measuring the elastic modulus of the prepared hydrogel according to the concentration of phenol derivative (catechol group)-modified cellulose ( FIGS. 4A to 4C ) and the result of analyzing the swelling pattern ( FIG. 4D ).
Figure 5 is a result of analyzing the adhesive force of the prepared hydrogel to a metal plate according to the phenol derivative (catechol group)-modified cellulose concentration (Fig. 5A), and the result of analyzing the adhesion to the liver tissue (Fig. 5B, C).
6 is a result of analyzing the adhesive force of the prepared hydrogel to intestinal tissue according to the concentration of phenol derivative (catechol group)-modified cellulose.
7 is a photograph confirming the internal structure of the hydrogel prepared according to the phenol derivative (catechol group)-modified cellulose concentration.
8 is a result of evaluating biocompatibility through three-dimensional cell culture, FIG. 8A is a Live/Dead staining result for human adipose-derived stem cells cultured in a phenol derivative (catechol group)-modified cellulose hydrogel, FIG. 8B is a result of cell viability quantified in FIG. 8A, and FIG. 8C confirms the amount of TNF-α secretion from macrophages co-cultured with a phenol derivative (catechol group)-modified cellulose hydrogel.
9 is a result of analyzing in vivo toxicity, FIG. 9A is a result of hematoxylin & eosin (H&E) staining for a tissue site in which a phenol derivative (catechol group)-modified cellulose hydrogel is transplanted, and FIG. 9B is a toluidine blue staining. the results are shown.
10 is a result of preparing the hydrogel of the present invention as a hemostatic composition and confirming its hemostatic performance in a bleeding model, and FIGS. 10A and 10B are photographs of experimental results confirming the hemostatic ability and graphs quantifying it. 10C is a result of H&E histology analysis.
11 is a result of manufacturing the hydrogel of the present invention in the form of a patch and confirming its usefulness. FIG. 11A is a photograph showing the patch before and after cross-linking of phenol derivative cellulose, and FIGS. 11B to D are the patches. It is the result of checking the physical properties.
12 is a graph showing the cellulose synthesis process modified with a phenol derivative (galol group) (FIG. 12A), 1 H-NMR analysis result (FIG. 12B), and the result of confirming the degree of substitution (FIG. 12C).
13 is a diagram showing the crosslinking process of phenol derivative (galol group)-modified cellulose (FIG. 13A), UV-vis analysis results (FIGS. 13B, C), and FT-IR analysis results (FIG. 13D).
14 is a result of measuring the concentration of phenol derivative (galol group)-modified cellulose and the elastic modulus of the hydrogel prepared for each oxidizing agent.
15 is a result of analyzing the concentration of phenol derivative (galol group)-modified cellulose and the swelling pattern of the prepared hydrogel by oxidizing agent ( FIG. 15A ) and a photograph confirming the internal structure of the hydrogel ( FIG. 15B ).
16 is a result of analyzing the adhesive strength of the hydrogel prepared according to the concentration of phenol derivative (galol group)-modified cellulose.
17 and 18 confirm the pH sensitivity of the hydrogel, FIGS. 17A and B show the hydrogel size change according to the pH condition, and FIGS. 18A and B show the internal structure and pore size of the hydrogel according to the pH condition This is a drawing that can be checked.
Figure 19 confirms the possibility of using the hydrogel as a pH-sensitive drug delivery system, it confirms the release amount of BSA according to the pH change.
20 is a result of analyzing the biocompatibility of the hydrogel, the result of staining with Live/dead three-dimensionally cultured human adipose-derived stem cells in a phenol derivative (galol group)-modified cellulose hydrogel (FIG. 20A) and cells quantified survival rate graph (FIG. 20B).
21 and 22 show the possibility of using the hydrogel of the present invention, and FIG. 21 shows the possibility of application as a filler material and FIG. 22 confirms the possibility of application as a material for cell transplantation.
23 and 24 show the possibility of using the hydrogel (CMC-PG) of the present invention, and FIG. 23 is the result of confirming the production and characteristics of the patch, and FIG. 24 is the result of confirming the possibility of application as a hemostatic agent.

이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, one or more specific examples will be described in more detail through examples. However, these examples are for illustrative purposes of one or more embodiments, and the scope of the present invention is not limited to these examples.

실시예 1: 도파민 수식 카복시메틸셀룰로오스 유도체 및 하이드로젤 합성Example 1: Dopamine-modified carboxymethyl cellulose derivative and hydrogel synthesis

실시예 1-1. 도파민 수식 카복시메틸셀룰로오스 유도체의 합성Example 1-1. Synthesis of dopamine-modified carboxymethylcellulose derivatives

도파민 수식 카복시메틸셀룰로오스 유도체 합성을 위해 EDC/NHS 화학반응을 이용하여 카복시메틸셀룰로오스 (CMC)에 도파민 (Dopamine)을 수식하였다. For the synthesis of dopamine-modified carboxymethylcellulose derivatives, carboxymethylcellulose (CMC) was modified with dopamine using EDC/NHS chemical reaction.

구체적으로, 카복시메틸셀룰로오스를 3차 증류수 (TDW) 혹은 pH 5.5의 2-(N-morpholino) ethanesulfonic acid (MES) 완충용액에 용해시켰다. 상기 용액에 1-(3-디메틸아미노프로필)-3-에틸카르보디이미드 하이드로클로라이드 (EDC, Thermo Fisher Scientific, Waltham, MA, USA)와 N-히드록시숙신이미드 (NHS, Sigma-Aldrich, St. Louis, MO, USA)를 첨가하고, pH 5.5-6.0 조건에서 30분간 교반 하였다.Specifically, carboxymethyl cellulose was dissolved in tertiary distilled water (TDW) or 2-(N-morpholino)ethanesulfonic acid (MES) buffer at pH 5.5. 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC, Thermo Fisher Scientific, Waltham, MA, USA) and N-hydroxysuccinimide (NHS, Sigma-Aldrich, St. Louis, MO, USA) was added and stirred for 30 minutes at pH 5.5-6.0.

상기 용액에 도파민을 첨가하고, 실온 pH 5.5-6.0 조건에서 밤새 교반 하여 도파민 수식 카복시메틸셀룰로오스 유도체를 합성하였다. 이 때 카복시메틸셀룰로오스 (CMC): EDC: NHS: 도파민 (CA)의 몰비를 1:2:2:2가 되도록 혼합, 반응시켰다 (도 1A).Dopamine was added to the solution and stirred overnight at room temperature pH 5.5-6.0 to synthesize a dopamine-modified carboxymethylcellulose derivative. At this time, a molar ratio of carboxymethylcellulose (CMC): EDC: NHS: dopamine (CA) was 1:2:2:2, followed by mixing and reaction (FIG. 1A).

상기 과정을 통해 제조된 도파민 수식 카복시메틸셀룰로오스 유도체에 대해 1H-NMR (300 MHz, Bruker, Billerica, MA, USA) 분석을 실시하였다. 그 결과 도 1B에 나타난 바와 같이 카복시메틸셀룰로오스에 도파민이 결합되어 각각의 피크값을 가지는 것을 확인하였다. 1 H-NMR (300 MHz, Bruker, Billerica, MA, USA) analysis was performed on the dopamine-modified carboxymethylcellulose derivative prepared through the above process. As a result, as shown in FIG. 1B, it was confirmed that dopamine was bound to carboxymethyl cellulose to have respective peak values.

또한, 기존 CMC 고분자에 대한 catechol기의 치환도(degree of substitution)를 UV-VIS spectrometry의 280 nm 파장대를 통해 분석한 결과 도 1C에서 확인되는 바와 같이 약 4%가량의 carboxyl group이 카테콜기로 치환된 것을 확인할 수 있었다. In addition, as a result of analyzing the degree of substitution of the catechol group for the existing CMC polymer through the 280 nm wavelength band of UV-VIS spectrometry, as shown in FIG. 1C, about 4% of the carboxyl group is substituted with a catechol group was able to confirm that

실시예 1-2. 하이드로젤의 제조Example 1-2. Preparation of hydrogels

상기 실시예 1-1의 도파민 수식 카복시메틸셀룰로오스 유도체를 가교 (cross-linking)시켜 셀룰로오스 하이드로젤을 제조하였다. 구체적으로, 이를 위해 과요오드산나트륨 (sodium periodate, NaIO4)을 이용한 산화 반응을 통한 가교를 유도하여 하이드로젤을 제조하였다. A cellulose hydrogel was prepared by cross-linking the dopamine-modified carboxymethyl cellulose derivative of Example 1-1. Specifically, for this, a hydrogel was prepared by inducing crosslinking through an oxidation reaction using sodium periodate (NaIO 4 ).

도 2A에 나타난 바와 같이, 상기 카복시메틸셀룰로오스 유도체의 가교는 산화된 카테콜기 사이의 화학적 결합에 의해 이루어지며, 수득한 하이드로젤은 약한 황색을 띠는 것을 확인하였다 (도 3A 참고). As shown in FIG. 2A , crosslinking of the carboxymethylcellulose derivative is achieved by chemical bonding between oxidized catechol groups, and it was confirmed that the obtained hydrogel has a weak yellow color (refer to FIG. 3A).

상기 카복시메틸셀룰로오스 하이드로젤의 가교를 구체적으로 확인하기 위하여 UV-vis (Ultraviolet-visible spectroscopy)를 통해 산화 이전과 산화 이후의 스펙트럼 (spectrum)을 비교하였다. In order to specifically confirm the crosslinking of the carboxymethylcellulose hydrogel, spectra before and after oxidation were compared through UV-vis (Ultraviolet-visible spectroscopy).

그 결과, UV-vis 분석을 통해 산화 전 카테콜 피크 (~280 nm)의 존재를 확인하였고, 산화 후 반응시간에 따른 분석 결과 퀴논 (quinone)에 해당하는 피크 (~400 nm)와 퀴논과 카테콜의 추가적인 반응에 의해 생성되는 물질에 해당하는 피크 (~460 nm)의 증가를 확인하였다 (도 2B). As a result, the presence of a catechol peak (~280 nm) before oxidation was confirmed through UV-vis analysis, and as a result of analysis according to the reaction time after oxidation, the peak corresponding to quinone (~400 nm) and quinone and catechol An increase in the peak (~460 nm) corresponding to the material produced by the additional reaction of Cole was confirmed (FIG. 2B).

또한, FT-IR 분석을 통해 가교 반응의 화학적 기전을 확인하였다. 구체적으로, CMC-CA 고분자에 산화제(NaIO4)를 처리하면 산화된 카테콜 구조체가 형성되고 (② ~1400 m) 산화된 카테콜 간 반응을 통해 카테콜 이량체가 생성되면서 (① ~700 m) 고분자 간 가교가 진행되는 것임을 확인하였다. (도 2C)In addition, the chemical mechanism of the crosslinking reaction was confirmed through FT-IR analysis. Specifically, when CMC-CA polymer is treated with an oxidizing agent (NaIO 4 ), an oxidized catechol structure is formed (② ~1400 m) and a catechol dimer is generated through a reaction between oxidized catechols (① ~700 m) It was confirmed that cross-linking between polymers was in progress. (Fig. 2C)

또한, 상기와 같은 산화를 통한 가교 방법에 의해 도파민 수식된 카복시메틸셀룰로오스 하이드로젤이 제조된 것을 확인하였다 (도 3A). In addition, it was confirmed that a dopamine-modified carboxymethyl cellulose hydrogel was prepared by the cross-linking method through oxidation as described above (FIG. 3A).

실험예 1: 도파민 수식 카복시메틸셀룰로오스의 특성 확인Experimental Example 1: Characterization of dopamine-modified carboxymethyl cellulose

실험예 1-1. 하이드로젤 유도체 농도에 따른 가교속도 비교Experimental Example 1-1. Comparison of crosslinking rate according to hydrogel derivative concentration

상기 실시예 1-2의 하이드로젤 제조 단계에서, 도파민 수식 카복시메틸셀룰로오스 용액의 농도를 2 wt%, 4 wt%의 조건으로 하고, pH 조건 (수산화나트륨 몰농도)을 다르게 하여 도파민 수식 카복시메틸셀룰로오스 유도체의 용액-젤 변화시간을 측정하였다. In the hydrogel preparation step of Example 1-2, the concentration of the dopamine-modified carboxymethyl cellulose solution was set to 2 wt % and 4 wt %, and the pH conditions (molar concentration of sodium hydroxide) were changed to vary the dopamine-modified carboxymethyl cellulose. The solution-gel change time of the derivative was measured.

그 결과, 도파민 수식 카복시메틸셀룰로오스 하이드로젤의 형성 속도는 도파민 수식 카복시메틸셀룰로오스의 농도 및 수산화나트륨의 농도가 증가함에 따라 증가하는 것을 확인하였다 (도 3B). As a result, it was confirmed that the formation rate of the dopamine-modified carboxymethyl cellulose hydrogel increased as the concentration of dopamine-modified carboxymethyl cellulose and sodium hydroxide increased ( FIG. 3B ).

실험예 1-2. 하이드로젤 유도체 농도에 따른 물성 변화 확인Experimental Example 1-2. Confirmation of changes in physical properties according to the concentration of hydrogel derivatives

도파민 수식 카복시메틸셀룰로오스 용액의 농도를 2 wt%, 4 wt%으로 하여 제조된 하이드로젤의 점탄성 계수는 유동계 (MCR 102 레오미터, Anton Paar, Ashland, VA, USA)를 이용하여, 각각 0.1 내지 1 Hz의 주파수 범위에서 주파수 스윕 모드 (frequency sweep mode)내의 저장 탄성율 (storage modulus: G') 및 손실 탄성율 (loss modulus: G'')을 측정하여 분석하였다 (도 4A). 하이드로젤의 탄성은 1 Hz (n = 3)에서의 평균 저장 탄성률을 계산하여 나타내었다. The viscoelastic coefficient of the hydrogel prepared with the concentration of the dopamine-modified carboxymethylcellulose solution as 2 wt% and 4 wt% was 0.1 to 0.1 using a rheometer (MCR 102 rheometer, Anton Paar, Ashland, VA, USA), respectively. The storage modulus (G') and loss modulus (G'') in the frequency sweep mode were measured and analyzed in a frequency range of 1 Hz (FIG. 4A). The elasticity of the hydrogel was calculated by calculating the average storage modulus at 1 Hz (n = 3).

도 4B 및 4C에 나타난 바와 같이, 도파민 수식 카복시메틸셀룰로오스 용액의 농도가 증가함에 따라 하이드로젤의 기계적 물성 (elastic modulus)이 증가하고 탄성 (elasticity)이 증가함을 확인하였다. 이러한 결과들을 통해 도파민 수식 카복시메틸셀룰로오스 용액의 농도를 조절함에 따라 다양한 물성을 갖는 하이드로젤을 형성할 수 있음을 확인하였다. As shown in Figures 4B and 4C, as the concentration of the dopamine-modified carboxymethyl cellulose solution increased, it was confirmed that the mechanical properties (elastic modulus) of the hydrogel increased and the elasticity (elasticity) increased. Through these results, it was confirmed that hydrogels having various physical properties could be formed by adjusting the concentration of the dopamine-modified carboxymethyl cellulose solution.

실험예 1-3. 하이드로젤 유도체 농도에 따른 팽윤 양상 확인Experimental Example 1-3. Confirmation of swelling pattern according to the concentration of hydrogel derivatives

하이드로젤 유도체 농도에 따른 팽윤 양상을 확인하였다. The swelling pattern according to the concentration of the hydrogel derivative was confirmed.

구체적으로, 도파민 수식 카복시메틸셀룰로오스 용액의 농도를 2 wt%, 4 wt%으로 하고 4.5 mg/ml 과요오드산나트륨 (sodium periodate, NaIO4) 과 0.004 M 수산화나트륨 (NaOH)을 처리하여 제조된 하이드로젤의 팽윤 양상을 비교하였다. Specifically, the concentration of the dopamine-modified carboxymethyl cellulose solution was 2 wt%, 4 wt%, and 4.5 mg/ml sodium periodate (NaIO 4 ) and 0.004 M sodium hydroxide (NaOH) were treated with the prepared hydro The swelling behavior of the gels was compared.

그 결과, 도 4D에 나타난 바와 같이, 4 wt%의 도파민 수식 카복시메틸셀룰로오스 용액을 사용하여 제조된 하이드로젤은 2 wt%의 도파민 수식 카복시메틸셀룰로오스 용액을 사용한 하이드로젤에 비하여 더 팽창하는 것을 확인하여, 도파민 수식 카복시메틸셀룰로오스 용액의 농도 조건에 따라 하이드로젤의 팽윤 양상을 조절 가능한 것을 확인하였다.As a result, as shown in FIG. 4D, the hydrogel prepared using 4 wt% of dopamine-modified carboxymethyl cellulose solution expanded more than the hydrogel using 2 wt% of dopamine-modified carboxymethyl cellulose solution. , It was confirmed that the swelling aspect of the hydrogel can be controlled according to the concentration conditions of the dopamine-modified carboxymethyl cellulose solution.

실험예 1-4. 하이드로젤의 접착성 분석Experimental Example 1-4. Adhesion analysis of hydrogels

본 발명에서 제조된 하이드로젤의 접착성을 평가하기 위하여, 유변학 분석을 수행하였다.In order to evaluate the adhesion of the hydrogel prepared in the present invention, a rheological analysis was performed.

구체적으로, 도파민 수식 카복시메틸셀룰로오스 용액의 농도를 2 wt%, 4 wt%으로 하고 4.5 mg/ml 과요오드산나트륨과 0.004 M 수산화나트륨을 처리하여 제조된 하이드로젤을 금속 플레이트에 부착한 뒤 이의 접착력을 측정하고 수치로 표현하였다.Specifically, the concentration of the dopamine-modified carboxymethyl cellulose solution was 2 wt% and 4 wt%, and the hydrogel prepared by treating 4.5 mg/ml sodium periodate and 0.004 M sodium hydroxide was attached to a metal plate and its adhesive strength was measured and expressed numerically.

그 결과, 도 5A에서 확인되는 바와 같이, 하이드로젤의 농도가 높을수록 접착력이 증가하는 것을 확인하였고, 이를 통해 하이드로젤의 농도 조절을 통해 접착력을 조절할 수 있음을 확인하였다.As a result, as confirmed in FIG. 5A, it was confirmed that the higher the concentration of the hydrogel, the higher the adhesive force, and through this, it was confirmed that the adhesive force could be controlled by controlling the concentration of the hydrogel.

실험예 1-5. 하이드로젤의 생체 조직 (간, 장) 접착성 확인Experimental Example 1-5. Confirmation of adhesion of hydrogel to living tissue (liver, intestine)

본 발명의 도파민 수식 카복시메틸셀룰로오스 하이드로젤의 접착력이 체내 조직에서도 충분한 접착력을 가지는지 여부를 확인하였다. It was confirmed whether the adhesive strength of the dopamine-modified carboxymethyl cellulose hydrogel of the present invention has sufficient adhesive strength even in body tissues.

구체적으로, 상기 하이드로젤을 간 조직에 도포한 이후 부착된 하이드로젤을 잡아당겨 조직에 잘 붙어 있는지 여부를 측정하였고, 유변학 분석 장비를 이용하여 조직에 부착된 하이드로젤의 접착력을 측정하였다.Specifically, after applying the hydrogel to the liver tissue, it was measured whether the hydrogel was well attached to the tissue by pulling the attached hydrogel, and the adhesive force of the hydrogel attached to the tissue was measured using a rheological analysis equipment.

그 결과 도 5B에서 확인되는 바와 같이, 하이드로젤은 간 조직에 높은 접착성을 나타내며 잘 붙어있음을 확인하였다. 또한, 도 5C에서 확인된 바와 같이 유변학 분석 결과 도파민 수식 카복시메틸셀룰로오스 용액의 농도가 4 wt% 인 하이드로젤의 경우 조직 접착력이 높은 것을 확인하였고, 이는 하이드로젤이 체내 조직에 부착, 유지될 정도로 충분한 접착력을 가지고 있음을 알 수 있다. As a result, as confirmed in FIG. 5B, it was confirmed that the hydrogel exhibited high adhesion to liver tissue and adhered well. In addition, as confirmed in FIG. 5C, as a result of rheological analysis, it was confirmed that the hydrogel having a concentration of 4 wt% of the dopamine-modified carboxymethylcellulose solution had high tissue adhesion, which was sufficient to allow the hydrogel to adhere to and maintain body tissues. It can be seen that it has adhesive strength.

또한, 상기 하이드로젤을 장 조직에 도포한 이후 부착된 하이드로젤을 잡아당겨 조직에 잘 붙어 있는지 여부를 측정하였고, 조직에 부착된 하이드로젤의 접착력을 측정하였다.In addition, after applying the hydrogel to the intestinal tissue, it was measured whether the hydrogel was well attached to the tissue by pulling the attached hydrogel, and the adhesive force of the hydrogel attached to the tissue was measured.

그 결과 도 6A 및 B에서 확인되는 바와 같이 하이드로젤은 장 조직에 높은 접착성을 나타내며 잘 붙어 있음을 확인하였다. 또한 도 6 C 및 D에서 확인되는 바와 같이 유변학 분석 결과 도파민 수식 카복시메틸셀룰로오스 용액의 농도가 4 wt% 인 하이드로젤의 경우 조직 접착력이 높은 것을 확인하였고, 이를 통해 하이드로젤이 체내 조직에 부착, 유지될 정도로 충분한 접착력을 가지고 있음을 알 수 있다. As a result, as shown in FIGS. 6A and B, it was confirmed that the hydrogel exhibited high adhesion to intestinal tissue and adhered well. In addition, as confirmed in FIGS. 6C and 6D, as a result of rheological analysis, it was confirmed that the hydrogel having a concentration of 4 wt% of the dopamine-modified carboxymethylcellulose solution had high tissue adhesion, through which the hydrogel was attached to and maintained in the body tissue. It can be seen that the adhesive strength is sufficient.

그리고, 마우스 장 내에 도파민 수식 카복시메틸셀룰로오스 용액의 농도가 4 wt% 인 하이드로젤을 주입한 이후 6시간 뒤에 하이드로젤을 H&E 염색을 통해 확인하였다.And, after injecting a hydrogel having a concentration of 4 wt% of a dopamine-modified carboxymethylcellulose solution into the mouse intestine, 6 hours later, the hydrogel was confirmed through H&E staining.

그 결과, 도 6E에서 확인되는 바와 같이, 하이드로젤은 장 조직 내강 표면에 잘 부착되어 유지될 수 있을 정도로 충분한 접착력을 가지고 있음을 확인하였다. As a result, as shown in FIG. 6E , it was confirmed that the hydrogel had sufficient adhesion to be well adhered to and maintained on the surface of the intestinal lumen.

실험예 1-6. 하이드로젤 내부 구조 분석Experimental Example 1-6. Hydrogel internal structure analysis

본 발명의 도파민 수식 카복시메틸셀룰로오스의 농도별 (2 wt%, 4 wt%) 하이드로젤의 내부 구조를 확인하였다.The internal structure of the hydrogel according to the concentration of dopamine-modified carboxymethylcellulose of the present invention (2 wt%, 4 wt%) was confirmed.

구체적으로, 전계방출형 주사전자현미경 (FE-SEM)을 이용하여 하이드로젤 내부를 촬영하였다.Specifically, the inside of the hydrogel was photographed using a field emission scanning electron microscope (FE-SEM).

그 결과 도 7에서 확인되는 바와 같이, 하이드로젤이 마이크로 단위의 다공성 구조를 가지고 있음을 확인하였고, 이를 통해 세포의 삼차원 배양 및 약물 전달체 플랫폼으로 활용 가능함을 확인하였다. As a result, as confirmed in FIG. 7 , it was confirmed that the hydrogel had a micro-scale porous structure, and it was confirmed that it could be utilized as a three-dimensional culture of cells and a drug delivery platform.

실험예 1-7. 하이드로젤의 생체적합성 확인Experimental Example 1-7. Confirmation of biocompatibility of hydrogel

본 발명의 도파민 수식 카복시메틸셀룰로오스 하이드로젤의 생체 적합성을 3차원 세포 배양을 통해 확인하였다.The biocompatibility of the dopamine-modified carboxymethyl cellulose hydrogel of the present invention was confirmed through three-dimensional cell culture.

구체적으로, 도파민 수식 카복시메틸셀룰로오스의 농도별 (2 wt%, 4 wt%) 하이드로젤 내에 인간 지방유래 줄기세포 (human adipose-derived stem cell, hADSC) (1.0Х106 cells/하이드로젤 100μL)를 봉입하여 삼차원 배양하면서 Live/Dead 염색을 실시하였다. 상기 Live/Dead 염색은 Live/Dead Viability/Cytotoxicity Kit (Invitrogen, Carlsbad, CA, USA)를 이용해 제조사의 지시에 따라 0 일 및 7 일째의 세포 생존을 측정하였다. 염색된 세포를 모델 IX73 형광 현미경 (Olympus, Tokyo, Japan)을 사용하여 관찰하였고, 녹색으로 표시된 생존 세포 대 적색으로 표시된 죽은 세포의 비율을 상기 현미경으로 얻은 이미지 (n = 3)로부터 수동 계산에 의해 정량화 하였다.Specifically, human adipose-derived stem cells (hADSC) (1.0Х10 6 cells/hydrogel 100μL) are encapsulated in the dopamine-modified carboxymethylcellulose concentration (2 wt%, 4 wt%) hydrogel. Thus, live/dead staining was carried out during three-dimensional culture. The Live/Dead staining was performed using a Live/Dead Viability/Cytotoxicity Kit (Invitrogen, Carlsbad, CA, USA) to measure cell viability on days 0 and 7 according to the manufacturer's instructions. Stained cells were observed using a model IX73 fluorescence microscope (Olympus, Tokyo, Japan), and the ratio of viable cells marked in green to dead cells marked in red was calculated by manual calculation from the images obtained with the microscope (n = 3). was quantified.

그 결과 도 8A 및 B에서 확인되는 바와 같이 모든 농도의 하이드로젤에서 배양된 세포의 90% 이상 생존하는 것을 확인하여 세포독성이 거의 없고 생체 적합성이 매우 우수함을 확인하였다.As a result, as confirmed in FIGS. 8A and B, it was confirmed that more than 90% of the cells cultured in the hydrogel of all concentrations survived, thereby confirming that there is little cytotoxicity and very good biocompatibility.

그리고, 본 발명의 도파민 수식 카복시메틸셀룰로오스 하이드로젤의 염증 반응 유발 여부를 확인하였다. And, it was confirmed whether the dopamine-modified carboxymethyl cellulose hydrogel of the present invention induces an inflammatory response.

구체적으로 도파민 수식 카복시메틸셀룰로오스 하이드로젤을 대식세포 (Raw 264.7)와 함께 배양하고, 염증 반응 시 대식세포에 의해 분비되는 종양괴사인자 (TNF-α)의 분비량을 측정하였다. Specifically, dopamine-modified carboxymethyl cellulose hydrogel was cultured with macrophages (Raw 264.7), and the amount of tumor necrosis factor (TNF-α) secreted by macrophages during an inflammatory response was measured.

그 결과 도 8C에서 확인되는 바와 같이, 도파민 수식 카복시메틸셀룰로오스 하이드로젤과 배양된 경우에도 어떠한 처리도 하지 않은 대조군과 유사한 수준의 TNF-α가 분비됨을 확인하였다. 이러한 결과를 통해 도파민 수식 카복시메틸셀룰로오스 하이드로젤은 체내 적용에도 염증반응을 유발하지 않을 가능성을 확인하였다. As a result, as confirmed in FIG. 8C, it was confirmed that TNF-α was secreted at a level similar to that of the control group without any treatment even when incubated with dopamine-modified carboxymethylcellulose hydrogel. Through these results, it was confirmed that the dopamine-modified carboxymethyl cellulose hydrogel does not induce an inflammatory reaction even when applied to the body.

실험예 1-8. 하이드로젤의 생체 내 (Experimental Example 1-8. Hydrogel in vivo ( in vivoin vivo ) 독성 분석 확인) confirmation of toxicity analysis

본 발명의 도파민 수식 카복시메틸셀룰로오스 하이드로젤의 생체 내 (in vivo) 독성을 확인하였다.The in vivo toxicity of the dopamine-modified carboxymethyl cellulose hydrogel of the present invention was confirmed.

구체적으로, 마우스 피하 조직에 도파민 수식 카복시메틸셀룰로오스 하이드로젤을 이식한 뒤 주변 조직과 함께 채취하고, OCT 동결, 절단 후 H&E 조직 염색 및 톨루이딘 블루 염색 (Toluidine blue staining)하여 확인하였다. Specifically, dopamine-modified carboxymethyl cellulose hydrogel was transplanted into the mouse subcutaneous tissue and collected together with the surrounding tissues, and confirmed by OCT freezing, cutting, H&E tissue staining and toluidine blue staining.

그 결과 도 9A에서 확인되는 바와 같이, H&E 염색 결과를 통해 하이드로젤이 이식된 부위에 면역 또는 염증반응이 일어나지 않은 것을 확인하였다. 또한, 도 9B에서 확인되는 바와 같이, 톨루이딘 블루 염색 결과를 통해 이식된 조직 부위에서는 비만 세포가 발견되지 않아, 면역 반응이 일어나지 않음을 확인하였다. As a result, as confirmed in FIG. 9A, it was confirmed that no immune or inflammatory reaction occurred at the site where the hydrogel was transplanted through the H&E staining results. In addition, as confirmed in FIG. 9B , no mast cells were found in the transplanted tissue site through the toluidine blue staining result, confirming that an immune response did not occur.

실험예 1-9. CMC-CA 하이드로젤의 지혈능 확인Experimental Example 1-9. Confirmation of hemostasis of CMC-CA hydrogel

생체 내 (in vivo)에서의 도파민 수식 카복시메틸셀룰로오스 하이드로젤의 지혈 효과 확인을 위하여, 4주령 암컷 ICR 마우스 (오리엔트 바이오, 성남시)를 이용하여 간 출혈 모델을 제작하였다. 구체적으로, 상기 마우스를 마취하고 복부를 절개한 후, 멸균된 여과지를 간 아래에 두고 18G 바늘을 이용하여 출혈을 유도하였고, 손상된 부위는 즉시 4 wt% 도파민 수식 카복시메틸셀룰로오스 하이드로젤, 4 wt% 도파민 수식 카복시메틸셀룰로오스 하이드로젤 패치 또는 상용화된 지혈제 (Fibrin glue)를 처리하였다. 이후, 관찰이 끝날 때까지 여과지를 30 초마다 교환하였고, 수집된 여과지를 통해 출혈 양상을 확인하고, 무게를 측정하여 출혈량을 측정하였다. 출혈의 평가를 완료한 후, 복막과 절개 부위를 6-0프롤린 봉합사로 봉합하였다. 치료받지 않은 마우스는 대조군으로 사용되었다. 치료 7 일 후, 마우스를 희생시키고 생리학적 상태를 검사하였다. To confirm the hemostatic effect of dopamine-modified carboxymethylcellulose hydrogel in vivo , a liver hemorrhage model was prepared using a 4-week-old female ICR mouse (Orient Bio, Seongnam-si). Specifically, the mouse was anesthetized and the abdomen was incised, sterilized filter paper was placed under the liver and bleeding was induced using an 18G needle, and the damaged area was immediately treated with 4 wt% dopamine-modified carboxymethylcellulose hydrogel, 4 wt% A dopamine-modified carboxymethyl cellulose hydrogel patch or a commercially available hemostatic agent (Fibrin glue) was treated. Thereafter, the filter paper was changed every 30 seconds until the observation was finished, the bleeding pattern was checked through the collected filter paper, and the amount of bleeding was measured by measuring the weight. After completing the assessment of bleeding, the peritoneum and the incision site were closed with 6-0 proline sutures. Untreated mice were used as controls. After 7 days of treatment, mice were sacrificed and their physiological status was examined.

상기 마우스 간 출혈 모델에 대조군 (No treatment, NT), 상용화된 지혈제 (Fibrin glue), 4 wt% 도파민 수식 카복시메틸셀룰로오스 하이드로젤 (hCMC-CA) 및 4 wt% 도파민 수식 카복시메틸셀룰로오스 하이드로젤 패치 (pCMC-CA) 처리군을 제작하였으며, 이후 출혈량을 측정하였다. Control (No treatment, NT), commercially available hemostatic agent (Fibrin glue), 4 wt% dopamine-modified carboxymethylcellulose hydrogel (hCMC-CA) and 4 wt% dopamine-modified carboxymethylcellulose hydrogel patch ( pCMC-CA) treatment group was prepared, and then the amount of bleeding was measured.

그 결과, 도 10A에서 확인된 바와 같이 도파민 수식 카복시메틸셀룰로오스 하이드로젤 패치를 처리한 경우 기존의 상용화 된 지혈제, 도파민 수식 카복시메틸셀룰로오스 하이드로젤에 비해 현저히 우수한 지혈 효과를 나타냄을 정량적으로 확인하였다. As a result, as confirmed in FIG. 10A, when the dopamine-modified carboxymethyl cellulose hydrogel patch was treated, it was quantitatively confirmed that it exhibited a significantly superior hemostatic effect compared to the conventional commercially available hemostatic agent, dopamine-modified carboxymethyl cellulose hydrogel.

또한, 출혈량 확인을 위해 사용된 혈액 여과지의 사진을 시간 순으로 확인하였으며, 그 결과 도 10B에서 확인된 바와 같이 도파민 수식 카복시메틸셀룰로오스 하이드로젤 패치 및 하이드로젤을 처리한 경우 빠른 시간 내에 출혈이 멈추는 것을 확인하였다.In addition, the photos of the blood filter paper used to check the amount of bleeding were checked in chronological order, and as a result, as confirmed in FIG. 10B, when the dopamine-modified carboxymethyl cellulose hydrogel patch and hydrogel were treated, the bleeding stopped quickly. Confirmed.

그리고 지혈 3일 뒤 처치 부위에 대한 H&E 조직학 분석을 확인한 결과 도파민 수식 카복시메틸셀룰로오스 하이드로젤 패치는 출혈 부위에 혈전 형성을 유도하여 효과적으로 지혈작용을 유도하는 것을 알 수 있다 (도 10C). And as a result of confirming the H&E histological analysis of the treated site 3 days after hemostasis, it can be seen that the dopamine-modified carboxymethylcellulose hydrogel patch induces the formation of a thrombus at the bleeding site, effectively inducing hemostasis (FIG. 10C).

실험예 1-10. 하이드로젤 패치의 특성 분석 확인Experimental Example 1-10. Confirmation of characterization of hydrogel patches

CMC-CA 하이드로젤 용액 (2 wt%)을 원하는 크기와 형태의 mold에서 급속 냉각한 뒤 이후 동결건조를 실시하여 CMC-CA 패치를 제작하였다. 제작된 CMC-CA 패치의 분석 및 적용을 위해서 가교제로서 산화제 (4.5 mg/mL NaIO4 용액)를 처리하여 가교를 유도하여 사용하였다. (도 11 A)The CMC-CA hydrogel solution (2 wt%) was rapidly cooled in a mold of a desired size and shape, and then lyophilized to fabricate a CMC-CA patch. For analysis and application of the prepared CMC-CA patch, an oxidizing agent (4.5 mg/mL NaIO 4 solution) was treated as a crosslinking agent to induce crosslinking. (Fig. 11A)

CMC-CA 패치는 4 wt% CMC-CA 하이드로젤 보다 훨씬 높은 물성 (modulus)을 가짐을 확인하였다 (1 Hz 기준, 4 wt% CMC-CA 하이드로젤 = 0.54 kPa, CMC-CA 패치 = 9.86kPa) (도 11 B).It was confirmed that the CMC-CA patch had much higher modulus than the 4 wt% CMC-CA hydrogel (at 1 Hz, 4 wt% CMC-CA hydrogel = 0.54 kPa, CMC-CA patch = 9.86 kPa) (Fig. 11B).

CMC-CA 패치의 평균 elasticity (0.048)는 4 wt% CMC-CA 하이드로젤 (0.017) 보다는 높으나 2 wt% CMC-CA 하이드로젤 (0.045)과는 비슷한 수준으로 확인되었다. 즉, CMC-CA 패치는 4 wt% CMC-CA 하이드로젤에 비해서는 탄성은 다소 떨어지나 뛰어난 기계적 물성 (modulus)를 가지면서도 2 wt% CMC-CA 하이드로젤 수준의 비교적 우수한 탄성을 가지고 있음을 알 수 있었다 (도 11 C).The average elasticity (0.048) of the CMC-CA patch was higher than that of the 4 wt% CMC-CA hydrogel (0.017), but similar to that of the 2 wt% CMC-CA hydrogel (0.045). That is, it can be seen that the CMC-CA patch has relatively good elasticity at the level of the 2 wt% CMC-CA hydrogel while having excellent mechanical properties (modulus), although the elasticity is somewhat lower than that of the 4 wt% CMC-CA hydrogel. were (Fig. 11C).

CMC-CA 패치의 간 조직에 대한 접착력 (8 mm probe, 10 μ/s detachment = 5.97 ± 0.20 kPa) 또한 고농도의 (4% w/v) CMC-CA 하이드로젤 (8 mm probe, 10 μ/s detachment 4% hydrogel = 1.06 ± 0.12 kPa)과 비교하여 우수함을 유변학 분석을 통해서 확인하였다 (도 11 D).Adhesion of CMC-CA patch to liver tissue (8 mm probe, 10 μ/s detachment = 5.97 ± 0.20 kPa) and high concentration (4% w/v) CMC-CA hydrogel (8 mm probe, 10 μ/s) It was confirmed through rheological analysis that it was superior to that of detachment 4% hydrogel = 1.06 ± 0.12 kPa) ( FIG. 11D ).

결론적으로 CMC-CA 패치가 CMC-CA 하이드로젤 제형보다 물성 및 접착력이 더욱 우수하며 보관 및 사용의 용이성으로 인해 실용화에 유리할 것으로 예상할 수 있다.In conclusion, it can be expected that the CMC-CA patch has better physical properties and adhesion than the CMC-CA hydrogel formulation, and is advantageous for practical use due to the ease of storage and use.

실시예 2: 5-히드록시도파민 수식 카복시메틸셀룰로오스 유도체 및 하이드로젤 합성Example 2: Synthesis of 5-hydroxydopamine-modified carboxymethylcellulose derivative and hydrogel

실시예 2-1. 5-히드록시도파민 수식 카복시메틸셀룰로오스 유도체의 합성Example 2-1. Synthesis of 5-hydroxydopamine-modified carboxymethylcellulose derivatives

5-히드록시도파민 수식 카복시메틸셀룰로오스 유도체 합성을 위해 EDC/NHS 화학반응을 이용하여 카복시메틸셀룰로오스 (CMC)에 5-히드록시도파민 (5-hydroxydopamine)을 수식하였다. For the synthesis of 5-hydroxydopamine-modified carboxymethylcellulose derivatives, 5-hydroxydopamine (5-hydroxydopamine) was modified in carboxymethylcellulose (CMC) using EDC/NHS chemical reaction.

구체적으로, 카복시메틸셀룰로오스를 3차 증류수 (TDW) 혹은 pH 5.5의 2-(N-morpholino) ethanesulfonic acid (MES) 완충용액에 용해시켰다. 상기 용액에 1-(3-디메틸아미노프로필)-3-에틸카르보디이미드 하이드로클로라이드 (EDC, Thermo Fisher Scientific, Waltham, MA, USA)와 N-히드록시숙신이미드 (NHS, Sigma-Aldrich, St. Louis, MO, USA)를 첨가하고, pH 5.5-6.0 조건에서 30분간 교반 하였다.Specifically, carboxymethyl cellulose was dissolved in tertiary distilled water (TDW) or 2-(N-morpholino)ethanesulfonic acid (MES) buffer at pH 5.5. 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC, Thermo Fisher Scientific, Waltham, MA, USA) and N-hydroxysuccinimide (NHS, Sigma-Aldrich, St. Louis, MO, USA) was added and stirred for 30 minutes at pH 5.5-6.0.

상기 용액에 5-히드록시도파민을 첨가하고, 실온 pH 3.8-5.5 조건에서 밤새 교반 하여 5-히드록시도파민 수식 카복시메틸셀룰로오스 유도체를 합성하였다. 이 때 카복시메틸셀룰로오스 (CMC): EDC: NHS: 5-히드록시도파민의 몰비를 1:3:2:2가 되도록 혼합, 반응시켰다 (도 12A).5-hydroxydopamine was added to the solution and stirred overnight at room temperature pH 3.8-5.5 to synthesize a 5-hydroxydopamine-modified carboxymethylcellulose derivative. At this time, the molar ratio of carboxymethylcellulose (CMC):EDC:NHS:5-hydroxydopamine was 1:3:2:2, followed by mixing and reaction (FIG. 12A).

상기 과정을 통해 제조된 5-히드록시도파민 수식 카복시메틸셀룰로오스 유도체에 대해 1H-NMR (300 MHz, Bruker, Billerica, MA, USA) 분석을 실시하였다. 그 결과 도 12B에 나타난 바와 같이 카복시메틸셀룰로오스에 5-히드록시도파민이 결합되어 각각의 피크값을 가지는 것을 확인하였다. 1 H-NMR (300 MHz, Bruker, Billerica, MA, USA) analysis was performed on the 5-hydroxydopamine-modified carboxymethylcellulose derivative prepared through the above process. As a result, as shown in FIG. 12B , it was confirmed that 5-hydroxydopamine was bound to carboxymethylcellulose to have respective peak values.

또한, CMC 고분자에 대한 갈롤기의 치환도 (degree of substitution)를 UV-VIS spectrometry를 통해 분석해 봤을 때 약 14%가량의 carboxyl group이 갈롤기로 치환된 것을 확인하였다 (도 12C).In addition, when the degree of substitution of the gallol group for the CMC polymer was analyzed through UV-VIS spectrometry, it was confirmed that about 14% of the carboxyl group was substituted with the gallol group (FIG. 12C).

실시예 2-2. 하이드로젤의 제조Example 2-2. Preparation of hydrogels

상기 실시예 2-1의 5-히드록시도파민 수식 카복시메틸셀룰로오스 유도체를 가교 (cross-linking)시켜 셀룰로오스 하이드로젤을 제조하였다. 구체적으로, 이를 위해 과요오드산나트륨 (sodium periodate, NaIO4) 또는 수산화나트륨 (NaOH)를 이용한 산화 반응을 통한 가교를 유도하여 하이드로젤을 제조하였다. A cellulose hydrogel was prepared by cross-linking the 5-hydroxydopamine-modified carboxymethyl cellulose derivative of Example 2-1. Specifically, for this, a hydrogel was prepared by inducing crosslinking through an oxidation reaction using sodium periodate (NaIO 4 ) or sodium hydroxide (NaOH).

도 13A에 나타난 바와 같이, 상기 카복시메틸셀룰로오스 유도체의 가교는 산화된 갈롤기 사이의 화학적 결합에 의해 이루어지며, 수득한 하이드로젤은 약한 황색을 띠는 것을 확인하였다. As shown in FIG. 13A , crosslinking of the carboxymethylcellulose derivative is achieved by chemical bonding between oxidized gallol groups, and it was confirmed that the obtained hydrogel has a weak yellow color.

상기 카복시메틸셀룰로오스 하이드로젤의 가교를 구체적으로 확인하기 위하여 UV-vis (Ultraviolet-visible) spectroscopy를 통해 산화 이전과 산화 이후의 스펙트럼 (spectrum)을 비교하였다. In order to specifically confirm the crosslinking of the carboxymethylcellulose hydrogel, spectra before and after oxidation were compared through UV-vis (Ultraviolet-visible) spectroscopy.

그 결과, UV-vis 분석을 통해 280-300 nm의 흡광도 피크가 관찰되어, 가교된 갈롤기들을 포함하는 산화물이 존재함을 확인하였다. 구체적으로, 과요오드산나트륨으로 산화된 경우에는 350-380 nm 구간에서 갈롤기의 산화과정 중 확인되는 세미-퀴논 중간체 (semi-quinone intermediate) 및 페녹실 라디칼 (phenoxyl radical)에 해당되는 피크의 형성을 확인하였다 (도 13B). As a result, an absorbance peak of 280-300 nm was observed through UV-vis analysis, confirming the presence of an oxide including cross-linked gallol groups. Specifically, in the case of oxidation with sodium periodate, peaks corresponding to semi-quinone intermediates and phenoxyl radicals are formed in the 350-380 nm range during the oxidation process of gallol groups. was confirmed (FIG. 13B).

그리고 수산화나트륨으로 산화된 경우에서는 푸르푸로갈린 (purpurogallin)이 420-440 nm 구간에서 피크가 형성되었다, 600 nm 부근에서 넓은 피크가 관찰되는 것을 확인하였고, 이는 분자간 상호작용에 의해 전하이동 복합체 (charge transfer complex)를 형성하는 것을 의미한다 (도 13C).And, in the case of oxidation with sodium hydroxide, a peak was formed in the 420-440 nm section of purpurogallin, and it was confirmed that a broad peak was observed near 600 nm, which is a charge transfer complex (charge) due to intermolecular interaction. transfer complex) (FIG. 13C).

CMC-PG 유도체의 가교 반응이 산화제 (NaIO4) 처리 후 산화된 갈롤기 유도체인 phenoxyl radical (① ~700 m)이 형성되고 이들 간 biphenolic ester 형성을 통해 진행되는 것임을 (② ~1400 m) T-IR 분석을 통해 확인하였다 (도 13D).The crosslinking reaction of CMC-PG derivatives is that phenoxyl radical (① ~700 m), which is an oxidized gallol derivative, is formed after treatment with an oxidizing agent (NaIO 4 ) and proceeds through the formation of biphenolic ester between them (② ~1400 m) T- It was confirmed by IR analysis (FIG. 13D).

실험예 2: 5-히드록시도파민 수식 카복시메틸셀룰로오스의 특성 확인Experimental Example 2: Characterization of 5-hydroxydopamine-modified carboxymethyl cellulose

실험예 2-1. 가교조건 및 하이드로젤 유도체 농도에 따른 물성 변화 확인Experimental Example 2-1. Confirmation of changes in physical properties according to crosslinking conditions and concentration of hydrogel derivatives

두 가지 CMC-PG 용액 농도 조건(2 wt%, 4 wt%)에서 형성된 셀룰로오스 하이드로젤의 물성 차이를 유변학 분석을 통해 비교하였다. CMC-PG 용액의 농도가 높아짐에 따라 하이드로젤의 기계적 물성을 대변하는 탄성계수(elastic modulus)가 증가하였으나 하이드로젤의 탄성력을 대변하는 tanδ 값은 큰 변화가 없는 것을 확인하였다. (도 14A-D)The difference in physical properties of cellulose hydrogels formed under two CMC-PG solution concentration conditions (2 wt%, 4 wt%) was compared through rheological analysis. As the concentration of the CMC-PG solution increased, the elastic modulus representing the mechanical properties of the hydrogel increased, but it was confirmed that the tanδ value representing the elastic force of the hydrogel did not change significantly. (FIGS. 14A-D)

두 가지의 산화 방식에 따라 형성된 각 셀룰로오스 하이드로젤의 물성 차이를 유변학 분석을 통해 확인하였다. (도 14A-C) 그 결과 탄성계수는 NaIO4를 이용한 가교방식(2% = 0.63 ± 0.05 kPa, 4% = 2.06 ± 0.43 kPa)이 NaOH (2% = 0.25 ± 0.05 kPa, 4% = 1.07 ± 0.27 kPa) 가교 방식 대비 각 농도 조건에서 더 높은 것을 확인하였고, tanδ 값 또한 NaIO4를 이용한 가교 방식이 NaOH 가교 방식 보다 더 낮아 탄성력이 더 높음 (NaIO4 : 2% = 0.03 ± 0.01. 4% = 0.02 ± 0.003, NaOH : 2% = 0.08 ± 0.01, 4% = 0.08 ± 0.03)을 확인하였다.The difference in physical properties of each cellulose hydrogel formed according to the two oxidation methods was confirmed through rheological analysis. (FIG. 14A-C) As a result, the modulus of elasticity was determined by the crosslinking method using NaIO 4 (2% = 0.63 ± 0.05 kPa, 4% = 2.06 ± 0.43 kPa) and NaOH (2% = 0.25 ± 0.05 kPa, 4% = 1.07 ± 0.27 kPa) was confirmed to be higher at each concentration condition compared to the crosslinking method, and the tanδ value was also lower in the crosslinking method using NaIO 4 than in the NaOH crosslinking method, resulting in higher elasticity (NaIO 4 : 2% = 0.03 ± 0.01. 4% = 0.02 ± 0.003, NaOH: 2% = 0.08 ± 0.01, 4% = 0.08 ± 0.03) were confirmed.

즉, NaIO4를 이용한 산화 방식을 적용했을 때 물성과 탄성력이 더 우수한 CMC-PG 하이드로젤 제작이 가능함을 확인하였다.That is, it was confirmed that CMC-PG hydrogel having better properties and elasticity can be produced when the oxidation method using NaIO 4 is applied.

실험예 2-2. 하이드로젤 팽윤 양상 확인 및 내부 구조 분석Experimental Example 2-2. Confirmation of hydrogel swelling and analysis of internal structure

두가지 CMC-PG 용액 농도 조건(2 wt%, 4 wt%)에서 각각 두가지 가교 방식(NaIO4, NaOH)으로 셀룰로오스 하이드로젤을 형성한 후 하이드로젤의 팽윤 양상을 측정하였다. 그 결과 도 15A에서 확인되는 바와 같이 전반적으로 NaIO4 처리를 통해 가교한 하이드로젤보다 NaOH 처리하여 가교를 유도한 하이드로젤이 더 팽창하는 양상을 확인하였다. 그리고 두 가교 조건에서 모두 2 wt%보다는 4 wt% 조건에서 하이드로젤이 더 팽창하는 양상을 확인하였다. 이처럼 사용한 CMC-PG 농도 조건이나 가교 조건에 따라 팽윤 양상을 조절할 수 있다.Cellulose hydrogels were formed by two crosslinking methods (NaIO 4 , NaOH) under two CMC-PG solution concentration conditions (2 wt%, 4 wt%), and then the swelling behavior of the hydrogel was measured. As a result, as shown in FIG. 15A , it was confirmed that the hydrogel induced by NaOH treatment swelled more than the hydrogel crosslinked through NaIO 4 treatment overall. And it was confirmed that the hydrogel expands more at 4 wt% than at 2 wt% in both crosslinking conditions. The swelling pattern can be adjusted according to the used CMC-PG concentration conditions or crosslinking conditions.

전계방출형 주사전자현미경 (FE-SEM) 장비를 이용하여 두가지 방법으로 가교된 CMC-PG 하이드로젤의 내부가 마이크로 단위의 다공성 구조를 형성하고 있는 것을 확인하였다 (도 15B). Using field emission scanning electron microscopy (FE-SEM) equipment, it was confirmed that the inside of the CMC-PG hydrogel crosslinked by two methods forms a micro-sized porous structure (FIG. 15B).

이러한 결과들을 통해 CMC-PG 하이드로젤도 세포의 삼차원 배양이나 약물 전달체 플랫폼으로 적용 가능함을 확인하였다.Through these results, it was confirmed that CMC-PG hydrogel can also be applied as a three-dimensional culture of cells or a drug delivery platform.

실험예 2-3.Experimental Example 2-3. 하이드로젤의 접착성 분석Adhesion analysis of hydrogels

본 발명에서 제조된 하이드로젤의 접착성을 평가하기 위하여, 유변학 분석을 수행하였다.In order to evaluate the adhesion of the hydrogel prepared in the present invention, a rheological analysis was performed.

구체적으로, 유변학 분석 장비를 이용하여 CMC-PG 용액과 산화제 (NaIO4) 가교 조건으로 형성된 하이드로젤의 접착력을 측정하였다.Specifically, the adhesive strength of the hydrogel formed under the conditions of crosslinking CMC-PG solution and an oxidizing agent (NaIO 4 ) was measured using a rheological analysis equipment.

유변학 분석을 통해 농도가 높은 4 wt% CMC-PG 하이드로젤의 접착력이 2 wt% CMC-PG 하이드로젤 보다 더 높음을 확인하였다 (도 16A, B). Through rheological analysis, it was confirmed that the adhesive strength of the high concentration 4 wt% CMC-PG hydrogel was higher than that of the 2 wt% CMC-PG hydrogel (FIGS. 16A, B).

이를 통해 CMC-PG 유도체 농도로 접착력을 조절할 수 있음을 확인하였다.Through this, it was confirmed that the adhesion strength can be controlled by the concentration of the CMC-PG derivative.

실험예 2-4. 하이드로젤의 pH 감응성 확인Experimental Example 2-4. Confirmation of pH Sensitivity of Hydrogels

본 발명에서 제조된 하이드로젤의 pH 감응성을 pH에 따른 하이드로젤의 크기 변화로 확인하였다.The pH sensitivity of the hydrogel prepared in the present invention was confirmed by the change in the size of the hydrogel according to pH.

구체적으로, 5-히드록시도파민 수식 카복시메틸셀룰로오스 (CMC-PG) 용액의 농도를 2 wt%, 4 wt%으로 하고 과요오드산나트륨을 처리하여 제조된 하이드로젤을 다른 pH 용액 (pH 1, pH 7.4 및 pH 14)에 담가두어 부피변화를 확인하였다.Specifically, the hydrogel prepared by treating 5-hydroxydopamine-modified carboxymethylcellulose (CMC-PG) solutions with concentrations of 2 wt% and 4 wt% and sodium periodate with different pH solutions (pH 1, pH 7.4 and pH 14) to confirm the volume change.

그 결과, 도 17에서 확인되는 바와 같이, 산성 조건의 낮은 pH 용액에서는 하이드로젤의 크기 및 부피가 유지되었으나, 중성 조건의 pH 용액에서는 하이드로젤의 부피가 약간 증가하였고, 염기성 조건의 높은 pH 용액에서는 하이드로젤의 부피가 크게 증가하는 것을 확인하였다.As a result, as shown in FIG. 17, the size and volume of the hydrogel were maintained in a low pH solution under acidic conditions, but the volume of the hydrogel slightly increased in a pH solution under neutral conditions, and in a high pH solution under basic conditions It was confirmed that the volume of the hydrogel greatly increased.

이러한 결과를 통해 pH 조건에 따라 하이드로젤의 부피 (크기) 변화가 있을 수 있음을 확인하여 pH 감응성을 확인할 수 있다. Through these results, it can be confirmed that the volume (size) of the hydrogel can change depending on the pH condition, thereby confirming the pH sensitivity.

또한, 상기 제조된 하이드로젤을 전계방출형 주사현미경 (FE-SEM) 장비를 이용하여 관측하였다.In addition, the prepared hydrogel was observed using a field emission scanning microscope (FE-SEM) equipment.

그 결과, 도 18에서 확인되는 바와 같이 pH 별 하이드로젤의 공극의 크기가 변화하는 것을 확인하였다. 구체적으로, 산성 조건의 낮은 pH에서는 가장 작은 크기의 다공성 구조를 보였으며 pH가 높을수록 공극의 크기가 증가하는 것을 확인할 수 있었다. As a result, as shown in FIG. 18 , it was confirmed that the size of the pores of the hydrogel for each pH was changed. Specifically, it was confirmed that the porous structure of the smallest size was exhibited at a low pH in an acidic condition, and the size of the pores increased as the pH increased.

이러한 결과를 통해, 상기한 pH 조건에 따른 하이드로젤의 크기 변화는 내부 공극의 크기 변화에 의한 것으로 사료되며, 이러한 특징을 통해 pH 변화에 따른 약물 방출이 조절되는 pH 감응성 약물 전달 시스템으로서 활용될 수 있음을 알 수 있다. Through these results, it is believed that the change in the size of the hydrogel according to the above pH conditions is due to the change in the size of the internal pores, and through this feature, it can be utilized as a pH-sensitive drug delivery system in which drug release according to the change in pH is controlled. It can be seen that there is

실험예 2-5. pH 감응성 약물전달 시스템 활용 가능성 확인Experimental Example 2-5. Confirmation of the possibility of using a pH-sensitive drug delivery system

상기한 실험예 2-4에서 도출한 pH 감응성 약물전달 시스템으로서 본 발명 하이드로젤의 활용 가능성을 확인하였다. The possibility of using the hydrogel of the present invention as a pH-sensitive drug delivery system derived from Experimental Example 2-4 was confirmed.

구체적으로, 소혈청 알부민 (bovine serum albumin, BSA)을 하이드로젤 내에 탑재한 뒤에 pH 2인 산성 용액에 두었다가 pH 7인 중성 용액으로 교체하여 BSA 방출 양상을 확인하였다. Specifically, after loading bovine serum albumin (BSA) in the hydrogel, it was placed in an acidic solution having a pH of 2 and replaced with a neutral solution having a pH of 7 to confirm the BSA release pattern.

그 결과, 도 19A에서 확인되는 바와 같이 pH 7에 하이드로젤을 위치한 뒤 BSA 방출을 확인하였다. 이는 낮은 pH 조건에서는 하이드로젤의 공극의 크기가 줄어들어 BSA 방출이 일어나지 않다가, 높은 pH 조건으로 변화되면서, 하이드로젤이 팽윤되어 BSA가 방출되는 것으로 판단된다. As a result, as shown in FIG. 19A, the release of BSA was confirmed after the hydrogel was placed at pH 7. It is determined that the size of the pores of the hydrogel is reduced in the low pH condition, so that BSA release does not occur.

또한, BSA 대신 인슐린을 탑재한 뒤 동일한 조건에서 실험하여 인슐린 방출 양상을 확인하였다. In addition, the insulin release pattern was confirmed by testing under the same conditions after loading insulin instead of BSA.

그 결과, 도 19B에서 확인된 바와 같이, 낮은 pH 조건에서는 소량의 인슐린만 방출되다 높은 pH 용액으로 교체된 뒤에는 더 많은 양의 인슐린이 방출되는 것을 확인하였다.As a result, as confirmed in FIG. 19B , it was confirmed that only a small amount of insulin was released under the low pH condition, but a larger amount of insulin was released after being replaced with the high pH solution.

이러한 결과들을 통해, 본 발명의 하이드로젤은 약물을 탑재할 수 있을 뿐만 아니라, 낮은 pH 조건에서는 포집된 약물을 손상없이 유지하다, 높은 pH 조건에서는 약물을 방출하여 목적하는 곳으로 약물을 효과적으로 전달, 방출시킬 수 있음을 알 수 있다. 이는, 경구 투여 약물의 경우 위 (낮은 pH)에서는 약물을 포집하고 방출하지 않다가, 장 (높은 pH)에서 유효성분을 방출하는 기전의 가능성을 확인한 것이다. Through these results, the hydrogel of the present invention can not only load a drug, but also maintains the captured drug without damage in a low pH condition. It can be seen that it can be released. This is to confirm the possibility of a mechanism for collecting and not releasing the drug in the stomach (low pH) in the case of an orally administered drug, and releasing the active ingredient in the intestine (high pH).

실험예 2-6. 하이드로젤의 생체적합성 확인 (독성확인)Experimental Example 2-6. Confirmation of biocompatibility of hydrogel (confirmation of toxicity)

본 발명의 5-히드록시도파민 수식 카복시메틸셀룰로오스 하이드로젤의 생체 적합성을 3차원 세포 배양을 통해 확인하였다.The biocompatibility of the 5-hydroxydopamine-modified carboxymethylcellulose hydrogel of the present invention was confirmed through three-dimensional cell culture.

구체적으로, 5-히드록시도파민 수식 카복시메틸셀룰로오스의 농도별 (2 wt%, 4 wt%), 산화제별 (과요오드산나트륨 또는 수산화나트륨) 하이드로젤 내에 인간 지방유래 줄기세포 (human adipose-derived stem cell, hADSC) (1.0Х106 cells/하이드로젤 100μL)를 봉입하여 삼차원 배양하면서 Live/Dead 염색을 실시하였다. 상기 Live/Dead 염색은 Live/Dead Viability/Cytotoxicity Kit (Invitrogen, Carlsbad, CA, USA)를 이용해 제조사의 지시에 따라 0 일 및 7 일째의 세포 생존을 측정하였다. 염색된 세포를 모델 IX73 형광 현미경 (Olympus, Tokyo, Japan)을 사용하여 관찰하였고, 녹색으로 표시된 생존 세포 대 적색으로 표시된 죽은 세포의 비율을 상기 현미경으로 얻은 이미지 (n = 3)로부터 수동 계산에 의해 정량화 하였다.Specifically, human adipose-derived stem cells (human adipose-derived stem) in 5-hydroxydopamine-modified carboxymethyl cellulose by concentration (2 wt%, 4 wt%) and oxidizing agent (sodium periodate or sodium hydroxide) hydrogel cell, hADSC) (1.0Х10 6 cells/hydrogel 100 μL) was encapsulated and Live/Dead staining was performed while culturing three-dimensionally. The Live/Dead staining was performed using a Live/Dead Viability/Cytotoxicity Kit (Invitrogen, Carlsbad, CA, USA) to measure cell viability on days 0 and 7 according to the manufacturer's instructions. Stained cells were observed using a model IX73 fluorescence microscope (Olympus, Tokyo, Japan), and the ratio of viable cells marked in green to dead cells marked in red was calculated by manual calculation from the images obtained with the microscope (n = 3). was quantified.

그 결과 도 20에서 확인되는 바와 같이 모든 농도 및 산화제 별 하이드로젤에서 배양된 세포의 90% 이상 생존하는 것을 확인하여 세포독성이 거의 없고 생체 적합성이 매우 우수함을 확인하였다.As a result, as confirmed in FIG. 20, it was confirmed that more than 90% of the cells cultured in the hydrogel for each concentration and oxidizing agent survived, thereby confirming that there is little cytotoxicity and excellent biocompatibility.

실험예 2-7. 하이드로젤의 필러로서의 응용 가능성 확인Experimental Example 2-7. Confirmation of applicability of hydrogel as filler

본 발명의 하이드로젤을 필러 소재로서 응용할 수 있는지를 확인하였다.It was confirmed whether the hydrogel of the present invention can be applied as a filler material.

구체적으로, 마우스 피하조직에 4 wt%의 5-히드록시도파민 수식 카복시메틸셀룰로오스 (CMC-PG)를 가교 없이 투여하여 필러로서 응용 가능성을 확인하였다.Specifically, the possibility of application as a filler was confirmed by administering 4 wt% of 5-hydroxydopamine-modified carboxymethyl cellulose (CMC-PG) to the mouse subcutaneous tissue without crosslinking.

그 결과 도 21A에서 확인되는 바와 같이, 5-히드록시도파민의 산화능에 기인하여 별도의 산화제 없이도 체내에 하이드로젤이 형성됨을 확인하였다.As a result, as shown in FIG. 21A, it was confirmed that hydrogel was formed in the body without a separate oxidizing agent due to the oxidizing ability of 5-hydroxydopamine.

이후, 상기 형성된 하이드로젤을 수거하여 실험예 2-1과 같은 방법으로 물성을 측정하였다. Thereafter, the formed hydrogel was collected and physical properties were measured in the same manner as in Experimental Example 2-1.

그 결과, 도 21B 및 C에서 확인되는 바와 같이, 체내에서 형성된 하이드로젤 또한 5-히드록시도파민 수식 카복시메틸셀룰로오스의 농도에 따라 물성이 변화하여 이를 조절할 수 있음을 확인하였다. As a result, as shown in FIGS. 21B and C, it was confirmed that the hydrogel formed in the body can also be adjusted by changing the physical properties according to the concentration of 5-hydroxydopamine-modified carboxymethyl cellulose.

이러한 결과를 종합하면, 본 발명의 하이드로젤은 물성이 우수하고 체내에서 안정적으로 존재하는 셀룰로오스를 기반으로 하기 때문에, 장기간 체내에서 부피의 유지가 중요한 미용 및 성형을 위한 용도로 사용되는 필러로서 적합한 소재임을 알 수 있다.Summarizing these results, since the hydrogel of the present invention has excellent physical properties and is based on cellulose stably present in the body, it is a material suitable as a filler used for cosmetic and cosmetic purposes, where maintenance of volume in the body for a long period of time is important. it can be seen that

실험예 2-8. 하이드로젤의 세포 이식용 소재로서의 응용 가능성 확인Experimental Example 2-8. Confirmation of application potential of hydrogel as a material for cell transplantation

본 발명의 하이드로젤을 세포 이식용 소재로서 사용할 수 있는지를 확인하였다.It was confirmed whether the hydrogel of the present invention can be used as a material for cell transplantation.

구체적으로, 형광 염료 (Dil)로 표지된 인간 지방유래 줄기세포 (hADSC)와 가교를 시키지 않은 5-히드록시도파민 수식 카복시메틸셀룰로오스 (hCMC-PG)를 혼합하여 가교제 없이 마우스 피하 조직 내로 주입하였다. Specifically, human adipose-derived stem cells (hADSC) labeled with a fluorescent dye (Dil) and 5-hydroxydopamine-modified carboxymethyl cellulose (hCMC-PG) not cross-linked were mixed and injected into the mouse subcutaneous tissue without a cross-linking agent.

그 결과 도 22에서 확인되는 바와 같이 5-히드록시도파민의 산화능에 기인하여 별도의 산화제 없이도 체내에 하이드로젤이 형성됨을 확인하였고, 이식된 세포들이 하이드로젤 내에서 2주동안 유지됨을 확인하였다. As a result, as shown in FIG. 22 , it was confirmed that hydrogel was formed in the body without a separate oxidizing agent due to the oxidizing ability of 5-hydroxydopamine, and it was confirmed that the transplanted cells were maintained in the hydrogel for 2 weeks.

이러한 결과를 종합하면, 본 발명의 하이드로젤은 세포 이식용 소재로서 적용 가능성이 있음을 확인할 수 있다. Summarizing these results, it can be confirmed that the hydrogel of the present invention has applicability as a material for cell transplantation.

실험예 2-9. CMC-PG 패치 제작 및 특성 분석Experimental Example 2-9. CMC-PG patch fabrication and characterization

CMC-PG 패치의 경우 CMC 하이드로젤 용액 (2 wt%)을 원하는 크기와 형태의 mold에서 급속 냉각한 뒤 이후 동결건조를 실시하여 CMC-CA 패치를 제작하였다. CMC-PG 패치의 경우 갈롤기(PG)의 높은 산화력으로 인해 생체 내 적용시 조직 내 산소에 의한 자연 산화를 통해 자체 가교가 가능하여 추가적인 가교제를 처리하지 않아도 하이드로젤 형성이 가능하다는 장점이 있다. 생체 외 환경에서는 분석의 용이성을 위해 산화제 (4.5 mg/mL NaIO4 용액)를 처리하여 가교 후 분석을 진행하였다. (도 23A) In the case of the CMC-PG patch, a CMC hydrogel solution (2 wt%) was rapidly cooled in a mold of a desired size and shape, and then lyophilized to fabricate a CMC-CA patch. In the case of the CMC-PG patch, due to the high oxidizing power of the gallol group (PG), when applied in vivo, it is possible to self-cross-link through natural oxidation by oxygen in the tissue, so it has the advantage of being able to form a hydrogel without additional cross-linking agent treatment. In an in vitro environment, the analysis was carried out after crosslinking by treatment with an oxidizing agent (4.5 mg/mL NaIO 4 solution) for ease of analysis. (FIG. 23A)

CMC-PG 패치 (1 Hz 기준 26.20 ± 3.01 kPa)는 CMC-PG 하이드로젤 (1.37 ± 0.24 kPa) 및 CMC-CA 기반 하이드로젤 또는 패치 (CMC-CA hydrogel = 0.56 ± 0.05 kPa, CMC-CA patch = 9.44 ± 0.96 kPa)에 비해서 더 높은 물성 (modulus)을 가지고 있음을 유변학 분석을 통해 확인하였다. (도 23B)CMC-PG patch (26.20 ± 3.01 kPa at 1 Hz) was mixed with CMC-PG hydrogel (1.37 ± 0.24 kPa) and CMC-CA-based hydrogel or patch (CMC-CA hydrogel = 0.56 ± 0.05 kPa, CMC-CA patch = It was confirmed through rheological analysis that it has a higher modulus than that of 9.44 ± 0.96 kPa). (FIG. 23B)

CMC-PG 패치의 tanδ 값 (0.05)은 CMC-CA 패치의 tanδ 값 (0.086) 보다 조금 낮고, CMC-PG 하이드로젤 (0.26)에 비해서는 상당히 낮은데, 이는 CMC-PG 패치가 기계적 물성 (modulus)도 우수하면서 동시에 우수한 탄성을 가지고 있음을 보여주는 결과이다 (도 23C).The tanδ value (0.05) of the CMC-PG patch is slightly lower than the tanδ value (0.086) of the CMC-CA patch, and significantly lower than that of the CMC-PG hydrogel (0.26), which indicates that the CMC-PG patch has mechanical properties (modulus). It is also a result showing that it has excellent elasticity at the same time (FIG. 23C).

또한, CMC-PG 패치 (8 mm probe, 10 μ/s detachment = 13.28 ± 2.59 kPa)는 CMC-PG 하이드로젤 (3.13 ± 0.25 kPa) 및 CMC-CA 기반 하이드로젤 또는 패치 (CMC-CA hydrogel = 2.19 ± 0.53 kPa, CMC-CA patch = 6.61 ± 0.34 kPa)에 비하여 돼지 간 조직에 대한 접착력이 더 높은 것을 유변학 분석을 통해 확인하였다. (도 23D)In addition, CMC-PG patches (8 mm probe, 10 μ/s detachment = 13.28 ± 2.59 kPa) were combined with CMC-PG hydrogels (3.13 ± 0.25 kPa) and CMC-CA-based hydrogels or patches (CMC-CA hydrogels = 2.19). ± 0.53 kPa, CMC-CA patch = 6.61 ± 0.34 kPa), it was confirmed through rheological analysis that the adhesion to the pig liver tissue was higher. (FIG. 23D)

결론적으로 CMC-PG 패치가 CMC-CA 기반 소재 및 CMC-PG 하이드로젤 제형 대비 기계적 물성과 조직 접착력 모두 뛰어나다는 것을 확인할 수 있으며 따라서 조직공학적 응용에 더욱 적합할 것으로 예상된다.In conclusion, it can be confirmed that the CMC-PG patch has superior mechanical properties and tissue adhesion compared to the CMC-CA-based material and the CMC-PG hydrogel formulation, and is therefore expected to be more suitable for tissue engineering applications.

실험예 2-10. CMC-PG 하이드로젤 및 패치의 지혈능 확인Experimental Example 2-10. Confirmation of hemostasis of CMC-PG hydrogel and patch

마우스 간 조직 출혈 모델에서 아무런 처치를 하지 않은 대조군 (No treatment; NT), 상용화된 피브린 지혈제 (Fibrin glue; FG), CMC-CA 및 CMC-PG 하이드로젤 (2 wt%, hCMC-CA, hCMC-PG), 그리고 CMC-CA 및 CMC-PG 패치 (pCMC-CA, pCMC-PG)를 처리한 각 그룹에서의 출혈량을 측정하였다. 조직 접착력 및 물성이 가장 우수한 CMC-PG 패치를 이용한 경우 같은 양의 상용화된 피브린 지혈제나 하이드로젤 제형의 CMC-PG 및 CMC-CA 보다 더 우수한 지혈 성능을 보이는 것을 확인하였다 (도 24A, B)In the mouse liver tissue hemorrhage model, no treatment (No treatment; NT), commercially available fibrin glue (FG), CMC-CA and CMC-PG hydrogels (2 wt%, hCMC-CA, hCMC- PG), and the amount of bleeding in each group treated with CMC-CA and CMC-PG patches (pCMC-CA, pCMC-PG) was measured. When using the CMC-PG patch with the best tissue adhesion and physical properties, it was confirmed that the same amount of commercially available fibrin hemostatic agent or hydrogel formulation CMC-PG and CMC-CA showed better hemostatic performance (FIGS. 24A, B)

지혈 성능 확인 실험에서 출혈양 확인을 위해 사용된 혈액 흡수용 거름 종이의 사진들을 살펴보면 CMC-PG 패치 그룹이 다른 그룹들에 비하여 출혈 초기부터 뛰어난 지혈 능력을 보여주는 것을 확인할 수 있다. (시간 순, 도 24A) 출혈 이후 3분까지의 총 출혈량을 비교했을 때 CMC-PG 패치가 가장 뛰어난 지혈 성능을 나타내었다. (도 24B)Looking at the photos of the filter paper for blood absorption used to check the amount of bleeding in the hemostatic performance test, it can be seen that the CMC-PG patch group showed superior hemostatic ability from the early stage of bleeding compared to other groups. (Time sequence, FIG. 24A) When comparing the total amount of bleeding up to 3 minutes after bleeding, the CMC-PG patch showed the best hemostatic performance. (Fig. 24B)

출혈 부위 처치 3일 뒤 H&E 조직학 분석을 통해 패치 그룹들 중 특히 CMC-PG 패치의 경우 조직에 안정적으로 잘 접착되어 물리적인 장벽을 형성하면서 추가적인 출혈을 방지하는 것을 확인할 수 있었다. (도 24A 하단)Through H&E histological analysis 3 days after the treatment of the bleeding site, it was confirmed that the CMC-PG patch among the patch groups was stably adhered to the tissue and formed a physical barrier while preventing additional bleeding. (bottom of Fig. 24A)

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, with respect to the present invention, the preferred embodiments have been looked at. Those of ordinary skill in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments are to be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

Claims (17)

페놀 유도체로 수식된 셀룰로오스를 포함하는 하이드로젤.
A hydrogel comprising cellulose modified with a phenol derivative.
제 1항에 있어서,
상기 페놀 유도체는 도파민 (
Figure pat00011
) 또는 5-히드록시도파민 (
Figure pat00012
)이고,
상기 셀룰로오스는 카복시메틸셀룰로오스, 하이드록시프로필 메틸셀룰로오스, 셀룰로오스 아세테이트프탈레이트, 하이드록시프로필메틸셀룰로오스아세테이트/석시네이트, 하이드록시에틸 셀룰로오스, 에틸메틸 셀룰로오스, 하이드록시프로필 셀룰로오스, 셀룰로오스 프로피온 에스테르 및 셀룰로오스 아세테이트 뷰티레이트 중 어느 하나 이상인 하이드로젤.
The method of claim 1,
The phenol derivative is dopamine (
Figure pat00011
) or 5-hydroxydopamine (
Figure pat00012
)ego,
The cellulose is carboxymethyl cellulose, hydroxypropyl methyl cellulose, cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate / succinate, hydroxyethyl cellulose, ethyl methyl cellulose, hydroxypropyl cellulose, cellulose propion ester and cellulose acetate butyrate. Any one or more hydrogels.
제1항에 있어서,
상기 하이드로젤은 하기 화학식 1로 표시되는 구조를 포함하는 것인, 하이드로젤:
[화학식 1]
Figure pat00013

상기 화학식에서,
R1
Figure pat00014
또는
Figure pat00015
이다.
According to claim 1,
The hydrogel is a hydrogel comprising a structure represented by the following formula (1):
[Formula 1]
Figure pat00013

In the above formula,
R 1 is
Figure pat00014
or
Figure pat00015
to be.
제1항에 있어서,
상기 페놀 유도체와 셀룰로오스는 몰비 1:3 내지 3:1인 하이드로젤.
According to claim 1,
The phenol derivative and cellulose are in a molar ratio of 1:3 to 3:1 hydrogel.
제1항에 있어서,
상기 하이드로젤은 혈액 응고 촉진, 지혈, 세포 분화 촉진, 세포 배양, 세포 이식 및 약물 전달로 이루어진 군에서 선택되는 하나 이상의 용도를 나타내는 것인, 하이드로젤.
The method of claim 1,
Wherein the hydrogel represents one or more uses selected from the group consisting of promoting blood coagulation, hemostasis, promoting cell differentiation, cell culture, cell transplantation and drug delivery.
제1항에 있어서, 상기 하이드로젤은 접착성인 것인, 하이드로젤.
The hydrogel of claim 1, wherein the hydrogel is adhesive.
제1항에 있어서, 상기 하이드로젤은 생분해성인 것인, 하이드로젤.
The hydrogel of claim 1, wherein the hydrogel is biodegradable.
제1항 내지 제7항 중 어느 한 항의 하이드로젤을 포함하는, 지혈제 조성물.
A hemostatic composition comprising the hydrogel of any one of claims 1 to 7.
제8항에 있어서,
상기 지혈제는 접착성 패치 또는 필름 형태인 것인, 지혈제 조성물.
9. The method of claim 8,
The hemostatic agent is in the form of an adhesive patch or film, hemostatic composition.
제1항 내지 제7항 중 어느 한 항의 하이드로젤을 포함하는, 조직 접착제 조성물.
A tissue adhesive composition comprising the hydrogel of any one of claims 1 to 7.
제1항 내지 제7항 중 어느 한 항의 하이드로젤을 포함하는, 세포 배양 및 이식용 조성물.
A composition for cell culture and transplantation, comprising the hydrogel of any one of claims 1 to 7.
제1항 내지 제7항 중 어느 한 항의 하이드로젤을 포함하는, 약물 전달용 조성물.
A composition for drug delivery, comprising the hydrogel of any one of claims 1 to 7.
제12항에 있어서,
상기 약물은 하이드로젤 내에 봉입되는 것인, 약물 전달용 조성물.
13. The method of claim 12,
The drug is encapsulated in a hydrogel, the composition for drug delivery.
제12항에 있어서,
상기 약물은 면역세포 활성화제, 항암제, 치료용 항체, 항생제, 항박테리아제, 항바이러스제, 항염증제, 조영제, 단백질 의약품, 성장인자, 사이토카인, 펩티드 약물, 발모제, 마취제 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것인, 약물 전달용 조성물.
13. The method of claim 12,
The drug is an immune cell activator, an anticancer agent, a therapeutic antibody, an antibiotic, an antibacterial agent, an antiviral agent, an anti-inflammatory agent, a contrast agent, a protein drug, a growth factor, a cytokine, a peptide drug, a hair growth agent, an anesthetic, and combinations thereof. A composition for drug delivery, comprising one selected from.
a) 셀룰로오스를 페놀 유도체로 치환하는 단계; 및
b) 치환된 셀룰로오스를 가교 결합 (cross-linking)하여 하이드로젤을 형성하는 단계를 포함하는 페놀 유도체로 수식된 셀룰로오스를 포함하는 하이드로젤 제조방법.
a) replacing the cellulose with a phenol derivative; and
b) A method for producing a hydrogel comprising cellulose modified with a phenol derivative comprising the step of cross-linking the substituted cellulose to form a hydrogel.
제15항에 있어서,
상기 셀룰로오스를 페놀 유도체로 치환하는 단계는, 셀룰로오스의 히드록시기 (-OH)를 R1으로 치환하여, 하기 화학식 1로 표시되는 화합물을 제조하는 것인 하이드로젤 제조방법:
[화학식 1]
Figure pat00016

상기 화학식에서,
R1
Figure pat00017
또는
Figure pat00018
이다.
16. The method of claim 15,
The step of replacing the cellulose with a phenol derivative is a method for preparing a hydrogel by substituting R 1 for a hydroxyl group (-OH) of cellulose to prepare a compound represented by the following Chemical Formula 1:
[Formula 1]
Figure pat00016

In the above formula,
R 1 is
Figure pat00017
or
Figure pat00018
to be.
제 15항에 있어서,
상기 b) 치환된 셀룰로오스를 가교 결합 (cross-linking)하여 하이드로젤을 형성하는 단계는 치환된 셀룰로오스기에 NaOH, NaIO4, Na2S2O8, Fe3+, HNO3, MnO4 2- 및 H2SO4 중 어느 하나 이상으로 처리하는 것인 제조방법.
16. The method of claim 15,
The step b) cross-linking the substituted cellulose to form a hydrogel is NaOH, NaIO 4 , Na 2 S 2 O 8 , Fe 3+ , HNO 3 , MnO 4 2- and H 2 SO 4 Manufacturing method of any one or more of the treatment.
KR1020220044173A 2021-04-09 2022-04-08 Hydrogel comprising cellulose modified by phenol derivatives and uses thereof KR20220140440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/005204 WO2022216134A1 (en) 2021-04-09 2022-04-11 Hydrogel including phenol derivative-modified cellulose and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210046484 2021-04-09
KR1020210046484 2021-04-09

Publications (1)

Publication Number Publication Date
KR20220140440A true KR20220140440A (en) 2022-10-18

Family

ID=83803511

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220044173A KR20220140440A (en) 2021-04-09 2022-04-08 Hydrogel comprising cellulose modified by phenol derivatives and uses thereof

Country Status (1)

Country Link
KR (1) KR20220140440A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140127286A (en) 2012-02-28 2014-11-03 콘티프로 바이오테크 에스.알.오. Derivates based on hyaluronic acid, capable of forming hydrogels, method of preparation thereof, hydrogels based on said derivatives, method of preparation thereof and use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140127286A (en) 2012-02-28 2014-11-03 콘티프로 바이오테크 에스.알.오. Derivates based on hyaluronic acid, capable of forming hydrogels, method of preparation thereof, hydrogels based on said derivatives, method of preparation thereof and use

Similar Documents

Publication Publication Date Title
Wang et al. A double-crosslinked self-healing antibacterial hydrogel with enhanced mechanical performance for wound treatment
Ghobril et al. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial
EP3079730B1 (en) Methods for adhering tissue surfaces and materials and biomedical uses thereof
Wei et al. Photo-induced adhesive carboxymethyl chitosan-based hydrogels with antibacterial and antioxidant properties for accelerating wound healing
Wang et al. Rapidly curable hyaluronic acid-catechol hydrogels inspired by scallops as tissue adhesives for hemostasis and wound healing
CN107158453B (en) Preparation method of hyaluronic acid tissue adhesive
Lee et al. Mechanically-reinforced and highly adhesive decellularized tissue-derived hydrogel for efficient tissue repair
CN109153734A (en) Gellan gum hydrogel, preparation, method and application thereof
Guan et al. Injectable gelatin/oxidized dextran hydrogel loaded with apocynin for skin tissue regeneration
Yeh et al. A novel cell support membrane for skin tissue engineering: Gelatin film cross-linked with 2-chloro-1-methylpyridinium iodide
KR101678402B1 (en) Alginate hydrogel for wound healing and manufacturing method of the same
Hu et al. In-situ formable dextran/chitosan-based hydrogels functionalized with collagen and EGF for diabetic wounds healing
Liang et al. Injectable protocatechuic acid based composite hydrogel with hemostatic and antioxidant properties for skin regeneration
KR20220110797A (en) fluid resistant tissue adhesive
Feng et al. An injectable thermosensitive hydrogel with a self-assembled peptide coupled with an antimicrobial peptide for enhanced wound healing
CN111848855A (en) Injectable hydrogel dressing with pH response and preparation method and application thereof
CN113633817A (en) In-situ polymerization strongly-adhered antibacterial hemostatic hydrogel and preparation method and application thereof
Zhong et al. Mussel-inspired hydrogels as tissue adhesives for hemostasis with fast-forming and self-healing properties
CN113663116A (en) Ion-based hydrogel with hemostasis and adhesion resistance and preparation method and application thereof
He et al. Facile preparation of PVA hydrogels with adhesive, self-healing, antimicrobial, and on-demand removable capabilities for rapid hemostasis
Peng et al. ‐stimulated crosslinking of catechol‐conjugated hydroxyethyl chitosan as a tissue adhesive
Bashiri et al. 3D-printed placental-derived bioinks for skin tissue regeneration with improved angiogenesis and wound healing properties
CN114507364B (en) Preparation method of photo-curing casein hydrogel and application of photo-curing casein hydrogel in hemostasis and skin repair
Wang et al. Coagulation/anticoagulation-regulable and tough extracellular matrix hydrogels
US9173969B2 (en) Biomaterial for wound healing

Legal Events

Date Code Title Description
E902 Notification of reason for refusal