KR20220136796A - 보행경로예측장치 - Google Patents

보행경로예측장치 Download PDF

Info

Publication number
KR20220136796A
KR20220136796A KR1020210042927A KR20210042927A KR20220136796A KR 20220136796 A KR20220136796 A KR 20220136796A KR 1020210042927 A KR1020210042927 A KR 1020210042927A KR 20210042927 A KR20210042927 A KR 20210042927A KR 20220136796 A KR20220136796 A KR 20220136796A
Authority
KR
South Korea
Prior art keywords
path
learning
destination
robot
pedestrians
Prior art date
Application number
KR1020210042927A
Other languages
English (en)
Other versions
KR102537381B1 (ko
Inventor
전해곤
배인환
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020210042927A priority Critical patent/KR102537381B1/ko
Priority to US17/680,023 priority patent/US20220326042A1/en
Publication of KR20220136796A publication Critical patent/KR20220136796A/ko
Application granted granted Critical
Publication of KR102537381B1 publication Critical patent/KR102537381B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • G01C21/3889Transmission of selected map data, e.g. depending on route
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3484Personalized, e.g. from learned user behaviour or user-defined profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3848Data obtained from both position sensors and additional sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • G01C21/3896Transmission of map data from central databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q50/30
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • General Engineering & Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Databases & Information Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Social Psychology (AREA)
  • Quality & Reliability (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computing Systems (AREA)
  • Game Theory and Decision Science (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Primary Health Care (AREA)
  • Traffic Control Systems (AREA)

Abstract

본 발명에 따른 보행경로예측장치에는, 보행자가 출발지로부터 목적지로 향하는 경로 상의 경유지를 학습하는 경유지 학습부; 및 상기 출발지와 상기 목적지를 잇는 경로를 수정하는 수정벡터를 학습하는 수정경로학습부가 포함된다.

Description

보행경로예측장치{Pedestrian trajectory prediction apparatus}
본 발명은 보행자의 보행경로를 예측하는 보행경로예측장치에 관한 것이다.
인공 지능(artificial intelligence)은 인간의 지능으로 할 수 있는 사고, 학습, 자기계발 등을 컴퓨터가 할 수 있도록 하는 방법을 연구하는 컴퓨터 공학 및 정보기술의 한 분야로, 컴퓨터가 인간의 지능적인 행동을 모방할 수 있도록 하는 것을 의미한다.
또한, 인공지능은 그 자체로 존재하는 것이 아니라, 컴퓨터 과학의 다른 분야와 직간접으로 많은 관련을 맺고 있다. 특히 현대에는 정보기술의 여러 분야에서 인공지능적 요소를 도입하여, 그 분야의 문제 풀이에 활용하려는 시도가 매우 활발하게 이루어지고 있다.
한편, 인공지능을 이용하여 주변의 상황을 인지 및 학습하고 사용자가 원하는 정보를 원하는 형태로 제공하거나 사용자가 원하는 동작이나 기능을 수행하는 기술이 활발하게 연구되고 있다. 그리고 이러한 각종 동작과 기능을 제공하는 전자장치를 인공지능 디바이스라고 명칭 할 수 있다.
인공지능 장치는 보행자의 경로를 예측할 수 있다. 상기 인공지능 장치는 보행경로예측장치일 수 있다. 이 경우 인공지능 장치는 예를 들어 보행로봇에 탑재되어, 보행로봇의 보행을 안내할 수 있다.
보행경로를 예측하는 종래기술로서, 인용문헌 1이 제안된 바가 있다. 인용문헌 1은 그래프 컨벌루셔널 네트워크(GCN: graph convolutional network)을 이용하는 기술을 제시한다.
상기 인용문헌 1은 각 시공간 그래프 정보를 활용하여 보행자의 경로를 예측한다. 그러나, 인용문헌 1은 보행자가 사회적인 규범에 대응하여 움직이는 것을 반영하여 못한 결과, 보행경로예측이 부정확한 문제가 있다. 또한, 인용문헌 1은 장기 예측시에 중간 단계에서 발생하는 이벤트를 고려하지 않는 문제점이 있다.
Mohamed, A.; Qian, K.; Elhoseiny, M.; and Claudel, C. 2020. Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
본 발명은 상기되는 배경에서 제안되는 것으로 보행경로의 특성을 이용하여 보행경로 예측에 사용되는 피처를 업데이트하는 인공지능장치를 제안한다. 상기 인공지능장치는 보행경로를 예측할 수 있다.
본 발명에 따른 보행경로예측장치에는, 보행자가 출발지로부터 목적지로 향하는 경로 상의 경유지를 학습하는 경유지 학습부; 및 상기 출발지와 상기 목적지를 잇는 경로를 수정하는 수정벡터를 학습하는 수정경로학습부가 포함된다.
본 발명에 따르면 정확한 보행경로를 예측할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 인공지능 장치를 나타내는 도면.
도 2는 본 발명의 일 실시 예에 따른 인공지능 서버를 나타내는 도면.
도 3은 본 발명의 일 실시 예에 따른 인공지능 시스템을 나타내는 도면.
도 4는 본 발명의 실시예에 따른 인공지능 장치를 설명하는 도면.
도 5는 경유지세트와 경유지의 예상 분포를 예시하는 도면.
도 6은 경로수정과정을 예시하는 도면.
도 7은 인용문헌인 Social-STGCNN과 본 발명의 효과를 비교하는 도면.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
<인공 지능(AI: Artificial Intelligence)>
인공 지능은 인공적인 지능 또는 이를 만들 수 있는 방법론을 연구하는 분야를 의미하며, 머신 러닝(기계 학습, Machine Learning)은 인공 지능 분야에서 다루는 다양한 문제를 정의하고 그것을 해결하는 방법론을 연구하는 분야를 의미한다. 머신 러닝은 어떠한 작업에 대하여 꾸준한 경험을 통해 그 작업에 대한 성능을 높이는 알고리즘으로 정의하기도 한다.
인공 신경망(ANN: Artificial Neural Network)은 머신 러닝에서 사용되는 모델로써, 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)들로 구성되는, 문제 해결 능력을 가지는 모델 전반을 의미할 수 있다. 인공 신경망은 다른 레이어의 뉴런들 사이의 연결 패턴, 모델 파라미터를 갱신하는 학습 과정, 출력값을 생성하는 활성화 함수(Activation Function)에 의해 정의될 수 있다.
인공 신경망은 입력층(Input Layer), 출력층(Output Layer), 그리고 선택적으로 하나 이상의 은닉층(Hidden Layer)를 포함할 수 있다. 각 층은 하나 이상의 뉴런을 포함하고, 인공 신경망은 뉴런과 뉴런을 연결하는 시냅스를 포함할 수 있다. 인공 신경망에서 각 뉴런은 시냅스를 통해 입력되는 입력 신호들, 가중치, 편향에 대한 활성 함수의 함숫값을 출력할 수 있다.
모델 파라미터는 학습을 통해 결정되는 파라미터를 의미하며, 시냅스 연결의 가중치와 뉴런의 편향 등이 포함된다. 그리고, 하이퍼파라미터는 머신 러닝 알고리즘에서 학습 전에 설정되어야 하는 파라미터를 의미하며, 학습률(Learning Rate), 반복 횟수, 미니 배치 크기, 초기화 함수 등이 포함된다.
인공 신경망의 학습의 목적은 손실 함수를 최소화하는 모델 파라미터를 결정하는 것으로 볼 수 있다. 손실 함수는 인공 신경망의 학습 과정에서 최적의 모델 파라미터를 결정하기 위한 지표로 이용될 수 있다.
머신 러닝은 학습 방식에 따라 지도 학습(Supervised Learning), 비지도 학습(Unsupervised Learning), 강화 학습(Reinforcement Learning)으로 분류할 수 있다.
지도 학습은 학습 데이터에 대한 레이블(label)이 주어진 상태에서 인공 신경망을 학습시키는 방법을 의미하며, 레이블이란 학습 데이터가 인공 신경망에 입력되는 경우 인공 신경망이 추론해 내야 하는 정답(또는 결과 값)을 의미할 수 있다. 비지도 학습은 학습 데이터에 대한 레이블이 주어지지 않는 상태에서 인공 신경망을 학습시키는 방법을 의미할 수 있다. 강화 학습은 어떤 환경 안에서 정의된 에이전트가 각 상태에서 누적 보상을 최대화하는 행동 혹은 행동 순서를 선택하도록 학습시키는 학습 방법을 의미할 수 있다.
인공 신경망 중에서 복수의 은닉층을 포함하는 심층 신경망(DNN: Deep Neural Network)으로 구현되는 머신 러닝을 딥 러닝(심층 학습, Deep Learning)이라 부르기도 하며, 딥 러닝은 머신 러닝의 일부이다. 이하에서, 머신 러닝은 딥 러닝을 포함하는 의미로 사용된다.
<로봇(Robot)>
로봇은 스스로 보유한 능력에 의해 주어진 일을 자동으로 처리하거나 작동하는 기계를 의미할 수 있다. 특히, 환경을 인식하고 스스로 판단하여 동작을 수행하는 기능을 갖는 로봇을 지능형 로봇이라 칭할 수 있다.
로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류할 수 있다.
로봇은 액츄에이터 또는 모터를 포함하는 구동부를 구비하여 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 이동 가능한 로봇은 구동부에 휠, 브레이크, 프로펠러 등이 포함되어, 구동부를 통해 지상에서 주행하거나 공중에서 비행할 수 있다.
<자율 주행(Self-Driving)>
자율 주행은 스스로 주행하는 기술을 의미하며, 자율 주행 차량은 사용자의 조작 없이 또는 사용자의 최소한의 조작으로 주행하는 차량(Vehicle)을 의미한다.
예컨대, 자율 주행에는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등이 모두 포함될 수 있다.
차량은 내연 기관만을 구비하는 차량, 내연 기관과 전기 모터를 함께 구비하는 하이브리드 차량, 그리고 전기 모터만을 구비하는 전기 차량을 모두 포괄하며, 자동차뿐만 아니라 기차, 오토바이 등을 포함할 수 있다.
이때, 자율 주행 차량은 자율 주행 기능을 가진 로봇으로 볼 수 있다.
*<확장 현실(XR: eXtended Reality)>
확장 현실은 가상 현실(VR: Virtual Reality), 증강 현실(AR: Augmented Reality), 혼합 현실(MR: Mixed Reality)을 총칭한다. VR 기술은 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하고, AR 기술은 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 제공하며, MR 기술은 현실 세계에 가상 객체들을 섞고 결합시켜서 제공하는 컴퓨터 그래픽 기술이다.
MR 기술은 현실 객체와 가상 객체를 함께 보여준다는 점에서 AR 기술과 유사하다. 그러나, AR 기술에서는 가상 객체가 현실 객체를 보완하는 형태로 사용되는 반면, MR 기술에서는 가상 객체와 현실 객체가 동등한 성격으로 사용된다는 점에서 차이점이 있다.
XR 기술은 HMD(Head-Mount Display), HUD(Head-Up Display), 휴대폰, 태블릿 PC, 랩탑, 데스크탑, TV, 디지털 사이니지 등에 적용될 수 있고, XR 기술이 적용된 장치를 XR 장치(XR Device)라 칭할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 AI 장치(100)를 나타낸다.
AI 장치(100)는 TV, 프로젝터, 휴대폰, 스마트폰, 데스크탑 컴퓨터, 노트북, 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), DMB 수신기, 라디오, 세탁기, 냉장고, 데스크탑 컴퓨터, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.
도 1을 참조하면, 단말기(100)는 통신부(110), 입력부(120), 러닝 프로세서(130), 센싱부(140), 출력부(150), 메모리(170) 및 프로세서(180) 등을 포함할 수 있다.
상기 통신부(110)는 유무선 통신 기술을 이용하여 다른 AI 장치(100a 내지 100e)나 AI 서버(200) 등의 외부 장치들과 데이터를 송수신할 수 있다. 예컨대, 통신부(110)는 외부 장치들과 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등을 송수신할 수 있다.
이때, 통신부(110)가 이용하는 통신 기술에는 GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), LTE(Long Term Evolution), 5G, WLAN(Wireless LAN), Wi-Fi(Wireless-Fidelity), 블루투스(Bluetooth??), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), ZigBee, NFC(Near Field Communication) 등이 있다.
입력부(120)는 다양한 종류의 데이터를 획득할 수 있다.
이때, 입력부(120)는 영상 신호 입력을 위한 카메라, 오디오 신호를 수신하기 위한 마이크로폰, 사용자로부터 정보를 입력 받기 위한 사용자 입력부 등을 포함할 수 있다. 여기서, 카메라나 마이크로폰을 센서로 취급하여, 카메라나 마이크로폰으로부터 획득한 신호를 센싱 데이터 또는 센서 정보라고 할 수도 있다.
입력부(120)는 모델 학습을 위한 학습 데이터 및 학습 모델을 이용하여 출력을 획득할 때 사용될 입력 데이터 등을 획득할 수 있다. 입력부(120)는 가공되지 않은 입력 데이터를 획득할 수도 있으며, 이 경우 프로세서(180) 또는 러닝 프로세서(130)는 입력 데이터에 대하여 전처리로써 입력 특징점(input feature)을 추출할 수 있다.
러닝 프로세서(130)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 여기서, 학습된 인공 신경망을 학습 모델이라 칭할 수 있다. 학습 모델은 학습 데이터가 아닌 새로운 입력 데이터에 대하여 결과 값을 추론해 내는데 사용될 수 있고, 추론된 값은 어떠한 동작을 수행하기 위한 판단의 기초로 이용될 수 있다.
이때, 러닝 프로세서(130)는 AI 서버(200)의 러닝 프로세서(240)과 함께 AI 프로세싱을 수행할 수 있다.
이때, 러닝 프로세서(130)는 AI 장치(100)에 통합되거나 구현된 메모리를 포함할 수 있다. 또는, 러닝 프로세서(130)는 메모리(170), AI 장치(100)에 직접 결합된 외부 메모리 또는 외부 장치에서 유지되는 메모리를 사용하여 구현될 수도 있다.
센싱부(140)는 다양한 센서들을 이용하여 AI 장치(100) 내부 정보, AI 장치(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 획득할 수 있다.
이때, 센싱부(140)에 포함되는 센서에는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 라이다, 레이더 등이 있다.
출력부(150)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다.
이때, 출력부(150)에는 시각 정보를 출력하는 디스플레이부, 청각 정보를 출력하는 스피커, 촉각 정보를 출력하는 햅틱 모듈 등이 포함될 수 있다.
메모리(170)는 AI 장치(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예컨대, 메모리(170)는 입력부(120)에서 획득한 입력 데이터, 학습 데이터, 학습 모델, 학습 히스토리 등을 저장할 수 있다.
프로세서(180)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 장치(100)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 프로세서(180)는 AI 장치(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다.
이를 위해, 프로세서(180)는 러닝 프로세서(130) 또는 메모리(170)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 상기 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 장치(100)의 구성 요소들을 제어할 수 있다.
이때, 프로세서(180)는 결정된 동작을 수행하기 위하여 외부 장치의 연계가 필요한 경우, 해당 외부 장치를 제어하기 위한 제어 신호를 생성하고, 생성한 제어 신호를 해당 외부 장치에 전송할 수 있다.
프로세서(180)는 사용자 입력에 대하여 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 사용자의 요구 사항을 결정할 수 있다.
이때, 프로세서(180)는 음성 입력을 문자열로 변환하기 위한 STT(Speech To Text) 엔진 또는 자연어의 의도 정보를 획득하기 위한 자연어 처리(NLP: Natural Language Processing) 엔진 중에서 적어도 하나 이상을 이용하여, 사용자 입력에 상응하는 의도 정보를 획득할 수 있다.
이때, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 적어도 일부가 머신 러닝 알고리즘에 따라 학습된 인공 신경망으로 구성될 수 있다. 그리고, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 러닝 프로세서(130)에 의해 학습된 것이나, AI 서버(200)의 러닝 프로세서(240)에 의해 학습된 것이거나, 또는 이들의 분산 처리에 의해 학습된 것일 수 있다.
프로세서(180)는 AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리(170) 또는 러닝 프로세서(130)에 저장하거나, AI 서버(200) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.
프로세서(180)는 메모리(170)에 저장된 응용 프로그램을 구동하기 위하여, AI 장치(100)의 구성 요소들 중 적어도 일부를 제어할 수 있다. 나아가, 프로세서(180)는 상기 응용 프로그램의 구동을 위하여, AI 장치(100)에 포함된 구성 요소들 중 둘 이상을 서로 조합하여 동작시킬 수 있다.
도 2는 본 발명의 일 실시 예에 따른 AI 서버(200)를 나타낸다.
도 2를 참조하면, AI 서버(200)는 머신 러닝 알고리즘을 이용하여 인공 신경망을 학습시키거나 학습된 인공 신경망을 이용하는 장치를 의미할 수 있다. 여기서, AI 서버(200)는 복수의 서버들로 구성되어 분산 처리를 수행할 수도 있고, 5G 네트워크로 정의될 수 있다. 이때, AI 서버(200)는 AI 장치(100)의 일부의 구성으로 포함되어, AI 프로세싱 중 적어도 일부를 함께 수행할 수도 있다.
AI 서버(200)는 통신부(210), 메모리(230), 러닝 프로세서(240) 및 프로세서(260) 등을 포함할 수 있다.
통신부(210)는 AI 장치(100) 등의 외부 장치와 데이터를 송수신할 수 있다.
메모리(230)는 모델 저장부(231)를 포함할 수 있다. 모델 저장부(231)는 러닝 프로세서(240)을 통하여 학습 중인 또는 학습된 모델(또는 인공 신경망, 231a)을 저장할 수 있다.
러닝 프로세서(240)는 학습 데이터를 이용하여 인공 신경망(231a)을 학습시킬 수 있다. 학습 모델은 인공 신경망의 AI 서버(200)에 탑재된 상태에서 이용되거나, AI 장치(100) 등의 외부 장치에 탑재되어 이용될 수도 있다.
학습 모델은 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합으로 구현될 수 있다. 학습 모델의 일부 또는 전부가 소프트웨어로 구현되는 경우 학습 모델을 구성하는 하나 이상의 명령어(instruction)는 메모리(230)에 저장될 수 있다.
프로세서(260)는 학습 모델을 이용하여 새로운 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수 있다.
도 3은 본 발명의 일 실시 예에 따른 AI 시스템(1)을 나타낸다.
도 3을 참조하면, AI 시스템(1)은 AI 서버(200), 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상이 클라우드 네트워크(10)와 연결된다. 여기서, AI 기술이 적용된 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 등을 AI 장치(100a 내지 100e)라 칭할 수 있다.
클라우드 네트워크(10)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(10)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
즉, AI 시스템(1)을 구성하는 각 장치들(100a 내지 100e, 200)은 클라우드 네트워크(10)를 통해 서로 연결될 수 있다. 특히, 각 장치들(100a 내지 100e, 200)은 기지국을 통해서 서로 통신할 수도 있지만, 기지국을 통하지 않고 직접 서로 통신할 수도 있다.
AI 서버(200)는 AI 프로세싱을 수행하는 서버와 빅 데이터에 대한 연산을 수행하는 서버를 포함할 수 있다.
AI 서버(200)는 AI 시스템(1)을 구성하는 AI 장치들인 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상과 클라우드 네트워크(10)을 통하여 연결되고, 연결된 AI 장치들(100a 내지 100e)의 AI 프로세싱을 적어도 일부를 도울 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)를 대신하여 머신 러닝 알고리즘에 따라 인공 신경망을 학습시킬 수 있고, 학습 모델을 직접 저장하거나 AI 장치(100a 내지 100e)에 전송할 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)로부터 입력 데이터를 수신하고, 학습 모델을 이용하여 수신한 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성하여 AI 장치(100a 내지 100e)로 전송할 수 있다.
또는, AI 장치(100a 내지 100e)는 직접 학습 모델을 이용하여 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수도 있다.
이하에서는, 상술한 기술이 적용되는 AI 장치(100a 내지 100e)의 다양한 실시 예들을 설명한다. 여기서, 도 3에 도시된 AI 장치(100a 내지 100e)는 도 1에 도시된 AI 장치(100)의 구체적인 실시 예로 볼 수 있다.
<AI+로봇>
로봇(100a)은 AI 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
로봇(100a)은 동작을 제어하기 위한 로봇 제어 모듈을 포함할 수 있고, 로봇 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다.
로봇(100a)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 로봇(100a)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 사용자 상호작용에 대한 응답을 결정하거나, 동작을 결정할 수 있다.
여기서, 로봇(100a)은 이동 경로 및 주행 계획을 결정하기 위하여, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
로봇(100a)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 로봇(100a)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 동작을 결정할 수 있다. 여기서, 학습 모델은 로봇(100a)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 로봇(100a)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
로봇(100a)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 로봇(100a)을 주행시킬 수 있다.
맵 데이터에는 로봇(100a)이 이동하는 공간에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 벽, 문 등의 고정 객체들과 화분, 책상 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 로봇(100a)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 로봇(100a)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+자율주행>
자율 주행 차량(100b)은 AI 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
자율 주행 차량(100b)은 자율 주행 기능을 제어하기 위한 자율 주행 제어 모듈을 포함할 수 있고, 자율 주행 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다. 자율 주행 제어 모듈은 자율 주행 차량(100b)의 구성으로써 내부에 포함될 수도 있지만, 자율 주행 차량(100b)의 외부에 별도의 하드웨어로 구성되어 연결될 수도 있다.
자율 주행 차량(100b)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 자율 주행 차량(100b)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 동작을 결정할 수 있다.
여기서, 자율 주행 차량(100b)은 이동 경로 및 주행 계획을 결정하기 위하여, 로봇(100a)과 마찬가지로, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
특히, 자율 주행 차량(100b)은 시야가 가려지는 영역이나 일정 거리 이상의 영역에 대한 환경이나 객체는 외부 장치들로부터 센서 정보를 수신하여 인식하거나, 외부 장치들로부터 직접 인식된 정보를 수신할 수 있다.
자율 주행 차량(100b)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 자율 주행 차량(100b)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 주행 동선을 결정할 수 있다. 여기서, 학습 모델은 자율 주행 차량(100b)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 자율 주행 차량(100b)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
자율 주행 차량(100b)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 자율 주행 차량(100b)을 주행시킬 수 있다.
맵 데이터에는 자율 주행 차량(100b)이 주행하는 공간(예컨대, 도로)에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 가로등, 바위, 건물 등의 고정 객체들과 차량, 보행자 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 자율 주행 차량(100b)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 자율 주행 차량(100b)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+XR>
XR 장치(100c)는 AI 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수 있다.
XR 장치(100c)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 속성 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR 장치(100c)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
XR 장치(100c)는 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, XR 장치(100c)는 학습 모델을 이용하여 3차원 포인트 클라우드 데이터 또는 이미지 데이터에서 현실 객체를 인식할 수 있고, 인식한 현실 객체에 상응하는 정보를 제공할 수 있다. 여기서, 학습 모델은 XR 장치(100c)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, XR 장치(100c)는 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
<AI+로봇+자율주행>
로봇(100a)은 AI 기술 및 자율 주행 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
AI 기술과 자율 주행 기술이 적용된 로봇(100a)은 자율 주행 기능을 가진 로봇 자체나, 자율 주행 차량(100b)과 상호작용하는 로봇(100a) 등을 의미할 수 있다.
자율 주행 기능을 가진 로봇(100a)은 사용자의 제어 없이도 주어진 동선에 따라 스스로 움직이거나, 동선을 스스로 결정하여 움직이는 장치들을 통칭할 수 있다.
자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 이동 경로 또는 주행 계획 중 하나 이상을 결정하기 위해 공통적인 센싱 방법을 사용할 수 있다. 예를 들어, 자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 라이다, 레이더, 카메라를 통해 센싱된 정보를 이용하여, 이동 경로 또는 주행 계획 중 하나 이상을 결정할 수 있다.
자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)과 별개로 존재하면서, 자율 주행 차량(100b)의 내부에서 자율 주행 기능에 연계되거나, 자율 주행 차량(100b)에 탑승한 사용자와 연계된 동작을 수행할 수 있다.
이때, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)을 대신하여 센서 정보를 획득하여 자율 주행 차량(100b)에 제공하거나, 센서 정보를 획득하고 주변 환경 정보 또는 객체 정보를 생성하여 자율 주행 차량(100b)에 제공함으로써, 자율 주행 차량(100b)의 자율 주행 기능을 제어하거나 보조할 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)에 탑승한 사용자를 모니터링하거나 사용자와의 상호작용을 통해 자율 주행 차량(100b)의 기능을 제어할 수 있다. 예컨대, 로봇(100a)은 운전자가 졸음 상태인 경우로 판단되는 경우, 자율 주행 차량(100b)의 자율 주행 기능을 활성화하거나 자율 주행 차량(100b)의 구동부의 제어를 보조할 수 있다. 여기서, 로봇(100a)이 제어하는 자율 주행 차량(100b)의 기능에는 단순히 자율 주행 기능뿐만 아니라, 자율 주행 차량(100b)의 내부에 구비된 네비게이션 시스템이나 오디오 시스템에서 제공하는 기능도 포함될 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)의 외부에서 자율 주행 차량(100b)에 정보를 제공하거나 기능을 보조할 수 있다. 예컨대, 로봇(100a)은 스마트 신호등과 같이 자율 주행 차량(100b)에 신호 정보 등을 포함하는 교통 정보를 제공할 수도 있고, 전기 차량의 자동 전기 충전기와 같이 자율 주행 차량(100b)과 상호작용하여 충전구에 전기 충전기를 자동으로 연결할 수도 있다.
<AI+로봇+XR>
로봇(100a)은 AI 기술 및 XR 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇, 드론 등으로 구현될 수 있다.
XR 기술이 적용된 로봇(100a)은 XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇을 의미할 수 있다. 이 경우, 로봇(100a)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇(100a)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 로봇(100a) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 로봇(100a)은 XR 장치(100c)를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
예컨대, 사용자는 XR 장치(100c) 등의 외부 장치를 통해 원격으로 연동된 로봇(100a)의 시점에 상응하는 XR 영상을 확인할 수 있고, 상호작용을 통하여 로봇(100a)의 자율 주행 경로를 조정하거나, 동작 또는 주행을 제어하거나, 주변 객체의 정보를 확인할 수 있다.
<AI+자율주행+XR>
자율 주행 차량(100b)은 AI 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR 기술이 적용된 자율 주행 차량(100b)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상을 제공하는 수단을 구비한 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(100b)은 HUD를 구비하여 XR 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR 객체를 제공할 수 있다.
이때, XR 객체가 HUD에 출력되는 경우에는 XR 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR 객체가 자율 주행 차량(100b)의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(100b)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR 객체들을 출력할 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 자율 주행 차량(100b) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 자율 주행 차량(100b)은 XR 장치(100c) 등의 외부 장치를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
상기 인공지능 서버(200)는 도 1 내지 3에서 설명한 AI 장치(100)의 구성을 포함하고 AI 장치(100)의 기능을 수행할 수 있다.
상기 전자 기기(300)는 도 1 내지 3에서 설명한 AI 장치(100)의 구성을 포함하고 AI 장치(100)의 기능을 수행할 수 있다.
본 명세서에서 설명하는 인공지능 장치는, 인공지능 서버(200) 또는 전자 기기(300)일 수 있다.
이하에서는 인공지능 장치는 보행예측장치로 작용할 수 있다.
상기 보행예측장치는 로봇, 및 자율주행장치 등을 포함하는 다수의 전자기기에 사람의 보행경로를 예측할 수 있는 자원으로서 작용할 수 있다.
보행자들의 대표적인 행동 패턴은 다수가 있을 수 있다. 그 예로, 사람과 사람, 및 사람과 그룹과의 상호작용에 따른 패턴을 포함할 수 있다. 상기 행동 패턴은 세 가지를 포함할 수 있다. [1] 충돌 회피(Collision avoidance): 자기의 보행경로 상에 사람 또는 그룹이 있는 경우에 충돌을 회피하는 것, [2] 그룹 합류(Joining group): 자기가 속하는 그룹쪽으로 이동하여 합류라는 것, [3] 상호작용(Interaction): 멈추어서 그룹을 이루어 작용하는 것을 포함할 수 있다.
다른 예로, 사람과 군중 전체와의 상호작용에 따른 패턴을 포함할 수 있다. 예를 들어, [4] 주변 흐름과 같은 보행(Walking at the same pace): 보행자가 주변부의 다수의 군중과 같이 보행하는 것을 포함할 수 있다. 이러한 보행자 간 상호작용은 사회적 규범 및 작용을 따르는 것으로 이해할 수 있다. 상기 GCN이 위 보행자의 행동 패턴을 반영하는 것은 중요하다.
한편, GCN에서는 각 보행자인 노드 간에 어떠한 에지를 구성하여 연결하느냐가 문제이다. 단순한 예시로, 두 보행자 간 거리가 가까우면 높은 에지 연결을 해 줄 경우, 가까이에 있는 사람이 주요한 관심 대상으로 정해져 버린다. 이 경우에, 해당 사람을 회피할 수 있다. 이는 위 네 가지 행동 패턴들 중 상기 [1]에 해당하는 상황에 대해 해결할 수 있다. 그러나, 회피 후 본래의 목적지 방향으로 복구되지 않는 예측 결과로 이어진다. 또한 상기 [2]와 상기 [3]에서 다른 사람과 합류하며 대상과 상호작용하지 못하고 회피해버리는 예측 결과들이 빈번히 나타날 수 있다. 상기 [4]의 경우에도 멀리 있는 다른 보행자에 대한 연결이 약해 주변 사람들을 인식하지 못하고, 각자 다른 속도로 보행하는 예측 결과로 이어질 수 있다.
<GCN: 그래프 컨벌루셔널 네트워크(graph convolutional network)>
그래프 컨벌루셔널 네트워크는 수학식 1을 이용하여 레이어 별로 피처를 업데이트할 수 있다.
Figure pat00001
여기서, H는 모든 노드의 피처들이다. σ는 비선형활성화함수이다. 실시예에는 PReLU를 사용하였다. A는 인접 매트릭스(adjacency matrix)이다. W는 레이어 별로 학습가능한 가중치 메트릭스이다. l은 레이어의 인덱스이다. 상기 노드는 모든 보행자를 지칭할 수 있다. 적어도 두 개의 상기 노드의 연결을 그래프라고 할 수 있다. 상기 그래프의 끝을 에지라고 할 수 있다. 명세서의 상기 영문자의 표시는 동일한 의미를 가질 수 있다.
상기 그래프 컨벌루셔널 네트워크와 관련되는 그 외의 내용은 인용문헌 1의 내용을 참조할 수 있다. 본 발명의 이해를 위하여 인용문헌 1의 설명은 본 발명의 설명에 포함되는 것으로 한다.
상기 수학식 1을 이용하여 GCN를 이용한 보행경로예측을 위한 피처의 업데이트가 가능하다.
상기 수학식 1에 따르면, 상기 [1] 충돌 회피(Collision avoidance), 상기 [2] 그룹 합류(Joining group), 상기 [3] 상호작용(Interaction), 및 [4] 주변 흐름과 같은 보행(Walking at the same pace)를 올바르게 업데이트 할 수 없다.
본 실시예는 상기 보행자의 보행특성을 반영하여 보행경로를 예측하는 인공지능 장치를 제안한다.
도 4는 본 발명의 실시예에 따른 인공지능장치를 설명하는 도면이다.
도 4를 참조하면, 실시예의 인공지능장치에는, 제 1 학습부(1100), 및 제 2 학습부(1200)가 포함될 수 있다.
상기 제 1 학습부(1100)는 경유지를 학습할 수 있다. 여기서, 상기 경유지(waypoint)는 보행자가 출발지(관측지점, observatio, obs)에서 목적지(예측지점, predicted end point, pred)로 이동하는 과정에서 거치는 지점을 말할 수 있다. 상기 경유지를 합하는 것에 의해서 상기 목적지를 구할 수 있다.
상기 제 2 학습부(1200)는 수정경로 제공하는 수정벡터를 학습할 수 있다. 상기 수정경로는, 상기 출발지와 상기 목적지를 가장 가깝에 이은 직선 경로를 수정 수정벡터로 수정한 경로를 말할 수 있다.
이하에서는 더 상세하게 상기 인공지능장치에 대하여 설명한다.
먼저, 상기 경유지 학습부(1100)에 대하여 설명한다.
학습 데이터로서 입력 이미지(1001)가 입력될 수 있다. 입력 이미지는 복수의 보행자가 이동하는 동영상일 수 있다. 상기 보행자의 미래 보행경로를 다수 개의 섹션으로 나눌 수 있다. 상기 미래경로는 특정 시점에서 상기 출발지에서 상기 목적지의 경로를 말할 수 있다. 각 섹션이 나뉘는 지점을 경유지라고 할 수 있다. 상기 겅유지는 수학식 2로 정의할 수 있다.
Figure pat00002
여기서, W는 경유지, n은 보행자, K는 경유지의 수, T는 시각을 의미하고, 타우는 시간간격을 의미할 수 있다. 여기서, K는 3으로 설정될 수 있다.
상기 수학식 1에 의해서, 경유지를 포함하는 다수의 보행자의 좌표가 추출될 수 있다.
상기 좌표들을 기반으로 시공간 다관계 보행자 그래프를 만들 수 있다. 상기 다관계 보행자 그래프를 이용하여 피처를 업데이트할 수 있다. 상기 피처의 업데이트는, 다수의 상보적 시공간 피처를 시간과 공간 축으로 분리하여 업데이트하는 과정을 포함할 수 있다.
상기 경유지 학습부(1100)에는, 상기 보행자 그래프를 이용하여 학습하는 그래프 컨벌루셔널 네트워크(GCN)(1110)이 포함될 수 있다. 상기 GCN(1110)은, 피처를 공간 축으로 업데이트하는 과정에는 멀티관계나눔부(multi-relational GCN)라고 할 수 있다. 실시예에는 네 개의 피처를 포함할 수 있다. 상기 네 개의 특징은, 보행자 간의 상대적 변위정보(relative displacement)(DP), 상기 보행자 간의 상대적 변위정보의 역수(1/DP), 보행자 간의 거리정보(distance)(DT)), 및 상기 보행자 간이 거리정보의 역수(1/DT)를 포함할 수 있다. 여기서 거리정보는 유클리드 거리정보일 수 있다.
상기 피처의 각 정보와 그 정보의 역수가 포함됨으로써 정보가 정규화될 수 있다. 다시 말하면, 학습데이터가 추출되는 장소, 즉 동영상이 촬영된 장소의 특수한 정보가 정규화될 수 있다.
상기 멀티관계나눔부는 수학식 2로 표현할 수 있다.
Figure pat00003
여기서, R은 상기 멀티관계의 관계를 지칭할 수 있다. 상기 R의 요소로는 보행자 간의 상대적 변위정보(relative displacement)(DP), 상기 보행자 간의 상대적 변위정보의 역수(1/DP), 보행자 간의 거리정보(distance)(DT)), 및 상기 보행자 간이 거리정보의 역수(1/DT)를 포함할 수 있다.
상기 멀티관계나눔부(1110)는, 상기 인용문헌 1이 상기 상대적 변위정보만을 다루는 것과는 다르다. 이 기술에 따르면, [2] 그룹 합류(Joining group), 및 [3] 상호작용(Interaction)을 잘 예측할 수 있었다. 예를 들어, 보행자가 그룹에 합류해서 상호 작용하는 것을 잘 예측할 수 있다.
상기 멀티관계나눔부(1110)에 의해서 분리되어 공간 축으로 업데이트 된 피처는 다관계병합부(1120)에서 시간 축으로 병합할 수 있다. 상기 다관계병합부(1120)은 채널축을 따르는 3*1 필터를 가지는 2D 컨벌루션 레이어(CNN)으로 구현될 수 있다. 물론, 특징을 병합하는 다른 수단을 배제하지 않는다.
상기 GCN 및 상기 CNN을 이용하여 상기 보행자 간의 사회적 관계를 취합할 수 있다.
이후에, 2차원 좌표예측부(1130)은 상기 경유지를 확률적으로 추론한다. 상기 경유지의 좌표를 확률로 추론하는 것에는, 다변 량가우시안 혼합 모델(multivariate gaussian mizture model)을 사용할 수 있다. 이때 상기 경유지의 좌표는 다변 량가우시안 혼합 모델(multivariate gaussian mizture model)를 출력하는 혼합 밀도 네트워크(Mixture Density Network; MDN)를 이용할 수 있다.
도 5는 예시로서 경유지세트와 경유지의 예상된 분포를 보이는 도면이다.
도 5를 참조하면, 도 5(a)는 예측된 경유지를 보이고 있다. 여기서 예측된 경유지는 변위에 기반하고 세 개의 경유지를 가지고 있다. 도 5(b)는 각 섹션에서 예측된 경유지의 분포와, 예측된 목적지를 보이고 있다.
상기 예측된 목적지(1002)는, 상기 경유지를 시계열로 연결하여 제공되는 최종 끝점(endpoint)일 수 있다.
상기 예측 목적지(1002)는, 다수개로 제공될 수 있다. 상기 목적지는 모드를 달리하는 등의 방식으로 다수개를 제공할 수 있다. 예를 들어 20개를 제공할 수 있다.
상기되는 설명에서 보는 바와 같이, 본 발명은 경유지의 개념을 고려하여 학습을 수행한다. 이에 따라서, 목적지(끝점) 예측시에 다수 보행자의 상호작용과, 각 보행자의 보행경로를 반영하여 더 정확하게 끝점을 예측할 수 있다.
상기 출발지와 상기 목적지를 선형을 보간하여 초기예측경로(1003)을 제공할 수 있다. 상기 초기예측경로는 수정경로학습부(1200)에 의해서 수정될 수 있다. 상기 수정경로학습부(1200)는 상기 경유지학습부(1100)와 분리될 수 있다.
상기 초기예측경로에 사용하는 상기 목적지는 보정될 수 있다. 상기 목적지는, 상기 예측 목적지 중에서 참 값(ground truth)와 일정거리의 이내인 샘플만을 가져올 수 있다. 상기 목적지는, 상기 참 값인 목적지에서 일정거리 이내의 샘플을 임의로 추가하여 사용할 수 있다. 예를 들어, 상기 목적지는 20개를 사용할 수 있다.
상기 수정경로학습부(1200)는, 상기 경유지학습부(1100)와 유사하게, 멀티관계나눔부(1210), 및 다관계병합부(1220)를 포함할 수 있다. 상기 멀티관계나눔부(1210)는 GCN, 및 상기 다관계병합부(1220)는 CNN으로 제공될 수 있다. 다만, 수정경로학습부는 초기예측경로의 모든 경로를 학습의 대상으로 할 수 있다. 상기 수정경로학습부(1200)는 수정벡터(1230)를 제공할 수 있다. 상기 수정벡터는 각 프레임의 보행자 좌표에 대한 수정방향과 수정량을 나타낼 수 있다.
상기 초기예측경로(1003)와 상기 수정벡터(1230)이 병합되는 것에 의해서 수정예측경로(1004)를 제공할 수 있다. 상기되는 장치에 의해서, 초기경로를 수정경로학습부(1200)을 통해 수정하여 실제와 같은 정확한 궤적을 생성해 낼 수 있다.
도 6은 예시로서 경로수정과정을 설명하는 도면이다.
도 6(a)를 참조하면, 상기 초기예측경로에 사용하는 상기 목적지는, 상기 예측 목적지 중에서 참 값과 일정 거리 이내인 것(실선의 원)은 사용하고 그 외의 것은 배제하는 것을 나타낸다. 도 6(b)를 참조하면, 상기 참 값과 일정거리 이내에 있는 랜덤하게 추가되는 것을 나타낸다. 도 6(c)를 참조하면, 상기 초기예측경로가 선형보간되어 일직선으로 나타나는 것을 볼 수 있다. 도 6(d)를 참조하면, 상기 초기예측경로에 상기 수정벡터가 더해져서 수정예측경로가 제공되는 것을 볼 수 있다.
상기되는 과정을 거쳐서 학습이 수행될 수 있다. 학습에 사용하는 손실함수는 경유지예측의 로스와 수정경로예측의 로스의 합을 최소화하는 것으로 제공될 수 있다. 경유지예측의 로스와 수정경로예측의 로스의 스케일링 팩터는 1로 할 수 있다.
상기되는 장치로 제공되는 인공지능장치는, 보행자가 걸어온 경로(예를 들어, 이전 8프레임)를 보고 예측경로를 바로 예측할 수 있다. 이에 따라서, 지나치게 진 경로를 참조하는 것에 따른 경로의 발산을 방지할 수 있다.
실시예에 따르면, 강력한 사회적 상호작용 모델이 실제 보행자 간 상호작용을 잘 보여주는 것을 확인할 수 있다. 또한, 도착지뿐만이 아니라, 중간 지점 예측을 통해서 예측의 정확성을 향상시킬 수 있는 것을 확인할 수 있다.
본 발명의 작용효과를 설명한다.
Figure pat00004
상기 표 1을 참조하면, 수평으로는 다양한 영상의 사례이고, 수직은 다른 비교예를 보인다. 굵은 글씨체는 가장 좋은 경우이고, 밑줄은 두번째로 좋은 경우이다. 이 경우에, 본 발명(Graph-TERN(Trajectory Estimation and Refinement Network))의 경우에 거의 모든 부분에서 좋은 점수를 얻고, 평균에 있어서도 가장 좋은 것을 알 수 있다.
도 7은 본 발명의 효과를 예시하는 것으로서, 인용문헌인 Social-STGCNN과 본 발명을 비교하는 도면이다.
도 7을 참조하면, 본 발명의 경우에 더 정확하게 보행자의 경로를 예측해 내는 것을 확인할 수 있다.
본 발명에 따른 보행자의 경로를 더 정확하게 예측할 수 있다.
1100: 경유지 학습부
1200: 수정경로 학습부

Claims (11)

  1. 보행자가 출발지로부터 목적지로 향하는 경로 상의 경유지를 학습하는 경유지 학습부; 및
    상기 출발지와 상기 목적지를 잇는 경로를 수정하는 수정벡터를 학습하는 수정경로학습부가 포함되는 보행경로예측장치.
  2. 제 1 항에 있어서,
    상기 경유지는,
    Figure pat00005
    로 정의되고,
    여기서, W는 경유지, n은 보행자, K는 경유지의 수, T는 시각을 의미하고, 타우는 시간간격인 보행경로예측장치.
  3. 제 2 항에 있어서,
    상기 K는 3인 보행경로예측장치.
  4. 제 1 항에 있어서,
    상기 경유지 학습부에는,
    피처를 공간 축으로 업데이트하는 멀티관계나눔부; 및
    상기 멀티관계나눔부에 의해서 분리되어 공간 축으로 업데이트 된 피처를 시간축으로 병합하는 다관계병합부가 포함되는 보행경로예측장치.
  5. 제 4 항에 있어서,
    상기 피처에는, 보행자 간의 상대적 변위정보(relative displacement)(DP), 상기 보행자 간의 상대적 변위정보의 역수(1/DP), 보행자 간의 거리정보(distance)(DT)), 및 상기 보행자 간이 거리정보의 역수(1/DT)가 포함되는 보행경로예측장치.
  6. 제 1 항에 있어서,
    상기 경유지학습부는, 상기 경유지를 복수개 예측하고, 예측된 복수개의 경유지를 시계열로 더해서 예측된 목적지를 제공하는 보행경로예측장치.
  7. 제 6 항에 있어서,
    상기 수정경로학습부에는 초기예측경로가 입력되고,
    상기 초기예측경로는 상기 출발지와 상기 목적지를 선형보간한 경로인 보행경로예측장치.
  8. 제 7 항에 있어서,
    상기 목적지는, 상기 예측된 목적지 중에서 참 값인 목적지에서 일정거리 이내의 예측된 목적지, 및 상기 참 값인 목적지에서 일정거리 이내의 샘플을 추가한 목적지를 사용하는 보행경로예측장치.
  9. 제 7 항에 있어서,
    상기 수정경로학습부에는,
    상기 초기예측경로의 피처를 공간 축으로 업데이트하는 멀티관계나눔부; 및
    상기 멀티관계나눔부에 의해서 분리되어 공간 축으로 업데이트 된 피처를 시간축으로 병합하는 다관계병합부가 포함되는 보행경로예측장치.
  10. 제 9 항에 있어서,
    상기 피처에는, 보행자 간의 상대적 변위정보(relative displacement)(DP), 상기 보행자 간의 상대적 변위정보의 역수(1/DP), 보행자 간의 거리정보(distance)(DT)), 및 상기 보행자 간이 거리정보의 역수(1/DT)가 포함되는 보행경로예측장치.
  11. 제 7 항에 있어서,
    상기 초기예측경로와 상기 수정벡터를 더하여 수정예측경로를 제공하는 보행경로예측장치.
KR1020210042927A 2021-04-01 2021-04-01 보행경로예측장치 KR102537381B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210042927A KR102537381B1 (ko) 2021-04-01 2021-04-01 보행경로예측장치
US17/680,023 US20220326042A1 (en) 2021-04-01 2022-02-24 Pedestrian trajectory prediction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210042927A KR102537381B1 (ko) 2021-04-01 2021-04-01 보행경로예측장치

Publications (2)

Publication Number Publication Date
KR20220136796A true KR20220136796A (ko) 2022-10-11
KR102537381B1 KR102537381B1 (ko) 2023-05-30

Family

ID=83510654

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210042927A KR102537381B1 (ko) 2021-04-01 2021-04-01 보행경로예측장치

Country Status (2)

Country Link
US (1) US20220326042A1 (ko)
KR (1) KR102537381B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115829171A (zh) * 2023-02-24 2023-03-21 山东科技大学 一种联合时空信息和社交互动特征的行人轨迹预测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116259176B (zh) * 2023-02-17 2024-02-06 安徽大学 一种基于意图随机性影响策略的行人轨迹预测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019920A (ja) * 2007-07-10 2009-01-29 Toyota Central R&D Labs Inc 経路探索装置、交通シミュレーション装置、歩行者挙動予測装置、及びプログラム
JP2020095292A (ja) * 2017-02-24 2020-06-18 株式会社日立製作所 混雑予測システムおよび歩行者シミュレーション装置
WO2020136978A1 (ja) * 2018-12-27 2020-07-02 本田技研工業株式会社 経路決定方法
JP2020184135A (ja) * 2019-05-07 2020-11-12 マツダ株式会社 歩行者位置予測方法及び歩行者位置予測装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11021148B2 (en) * 2019-03-25 2021-06-01 Zoox, Inc. Pedestrian prediction based on attributes
US11238729B1 (en) * 2020-09-11 2022-02-01 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for traffic flow prediction
CN113177470B (zh) * 2021-04-28 2022-11-01 华中科技大学 行人轨迹预测方法、装置、设备及存储介质
CN113689470B (zh) * 2021-09-02 2023-08-11 重庆大学 一种多场景融合下的行人运动轨迹预测方法
CN113920170B (zh) * 2021-11-24 2024-04-16 中山大学 结合场景上下文和行人社会关系的行人轨迹预测方法、***及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019920A (ja) * 2007-07-10 2009-01-29 Toyota Central R&D Labs Inc 経路探索装置、交通シミュレーション装置、歩行者挙動予測装置、及びプログラム
JP2020095292A (ja) * 2017-02-24 2020-06-18 株式会社日立製作所 混雑予測システムおよび歩行者シミュレーション装置
WO2020136978A1 (ja) * 2018-12-27 2020-07-02 本田技研工業株式会社 経路決定方法
JP2020184135A (ja) * 2019-05-07 2020-11-12 マツダ株式会社 歩行者位置予測方法及び歩行者位置予測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mohamed, A.; Qian, K.; Elhoseiny, M.; and Claudel, C. 2020. Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115829171A (zh) * 2023-02-24 2023-03-21 山东科技大学 一种联合时空信息和社交互动特征的行人轨迹预测方法

Also Published As

Publication number Publication date
US20220326042A1 (en) 2022-10-13
KR102537381B1 (ko) 2023-05-30

Similar Documents

Publication Publication Date Title
KR20190110498A (ko) 영상 파일에서 불특정 인물의 얼굴 영역을 비식별화 처리하는 인공 지능 서버 및 그 방법
KR20190110073A (ko) 인공 지능 모델을 갱신하는 인공 지능 장치 및 그 방법
KR102281602B1 (ko) 사용자의 발화 음성을 인식하는 인공 지능 장치 및 그 방법
US11269328B2 (en) Method for entering mobile robot into moving walkway and mobile robot thereof
US20200050894A1 (en) Artificial intelligence apparatus and method for providing location information of vehicle
KR102258381B1 (ko) 복수의 로봇들을 관제하는 인공 지능 서버 및 그 방법
US20200005100A1 (en) Photo image providing device and photo image providing method
KR20210072362A (ko) 인공 지능 모델에 대한 학습 데이터를 생성하는 인공 지능 장치 및 그 방법
US11710036B2 (en) Artificial intelligence server
KR102263159B1 (ko) 로봇의 경로를 결정하는 인공 지능 서버 및 그 방법
KR102225975B1 (ko) 엔진음 합성 장치 및 엔진음 합성 방법
KR20190096878A (ko) 인공지능 기반의 공기조화기
KR20210077482A (ko) 복수의 갱신 정보를 융합하여 인공 지능 모델을 갱신하는 인공 지능 서버 및 그 방법
KR20190101333A (ko) 음성 인식 장치 및 음성 인식 방법
US20220326042A1 (en) Pedestrian trajectory prediction apparatus
KR102421488B1 (ko) 복수개의 출력 레이어를 이용한 인공 지능 장치 및 방법
KR20190094312A (ko) 인공 지능을 이용하여, 복수의 로봇들을 제어하는 관제 시스템
KR20210066207A (ko) 객체를 인식하는 인공 지능 장치 및 그 방법
KR20190104264A (ko) 차량에 탑재되는 인공 지능 장치 및 그 방법
KR102231922B1 (ko) 인공 지능을 이용하여, 복수의 로봇들을 제어하는 인공 지능 서버
KR20190098934A (ko) 인공 지능을 이용하여, 안내 서비스를 제공하는 로봇 및 그의 동작 방법
KR20190094317A (ko) 사용자 환경에서의 음성 인식 모델의 성능을 예측하는 인공 지능 장치 및 그 방법
KR20190095186A (ko) 지능형 게이트웨이 장치 및 그를 포함하는 제어 시스템
KR102229562B1 (ko) 음성 인식 서비스를 제공하는 인공 지능 장치 및 그의 동작 방법
KR20210073252A (ko) 인공 지능 장치 및 그의 동작 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant