KR20220118969A - Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same - Google Patents

Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same Download PDF

Info

Publication number
KR20220118969A
KR20220118969A KR1020220097163A KR20220097163A KR20220118969A KR 20220118969 A KR20220118969 A KR 20220118969A KR 1020220097163 A KR1020220097163 A KR 1020220097163A KR 20220097163 A KR20220097163 A KR 20220097163A KR 20220118969 A KR20220118969 A KR 20220118969A
Authority
KR
South Korea
Prior art keywords
oxide
adsorbent
weight
nitrogen
active ingredient
Prior art date
Application number
KR1020220097163A
Other languages
Korean (ko)
Inventor
이상철
이상희
Original Assignee
주식회사 엠앤이테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠앤이테크 filed Critical 주식회사 엠앤이테크
Priority to KR1020220097163A priority Critical patent/KR20220118969A/en
Publication of KR20220118969A publication Critical patent/KR20220118969A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3014Kneading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

The present invention relates to an adsorbent for removing nitrogen oxides and a method for treating nitrogen oxides using the same. The adsorbent for removing nitrogen oxides according to the present invention can exhibit excellent adsorption performance when applied to a POU-scrubber, an adsorption tower, and the like, and has an improved product life cycle.

Description

질소 산화물 제거용 흡착제 및 이를 이용한 질소 산화물 처리방법{Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same}Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same

본 발명은 질소 산화물 제거용 흡착제 및 이를 이용한 질소 산화물 처리방법에 관한 것으로서, 보다 구체적으로 도로 터널 등의 환기가스, 반도체 제조공정 중 포토공정(photolithography)을 거쳐 배출되는 질소 산화물에 대하여 우수한 흡착성능을 나타낼 수 있고,제품수명 등이 향상된 흡착제 및 이를 이용한 질소 산화물 처리방법에 관한 것이다.The present invention relates to an adsorbent for removing nitrogen oxides and a nitrogen oxide treatment method using the same, and more particularly, to a ventilation gas such as road tunnels, and nitrogen oxides discharged through photolithography during a semiconductor manufacturing process. It relates to an adsorbent with improved product life and a nitrogen oxide treatment method using the same.

산업화 이후 화석연료 사용의 급증에 따른 부작용으로 많은 양의 대기 오염물질이 배출되어 왔으며, 그 대표적인 예로 질소 산화물(NOx)을 들 수 있다.Since industrialization, a large amount of air pollutants have been emitted as a side effect of the rapid increase in the use of fossil fuels, and a representative example of which is nitrogen oxide (NO x ).

대기 중에 유입되는 질소 산화물의 90% 이상은 연료 연소에 의하여 생성되는데, 세부적으로는 자동차와 같은 발생원에서 50%, 화석 연료를 사용하는 발전소나 보일러 또는 소각로와 같은 고정 발생원에서 50% 정도 배출되는 것으로 추정되고 있다.More than 90% of nitrogen oxides introduced into the atmosphere are generated by fuel combustion. Specifically, 50% from sources such as automobiles and 50% from fixed sources such as power plants or boilers or incinerators using fossil fuels. It is estimated

이와 같이 연소열에 의해서 생성되는 질소 산화물은 질소의 기원과 생성 메커니즘에 따라 대기 중 질소의 열고착화에서 기인하는 thermal NOx, 연료에서 생성된 라디칼(C, CH2)과 반응하여 생성된 화합물이 산소와 반응하여 생성되는 prompt NOx, 그리고 연료 속의 N 성분에 기인하는 fuel NOx로 구분되기도 한다.As such, the nitrogen oxides generated by the heat of combustion are thermal NO x resulting from thermal ignition of nitrogen in the atmosphere, and radicals (C, CH 2 ) generated from fuel depending on the origin and production mechanism of nitrogen. It is also divided into prompt NO x generated by reacting with NO x , and fuel NO x due to the N component in the fuel.

이와 같은 질소 산화물의 90% 내지 95%는 NO의 형태로 배출되며, 굴뚝을 통한 배출 과정에서 NO2의 형태로 산화되어 최종 배출된다. 이렇게 발생된 NO2는 자외선과 VOC 등과 반응하여 초미세 먼지와 산성비를 유발하기도 하는 등 여러 심각한 환경 문제를 초래한다.90% to 95% of such nitrogen oxides are discharged in the form of NO, and are oxidized to the form of NO 2 in the process of exhausting through the chimney and finally discharged. NO 2 generated in this way reacts with UV rays and VOCs, and causes a number of serious environmental problems, such as causing ultrafine dust and acid rain.

질소 산화물을 저감하기 위해서는 배출 오염원에서 배출원을 저감하거나 배출량을 관리하는 것이 효율적인데, NOx 제거 기술로는 주로 선택적 촉매 환원법(Selective, Catalytic Reduction, SCR법)과 선택적 무촉매 환원법(Selective, Non-catalytic Reduction, SNCR)법이 많이 활용되고 있다.In order to reduce nitrogen oxides, it is effective to reduce the emission source or manage the emission from the emission source. The NO x removal technologies are mainly the selective catalytic reduction method (Selective, Catalytic Reduction, SCR method) and the selective, non-catalytic reduction method (Selective, Non- Catalytic Reduction (SNCR) method is widely used.

그러나 이 두 기술은 초기 투자비용이 높고, 350 내지 400 ℃의 고온 운전으로 인해 많은 운전비용이 소요되며, 질소 산화물의 고효율 저감이 어렵다는 한계를 지니고 있다. 그 외에도, 첨착 활성탄을 이용한 건식법이 활용되기도 하지만, 특정한 반응 시 발열 위험과 이로 인한 탈착 가능성이 높아, 안정성이나 흡착성능 및 제품수명의 면에서 개선될 여지를 많다고 할 수 있다.However, these two technologies have limitations in that the initial investment cost is high, the operation cost is high due to the high temperature operation of 350 to 400 °C, and it is difficult to reduce the high efficiency of nitrogen oxides. In addition, although a dry method using impregnated activated carbon is sometimes used, there is a high risk of exotherm during a specific reaction and a high possibility of desorption due to this, so there is a lot of room for improvement in terms of stability, adsorption performance and product life.

이에, POU-스크러버(Point of use-scrubber), 흡착탑 등에 적용 가능하면서 흡착성능이 우수하고 제품수명 등이 향상된 질소 산화물 제거용 흡착제 및 이를 이용한 질소 산화물 처리방법이 필요한 실정이다.Accordingly, there is a need for an adsorbent for removing nitrogen oxides and a nitrogen oxide treatment method using the same, which can be applied to a POU-scrubber (Point of use-scrubber), an adsorption tower, etc., and has excellent adsorption performance and improved product lifespan.

1. 한국 공개특허 제10-2019-0065343호1. Korean Patent Publication No. 10-2019-0065343 2. 한국 공개특허 제10-2016-0094996호2. Korean Patent Publication No. 10-2016-0094996 3. 한국 등록특허 제10-0210262호3. Korean Patent No. 10-0210262

이와 같은 문제점을 해결하기 위하여, 본 발명은 POU-스크루버, 흡착탑 등에 적용 가능하면서 흡착성능이 우수하고 제품수명 등이 향상될 수 있는 질소 산화물 제거용 흡착제 및 이를 이용한 질소 산화물 처리방법을 제공하고자 한다.In order to solve such a problem, the present invention is applicable to POU-scrubber, adsorption tower, etc., while having excellent adsorption performance and improved product lifespan, etc. It is intended to provide an adsorbent for nitrogen oxide removal and a nitrogen oxide treatment method using the same. .

이를 위해 본 발명은 (a) 전이금속 산화물로 이루어진 군으로부터 선택되는 2종 이상의 제1 활성성분, (b) 알칼리 화합물로 이루어진 군으로부터 선택되는 1종 이상의 제2 활성성분, 및 (c) 활성탄을 질소 산화물 제거용 흡착제로서, 상기 흡착제 총 중량을 기준으로, 상기 제1 활성성분의 함량은 85-94 중량%이고, 상기 제2 활성성분의 함량은 0.1-5 중량%이며, 상기 활성탄의 함량은 5-14 중량%이인 것을 특징으로 하는 질소 화합물 제거용 흡착제를 제공한다.To this end, the present invention provides (a) at least two first active ingredients selected from the group consisting of transition metal oxides, (b) at least one second active ingredient selected from the group consisting of alkali compounds, and (c) activated carbon. As an adsorbent for removing nitrogen oxides, based on the total weight of the adsorbent, the content of the first active ingredient is 85-94% by weight, the content of the second active ingredient is 0.1-5% by weight, and the content of the activated carbon is It provides an adsorbent for removing nitrogen compounds, characterized in that it is 5-14 wt%.

또한, 본 발명은 본 발명의 여러 구현예에 따른 질소 산화물 제거용 흡착제를 사용하여 POU-스크루버 또는 흡착탑을 운전하는 단계를 포함하는 질소 산화물 처리공정을 제공한다.In addition, the present invention provides a nitrogen oxide treatment process comprising operating a POU-scrubber or an adsorption tower using the adsorbent for nitrogen oxide removal according to various embodiments of the present invention.

본 발명에 따른 흡착제는 질소 산화물을 제거용 POU-스크러버, 흡착탑 등에 적용 가능하면서 흡착성능이 우수하고 제품수명 등이 향상되는 등의 효과를 보인다.The adsorbent according to the present invention can be applied to a POU-scrubber for removing nitrogen oxides, an adsorption tower, etc., and exhibits effects such as excellent adsorption performance and improved product life.

도 1은 본 발명의 흡착제의 제조공정 요약도 사진이다.
도 2은 본 발명의 일 구현예에 따라 제조된 흡착제의 사진이다(3ㆈ, 펠렛).
도 3a 내지 3d는 실험예에서 사용된 질소 산화물 흡착실험 장치의 사진 및 내부 구성도이다.
1 is a photograph of a schematic diagram of the manufacturing process of the adsorbent of the present invention.
2 is a photograph of an adsorbent prepared according to an embodiment of the present invention (3ㆈ, pellets).
3a to 3d are photographs and internal configuration diagrams of the nitrogen oxide adsorption experimental apparatus used in the experimental example.

이하에서, 본 발명의 여러 측면 및 다양한 구현예에 대해 더욱 구체적으로 살펴보도록 한다.Hereinafter, various aspects and various embodiments of the present invention will be described in more detail.

본 발명의 일 측면에 따르면, (a) 전이금속 산화물로 이루어진 군으로부터 선택되는 2종 이상의 제1 활성성분, (b) 알칼리 화합물로 이루어진 군으로부터 선택되는 1종 이상의 제2 활성성분, 및 (c) 활성탄을 질소 산화물 제거용 흡착제가 개시된다.According to one aspect of the present invention, (a) at least two first active ingredients selected from the group consisting of transition metal oxides, (b) at least one second active ingredient selected from the group consisting of alkali compounds, and (c) ) An adsorbent for removing nitrogen oxides from activated carbon is disclosed.

본 발명에 따른 질소 산화물 제거용 흡착제에 있어서, 상기 전이금속 산화물은 흡착제 내에서 하기 반응식 1과 같이 일산화질소를 이산화질소로 산화시키는 역할과 하기 반응식 2와 같이 이산화질소를 화학적으로 흡착하는 역할을 한다.In the adsorbent for removing nitrogen oxides according to the present invention, the transition metal oxide serves to oxidize nitrogen monoxide to nitrogen dioxide as shown in Scheme 1 below and chemically adsorb nitrogen dioxide as shown in Scheme 2 below.

[반응식 1][Scheme 1]

2NO + O2 (CuO, MnO2, etc.) → 2NO2 2NO + O 2 (CuO, MnO 2 , etc.) → 2NO 2

[반응식 2][Scheme 2]

NO2 + M (M = CuO, MnO2, Fe2O3, etc.) → M(NO3)2 NO 2 + M (M = CuO, MnO 2 , Fe 2 O 3 , etc.) → M(NO 3 ) 2

본 발명에 따른 질소 산화물 제거용 흡착제에 있어서, 상기 알칼리 화합물은 이산화질소와의 반응성이 우수하며, 상온상압의 온화한 조건(mild condition)에서 화학흡착 활성을 높이고, 결합제 역할을 할 수 있는 특징이 있다.In the adsorbent for removing nitrogen oxides according to the present invention, the alkali compound has excellent reactivity with nitrogen dioxide, increases chemisorption activity under mild conditions at room temperature and normal pressure, and can serve as a binder.

본 발명에 따른 질소 산화물 제거용 흡착제에 있어서, 상기 활성탄은 흡착제의 제조 시 벌크기공 형성하는 역할을 수행할 수 있고, 상기 전이금속 산화물과 알칼리 화합물과의 반응 면적을 효과적으로 넓혀줄 수 있고, 유입되는 수분을 조절하여 화학흡착한 흡착제끼리의 응집을 방지하는 역할을 하며, POU-스크러버, 흡착탑 등에 적용 시 차압이나 편류 등의 문제를 감소시킬 수 있게 한다. 또한 일부 물리흡착력으로 인해 일산화질소의 산화반응, 이산화질소의 화학흡착반응 등을 촉진시켜 흡착성능을 향상시키는 역할도 수행한다.In the adsorbent for removing nitrogen oxides according to the present invention, the activated carbon can serve to form bulk pores during the preparation of the adsorbent, and can effectively widen the reaction area between the transition metal oxide and the alkali compound, and It controls moisture to prevent aggregation of chemically adsorbed adsorbents, and when applied to POU scrubbers and adsorption towers, it can reduce problems such as differential pressure or drift. In addition, it also plays a role in improving the adsorption performance by accelerating the oxidation reaction of nitrogen monoxide and the chemisorption reaction of nitrogen dioxide due to some physical adsorption power.

본 발명에서 사용 가능한 전이금속 산화물의 예에는 산화구리(copper oxide), 산화망간(manganese oxide), 산화철(iron oxide), 산화크롬(chromium oxide), 산화아연(zinc oxide), 산화코발트(cobalt oxide), 산화니켈(nickel oxide) 등이 포함되나, 이에 한정되는 것은 아니다.Examples of the transition metal oxide usable in the present invention include copper oxide, manganese oxide, iron oxide, chromium oxide, zinc oxide, cobalt oxide. ), nickel oxide (nickel oxide), and the like, but is not limited thereto.

상기 알칼리 화합물의 예에는 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화리튬(LiOH), 탄산나트륨(Na2CO3), 탄산칼륨(K2CO3), 탄산리튬(Li2CO3) 등이 포함되나, 이에 한정되는 것은 아니다. 상기 알칼리 화합물로는 2종 이상이 함께 사용될 수도 있으나, 단독으로 사용하는 것이 바람직하다.Examples of the alkali compound include sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), lithium carbonate (Li 2 CO 3 ), etc. This includes, but is not limited to. As the alkali compound, two or more kinds may be used together, but it is preferable to use them alone.

상기 활성탄계의 예에는 석탄계 분말형 활성탄, 야자계 분말형 활성탄, 목탄계 분말형 활성탄 등을 들 수 있으나, 이에 한정되는 것은 아니다.Examples of the activated carbon include, but are not limited to, coal-based powdered activated carbon, palm-based powdered activated carbon, charcoal-based powdered activated carbon, and the like.

본 발명에 있어서, 상기 질소 산화물은 일산화질소(NO, nitrogen dioxide), 이산화질소(NO2, nitrogen dioxide), 삼산화이질소(N2O3, dinitrogen trioxide), 사산화이질소(N2O4, dinitrogen tetroxide), 오산화이질소(N2O5, dinitrogen pentoxide) 등을 포함할 수 있다.In the present invention, the nitrogen oxide is nitrogen monoxide (NO, nitrogen dioxide), nitrogen dioxide (NO 2 , nitrogen dioxide), dinitrogen trioxide (N 2 O 3 , dinitrogen trioxide), dinitrogen tetroxide (N 2 O 4 , dinitrogen tetroxide) ), dinitrogen pentoxide (N 2 O 5 , dinitrogen pentoxide), and the like.

이때, 상기 흡착제 총 중량을 기준으로, 상기 제1 활성성분의 함량은 85-94 중량%이고, 상기 제2 활성성분의 함량은 0.1-5 중량%이며, 상기 활성탄의 함량은 5-14 중량%일 수 있다.At this time, based on the total weight of the adsorbent, the content of the first active ingredient is 85-94 wt%, the content of the second active ingredient is 0.1-5 wt%, and the content of the activated carbon is 5-14 wt% can be

구체적으로, 전이금속 화합물의 함량은 흡착제 총중량을 기준으로 85-94 중량%인 것이 바람직하나, 이에만 한정되는 것은 아니다. 상기 전이금속 화합물의 함량이 흡착제 총중량을 기준으로 85 중량% 미만인 경우에는 활성성분의 비율이 낮아 흡착제의 흡착성능이 급격히 떨어지는 문제점이 발생할 수 있고, 94 중량%를 초과하는 경우에는 성형적인 문제가 발생하거나 벌크 기공형성이 낮아져 흡착성능이 저하될 수 있다.Specifically, the content of the transition metal compound is preferably 85-94% by weight based on the total weight of the adsorbent, but is not limited thereto. When the content of the transition metal compound is less than 85% by weight based on the total weight of the adsorbent, the ratio of the active ingredient is low and the adsorption performance of the adsorbent is sharply deteriorated, and when it exceeds 94% by weight, a molding problem occurs. Otherwise, the bulk pore formation may be lowered and the adsorption performance may be lowered.

알칼리 화합물의 함량은 흡착제 총중량을 기준으로 0.1-5 중량%인 것이 바람직하나, 이에만 한정되는 것은 아니다. 상기 알카리 화합물의 함량이 흡착제 총중량을 기준으로 0.1 중량% 미만인 경우에는 흡착제의 흡착성능이 떨어지는 문제점이 발생할 수 있고, 5 중량%를 초과하는 경우에는 장비부식 등으로 성형적인 문제가 발생하거나, 물에 대한 용해도가 높아 흡착제의 기공을 막음으로 흡착 성능이 급격히 저하될 수 있다.The content of the alkali compound is preferably 0.1-5% by weight based on the total weight of the adsorbent, but is not limited thereto. If the content of the alkali compound is less than 0.1% by weight based on the total weight of the adsorbent, the adsorption performance of the adsorbent may be deteriorated. Due to its high solubility in the adsorbent, the adsorption performance may be rapidly reduced by clogging the pores of the adsorbent.

상기 활성탄 함량은 흡착제 총중량을 기준으로 5-14 중량%인 것이 바람직하나, 이에만 한정되는 것은 아니다. 상기 활성탄 함량이 흡착제 총중량을 기준으로 5 중량% 미만인 경우에는 흡착제의 흡착성능이 떨어지는 문제점이 발생할 수 있고, 14 중량%를 초과하는 경우에는 펠렛 성형시 강도 및 성형성에 문제가 발생하고, 활성성분의 비율이 낮아져 흡착성능이 저하될 수 있다.The activated carbon content is preferably 5-14% by weight based on the total weight of the adsorbent, but is not limited thereto. If the activated carbon content is less than 5% by weight based on the total weight of the adsorbent, the adsorption performance of the adsorbent may be deteriorated, and if it exceeds 14% by weight, there may be problems in strength and moldability during pellet molding, and If the ratio is lowered, the adsorption performance may be lowered.

또 다른 구현예에 있어서, (i) 상기 제1 활성성분은 산화구리 65-75 중량%, 산화망간 15-25 중량%, 산화철 또는 산화니켈 5-15 중량%로 이루어지고, (ii) 상기 제2 활성성분은 탄산칼륨 또는 수산화칼륨이며, (iii) 상기 흡착제 총 중량을 기준으로, 상기 제1 활성성분의 함량은 85-94 중량%이고, 상기 제2 활성성분의 함량은 0.1-5 중량%이며, 상기 활성탄의 함량은 5-14 중량%이며, (iv) 상기 전이금속 산화물은 크기는 100-200 메쉬인 분말이고, (v) 상기 활성탄은 크기가 200-400 메쉬인 분말인 것이 바람직하다.In another embodiment, (i) the first active ingredient consists of 65-75% by weight of copper oxide, 15-25% by weight of manganese oxide, 5-15% by weight of iron oxide or nickel oxide, (ii) the agent 2 active ingredient is potassium carbonate or potassium hydroxide, (iii) based on the total weight of the adsorbent, the content of the first active ingredient is 85-94 wt%, and the content of the second active ingredient is 0.1-5 wt% and the content of the activated carbon is 5-14% by weight, (iv) the transition metal oxide is a powder having a size of 100-200 mesh, and (v) the activated carbon is preferably a powder having a size of 200-400 mesh .

이러한 요건이 모두 만족되는 경우, 피드 가스 내의 산소 농도에 상관 없이 NO 흡착량이 실질적으로 변화가 없고 파과에 이르는 파과시간도 실질적으로 변화가 없는 반면, 이들 요건 중 어느 하나라도 충족되지 않는 경우, 피드 가스 내 산소 농도에 따라 NO 흡착량이 감소하고 파과시간도 짧아질 수 있음을 확인하였다.When all of these requirements are met, there is substantially no change in the amount of NO adsorbed regardless of the oxygen concentration in the feed gas and there is no substantial change in the time to break through, whereas if any of these requirements are not met, the feed gas It was confirmed that the amount of NO adsorption decreased and the breakthrough time could be shortened according to the oxygen concentration.

또한, 본 발명에 따른 질소 산화물 제거용 흡착제는 물(H2O)을 추가로 포함할 수도 있다.In addition, the adsorbent for removing nitrogen oxides according to the present invention may further include water (H 2 O).

또한, 본 발명에 따른 질소 산화물 제거용 흡착제의 비중은 0.6-0.8 g/cm3인 것이 바람직하다. 본 발명에 따른 질소 산화물 제거용 흡착제가 상기 수치범위의 비중을 갖는 경우에, 보다 우수한 흡착성능을 나타낼 수 있고, 제품수명 증대의 효과를 얻을 수 있다.In addition, the specific gravity of the adsorbent for removing nitrogen oxides according to the present invention is preferably 0.6-0.8 g/cm 3 . When the adsorbent for removing nitrogen oxides according to the present invention has a specific gravity within the above numerical range, better adsorption performance can be exhibited, and the effect of increasing product life can be obtained.

본 발명에 따른 질소 산화물 제거용 흡착제는 전술한 전이금속 산화물, 알칼리 화합물, 활성탄계를 이용하는 것을 제외하고는, 당 기술분야에 알려진 방법을 이용하여 제조할 수 있다.The adsorbent for removing nitrogen oxides according to the present invention may be prepared using a method known in the art, except for using the above-described transition metal oxide, alkali compound, and activated carbon.

본 발명의 다른 측면은 본 발명의 여러 구현예에 따른 질소 산화물 제거용 흡착제를 사용하여 POU-스크루버 또는 흡착탑을 운전하는 단계를 포함하는 질소 산화물 처리공정에 관한 것이다. 상기 질소 산화물 처리방법은 본 발명에 따른 흡착제를 이용하는 것을 제외하고는, 당 기술분야에 알려진 방법을 이용할 수 있다.Another aspect of the present invention relates to a nitrogen oxide treatment process comprising operating a POU-scrubber or an adsorption tower using the adsorbent for nitrogen oxide removal according to various embodiments of the present invention. The nitrogen oxide treatment method may use a method known in the art, except for using the adsorbent according to the present invention.

이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.Hereinafter, the present invention will be described in more detail by way of Examples and the like, but the scope and content of the present invention may not be construed as being reduced or limited by the Examples below. In addition, based on the disclosure of the present invention including the following examples, it is clear that a person skilled in the art can easily practice the present invention for which no specific experimental results are presented, and such modifications and variations are included in the attached patent. It goes without saying that they fall within the scope of the claims.

또한 이하에서 제시되는 실험 결과는 상기 실시예 및 비교예의 대표적인 실험 결과만을 기재한 것이며, 아래에서 명시적으로 제시하지 않은 본 발명의 여러 구현예의 각각의 효과는 해당 부분에서 구체적으로 기재하도록 한다.In addition, the experimental results presented below describe only the representative experimental results of the Examples and Comparative Examples, and the effects of each of the various embodiments of the present invention that are not explicitly presented below will be described in detail in the corresponding part.

실시예Example

실시예 1Example 1

분말 형태의 산화구리(CuO, 100-200 메쉬) 600 g (69.0 중량%), 분말 형태의 산화망간(MnO2, 100-200 메쉬) 170 g (19.5 중량%), 분말 형태의 산화철(Fe2O3, 100-200 메쉬) 100 g (11.5 중량%)를 혼합하여 제1 활성성분을 제조하였다.Copper oxide in powder form (CuO, 100-200 mesh) 600 g (69.0 wt%), manganese oxide in powder form (MnO 2 , 100-200 mesh) 170 g (19.5 wt%), iron oxide in powder form (Fe 2 ) O 3 , 100-200 mesh) 100 g (11.5 wt%) was mixed to prepare a first active ingredient.

이렇게 제조된 제1 활성성분(870 g, 87 중량%)에 분말 형태의 활성탄(200-400 메쉬, 100 g, 10 중량%)을 충분히 혼합한 후, 시약용 탄산칼륨(K2CO3, 99.5%, 30 g, 3 중량%)을 물 400 g에 녹인 용액에 부어 반죽하였다.After sufficiently mixing the powdered activated carbon (200-400 mesh, 100 g, 10 wt%) with the first active ingredient (870 g, 87 wt%) prepared in this way, potassium carbonate for reagent (K 2 CO 3 , 99.5 %, 30 g, 3 wt%) was poured into a solution of 400 g of water and kneaded.

이를 펠렛 사출기(screw-type extruder)를 사용하여 3 mm 펠렛으로 성형시켰다. 그 다음, 공기 순환 조건에서 100 ℃에서 1 시간 건조 후, 300 ℃에서 2 시간 동안 소성하였다.This was molded into 3 mm pellets using a screw-type extruder. Then, after drying at 100 °C for 1 hour under air circulation conditions, it was calcined at 300 °C for 2 hours.

실시예 2Example 2

산화철(Fe2O3)을 사용하는 대신에 산화니켈(NiO)을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 흡착제를 제조하였다.An adsorbent was prepared in the same manner as in Example 1, except that nickel oxide (NiO) was used instead of iron oxide (Fe 2 O 3 ).

실시예 3Example 3

탄산칼륨(K2CO3)을 사용하는 대신에 수산화칼륨(KOH)을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 흡착제를 제조하였다.An adsorbent was prepared in the same manner as in Example 1, except that potassium hydroxide (KOH) was used instead of potassium carbonate (K 2 CO 3 ).

실시예 4Example 4

200-400 메쉬의 분말 활성탄 대신에 100-200 메쉬의 분말 활성탄을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 흡착제를 제조하였다.An adsorbent was prepared in the same manner as in Example 1, except that 100-200 mesh of powdered activated carbon was used instead of 200-400 mesh of powdered activated carbon.

비교예 1Comparative Example 1

산화구리(CuO)와 산화망간(MnO2)을 사용하는 대신에 산화철(Fe2O3, 870 g)만을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 흡착제를 제조하였다.Instead of using copper oxide (CuO) and manganese oxide (MnO 2 ), an adsorbent was prepared in the same manner as in Example 1, except that only iron oxide (Fe 2 O 3 , 870 g) was used.

비교예 2Comparative Example 2

탄산칼륨(K2CO3) 30 g 대신에 100 g을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 흡착제를 제조하였다.An adsorbent was prepared in the same manner as in Example 1, except that 100 g of potassium carbonate (K 2 CO 3 ) was used instead of 30 g.

비교예 3Comparative Example 3

탄산칼륨(K2CO3)을 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 흡착제를 제조하였다.An adsorbent was prepared in the same manner as in Example 1, except that potassium carbonate (K 2 CO 3 ) was not used.

비교예 4Comparative Example 4

활성탄을 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 흡착제를 제조하였다.An adsorbent was prepared in the same manner as in Example 1, except that activated carbon was not used.

실험예 1Experimental Example 1

KS M 1802에 따라서 위 실시예 1-4 및 비교예 1-4에서 제조한 흡착제에 대한 경도를 분석하였으며, 그 결과를 아래 표 1에 제시하였다.The hardness of the adsorbents prepared in Examples 1-4 and Comparative Examples 1-4 was analyzed according to KS M 1802, and the results are presented in Table 1 below.

Figure pat00001
Figure pat00001

실험예 2Experimental Example 2

상기 실시예 1-4 및 비교예 1-4로부터 제조한 각각의 흡착제에 대하여, 주문 제작한 질소 산화물 흡착실험 장치(리젠사, 도 3a 내지 3d)를 이용하여 흡착성능을 평가하였다. 사용된 흡착실험 장치는 고압가스 용기에 충전된 특수 가스를 흡착컬럼에 상압 및 상온으로 안전하게 공급하는 장치이며, 캐비넷 형태로 되어 있다.For each of the adsorbents prepared in Examples 1-4 and Comparative Examples 1-4, the adsorption performance was evaluated using a custom-made nitrogen oxide adsorption test apparatus (Regen, FIGS. 3A to 3D ). The adsorption test device used is a device that safely supplies the special gas filled in the high-pressure gas container to the adsorption column at normal pressure and room temperature, and is in the form of a cabinet.

질소 산화물로는 2% 일산화질소(4% NO under N2 + 42% O2/N2 = 1 : 1) 및 2% 이산화질소(NO2 under Air)를 사용하여, 상온 및 상압에서 NO와 NO2의 흡착실험을 각각 수행하였다.As nitrogen oxides, 2% nitrogen monoxide (4% NO under N 2 + 42% O 2 /N 2 = 1 : 1) and 2% nitrogen dioxide (NO 2 under Air) were used as nitrogen oxides, and NO and NO 2 at room temperature and pressure were used. of adsorption experiments were performed respectively.

흡착컬럼의 흡착제 충전층을 통과하는 가스의 유량을 1,000 mL/분이 되게 하였고, 흡착컬럼에는 상기 실시예 1-4 및 비교예 1-4에서 제조한 흡착제를 200 mL 충전하였고, 흡착성능은 흡착제를 통과한 배출되는 가스의 파과점(NO = 25 ppm, NO2 = 3 ppm)을 측정함으로써 평가하였고, 그 결과를 하기 표 2에 나타내었다.The flow rate of the gas passing through the adsorbent packed bed of the adsorption column was 1,000 mL/min, and the adsorption column was filled with 200 mL of the adsorbents prepared in Examples 1-4 and Comparative Examples 1-4, and the adsorption performance was determined by using the adsorbent. It was evaluated by measuring the breakthrough point (NO = 25 ppm, NO 2 = 3 ppm) of the exhausted gas passing through, and the results are shown in Table 2 below.

Figure pat00002
Figure pat00002

상기 표 1 및 2에 제시한 바와 같이, 실시예 1-4에 따른 흡착제는 전술한 전이금속 산화물, 알칼리 화합물, 활성탄을 포함함으로써, 강도 향상과 함께 POU-스크루버, 흡착탑 등에 적용 시에 질소 산화물 제거에 대하여 안정적이고 흡착성능이 우수하며 제품수명 등이 향상되고, 특히 실시예 1에서 보이는 매우 높은 흡착성능의 극대화됨을 확인하였다.As shown in Tables 1 and 2, the adsorbent according to Examples 1-4 contains the aforementioned transition metal oxide, alkali compound, and activated carbon, thereby improving strength and nitrogen oxide when applied to POU-scrubber, adsorption tower, etc. It was confirmed that the removal was stable, the adsorption performance was excellent, the product life was improved, and in particular, the very high adsorption performance shown in Example 1 was maximized.

실시예 5 Example 5

산화구리 600 g, 산화망간 170 g, 산화철 100 g을 사용하는 대신에, 산화구리(670 g, 77 중량%), 산화망간(148 g, 17 중량%), 산화철(52 g, 6 중량%)을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 흡착제를 제조하였다.Instead of using 600 g of copper oxide, 170 g of manganese oxide, 100 g of iron oxide, copper oxide (670 g, 77 wt%), manganese oxide (148 g, 17 wt%), iron oxide (52 g, 6 wt%) An adsorbent was prepared in the same manner as in Example 1, except that

실시예 6Example 6

탄산칼륨 대신에 탄산칼슘을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 흡착제를 제조하였다.An adsorbent was prepared in the same manner as in Example 1, except that calcium carbonate was used instead of potassium carbonate.

실시예 7Example 7

제1 활성성분 87 중량%, 제2 활성성분 3 중량%, 활성탄 10 중량% 대신에, 제1 활성성분 95 중량%, 제2 활성성분 1 중량%, 활성탄 4 중량%를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 흡착제를 제조하였다.Instead of 87% by weight of the first active ingredient, 3% by weight of the second active ingredient, and 10% by weight of activated carbon, except that 95% by weight of the first active ingredient, 1% by weight of the second active ingredient, and 4% by weight of activated carbon are used An adsorbent was prepared in the same manner as in Example 1.

실시예 8Example 8

100-200 메쉬인 분말 산화구리, 산화망간, 산화철 대신에, 200-400 메쉬인 분말 산화구리, 산화망간, 산화철을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 흡착제를 제조하였다.An adsorbent was prepared in the same manner as in Example 1, except that powder copper oxide, manganese oxide, and iron oxide of 200-400 mesh were used instead of powdered copper oxide, manganese oxide, and iron oxide of 100-200 mesh.

실시예 9Example 9

200-400 메쉬인 분말 활성탄 대신에 100-200 메쉬인 분말 활성탄을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 흡착제를 제조하였다.An adsorbent was prepared in the same manner as in Example 1, except that 100-200 mesh powder activated carbon was used instead of 200-400 mesh powder activated carbon.

실험예 3Experimental Example 3

NO 흡착에 대한 산소의 영향을 확인하기 위하여, 실시예 1-9에서 제조한 흡착제를 이용하여 흡착량을 분석하되, 피드 가스 전체 100 부피부 대비 산소 추가 공급량을 5 부피부, 10 부피부, 15 부피부로 변화시키는 것을 제외하고는, 실험예 2와 동일하게 흡착량 분석을 수행하였다.In order to confirm the effect of oxygen on NO adsorption, the adsorption amount was analyzed using the adsorbent prepared in Examples 1-9, but the additional oxygen supply amount was 5 parts by volume, 10 parts by volume, and 15 parts by volume relative to the total 100 parts by volume of the feed gas. An adsorption amount analysis was performed in the same manner as in Experimental Example 2, except for changing by volume.

그 결과, 실시예 1-3에서 제조한 흡착제는 NO 흡착량이 실질적으로 변화가 없고, 파과에 이르는 파과시간도 실질적으로 변화가 없는 반면, 실시예 4-9에서 제조한 흡착제는 산소 추가 공급량이 5 부피부, 10 부피부, 15 부피부로 증가함에 따라 NO 흡착량이 각각 약 5-6%, 7-9%, 12-15% 정도씩 감소하고, 파과시간 역시 각각 대략 3-5%, 6-9%, 10-14% 정도씩 짧아지는 것으로 관측되었고, 이러한 경향은 실시예 4-9에서 제조한 흡착제에 공통적으로 관찰됨을 확인하였다.As a result, the adsorbent prepared in Examples 1-3 did not substantially change the amount of NO adsorbed, and the breakthrough time to breakthrough did not change substantially, whereas the adsorbent prepared in Examples 4-9 had an additional oxygen supply of 5 As the volume increases to 10 parts by volume and 15 parts by volume, the NO adsorption amount decreases by about 5-6%, 7-9%, and 12-15%, respectively, and the breakthrough time is also about 3-5% and 6- It was observed to be shortened by about 9% and 10-14%, and it was confirmed that this trend was commonly observed for the adsorbents prepared in Examples 4-9.

Claims (3)

(a) 전이금속 산화물로 이루어진 군으로부터 선택되는 2종 이상의 제1 활성성분, (b) 알칼리 화합물로 이루어진 군으로부터 선택되는 1종 이상의 제2 활성성분, 및 (c) 활성탄을 포함하는 질소 산화물 제거용 흡착제로서,
상기 제1 활성성분은 산화구리 65-75 중량%, 산화망간 15-25 중량%, 산화철 또는 산화니켈 5-15 중량%로 이루어지고,
상기 제2 활성성분은 탄산칼륨 또는 수산화칼륨이며,상기 흡착제 총 중량을 기준으로, 상기 제1 활성성분의 함량은 85-94 중량%이고, 상기 제2 활성성분의 함량은 0.1-5 중량%이며, 상기 활성탄의 함량은 5-14 중량%이며,
상기 전이금속 산화물은 크기가 100-200 메쉬인 분말이고, 상기 활성탄은 크기가 200-400 메쉬인 분말인 것을 특징으로 하는 질소 산화물 제거용 흡착제.
(a) at least two first active ingredients selected from the group consisting of transition metal oxides, (b) at least one second active ingredient selected from the group consisting of alkali compounds, and (c) nitrogen oxide removal comprising activated carbon As an adsorbent for
The first active ingredient consists of 65-75% by weight of copper oxide, 15-25% by weight of manganese oxide, 5-15% by weight of iron oxide or nickel oxide,
The second active ingredient is potassium carbonate or potassium hydroxide, Based on the total weight of the adsorbent, the content of the first active ingredient is 85-94% by weight, the content of the second active ingredient is 0.1-5% by weight, , the content of the activated carbon is 5-14% by weight,
The transition metal oxide is a powder having a size of 100-200 mesh, and the activated carbon is an adsorbent for removing nitrogen oxide, characterized in that the powder has a size of 200-400 mesh.
제1항에 있어서, 상기 전이금속 산화물로 이루어진 군은 산화구리, 산화망간, 산화철, 산화니켈, 산화크롬, 산화아연, 산화코발트로 이루어진 군이고,
상기 알칼리 화합물로 이루어진 군은 탄산칼륨, 수산화칼륨, 수산화나트륨, 수산화리튬, 탄산나트륨, 탄산리튬으로 이루어진 군이며,
상기 질소 산화물은 일산화질소(NO), 이산화질소(NO2), 삼산화이질소(N2O3), 사산화이질소(N2O4), 오산화이질소(N2O5)를 포함하는 군에서 선택된 1종 이상인 것을 특징으로 하는 질소 산화물 제거용 흡착제.
According to claim 1, wherein the group consisting of the transition metal oxide is a group consisting of copper oxide, manganese oxide, iron oxide, nickel oxide, chromium oxide, zinc oxide, cobalt oxide,
The group consisting of the alkali compound is a group consisting of potassium carbonate, potassium hydroxide, sodium hydroxide, lithium hydroxide, sodium carbonate, lithium carbonate,
The nitrogen oxide is nitrogen monoxide (NO), nitrogen dioxide (NO 2 ), dinitrogen trioxide (N 2 O 3 ), dinitrogen tetraoxide (N 2 O 4 ), dinitrogen pentoxide (N 2 O 5 ) 1 selected from the group comprising Adsorbent for nitrogen oxide removal, characterized in that more than one species.
제1항 또는 제2항에 따른 질소 산화물 제거용 흡착제를 사용하여 POU-스크루버 또는 흡착탑을 운전하는 단계를 포함하는 질소 산화물 처리공정.A nitrogen oxide treatment process comprising the step of operating a POU-scrubber or an adsorption tower using the adsorbent for removing nitrogen oxides according to claim 1 or 2.
KR1020220097163A 2020-07-02 2022-08-04 Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same KR20220118969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220097163A KR20220118969A (en) 2020-07-02 2022-08-04 Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200081337A KR102434658B1 (en) 2020-07-02 2020-07-02 Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same
KR1020220097163A KR20220118969A (en) 2020-07-02 2022-08-04 Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020200081337A Division KR102434658B1 (en) 2020-07-02 2020-07-02 Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same

Publications (1)

Publication Number Publication Date
KR20220118969A true KR20220118969A (en) 2022-08-26

Family

ID=79355474

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200081337A KR102434658B1 (en) 2020-07-02 2020-07-02 Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same
KR1020220097163A KR20220118969A (en) 2020-07-02 2022-08-04 Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020200081337A KR102434658B1 (en) 2020-07-02 2020-07-02 Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same

Country Status (1)

Country Link
KR (2) KR102434658B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100210262B1 (en) 1997-02-27 1999-07-15 이서봉 Zeolitic absorbent and nox removal using the same
KR20160094996A (en) 2013-12-06 2016-08-10 존슨 맛쎄이 퍼블릭 리미티드 컴파니 PASSIVE NOx ADSORBER COMPRISING NOBLE METAL AND SMALL PORE MOLECULAR SIEVE
KR20190065343A (en) 2016-10-04 2019-06-11 존슨 맛쎄이 퍼블릭 리미티드 컴파니 NOx adsorbent catalyst

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020009353A (en) * 2000-07-26 2002-02-01 김명환 Complex Catalysts Used For Removing Nitrogen Oxides And Other Harmful Materials Among Flue Gases And Method For Preparing The Sames
JP2006341150A (en) 2005-06-07 2006-12-21 Osaka Gas Chem Kk Treatment agent for removing acidic gas and acidic gas removing filter
KR100857245B1 (en) * 2006-08-01 2008-09-05 서울시립대학교 산학협력단 CATALYST COMPOSITION FOR REMOVING NOx, MANUFACTURING METHOD THEREOF AND REMOVING PROCESS OF NOx USING IT
KR101305452B1 (en) * 2011-01-07 2013-09-06 주식회사 코캣 Adsorbents for exhaust gas and method for treating exhaust gas using the same
KR102062258B1 (en) * 2017-11-30 2020-01-06 주식회사 성창오토텍 Activated carbon with excellent adsorption performance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100210262B1 (en) 1997-02-27 1999-07-15 이서봉 Zeolitic absorbent and nox removal using the same
KR20160094996A (en) 2013-12-06 2016-08-10 존슨 맛쎄이 퍼블릭 리미티드 컴파니 PASSIVE NOx ADSORBER COMPRISING NOBLE METAL AND SMALL PORE MOLECULAR SIEVE
KR20190065343A (en) 2016-10-04 2019-06-11 존슨 맛쎄이 퍼블릭 리미티드 컴파니 NOx adsorbent catalyst

Also Published As

Publication number Publication date
KR20220003742A (en) 2022-01-11
KR102434658B1 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
KR102657435B1 (en) Manganese catalyst for promoting formaldehyde oxidation and its preparation and use
Zhang et al. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NO x with NH 3: reaction mechanism and catalyst deactivation
Cheng et al. Desulfurization and denitrification technologies of coal-fired flue gas.
Yang et al. Recent developments on gas–solid heterogeneous oxidation removal of elemental mercury from flue gas
CA3038760C (en) A noxious gas purificant and its preparation and purification method thereof
CN101602018B (en) Method for preparing rare-earth element doped composite metal oxide mercury removal catalyst
Wen et al. Biochar as the effective adsorbent to combustion gaseous pollutants: preparation, activation, functionalization and the adsorption mechanisms
CN111097442B (en) Flue gas synergistic denitration and demercuration catalyst and preparation method thereof
CN104190358A (en) NOx adsorber
CN107159088B (en) Mercury-containing material with lasting adsorption performance
KR102434658B1 (en) Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same
CN102989466B (en) Flue gas desulfurization and denitrification catalyst for reduction method and applications of catalyst
JP4182325B2 (en) Low temperature denitration catalyst and exhaust gas low temperature denitration method
CN102049240A (en) Active carbon adsorption material
JPS6322184B2 (en)
CN107486206B (en) Manganese-based material and preparation method and application thereof
WO2006096374B1 (en) Mercury removal sorbent
CN101590354B (en) Dephosphorization agent for removing PH3 in yellow phosphorus tail gas, preparation method and application thereof
KR101395548B1 (en) High effectiveness molybdenum-nickel based catalyst-sorbent for simultaneous removing H2S and NH3 and Manufacturing method thereof
JPH11104491A (en) Oxidation catalyst for co and nitrogen oxides
JP2001079346A (en) Method and device for treating gas and method for regenerating honeycomb activated carbon
Li et al. The catalytic performance of Ba-Ce-Cu catalysts for N2O decomposition
KR20010086695A (en) Complex Catalysts Used For Removing Nitrogen Oxides And Aromatic Halogen Compounds Among Flue Gases And Method For Preparing The Sames
JPH0687943B2 (en) Exhaust gas purification method
JPH02139033A (en) Poisonous gas adsorbent, its manufacture and purification of exhaust gas using it

Legal Events

Date Code Title Description
A107 Divisional application of patent