KR20220116698A - Manufacturing Method for Mg containing Hot Dipped Galvanizing Strip with Good Adhesive Bonding Performace - Google Patents

Manufacturing Method for Mg containing Hot Dipped Galvanizing Strip with Good Adhesive Bonding Performace Download PDF

Info

Publication number
KR20220116698A
KR20220116698A KR1020210019873A KR20210019873A KR20220116698A KR 20220116698 A KR20220116698 A KR 20220116698A KR 1020210019873 A KR1020210019873 A KR 1020210019873A KR 20210019873 A KR20210019873 A KR 20210019873A KR 20220116698 A KR20220116698 A KR 20220116698A
Authority
KR
South Korea
Prior art keywords
plating
steel sheet
steel plate
thickness
manufacturing
Prior art date
Application number
KR1020210019873A
Other languages
Korean (ko)
Inventor
김상헌
Original Assignee
주식회사 엠.이.시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠.이.시 filed Critical 주식회사 엠.이.시
Priority to KR1020210019873A priority Critical patent/KR20220116698A/en
Publication of KR20220116698A publication Critical patent/KR20220116698A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/265After-treatment by applying solid particles to the molten coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)

Abstract

The present invention relates to a manufacturing method for molten Zn-Al-Mg plating steel plate in a strip shape, and more specifically, to a manufacturing method for a molten zinc plating steel plate which provides excellent corrosion resistance, the beautiful surface without a linear defect, and excellent adhesiveness with a high molecule adhesive and a manufacturing device thereof. To this end, a molten zinc plating device comprises: a plating port (1) into which a plating bath (3) is inserted to perform plating on a steel plate (8); a sink roll (2) which can change the direction of the inserted steel plate in an upward direction; a wiping device (4) and a top roll (7) which are provided to adjust the thickness of the plated amount which is plated on the steel plate. Here, an oxidization treatment chamber (5) which is provided to perform oxidization upon the steel plate which has gone through the wiping device and an air cooling facility (6) which is provided to cool the oxidized steel plate are installed between the wiping device and the top roll. Therefore, according to the present invention, the excess molten plating solution attached to the surface of the steel plate may be evenly removed before the thickness of the oxidization substance during the time before the plating layer begins to be condensed may be 0.1-0.3 ㎛ in order to provide a linear defect. Furthermore, a phosphatic aqueous solution having the concentration of 0.1 wt% or more and less than 5 wt% may be sprayed on the steel plate, thereby improving the adhesiveness of the plating layer.

Description

고분자 접착제와의 접착성이 우수한 Mg이 함유 용융아연도금강판의 제조방법 {Manufacturing Method for Mg containing Hot Dipped Galvanizing Strip with Good Adhesive Bonding Performace} Manufacturing Method for Mg-containing Hot Dipped Galvanizing Strip with Good Adhesive Bonding Performance}

본 발명은 스트립 형태의 용융 아연-알루미늄-마그네슘(ZM)도금강판의 제조방법에 관한 것으로, 내식성이 우수할 뿐 아니라, 선상형 결함이 없이 내흑변성이 우수하고, 특히 고분자 접착제와의 접착력이 우수한 Mg 함유 용융아연도금강판의 제조방법에 관한 것이다. The present invention relates to a method for manufacturing a hot-dip zinc-aluminum-magnesium (ZM) plated steel sheet in the form of a strip. It relates to a method for manufacturing a Mg-containing hot-dip galvanized steel sheet.

Zn중에 Mg을 적당량 함유시킨 융용 도금욕을 사용하여 제조한 도금강판은 양호한 내식성을 가지고 있어서 건재용뿐만 아니라 자동차용 강판으로 사용되고 있다. Mg은 용융도금 재료로 널리 사용되는 Zn나 Al 보다 산화성이 강한 금속으로 도금층이 부식될 때 치밀한 부식생성물을 형성하여 내식성을 향상시키는 것으로 알려져 있다. A plated steel sheet manufactured by using a molten plating bath containing an appropriate amount of Mg in Zn has good corrosion resistance and is used not only for building materials but also for automobile steel sheets. Mg is a metal with stronger oxidation properties than Zn or Al, which are widely used as hot-dip plating materials, and is known to improve corrosion resistance by forming dense corrosion products when the plating layer is corroded.

용융아연도금강판을 제조하는 일반적인 장치가 도1에 도시되어 있다. 도1에 의거 용융아연도금강판을 제조하는 공정을 살펴보면, 냉간압연된 코일을 페이오프 릴(1)에 장착하여 용접기(2)에서 전, 후단 코일을 용접하고, 이어 냉간압연 시 강판에 부여된 잔류응력을 제거하기 위하여 소둔로(3)에서 열처리 작업을 실시한다. 소둔이 완료된 소재강판(100)은 아연도금작업에 적당한 온도로 유지된 후, 용융아연도금욕(44)으로 인입된다. 이때, 고온으로 열처리된 강판이 대기에 노출됨으로써 발생되는 표면산화를 방지하기 위하여 스나우트(14)가 설치된다. 상기 스나우트에는 표면산화에 의한 도금불량을 방지하기 위하여 가스공급관을 통하여 불활성가스로 충진된다. 상기 스나우트를 통과한 소재는 용융아연 도금욕을 통과한 후 에어나이프(15)에서 수요가가 원하는 도금량으로 도금량을 조정하게 된다. 도금량 조정작업이 완료된 도금강판은 조질압연기(16)를 거치고, 적정한 표면 조도 부여 및 형상교정을 거쳐 절단기(17)에서 절단된 후, 텐션 릴(18)에서 권취되어 최종 제품화 된다.A general apparatus for manufacturing a hot-dip galvanized steel sheet is shown in FIG. Looking at the process of manufacturing a hot-dip galvanized steel sheet based on FIG. 1, the cold-rolled coil is mounted on the payoff reel 1, the front and rear coils are welded in the welding machine 2, and then the In order to remove residual stress, heat treatment is performed in the annealing furnace (3). After the annealing is completed, the steel sheet 100 is maintained at a temperature suitable for the galvanizing operation, and then introduced into the hot-dip galvanizing bath 44 . At this time, a snout 14 is installed to prevent surface oxidation caused by exposure of the high-temperature heat-treated steel sheet to the atmosphere. The snout is filled with an inert gas through a gas supply pipe to prevent plating failure due to surface oxidation. The material passing through the snout passes through the hot-dip galvanizing bath, and then the plating amount is adjusted by the air knife 15 to the plating amount desired by the customer. The plated steel sheet on which the plating amount adjustment operation has been completed goes through a temper rolling mill 16, is cut in a cutter 17 through appropriate surface roughness provision and shape correction, and is then wound on a tension reel 18 to make a final product.

여기에서 도금부착량을 조절하기 위하여 에어나이프에서 가스와이핑을 할 때 와이핑 가스로 공기를 사용하면, 도금층 두께의 불균일이 발생하여 바닷가 백사장의 물결무늬 형태의 결함이 발생한다. 이 결함은 도금층의 두께 편차가 매우 크게 발생한 현상으로, 강판 표면에 부착된 용융금속을 목표 도금부착량이 되게 잉여의 용융금속을 깍아내는 와이핑 작업이 불균일하게 되기 때문이다. 이는 공기를 사용하면 와이핑시 용융금속의 점성이 증가하여 불균일하게 잉여의 용융도금액이 깎이는 현상과 관련이 있으며, 공기에 의한 용융 도금액이 산화되어 점성이 증가하기 때문으로 추정된다.Here, if air is used as the wiping gas for gas wiping with an air knife in order to control the amount of plating adhesion, the thickness of the plating layer is non-uniform, resulting in a defect in the form of a wave pattern on the beach. This defect is a phenomenon in which the thickness variation of the plating layer is very large, because the wiping operation to scrape the excess molten metal from the molten metal attached to the surface of the steel sheet to the target plating adhesion amount becomes non-uniform. This is related to the phenomenon that the excess molten plating solution is unevenly scraped off by increasing the viscosity of the molten metal during wiping when air is used.

상기 물결무늬 결함을 제거하기 위하여 와이핑가스로 공기 대신 질소가스를 사용하는 기술이 제안되어 있다. A technique of using nitrogen gas instead of air as a wiping gas has been proposed to remove the wave pattern defect.

Mg가 포함된 고내식 용융도금강판을 제조하는데 있어서 질소로 와이핑을 하면 물결무늬 결함이 제거되기는 하나 강판 표면에 연장되는 선상(線狀)의 줄무늬가 발생하기 쉽게 된다. When wiping with nitrogen in manufacturing a high corrosion-resistant hot-dip galvanized steel sheet containing Mg, the wave pattern defects are removed, but linear streaks extending on the surface of the steel sheet are easily generated.

이러한 선상의 줄무늬는 Mg을 함유하지 아니한 용융아연도금(GI도금)이나, Zn-Al 합금도금강판에서는 발생하지 않고, 도금층 중에 Mg를 함유할 때만 발생 한다. 또한 에어와이핑시에는 선상형 줄무늬 결함은 발생하지 않고, 질소 와이핑시에만 발생한다. 질소 와이핑이 에어와이핑 보다 도금액의 산화가 적게 되는 것은 당연한 현상이다. These linear streaks do not occur in hot-dip galvanizing (GI plating) or Zn-Al alloy plated steel sheets that do not contain Mg, but occur only when Mg is contained in the plating layer. In addition, the linear streak defect does not occur during air wiping, but occurs only during nitrogen wiping. It is natural that nitrogen wiping causes less oxidation of the plating solution than air wiping.

따라서 선상의 줄무늬의 발생원인은 도금액중 마그네슘이 첨가에 따른 응고 반응의 야금학적 변화와 산화피막의 상호작용에 기인한 것으로 추정이 가능하다. Therefore, it can be estimated that the cause of the linear streaks is due to the metallurgical change of the coagulation reaction according to the addition of magnesium in the plating solution and the interaction of the oxide film.

상기의 선상 결함을 방지하기 위한 발명으로 대한민국 등록번호 10-0324893가 있다. 상기 특허는 Mg을 1.0∼4.0 중량%의 도금 조성을 갖는 도금욕에서 도금을 할 때, 도금조에 시일 박스를 설치하고 박스 내부의 산소 농도를 8 vol.% 이하로 하는 방법에 관한 것이다. 상기 발명은 질소 와이핑시에 공기의 혼입을 최소화하여 표면에 균일한 산화피막을 형성시켜, 그로 인해 선상형의 줄무늬 결함을 방지하는 것을 요지로 한다. There is a Korean registration number 10-0324893 as an invention for preventing the above-mentioned shipboard defects. The above patent relates to a method in which, when plating Mg in a plating bath having a plating composition of 1.0 to 4.0% by weight, a seal box is installed in the plating bath and the oxygen concentration in the box is 8 vol.% or less. The subject matter of the present invention is to minimize the incorporation of air during nitrogen wiping to form a uniform oxide film on the surface, thereby preventing linear streak defects.

그러나 시일박스를 설치하는 기술은 도금포트 상부에 시일 박스를 추가로 설치해야하고, 또한 용융도금의 핵심 설비인 가스와이핑장치 및 포트롤 등이 시일박스내부에 존재하게 됨에 따라, 이들 장치에 도금강판 생산중에 문제가 발생하였을 때 즉각적으로 해결하기가 쉽지 않고, 경우에 따라서는 시일 박스를 해체한 후에 문제를 해결하여야 하므로 작업이 매우 번거롭고, 생산성이 하락하는 문제가 발생한다. 예를 들면 박도금을 하기위해 가스와이핑 압력을 증가시키면 시일 박내에 아연 날림 현상이 발생하며, 또한 날린 아연이 가스를 토출하는 토출구를 막을 경우에 결함이 발생하는 문제가 발생한다.However, the technology to install the seal box requires additional installation of the seal box above the plating port, and as the gas wiping device and port roll, which are core facilities of hot dip plating, exist inside the seal box, plating on these devices When a problem occurs during steel plate production, it is not easy to solve immediately, and in some cases, the problem must be solved after dismantling the seal box, so the operation is very cumbersome, and the productivity is reduced. For example, if the gas wiping pressure is increased for thin plating, zinc blown occurs in the seal foil, and a defect occurs when the blown zinc blocks the outlet through which the gas is discharged.

ZM 도금강판과 고분자 수지와의 접락령을 향상시키는 발명으로 특허 공보10-1940882가 있다. 소지철과 상기 소지철 상에 순차로 형성된 아연계 도금층 및 산화물 염과 유기 화합물을 포함하고, 상기 후처리 피막 내 산소 함량은 50% 원자 이상이며 상기 후처리 피막 내 수소와 공유 결함을 이루는 산소 원자의 몰수를 a라고 하고, 수소와 공유 결함읍을 이루지 않는 산소 원자의 몰수를 b라고 할 때 a/b가 0.3 이상인 아연계 도금강재에 대한 것이다. 이 방법은 도금강판위에 별도의 피막 처리를 함에 따라 제조 비용이 많이 들고, 자동차 차체 조립공정에 있어서 탈지 처리시 상기 피막이 탈지액에 용해되어 탈지액의 노화가 빨리되는 문제점이 있다. Patent Publication No. 10-1940882 is an invention for improving the contact age between ZM plated steel sheet and polymer resin. A zinc-based plating layer sequentially formed on the base iron and the base iron, and an oxide salt and an organic compound, wherein the oxygen content in the post-treatment film is 50% or more atoms and oxygen atoms forming a covalent defect with hydrogen in the post-treatment film When the number of moles of is a and the number of moles of oxygen atoms that do not form a covalent defect with hydrogen is b, a/b is for zinc-based plated steel materials of 0.3 or more. This method has a problem in that the manufacturing cost is high as a separate coating treatment is performed on the plated steel sheet, and the coating is dissolved in the degreasing solution during the degreasing process in the automobile body assembly process, so that the aging of the degreasing solution is accelerated.

또한 대한 민국 특허 공보10-1950079가 있다. 금속 시트를 제조하는 방법으로서, 적어도 다음의 단계들: 강철 기판을 배쓰(bath)에 디핑(dipping)하여 냉각시킴으로써 얻은 금속 코팅으로 각각 코팅된 두 개의 면을 갖는 상기 강철 기판을 제공하는 단계로서, 각 금속 코팅은 0.7 wt% 와 6 wt% 사이의 알루미늄, 0.1 wt% 와 10 wt% 사이의 마그네슘, Si, Sb, Pb, Ti, Ca, Mn, Sn, La, Ce, Cr, Ni, Zr 및 Bi 로부터 선택된 0.3wt% 미만의 각각의 선택적 첨가 원소들, 아연 및 불가피한 불순물들인 잔부를 포함하는, 상기 강철 기판을 제공하는 단계; 상기 금속 코팅의 외표면 상에 0.2s와 30s 사이에 포함되는 지속기간 동안 1과 4 사이에서 포함된 pH 를 갖는 산성 용액을 적용하는 단계; 구조적 접착제, 강화된 구조적 접착제 또는 반-구조적(semi-structural) 접착제, 실링 퍼티(sealing putties) 및 웨징(wedging) 퍼티 중에서 선택된 접착제를, 상기 금속 코팅의 적어도 하나의 외표면 상에 국부적으로 적용하는 단계, 및 상기 접착제를 통해소지철과 상기 소지철 상에 순차로 형성된 아연계 도금층 및 산화물 염과 유기 화합물을 포함하는 것을 특징으로 한다. 이 방법에 있어서는 산성용액의 처리가 필요하므로, 기존 용융도금공정에서는 산성용액 처리를 위한 설비가 보완되어야 하는 문제점이 있어 실제 사용하기에 어려움이 많다. There is also Korean Patent Publication No. 10-1950079. A method for manufacturing a metal sheet, comprising at least the following steps: providing the steel substrate having two sides each coated with a metal coating obtained by dipping and cooling the steel substrate in a bath; Each metallic coating comprises between 0.7 wt% and 6 wt% aluminum, between 0.1 wt% and 10 wt% magnesium, Si, Sb, Pb, Ti, Ca, Mn, Sn, La, Ce, Cr, Ni, Zr and providing the steel substrate comprising less than 0.3 wt% of each of the optional additive elements selected from Bi, the balance being zinc and unavoidable impurities; applying on the outer surface of the metallic coating an acidic solution having a pH comprised between 1 and 4 for a duration comprised between 0.2 s and 30 s; Topically applying an adhesive selected from structural adhesives, reinforced structural adhesives or semi-structural adhesives, sealing putties and wedging putties on at least one outer surface of the metallic coating Step, and characterized in that it comprises a zinc-based plating layer, an oxide salt, and an organic compound sequentially formed on the base iron and the base iron through the adhesive. Since this method requires treatment of an acidic solution, the existing hot-dip plating process has a problem in that the equipment for treating the acidic solution needs to be supplemented, making it difficult to actually use it.

대한민국 특허 공보 10-0324893Korean Patent Publication No. 10-0324893 대한민국 특허 공보 10-1940882Korean Patent Publication No. 10-1940882 대한민국 특허 공보 10-1950079Korean Patent Publication No. 10-1950079

본 발명은 상기 문제점을 해결하기 위하여 안출된 것으로서, 기존의 질소가스 와이핑 처리를 하면서도 선상의 줄무늬 결함이 없는 용융도금강판을 생산하는 것이 가능하고, 설비 고장에 따른 수리도 용이하고, 아연날림 현상에 따른 노즐의 토출구를 폐쇄하는 문제를 원천적으로 방지하는 용융아연도금강판 (Zn-Al-Mg)의 제조방법에 있어서 특히 고분자와의 접착성이 우수한 도금층을 제공하고자 하는 것에 그 목적이 있다.The present invention has been devised to solve the above problems, and it is possible to produce a hot-dip galvanized steel sheet having no linear streak defects while performing the conventional nitrogen gas wiping treatment, and it is also easy to repair due to equipment failure, and zinc blowout phenomenon. The purpose of the present invention is to provide a plating layer having excellent adhesion to a polymer in a method for manufacturing a hot-dip galvanized steel sheet (Zn-Al-Mg) that fundamentally prevents the problem of closing the discharge port of the nozzle according to the present invention.

상기 목적을 달성하기 위하여 본 발명에서 사용하는 용융아연도금 제조장치는,In order to achieve the above object, the hot-dip galvanizing manufacturing apparatus used in the present invention comprises:

강판(8)을 도금하기 위한 도금욕(3)이 투입된 도금포트(1)와, 인입되는 강판을 위로 방향전환하기 위한 싱크롤(2)과, 강판에 도금된 도금양의 두께를 조절하기 위한 와이핑장치(4) 및 톱롤(7)로 구성된 용융아연도금장치에 있어서,The plating port 1 into which the plating bath 3 for plating the steel sheet 8 is put, the sink roll 2 for turning the incoming steel sheet upward, and the thickness of the plating amount plated on the steel sheet A hot-dip galvanizing device comprising a wiping device (4) and a top roll (7),

상기 와이핑장치(4)와 톱롤(7) 사이에 상기 와이핑장치를 거친 강판을 산화처리하기 위한 산화처리챔버(5) 및 상기 산화처리된 강판을 냉각하기 위한 공기냉각설비(6)가 설치되는 Mg이 포함된 용융아연도금강판의 제조장치가 사용된다. An oxidation treatment chamber 5 for oxidizing the steel sheet subjected to the wiping device and an air cooling facility 6 for cooling the oxidized steel sheet are installed between the wiping device 4 and the top roll 7 A manufacturing apparatus for hot-dip galvanized steel sheet containing Mg is used.

상기 산화처리챔버(5)는 강판이 중앙부를 관통하도록 된 박스형태의 챔버 본체(9)와, 상기 챔버본체(9)의 중앙부를 관통하는 강판의 전면과 후면의 양면에 폭방향으로 서로 대향되도록 설치되는 오존발생기로 구성되며,The oxidation treatment chamber 5 includes a box-shaped chamber body 9 in which a steel plate passes through the central portion, and both front and rear surfaces of the steel plate passing through the central portion of the chamber body 9 so as to face each other in the width direction. It consists of an installed ozone generator,

상기 오존발생기는 상기 챔버본체(9)의 중앙부를 관통하는 강판의 전면과 후면의 양면에 폭방향으로 서로 대향되도록 설치되는 다수개의 텅스텐와이어(12)와, 상기 다수개의 텅스텐와이어(12)의 양쪽 끝단부를 지지하기 위한 텅스텐와이어 지지대(10)와, 상기 텅스텐와이어에 고전압을 인가하기 위한 고전압발생장치(11)로 구성되며, The ozone generator includes a plurality of tungsten wires 12 installed to face each other in the width direction on both sides of the front and rear surfaces of the steel plate passing through the central portion of the chamber body 9, and both sides of the plurality of tungsten wires 12 It consists of a tungsten wire support 10 for supporting the end, and a high voltage generator 11 for applying a high voltage to the tungsten wire,

또한, 상기 오존발생기는 상기 챔버본체(9)의 중앙부를 관통하는 강판의 전면과 후면의 양면에 폭방향으로 대향되도록 설치되는 다수개의 인산 수용액 분사노즐(13)로 구성되며,In addition, the ozone generator is composed of a plurality of phosphoric acid aqueous solution spray nozzles 13 installed to face the width direction on both sides of the front and rear surfaces of the steel plate passing through the central portion of the chamber body 9,

상기 산화처리챔버(5)는 코로나 방전방식의 오존발생기와 인산 수용액 분사노즐이 함께 구비되어 있는 것을 특징으로 한다.The oxidation treatment chamber 5 is characterized in that the corona discharge type ozone generator and the phosphoric acid aqueous solution spray nozzle are provided together.

또한 본 발명의 용융아연도금방법은 In addition, the hot-dip galvanizing method of the present invention is

강판이 도금포트의 도금욕에 침지되어 싱크롤을 거쳐 도금욕을 빠져 나온 후, 에어나이프를 거쳐 도금부착량을 조절하는 단계, 도금부착량을 조절한 도금강판을 냉각장치에서 공냉하는 단계, 냉각된 도금강판을 톱롤을 통과하는 단계로 이루어진 용융아연도금강판의 제조방법에 있어서, 상기 에어나이프를 거쳐 도금부착량을 조절하는 단계와 냉각장치에서 공냉하는 단계 사이에 인산 수용액이 분사되며, 산화처리하여 산화피막을 형성하는 단계가 더 포함되는 Mg이 포함된 용융아연도금 강판의 제조방법을 그 특징으로 한다. After the steel sheet is immersed in the plating bath of the plating port and exits the plating bath through the sink roll, the plating amount is adjusted through an air knife; In the method of manufacturing a hot-dip galvanized steel sheet comprising the step of passing the steel sheet through a top roll, an aqueous solution of phosphoric acid is sprayed between the step of controlling the amount of plating through the air knife and the step of air cooling in a cooling device, and oxidation treatment is performed to form an oxide film It is characterized in that the manufacturing method of the hot-dip galvanized steel sheet containing Mg further comprising the step of forming.

상기 산화피막을 형성하는 단계에서 상기 산화 방법은 코로나 방전전극 방식이며, In the step of forming the oxide film, the oxidation method is a corona discharge electrode method,

또한, 상기 산화피막을 형성하는 단계에서 상기 산화피막을 형성하는 단계는 인산 수용액을 분사하는 장치이며,In addition, the step of forming the oxide film in the step of forming the oxide film is a device for spraying an aqueous solution of phosphoric acid,

상기 산화피막을 형성하는 단계는 0.5~1.5초 동안 실시하며, 강판의 인입온도는 385~410℃이고, 인출온도는 380~400℃이며, 챔버 내 공기 중 코로나 발생에 의해 오존이 1~100ppm 함유하고 있는 것을 특징으로 하며,The step of forming the oxide film is carried out for 0.5 to 1.5 seconds, the inlet temperature of the steel sheet is 385 to 410 ° C, and the withdrawal temperature is 380 to 400 ° C. Ozone contains 1 to 100 ppm due to corona generation in the air in the chamber It is characterized by doing

상기 도금욕의 온도는 440~460℃이고, 상기 강판이 도금욕에 인입되는 온도는 410~470 ℃이고, 상기 에어나이프는 질소가스를 사용하고, 에어와이핑후의 강판 온도는 410~460 ℃이고, 상기 냉각장치를 통과후 톱롤 도달시 강판의 온도는 300℃이하인 것을 특징으로 하며,The temperature of the plating bath is 440 ~ 460 ℃, the temperature at which the steel sheet is introduced into the plating bath is 410 ~ 470 ℃, the air knife uses nitrogen gas, and the temperature of the steel sheet after air wiping is 410 ~ 460 ℃ and , It is characterized in that the temperature of the steel sheet is 300 ℃ or less when the top roll is reached after passing through the cooling device,

상기 오존발생으로 산화된 산화피막의 두께는 0.1~0.3㎛인 것을 특징으로 하며,The thickness of the oxide film oxidized by ozone generation is characterized in that 0.1 ~ 0.3㎛,

상기 수용액은 인산이 0.01~5% 포함한 수용액인 것을 특징으로 한다.The aqueous solution is characterized in that the aqueous solution containing 0.01 to 5% of phosphoric acid.

본 발명에 따르면, 강판 표면에 부착된 잉여의 용융도금액을 균일하게 제거한 후에 도금층의 응고가 시작되기 전 사이에 산화물의 두께를 0.1~0.3㎛이 되게 함으로서 질소와이핑을 하여도 선상형 결함을 방지할 수 있는 효과가 있다. 또한 종래의 시일박스를 설치하지 않음으로서 설비 고장에 따른 수리도 용이하고, 아연날림 현상에 따른 노즐의 토출구를 폐쇄하는 문제를 원천적으로 차단하는 효과가 있다.According to the present invention, after uniformly removing excess hot-dip plating solution adhering to the surface of the steel sheet, before the solidification of the plating layer starts, the thickness of the oxide is made 0.1 to 0.3 μm, so that linear defects can be eliminated even with nitrogen wiping. It has a preventable effect. In addition, since the conventional seal box is not installed, it is easy to repair due to equipment failure, and there is an effect of fundamentally blocking the problem of closing the discharge port of the nozzle due to the zinc blowing phenomenon.

도1은 종래 일반적인 용융아연도금장치의 개략도 도2은 글로우 방전 질량분석기를 이용한 도금표면의 산화물 두께 측정예 도3은 고전압 세기에 따른 냉각챔버 내 오존농도 변화예 도4은 본 발명의 용융도금장치의 개략도 도5는 본 발명의 산화처리챔버의 정면도 및 측면도이다. 도6은 본 발명에서 접착성 평가한 시편의 사진이다. 1 is a schematic diagram of a conventional general hot-dip galvanizing apparatus; 2 is an example of measuring the thickness of oxide on the plating surface using a glow discharge mass spectrometer; 3 is an example of a change in ozone concentration in the cooling chamber according to the intensity of high voltage; 4 is a schematic diagram of a hot-dip plating apparatus of the present invention; 5 is a front view and a side view of the oxidation treatment chamber of the present invention. 6 is a photograph of a specimen evaluated for adhesion in the present invention.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 보다 상세하게 설명한다. Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

본 발명에 따른 용융도금장치가 도4에 도시되어 있다. 도4에 따르면, 강판(8)을 도금하기 위한 도금욕(3)이 투입된 도금포트(1)와, 인입되는 강판을 위로 방향전환하기 위한 싱크롤(2)과, 강판에 도금된 도금양의 두께를 조절하기 위한 와이핑장치(4)와, 상기 와이핑장치를 거친 강판을 산화처리하기 위한 산화처리챔버(5) 및 상기 산화처리된 강판을 냉각하기 위한 공기냉각설비(6) 및 톱롤(7)로 구성된 용융아연도금장치가 나타나 있다.A hot-dip plating apparatus according to the present invention is shown in FIG. According to FIG. 4, the plating port 1 into which the plating bath 3 for plating the steel sheet 8 is put, the sink roll 2 for turning the incoming steel sheet upward, and the amount of plating on the steel sheet A wiping device 4 for adjusting the thickness, an oxidation treatment chamber 5 for oxidizing the steel sheet that has been subjected to the wiping device, and an air cooling facility 6 for cooling the oxidized steel sheet and a top roll ( 7), the hot-dip galvanizing apparatus is shown.

도5에 본 발명의 산화처리챔버의 측면도와 정면도가 도시되어 있다. 도4에 따르면, 상기 산화처리챔버(5)는 강판이 중앙부를 관통하도록 된 박스형태의 챔버 본체(9)와, 상기 챔버본체(9)의 중앙부를 관통하는 강판의 전면과 후면의 양면에 폭방향으로 서로 대향되도록 설치되는 코로나 방전 방식의 오존발생기로 구성되어 있고,5 is a side view and a front view of the oxidation treatment chamber of the present invention. According to FIG. 4, the oxidation treatment chamber 5 has a box-shaped chamber body 9 in which a steel plate penetrates the central portion, and widths on both sides of the front and rear surfaces of the steel plate passing through the central portion of the chamber body 9. It consists of a corona discharge type ozone generator installed to face each other in the direction,

상기 코로나 방전 방식의 오존발생기는 상기 챔버본체(9)의 중앙부를 관통하는 강판의 전면과 후면의 양면에 폭방향으로 서로 대향되도록 설치되는 다수개의 텅스텐와이어(12)와, 상기 다수개의 텅스텐와이어(12)의 양쪽 끝단부를 지지하기 위한 텅스텐와이어 지지대(10)와, 상기 텅스텐와이어에 고전압을 인가하기 위한 고전압발생장치(11)로 이루어지고,The corona discharge type ozone generator includes a plurality of tungsten wires 12 installed to face each other in the width direction on both sides of the front and rear surfaces of the steel plate passing through the central portion of the chamber body 9, and the plurality of tungsten wires ( 12) consists of a tungsten wire support 10 for supporting both ends of the tungsten wire, and a high voltage generator 11 for applying a high voltage to the tungsten wire,

상기 오존발생기 하부에 상기 챔버본체(9)의 중앙부를 관통하는 강판의 전면과 후면의 양면에 폭방향으로 대향되도록 설치되는 다수개의 수용액 분사노즐(13)이 설치되어 있는 것으로 나타나 있다.It is shown that a plurality of aqueous solution spray nozzles 13 installed to face the width direction on both sides of the front and rear surfaces of the steel plate passing through the central portion of the chamber body 9 are installed under the ozone generator.

여기에서 코로나 방전 방식의 오존발생기와 수용액 분사노즐은 함께 사용할 수 있고, 별도로 장치되어 개별적으로 사용될 수도 있다.Here, the corona discharge type ozone generator and the aqueous solution spray nozzle may be used together, or may be separately installed and used separately.

일반적으로 Zn-Al-Mg의 합금 용융도금은 온도가 440~460도의 도금 포트를 강판이 통과한 후에 가스 와이핑을 하여 강판 표면에 부착된 잉여의 도금액을 제거하여 목표 도금부착량이 되게 하고, 그 이후 강판을 냉각하여 도금층을 응고시킨 후, 톱롤을 통과할 때 강판온도가 300 도 이하가 되도록 강판을 지속적으로 냉각시킨다. In general, Zn-Al-Mg alloy hot dip plating removes excess plating solution adhering to the steel sheet surface by gas wiping after the steel sheet passes through a plating port with a temperature of 440 to 460 degrees to achieve the target plating adhesion, and the After cooling the steel sheet to solidify the plating layer, the steel sheet is continuously cooled so that the temperature of the steel sheet is 300 degrees or less when passing through the top roll.

선상형 결함은 도금층이 용융상태에서는 관찰되지 않지만 응고가 끝난 후에 나타나며 통상 육안으로 식별이 가능할 정도로 뚜렷하게 발생한다. 이것으로부터 선상형 결함은 응고가 진행될 때 형성되는 것으로 추정된다. 선상형 결함을 전자현미경으로 관찰하면 표면층 표면에 주름이 직선형태로 잡혀 있으며, 선상형 주름이 발생한 도금층의 단면을 전자현미경으로 관찰하면 높이가 0.2 ㎛ 정도로 매우 미세한 주름이다. 즉 선상형 결함은 응고에 의하여 도금층 표면이 주름 혹은 굴곡이 선으로 이어진 형태로 나타나는 결함이다. Linear defects are not observed in the molten state of the plating layer, but appear after solidification is completed and are usually clearly visible to the naked eye. From this, it is assumed that the linear defect is formed when solidification proceeds. When the linear defects are observed with an electron microscope, wrinkles are captured on the surface of the surface layer in a straight line. That is, the linear defect is a defect in which the surface of the plating layer is wrinkled or curved by solidification.

본 발명자들은 Mg가 포함된 용융금속에서 도금층위의 표면산화물 두께가 0.1 ㎛ 이상 0.3 ㎛ 이하일때는 선상 결함이 발생되지 않는 것을 발견하였다. 선상형 결함의 주름의 높이차이가 0.2 ㎛ 인것을 고려하면 본 발명에서 제안하는 표면산화물 층의 두께가 선상형 결함에서 형성된 주름 높이의 50~150% 일때 선상형 결함 발생을 방지할 수 있다. The present inventors have found that no linear defects occur when the thickness of the surface oxide on the plating layer is 0.1 μm or more and 0.3 μm or less in Mg-containing molten metal. Considering that the height difference between the wrinkles of the linear defects is 0.2 μm, the occurrence of the linear defects can be prevented when the thickness of the surface oxide layer proposed in the present invention is 50 to 150% of the height of the wrinkles formed in the linear defects.

표면산화처리에 의해 표면의 산화피막 두께가 0.1 ㎛ 이상 0.3 ㎛ 이하가 될 선상성 굴곡이 발생하지 않는 이유에 대해서는 불명확하지만 다음과 같이 추정된다. Although it is not clear why the surface oxidation treatment does not cause linear undulations in which the thickness of the oxide film on the surface becomes 0.1 µm or more and 0.3 µm or less, it is not known, but it is estimated as follows.

표면산화물층은 와이핑단계부터 형성되기 시작하여 일정두께가 되면 산화피막이 용융금속과 공기와의 접촉을 차단하여 더 이상의 두께 증가가 없게 된다. 산화피막이 형성된 후에 산화피막 아래에 있는 도금액의 응고가 진행된다. 도금층 응고는 온도 구간별로 상이한 금속상들이 성장하여 진행된다. 응고가 진행될 때 금속상들이 용융상태의 도금층내에서 성장함에 따라 미세한 용융금속의 유동이 일어나며, 이 유동에 의해 도금표면에 형성되어 있는 산화물층이 움직이게 되어 높이 차이가 0.2 ㎛ 정도인 선상 결함이 발생하는 것으로 추정된다. The surface oxide layer is formed from the wiping step and when it reaches a certain thickness, the oxide film blocks contact between the molten metal and air, so that there is no further increase in thickness. After the oxide film is formed, the plating solution under the oxide film is solidified. The plating layer solidification proceeds by growing different metal phases for each temperature section. As the metal phases grow in the molten plating layer during solidification, a fine flow of molten metal occurs, and by this flow, the oxide layer formed on the plating surface moves, causing a linear defect with a height difference of about 0.2 ㎛. it is presumed to do

에어 와이핑시에는 선상 결함이 발생하지 않는 것과, 질소와이핑에 비해 에어와이핑시에 더 두께운 산화물 층이 형성되는 것을 고려하면, 산화물층이 두터울수록 이 유동에 의한 영향을 적게 받아 선상형 결함이 경향이 감소하는 것으로 추정할 수 있다. Considering that no linear defects occur during air wiping and a thicker oxide layer is formed during air wiping compared to nitrogen wiping, the thicker the oxide layer, the less affected by this flow. It can be assumed that the tendency of type defects decreases.

실험에 의하면 산화물의 두께가 최소 0.1 ㎛ 이상일때 선상형 결함이 발생하지 않으며, 그 이상 두께에서는 추가적인 효과는 거의 없는 것으로 확인되었다. 그러나 산화피막의 두께가 0.3 ㎛ 보다 두껍게 형성될 때는 도금층 위에 크로메이트 피막 처리 혹은 Cr-free 피막 처리 등의 후처리 피막 처리를 할 경우에 후처리 피막의 특성이 변화될 가능성이 있어서 바람직 하지 않다. According to the experiment, it was confirmed that when the thickness of the oxide was at least 0.1 μm, linear defects did not occur, and it was confirmed that there was little additional effect at the thickness beyond that. However, when the thickness of the oxide film is formed to be thicker than 0.3 μm, when a post-treatment film treatment such as chromate film treatment or Cr-free film treatment is performed on the plating layer, it is not preferable because the characteristics of the post-treatment film may change.

용융도금시에 질소 와이핑을 하면 용융도금액이 균일하게 제거되고, 두께가 0.1 ㎛ 미만의 매우 얇은 산화피막이 형성되게 된다. 또한 일단 산화피막이 형성되면 통상의 용융도금 방법에서는 시간이 경과하여도 산화피막 두께는 거의 증가되지 않는다. If nitrogen wiping is performed during hot dip plating, the hot dip plating solution is uniformly removed, and a very thin oxide film with a thickness of less than 0.1 μm is formed. In addition, once the oxide film is formed, the thickness of the oxide film hardly increases even with the lapse of time in a conventional hot-dip plating method.

따라서 본 발명에서는 선상의 줄무늬 결함 발생을 방지하기 위한 방법으로 질소 와이핑을 실시하여 강판표면에 부착된 잉여의 용융도금액을 균일하게 제거한 후에, 도금층의 응고가 시작되기 전 사이에 산화물의 두께를 0.1 ㎛ 이상 0.3 ㎛ 이하가 되게 하는 방법을 제안한다. Therefore, in the present invention, after nitrogen wiping is performed to uniformly remove excess molten plating solution adhered to the surface of the steel sheet as a method to prevent the occurrence of linear streak defects, the thickness of the oxide is increased before the solidification of the plating layer begins. A method of making it 0.1 μm or more and 0.3 μm or less is proposed.

본 발명은 Mg이 1 중량% 이상 5 중량% 이하 함유하고 Al이 1 중량% 이상 17 중량% 이하인 통상의 Zn-Al-Mg계 도금욕에 침적된 강판이 도금포트에서 빠져 나온 후에 물결무늬 결함을 방지하기 위하여 질소를 사용하여 와이핑하여 도금부착량을 조절한 후에 톱롤을 통과시 강판온도가 300 도 이하게 되게 냉각하는 용융도금방법에 있어서, 질소로 와이핑을 한 후에 도금층이 응고되기 전에 도금표면 산화처리를 하기 위하여 도금표면 산화처리를 강판 온도가 385 도 이상일 때 시작하여, 380도 이상의 온도에서 종료해야 하는 이유는 다음과 같다. The present invention solves a wave pattern defect after a steel sheet immersed in a conventional Zn-Al-Mg-based plating bath containing 1 wt% or more and 5 wt% or less of Mg and 1 wt% or more and 17 wt% or less of Al comes out of the plating pot. In the hot-dip plating method in which the temperature of the steel sheet is cooled to 300 degrees or less when passing through the top roll after wiping with nitrogen to control the amount of plating to prevent it, after wiping with nitrogen, the plating surface before the plating layer is solidified The reason why the plating surface oxidation treatment should be started when the temperature of the steel sheet is 385°C or higher and finished at a temperature of 380°C or higher for oxidation treatment is as follows.

와이핑을 실시한 이후 냉각하여 도금층이 응고될 때 도금층 조성에 따라 차이가 있지만, Zn 단상, Zn-Al 이원공정상, MgZn2 단상, Zn-MgZn2 이원 공정상 혹은 Zn-MgZn2-Al 삼원공정상이 2개 혹은 3개 이상 혼재되어 형성될 수 있으며, 응고는 최소 380 도이상에서 시작하여, 340도 부근에서 Zn-MgZn2-Al 삼원공정상이 형성되는 것으로 응고반응이 종료된다. 특히 도금층내 Mg은 MgZn2혹은 Mg2Zn11의 금속간 화합물 형태로 존재하며 주로 380 도 부근에서 형성되기 시작한다.When the plating layer is solidified by cooling after wiping, there are differences depending on the composition of the plating layer, but there are two Zn single phase, Zn-Al binary phase, MgZn2 single phase, Zn-MgZn2 binary phase, or Zn-MgZn2-Al ternary phase phase. Alternatively, three or more may be mixed, and solidification starts at a minimum of 380 degrees or more, and the coagulation reaction ends when a Zn-MgZn2-Al ternary eutectic phase is formed around 340 degrees. In particular, Mg in the plating layer exists in the form of an intermetallic compound of MgZn2 or Mg2Zn11, and is mainly formed around 380 degrees.

본 발명자들의 실험에 따르면 도금층 표면의 산화처리는 질소와이핑을 한 직후부터 시작하여 도금층 응고반응이 시작되기 전에 종료하는 것이 효과적임을 확인하였다. 보다 정확하게는 Mg의 금속간화합물이 형성되기 전에 종료되어야 한다. 385도이하에서 산화처리를 시작할 경우에는 초정상의 응고가 진행되고 있을 가능성이 있어 산화처리효과가 충분하지 않다. 산화처리를 380도 이하의 온도까지 진행시키면, MgZn2혹은 Mg2Zn11이 형성되기 시작하므로, 이들 금속간화합물 입자의 산화가 발생하여 흑색 반점, 즉 흑점이 발생하는 현상이 나타날 수 있다. According to the experiments of the present inventors, it was confirmed that it is effective to start the oxidation treatment of the plating layer surface immediately after nitrogen wiping and to end it before the plating layer solidification reaction starts. More precisely, it must be terminated before the intermetallic compound of Mg is formed. When the oxidation treatment is started at 385 degrees or less, the effect of the oxidation treatment is not sufficient because there is a possibility that superphase solidification is in progress. When the oxidation treatment is carried out to a temperature of 380 degrees or less, MgZn2 or Mg2Zn11 is formed, so that oxidation of these intermetallic compound particles occurs and black spots, ie, black spots, may appear.

일반적으로 Al과 Mg이 포함된 용융도금층에서는 응고 개시 온도는 조성에 따라 상이하므로 질소 와이핑을 한 후에 강판 온도가 410℃ 정도에서 시작하는 것이 보다 안전하다. In general, in a hot-dip plated layer containing Al and Mg, the solidification initiation temperature is different depending on the composition, so it is safer to start the steel sheet at about 410°C after nitrogen wiping.

본 발명에서 도금층의 두께를 최소 0.1 ㎛ 이상 0.3 ㎛ 이하로 형성시키는 방법으로 강판이 오존 농도가 조절된 챔버를 통과되는 방법을 제안한다. In the present invention, as a method of forming the thickness of the plating layer to be at least 0.1 μm or more and 0.3 μm or less, a method in which a steel sheet is passed through a chamber in which the ozone concentration is controlled is proposed.

대기중에는 오존이 약 0.4 ppm 포함되어 있으며 강력한 산화제로 알려져 있다. The atmosphere contains about 0.4 ppm ozone and is known as a strong oxidizing agent.

오존 농도가 1 ppm 보다 적을 때는 오존에 의한 산화효과가 없어서 0.1 ㎛ 미만의 두께를 갖는 산화물이 형성되었으며, 이때는 선상형 결함이 발생한다. 100 ppm 이상에서는 제품의 품질에 영향이 없으나 설비 주변에 오존 농도가 증가하여 오존에 의한 작업 환경이 악화될 위험이 있다. 또한 산화물의 두께도 30 ㎛ 이상이 되어 후처리 특성이 변화될 우려가 있다. When the ozone concentration is less than 1 ppm, there is no oxidation effect by ozone, and an oxide having a thickness of less than 0.1 μm is formed, and in this case, a linear defect occurs. Above 100 ppm, there is no effect on the quality of the product, but there is a risk of deterioration of the working environment due to ozone due to an increase in ozone concentration around the facility. In addition, the thickness of the oxide becomes 30 μm or more, and there is a possibility that the post-treatment characteristics may be changed.

따라서 오존 농도가 1 ppm 이상 100 ppm 이하로 하는 것이 바람직하다. Therefore, it is preferable that the ozone concentration be 1 ppm or more and 100 ppm or less.

강판을 냉각시키는 공기 중에 오존을 1 ppm 이상 100 ppm 이하의 범위내로 조절하는 방법으로는 코로나 방전 방식의 오존 발생기를 사용하는 방법이 가장 간편하다. 판형태의 강판에 있어서 폭방향으로 균일한 오존 농도를 갖게 하기 위해서는 와이어 형태의 코로나 방전 전극을 사용하는 것이 좋다. 특히 이 경우는 코로나 방전에 의해 생성된 오존이 전기적인 힘에 의해 강판 쪽으로 이동하게 되므로 보다 균일하고 효과적으로 도금층 표면을 산화시킬 수 있다. 이때 코로나 방전을 위한 고전압의 세기는 와이어의 굵기 및 와이어 표면의 미세 표면조도에 의해 결정되나 통상 0.2 ~0.3㎛의 텅스텐 와이어를 강판 폭방향에 대해 다수 설치하고 -10 kV이상의 고전압이 필요하고, 고전압의 세기를 조절하면 본 발명에서 제안하는 오존 범위내에서 오존 농도를 제어할 수 있다. As a method of controlling ozone within the range of 1 ppm or more and 100 ppm or less in the air for cooling the steel sheet, using a corona discharge type ozone generator is the easiest. In order to have a uniform ozone concentration in the width direction in a plate-shaped steel plate, it is preferable to use a wire-shaped corona discharge electrode. In particular, in this case, since ozone generated by corona discharge moves toward the steel sheet by electric force, it is possible to oxidize the surface of the plating layer more uniformly and effectively. At this time, the strength of the high voltage for corona discharge is determined by the thickness of the wire and the fine surface roughness of the wire surface, but usually a number of tungsten wires of 0.2 ~ 0.3㎛ are installed in the width direction of the steel sheet, and a high voltage of -10 kV or more is required, and a high voltage By adjusting the intensity of , the ozone concentration can be controlled within the ozone range proposed in the present invention.

오존을 발생시키는데 있어서 공기와 함께 산소를 추가로 공급하여 냉각 공기 중 산소 농도를 증가시키면 오존 발생에 보다 효과적일 수 있다. In generating ozone, increasing the oxygen concentration in the cooling air by additionally supplying oxygen together with air may be more effective in ozone generation.

또한 텅스텐 와이어 후면에 강판 냉각용 공기를 취입하는 노즐을 설치하고, 노즐로부터 분사된 공기가 텅스텐 와이어를 통과하도록 하면 보다 빨리 강판을 냉각시킬 수 있다. In addition, if a nozzle for blowing air for cooling the steel sheet is installed on the rear surface of the tungsten wire, and the air injected from the nozzle passes through the tungsten wire, the steel sheet can be cooled faster.

또한 도금표면 산화처리 방법으로 인산을 0.01% 이상 5% 이하 포함한 수용액을 강판 온도가 385 도 이상일 때 강판을 향해 분사를 시작하여, 380도 이상의 온도에서 종료하는 냉각방법으로 선상 결함 발생을 방지할 수 있다.In addition, as a plating surface oxidation treatment method, an aqueous solution containing 0.01% or more and 5% or less of phosphoric acid is sprayed toward the steel plate when the temperature of the steel plate is 385 degrees or more, and the cooling method ends at a temperature of 380 degrees or more. have.

또한 인산을 사용하면 향후 강판 가공품을 조립에 접착제를 사용하여도 접착제와 강판과의 접착력이 우수한 장점이 있다. 이것의 원인에 대해서는 아직 불명확하지만 강판 표면 산화물로 화학적으로 안정한 MgO, Al2O3 대신에 인산을 포함한 산화물이 [Zn, Al, Mg] ·[O, PO4)형태로 존재하기 때문으로 추정된다. In addition, the use of phosphoric acid has the advantage of excellent adhesion between the adhesive and the steel plate even if the adhesive is used for assembling steel plate processed products in the future. Although the cause of this is still unclear, it is presumed that it is because oxides containing phosphoric acid exist in the form of [Zn, Al, Mg] ·[O, PO 4 ) instead of MgO and Al2O3, which are chemically stable as surface oxides of steel sheets.

또한 실험에 사용한 인산으로는 인산암모늄 등 인산이온을 포함한 염의 형태도 사용하지만 모두 동일한 효가를 나타낸다. 인산 수소 농도가 0.01% 보다 적을 때는 농도가 너무 낮아서 선상 결함을 방지하는 효과가 미흡하며 또한 접착성 개선효과도 없고, 5% 보다 많을 때는 도금층 표면산화가 많이 발생하여 피막의 내식성이 열화되는 특성이 나타날 수 있다. In addition, as the phosphoric acid used in the experiment, salts containing phosphate ions such as ammonium phosphate are also used, but all exhibit the same effect. When the hydrogen phosphate concentration is less than 0.01%, the concentration is too low, so the effect of preventing line defects is insufficient, and there is no effect of improving the adhesion. may appear

이하, 실시예를 통하여 본 발명을 상세하게 설명한다Hereinafter, the present invention will be described in detail through examples.

[실시예1][Example 1]

두께가 0.7 mm의 강판을 도금욕중에 Mg 및 Al을 포함하고 나머지가 아연이며, 도금욕 온도가 450 도인 도금포트에 강판을 침적시킨 후에 인출된 강판 표면을 질소 와이핑을 하여 도금부착량을 양면 합계가 120 g/m2가 되게 조절한 후에 산화 피막 처리를 실시하였다. A steel sheet with a thickness of 0.7 mm is included in the plating bath with Mg and Al, the remainder is zinc, and the steel sheet is immersed in a plating pot with a plating bath temperature of 450 degrees. After adjusting to 120 g/m2, an oxide film treatment was performed.

표 1은 강판을 오존 농도가 조절된 챔버를 통과시켜서 표면산화처리를 실시한 예이다. 오존 농도를 변화시키기 위하여 강판 폭방향으로 평행하게 직경이 0.3 mm 굵기의 텅스텐 와이어를 강판에 마주보게 설치하고 텅스텐 와이어에 연결된 고전압 발생기로부터 발생된 고전압을 텅스텐 와이어에 인가하여 코로나 방전이 일어나게 하고, 오존이 생성되도록 하였다. 이때 생성된 오존은 전기적인 힘에 의해 강판으로 이동하게 되고, 강판에 부착된 용융상태의 도금층 표면을 산화시킨다. 인가 고전압의 세기를 조절하여 냉각시 오존 농도를 조절하였다. 오존 농도를 일반적으로 사용되는 공기중 오존 농도 측정기를 사용하였다. 도 3은 고전압 세기에 따른 챔버내 오존 농도를 측정한 예로서 -10 kV에서는 코로나 방전이 일어나지 않아서 오존 발생이 없었지만, -10 kV 이상으로 고전압을 증가시키면 오존 농도가 서서히 증가하다가 -20 kV 이상에서 급격히 증가 하여 -26 kV에서 120 ppm의 오존이 발생되었다. 본 실시예에서는 도 3의 예시에 따라 고전압세기를 조절하여 오존 농도를 변화시켜 도금 표면 산화처리를 실시하였다. Table 1 shows an example in which the surface oxidation treatment was performed by passing the steel sheet through a chamber in which the ozone concentration was controlled. In order to change the ozone concentration, a tungsten wire with a diameter of 0.3 mm is installed in parallel in the width direction of the steel sheet to face the steel sheet, and a high voltage generated from a high voltage generator connected to the tungsten wire is applied to the tungsten wire to cause corona discharge, ozone was allowed to generate. At this time, the generated ozone moves to the steel sheet by electric force and oxidizes the surface of the molten plating layer attached to the steel sheet. The ozone concentration during cooling was controlled by controlling the intensity of the applied high voltage. The ozone concentration was measured using a commonly used ozone concentration meter in the air. 3 is an example of measuring the ozone concentration in the chamber according to the high voltage intensity. At -10 kV, corona discharge did not occur, so there was no ozone generation, but when the high voltage was increased to -10 kV or more, the ozone concentration gradually increased, It increased rapidly to generate 120 ppm ozone at -26 kV. In this embodiment, the plating surface oxidation treatment was performed by changing the ozone concentration by adjusting the high voltage intensity according to the example of FIG. 3 .

산화피막 처리후의 응고된 도금층 표면을 육안관찰하여 선상형 결함을 발생 정도를 평가하였다. “O”은 선상결함이 전혀 없는 상태 “△”는 선상결함이 미세한 상태. “X”은 선상 결함이 육안으로 뚜렷이 관찰되는 상태이다. 산화처리시 강판온도는 파이로메타(pyrometer)로 측정하였다. The degree of occurrence of linear defects was evaluated by visually observing the surface of the solidified plating layer after the oxide film treatment. “O” indicates no linear defects at all. “△” indicates slight linear defects. “X” is a condition in which linear defects are clearly observed with the naked eye. The temperature of the steel sheet during oxidation treatment was measured with a pyrometer.

도금층의 산화피막 두께측정을 위하여 글로우방전 질량분석기(GD-MS, Glow Discharge Mass Spectrometry)로 도금층 깊이 방향으로의 산소 농도를 분석하였다. 도금층 깊이 방향별 산소 농도 측정값으로부터 도금두께를 환산한 예를 도 6에 나타내었다. 즉 도 2에 기재된 바와 같이 산소농도 측정 곡선의 변곡점을 기준으로 두개의 추세선을 그어서 추세선들이 만나는 지점을 도금표면 산화층 두께로 정하였다. To measure the thickness of the oxide film of the plating layer, the oxygen concentration in the depth direction of the plating layer was analyzed using a glow discharge mass spectrometer (GD-MS). 6 shows an example in which the plating thickness is converted from the oxygen concentration measurement value for each depth direction of the plating layer. That is, as shown in FIG. 2, two trend lines were drawn based on the inflection point of the oxygen concentration measurement curve, and the point where the trend lines met was determined as the thickness of the oxide layer on the plating surface.

도금 표면의 흑점 발생여부를 확인하기 위하여 도금된 시편을 습도 85%, 온도 85 ℃에서 도금된 시편을 7일간 보관 한 후에 표면에 점상의 흑색반점이 생성된 여부를 조사하였다. 흑점이 발생하지 않은 경우는“O”, 흑점이 발생한 경우는 “X”로 표시하였다. In order to check whether black spots occurred on the plating surface, the plated specimens were stored at a humidity of 85% and a temperature of 85 °C for 7 days, and then whether black spots were formed on the surface of the plated specimens was investigated. The case where no sunspot occurred was marked with “O”, and the case with sunspots was marked with “X”.

구분division 도금욕성분 (중량%)Plating bath component (wt%) 산화처리온도 (℃)Oxidation treatment temperature (℃) 오존농도(ppm)Ozone concentration (ppm) 산화피막두께(mm)Oxide film thickness (mm) 선상결함line fault 표면흑점surface sunspot MgMg AlAl ZnZn 시작start 종료end 비교예 1Comparative Example 1 1.51.5 1.51.5 잔부balance 410410 385385 0.40.4 0.070.07 XX OO 비교예 2Comparative Example 2 1.51.5 1.51.5 잔부balance 410410 385385 0.50.5 0.090.09 OO 비교예 3Comparative Example 3 1.51.5 1.51.5 잔부balance 383383 380380 100100 0.060.06 XX OO 비교예 4Comparative Example 4 44 1717 잔부balance 410410 370370 100100 0.350.35 OO XX 비교예 5Comparative Example 5 33 33 잔부balance 380380 365365 5050 0.060.06 XX XX 발명예 1Invention Example 1 1.51.5 1.51.5 잔부balance 410410 385385 1One 0.120.12 OO OO 발명예2Invention Example 2 1.51.5 1.51.5 잔부balance 385385 380380 100100 0.30.3 OO OO 발명예3Invention example 3 44 1717 잔부balance 410410 400400 4040 0.20.2 OO OO 발명예4Invention Example 4 3.03.0 3.03.0 잔부balance 405405 390390 5050 0.250.25 OO OO

표1에 따르면, 비교예1은 고전압을 인가하지 않은 예로서 챔버내 오존 농도는 0.4 ppm으로 낮아서 산화피막두께가 0.07 mm로 얇고, 선상 결함이 육안으로 확인되었다. According to Table 1, Comparative Example 1 was an example in which no high voltage was applied, and the ozone concentration in the chamber was as low as 0.4 ppm, so the oxide film thickness was as thin as 0.07 mm, and linear defects were visually confirmed.

비교예2은 본 발명에서 제안하는 온도 범위에서 냉각을 실시하였으나, 오존 논도가 0.5 ppm으로 낮은 경우로서 산화피막두께가 0.09 mm인 경우로서 선상 결함이 육안으로 희미하게 확인되었다.In Comparative Example 2, cooling was performed in the temperature range suggested by the present invention, but when the ozone level was as low as 0.5 ppm and the oxide film thickness was 0.09 mm, linear defects were faintly confirmed with the naked eye.

비교예3은 오존 농도는 100 ppm으로 높으나 산화처리 시작온도가 383도로 본 발명에서 제안하는 온도보다 낮은 온도에서 시작한 경우로 산화피막 두께가 0.06 ㎛로 얇아, 육안으로 뚜렷이 선상결함이 인지되는 불량한 표면품질을 가지고 있었다. In Comparative Example 3, the ozone concentration was high as 100 ppm, but the oxidation treatment starting temperature was 383 degrees Celsius, lower than the temperature suggested in the present invention, and the oxide film thickness was as thin as 0.06 μm. had quality.

비교예4은 산화처리 시작온도가 410도로 본 발명에서 제안하는 온도에 만족하지만 산화처리 종료온도가 370도로 낮은 경우로서 산화피막 두께가 0.35 ㎛이었으며, 선상형 결함은 발생하지 않았으나 습윤시험결과 다량의 흑점이 발생하였다. 상기 흑점은 Mg 금속간화합물이 산화되어 발생된 것으로 추정된다. In Comparative Example 4, the oxidation treatment start temperature was 410°C, which satisfies the temperature suggested by the present invention, but the oxidation treatment end temperature was low at 370°C. A black spot occurred. The sunspots are presumed to be caused by oxidation of Mg intermetallic compounds.

비교예5은 산화처리 시작온도가 380도로 낮고 산화처리 종료온도가 365도로 낮은 경우로서 산화피막 두께가 0.06 ㎛로 선상형 결함이 뚜렷하게 관찰되었고, 습윤시험결과 흑점도 발생하였다. In Comparative Example 5, the oxidation treatment start temperature was as low as 380°C and the oxidation treatment end temperature was as low as 365°C. The oxide film thickness was 0.06 μm, and linear defects were clearly observed, and as a result of the wetting test, black spots were also generated.

발명예 1은 오존농도가 1 ppm인 조건으로 410도에서 냉각을 시작하여 385도에서 냉각을 종료한 경우로서 산화피막의 두께는 0.12㎛였으며 선상결함은 육안으로 관찰되지 않고 흑점 발생도 없는 미려한 표면품질을 나타내었다. Inventive Example 1 was a case in which cooling was started at 410°C under the condition of ozone concentration of 1 ppm and cooling was finished at 385°C. The thickness of the oxide film was 0.12㎛, and no linear defects were observed with the naked eye and no sunspots were generated. quality was indicated.

발명예 2는 오존농도가 100 ppm인 조건으로 385도에서 냉각을 시작하여 380도에서 냉각을 종료한 경우로서 산화피막의 두께는 0.3㎛였으며 선상결함은 육안으로 관찰되지 않고 흑변 발생도 없는 미려한 표면품질을 나타내었다. Inventive Example 2 was a case in which cooling was started at 385°C under the condition of ozone concentration of 100 ppm and cooling was finished at 380°C. The thickness of the oxide film was 0.3㎛, and no linear defects were observed with the naked eye and there was no black discoloration. quality was indicated.

발명예 3은 오존농도가 40 ppm인 조건으로 410도에서 냉각을 시작하여 400도에서 냉각을 종료한 경우로서 산화피막의 두께는 0.2㎛였으며 선상결함은 육안으로 관찰되지 않고 흑변 발생도 없는 미려한 표면품질을 나타내었다. Inventive Example 3 was a case where cooling was started at 410°C and cooling was finished at 400°C under the condition that the ozone concentration was 40 ppm. The thickness of the oxide film was 0.2 μm, and no linear defects were observed with the naked eye and there was no blackening. quality was indicated.

발명예 4은 오존농도가 50 ppm인 조건으로 405도에서 냉각을 시작하여 390도에서 냉각을 종료한 경우로서 산화피막의 두께는 0.25㎛였으며 육안으로 관찰되지 않고 흑변 발생도 없는 미려한 표면품질을 나타내었다. Inventive Example 4 was a case where cooling was started at 405°C and cooling was finished at 390°C under the condition that the ozone concentration was 50 ppm. The thickness of the oxide film was 0.25㎛, and it was not observed with the naked eye and showed a beautiful surface quality without blackening. It was.

표1의 결과로부터 오존 농도를 1 ppm 이상 100 ppm 이하로 조절된 챔버를 강판이 통과되는 도금표면 산화처리를 강판 온도가 385 도 이상일 때 시작하여, 380도 이상의 온도에서 종료하면 본 발명에서 제안하는 0.1~0.3 ㎛두께의 산화피막이 표면에 형성되어 선상결함이 없는 미려한 도금외관을 얻게 되며, 산화피막의 두께는 주로 오존 농도에 의해 영향을 받는 것을 알수 있다. From the results of Table 1, the plating surface oxidation treatment through which the steel sheet passes through the chamber whose ozone concentration is adjusted to 1 ppm or more and 100 ppm or less starts when the steel sheet temperature is 385 degrees or more and ends at 380 degrees or more. An oxide film with a thickness of 0.1~0.3 ㎛ is formed on the surface to obtain a beautiful plating appearance without linear defects, and it can be seen that the thickness of the oxide film is mainly affected by ozone concentration.

[실시예2] [Example 2]

표 2는 두께가 0.7 mm의 강판을 도금욕중에 Mg 및 Al을 포함하고 나머지가 아연이며, 도금욕 온도가 450 도인 도금포트에 강판을 침적시킨 후에 인출된 강판 표면을 질소 와이핑을 하여 도금부착량을 양면 합계가 120 g/m2가 되게 조절한 후에, 인출된 강판 표면에 인산이 포함된 수용액을 강판에 분사하여 냉각시켜 도금층 표면 산화처리를 실시한 후에 응고시킨 강판의 산파피막 두께와 강판 표면을 육안관찰하여 선상형 결함을 발생 정도를 평가하였다. 용액 분사 방법으로 공기와 용액을 함께 분사하는 2류체 분사 노즐을 이용하였으며, 분사 압력은 공기압력은 3 kg/cm2, 용액은 2 kg/cm2이었다. Table 2 shows that a steel sheet with a thickness of 0.7 mm contains Mg and Al in the plating bath, the remainder is zinc, and the steel sheet is immersed in a plating pot with a plating bath temperature of 450 degrees. was adjusted so that the total of both sides was 120 g/m2, and then an aqueous solution containing phosphoric acid was sprayed on the surface of the drawn steel sheet to cool the steel sheet and subjected to oxidation treatment on the surface of the plating layer. The degree of occurrence of linear defects was evaluated by observation. As the solution injection method, a two-fluid injection nozzle that sprays air and solution together was used, and the injection pressure was 3 kg/cm2 for air pressure and 2 kg/cm2 for solution.

표 2에서 접착제의 접착성을 평가하는 방법으로 (주)보광에서 생산하는 마스틱 실러를 사용하여 강판 두께의 3배가 되도록 시편위에 도포하고 동일한 크기의 시편을 접착한 후에 인장시험을 실시하였다. 이때 접착제 부착부위의 파괴 형태에 따라 평가하였다. CF(cohesive failure)는 접착제 사이가 파된되는 형태로 양호한 것을 의미하며, AF(Adhesive failure)는 접착제와 강판 사이가 파단된 형태로 접착성 불량을 나타낸다. In Table 2, as a method of evaluating the adhesiveness of the adhesive, a mastic sealer produced by Bokwang Co., Ltd. was used to apply it on the specimen so as to be three times the thickness of the steel plate, and after bonding the specimen of the same size, a tensile test was performed. At this time, it was evaluated according to the fracture shape of the adhesive attachment site. CF (cohesive failure) means good in the form in which the adhesive is broken, and AF (Adhesive failure) is in the form in which the adhesive and the steel plate are broken, indicating poor adhesion.

구분division 도금욕성분 (중량%)Plating bath component (wt%) 산화처리온도 (℃)Oxidation treatment temperature (℃) 인산(중량%)Phosphoric acid (wt%) 산화피막두께(mm)Oxide film thickness (mm) 선상결함line fault 표면흑점surface sunspot 접착성adhesive MgMg AlAl ZnZn 시작start 종료end 비교예 6Comparative Example 6 1.51.5 1.51.5 잔부balance 410410 385385 00 0.070.07 XX OO AFAF 비교예 7Comparative Example 7 1.51.5 1.51.5 잔부balance 410410 385385 0.050.05 0.090.09 OO AFAF 비교예 8Comparative Example 8 1.51.5 1.51.5 잔부balance 383383 380380 0.10.1 0.080.08 OO AFAF 비교예 9Comparative Example 9 44 1717 잔부balance 410410 370370 0.10.1 0.30.3 OO XX AFAF 비교예 10주1) Comparative Example 10 Note 1) 33 33 잔부balance 410410 385385 55 0.40.4 OO OO AFAF 발명예 5Invention Example 5 1.51.5 1.51.5 잔부balance 410410 385385 0.10.1 0.120.12 OO OO CFCF 발명예6Invention example 6 1.51.5 1.51.5 잔부balance 385385 380380 22 0.30.3 OO OO CFCF 발명예7Invention Example 7 44 1717 잔부balance 410410 400400 0.30.3 0.180.18 OO OO CFCF 발명예8Invention Example 8 3.03.0 3.03.0 잔부balance 405405 390390 4.54.5 0.240.24 OO OO CFCF

주1) 도금강판을 Cr 처리할때 Cr 처리용액과 도금 표면과의 젖음성이 불량하여 Cr 피막상태가 불량함. Note 1) Cr coating condition is poor due to poor wettability between the Cr treatment solution and the plating surface when Cr treatment of plated steel sheet.

표2에 따르면, 비교 예6은 본 발명에서 제안하는 온도 범위에서 공기를 불어 냉각을 실시하였으나, 인산농도가 0%로, 인산을 첨가하지 않은 경우로서 산화피막두께가 0.07 ㎛로 얇은 경우로서 선상 결함이 육안으로 확인되었다. 비교예7은 본 발명에서 제안하는 온도 범위에서 냉각을 실시하였으나, 인산 농도가 0.05 %로 낮은 경우로서, 산화피막두께가 0.09 ㎛이었으며 선상 결함이 육안으로 희미하게 확인되었다.According to Table 2, Comparative Example 6 was cooled by blowing air in the temperature range proposed in the present invention, but the phosphoric acid concentration was 0%, phosphoric acid was not added, and the oxide film thickness was thin as 0.07 μm. The defect was visually confirmed. Comparative Example 7 was cooled in the temperature range suggested by the present invention, but the phosphoric acid concentration was as low as 0.05%, the oxide film thickness was 0.09 μm, and linear defects were faintly confirmed with the naked eye.

비교예8은 인산농도가 0.1%인 수용액을 사용하여 본 발명에서 제안하는 온도보다 낮은 온도인 383도에서 시작한 경우로 산화피막 두께가 0.08 ㎛로, 선상결함이 희미하게 발생하는 표면품질을 가지고 있었다. Comparative Example 8 used an aqueous solution having a phosphoric acid concentration of 0.1% and started at 383 degrees, which is lower than the temperature suggested in the present invention, and had an oxide film thickness of 0.08 μm and a surface quality in which linear defects were faintly generated. .

비교예9은 인산농도가 0.1%인 용액을 이용하여 410도에서 산화처리를 시작하여 산화처리 종료온도가 370도로 낮은 경우로서 산화피막 두께가 0.3 mm이었으며, 선상형 결함은 발생하지 않았으나 습윤시험결과 다량의 흑점이 발생하였다. 상기 흑점은 Mg 금속간화합물이 산화되어 발생된 것으로 추정된다. Comparative Example 9 was a case where oxidation treatment was started at 410°C using a solution having a phosphoric acid concentration of 0.1% and the oxidation treatment end temperature was low at 370°C. The oxide film thickness was 0.3 mm, and no linear defects occurred, but the wet test result A large number of sunspots were generated. The sunspots are presumed to be caused by oxidation of Mg intermetallic compounds.

비교예10은 인산 농도가 5 %인 용액을 이용한 경우로, 산화처리 시작온도가 410도로 이며, 종료온도가 385도인 경우로 산화피막 두께가 0.4 ㎛로 형성되었다. 선상형 결함이없고, 흑변 발생도 없었으나, Cr 처리시 Cr 용액과 도금층 표면과의 젖음성이 불량하여 Cr 처리 피막 형성이 불균일하게 되는 문제가 관찰되었다. 발명예 5은 인산이 0.1%인 조건으로 410도에서 냉각을 시작하여 385도에서 냉각을 종료한 경우로서 산화피막의 두께는 0.12㎛였으며 선상결함은 육안으로 관찰되지 않고 흑변 발생도 없는 미려한 표면품질을 나타내었다. 발명예 6는 인산이 1 %인 조건으로 385도에서 냉각을 시작하여 380도에서 냉각을 종료한 경우로서 산화피막의 두께는 0.3㎛였으며 선상결함은 육안으로 관찰되지 않고 흑변 발생도 없는 미려한 표면품질을 나타내었다. 발명예 7은 인산이 0.3%인 조건으로 410도에서 냉각을 시작하여 400도에서 냉각을 종료한 경우로서 산화피막의 두께는 0.18㎛였으며 선상결함은 육안으로 관찰되지 않고 흑변 발생도 없는 미려한 표면품질을 나타내었다. 발명예 8은 인산이 4.5 %인 조건으로 405도에서 냉각을 시작하여 390도에서 냉각을 종료한 경우로서 산화피막의 두께는 0.24㎛였으며 육안으로 관찰되지 않고 흑변 발생도 없는 미려한 표면품질을 나타내었다. In Comparative Example 10, a solution having a phosphoric acid concentration of 5% was used, and the oxidation treatment starting temperature was 410° C. and the ending temperature was 385° C., and an oxide film thickness of 0.4 μm was formed. There was no linear defect and no blackening occurred, but a problem was observed in that the Cr solution and the plating layer surface had poor wettability during Cr treatment, resulting in non-uniform Cr treatment film formation. Inventive Example 5 was a case where cooling was started at 410°C under the condition of 0.1% phosphoric acid and cooling was finished at 385°C. The thickness of the oxide film was 0.12㎛, and no linear defects were observed with the naked eye, and there was no blackening. was shown. Inventive Example 6 was a case in which cooling was started at 385°C under the condition of 1% phosphoric acid and cooling was finished at 380°C. The thickness of the oxide film was 0.3㎛, and no linear defects were observed with the naked eye, and there was no blackening. was shown. Inventive Example 7 was a case where cooling was started at 410°C under the condition of 0.3% phosphoric acid and cooling was finished at 400°C. The thickness of the oxide film was 0.18㎛, and no linear defects were observed with the naked eye, and there was no blackening. was shown. Inventive Example 8 was a case where cooling was started at 405°C and cooling was finished at 390°C under the condition of phosphoric acid of 4.5%. The thickness of the oxide film was 0.24㎛, and it was not observed with the naked eye and showed a beautiful surface quality without blackening. .

표2의 결과로부터 인산이 0.1% 이상 5% 미만인 수용액을 강판 온도가 385 도 이상일 때 분사하기 시작하여, 380도 이상의 온도에서 종료하면 도금표면의 산화피막두께가 본 발명에서 제안하는 0.1 이상, 0.3 ㎛이하가 되어서 선상결함이 없는 미려한 표면을 나타내었으며, 이때 산화피막의 두께는 주로 인산 농도에 의해 영향을 받는 것을 알수 있다. From the results in Table 2, starting spraying an aqueous solution containing 0.1% or more and less than 5% of phosphoric acid when the steel sheet temperature is 385 degrees or more, and ending at a temperature of 380 degrees or more, the oxide film thickness of the plating surface is 0.1 or more, 0.3 as suggested in the present invention. It was found that the thickness of the oxide film was mainly affected by the phosphoric acid concentration when it became less than ㎛ and showed a beautiful surface without linear defects.

표 2의 결과로 부터 본 발명의 예에서는 모두 접착성이 우수하였다.From the results in Table 2, all of the examples of the present invention had excellent adhesion.

도 6은 본 발명에서 접착성을 평가한 결과이다.6 is a result of evaluating the adhesion in the present invention.

알루미늄이 2%, 마그네슘이 1.5% 포함되고 나머지가 아연인 조성을 갖는 도금욕에 강판을 침적하여 용융도금층을 강판에 피복한 후에 냉각시켜 시편을 제조하였다. (1)시편은 비교예로서 공냉을 한 시편이다. 시편(2)는 -30 kV의 고전압이 인가된 대전전극과 강판 사이의 공간으로 물을 분사하여 도금층을 응고시킨 시편에 대한 것이다. (3)은 인산 2% 수용액을 -30 kV의 고전압이 인가된 대전전극과 강판 사이의 공간으로 분사하여 응고시킨 시편으로 본 발명의 일례이고, 시편 (4)는 4% 인산 수용액으로 분사한 본 발명의 일례이다. 본 발명의 예인 시편 (3) 및 (4)는 응집파괴(CF)되었으나, 시편 (1) 및 (2)는 계면 (AF)되는 불량한 접착성을 가지고 있었다.A steel sheet was immersed in a plating bath having a composition containing 2% aluminum, 1.5% magnesium, and zinc with the remainder being zinc, a hot-dip plated layer was coated on the steel sheet, and then cooled to prepare a specimen. (1) The specimen is an air-cooled specimen as a comparative example. Specimen 2 relates to a specimen in which the plating layer is solidified by spraying water into the space between the charged electrode to which a high voltage of -30 kV is applied and the steel plate. (3) is a specimen in which a 2% aqueous solution of phosphoric acid is sprayed into the space between a charging electrode and a steel plate to which a high voltage of -30 kV is applied, and is an example of the present invention. An example of an invention. Specimens (3) and (4), which are examples of the present invention, were cohesive failure (CF), but specimens (1) and (2) had poor adhesion at the interface (AF).

본 발명의 방법으로 제조된 마그네슘을 포함한 아연도금강판은 내식성이 우수하고, 표면외관이 미려할 뿐만 아니라 고분자 접착제와의 접착성이 우수하므로, 자동차 차체에 사용될 경우 자동차의 내구성이 향상되는 효과가 있다. The galvanized steel sheet containing magnesium produced by the method of the present invention has excellent corrosion resistance, has a beautiful surface appearance, and has excellent adhesion with a polymer adhesive, so that when used in an automobile body, the durability of the automobile is improved. .

1: 도금포트 2; 싱크롤 3: 용융도금액 4: 와이핑장치 5: 산화처리챔버 6: 공기냉각설비 7: 톱롤 8: 강판 9: 산화처리챔버 본체 10: 텅스텐와이어 지지대 11: 고전압 발생장치 12: 텅스텐 와이어 13: 수용액 분사노즐1: plating port 2; sync roll 3: Hot-dip plating solution 4: wiping device 5: Oxidation treatment chamber 6: Air cooling equipment 7: Top Roll 8: steel plate 9: Oxidation treatment chamber body 10: tungsten wire support 11: High voltage generator 12: tungsten wire 13: aqueous solution spray nozzle

Claims (2)

강판이 도금포트의 도금욕에 침지되어 싱크롤을 거쳐 도금욕을 빠져 나온 후, 에어나이프를 거쳐 도금부착량을 조절하는 단계, 도금부착량이 조절된 도금강판을 냉각장치에서 공냉하는 단계, 냉각된 도금강판을 톱롤을 통과하는 단계로 이루어진 용융아연도금강판의 제조방법에 있어서, 상기 도금부착량을 조절하는 단계와 공냉하는 단계 사이에서 강판 온도가 385 ℃이상 일때 중량으로 환산하여 0.1% 이상이며 5% 미만인 인산을 포함한 수용액을 분사하는 단계와 -10 kV이상 -40 kV 이하의 고전압을 사용한 코로나 방전 방식의 오존발생기에 의한 오존 농도가 1 ppm 이상 100ppm 이하 함유하고 있는 산화처리 단계를 0.5초 이상 3초 이하 거쳐 냉각되는 것이 특징인 Mg이 포함된 용융아연도금 강판의 제조방법After the steel sheet is immersed in the plating bath of the plating port and exits the plating bath through the sink roll, adjusting the plating adhesion amount through an air knife, air cooling the coated steel sheet with the adjusted plating adhesion amount in a cooling device, cooling plating In the method of manufacturing a hot-dip galvanized steel sheet comprising the step of passing the steel sheet through a top roll, when the steel sheet temperature is 385 ° C. or higher between the step of controlling the amount of plating and the step of air cooling, in terms of weight, 0.1% or more and less than 5% The step of spraying an aqueous solution containing phosphoric acid and the oxidation treatment step containing an ozone concentration of 1 ppm or more and 100 ppm or less by a corona discharge type ozone generator using a high voltage of -10 kV or more and -40 kV or less for 0.5 seconds or more and 3 seconds or less Manufacturing method of hot-dip galvanized steel sheet containing Mg, characterized in that it is cooled through 제1항에 있어서,상기 산화피막의 두께는 0.1~0.3㎛인 것을 특징으로 하는 Mg이 포함된 용융아연도금 강판의 제조방법The method of claim 1, wherein the oxide film has a thickness of 0.1 to 0.3 μm.
KR1020210019873A 2021-02-15 2021-02-15 Manufacturing Method for Mg containing Hot Dipped Galvanizing Strip with Good Adhesive Bonding Performace KR20220116698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210019873A KR20220116698A (en) 2021-02-15 2021-02-15 Manufacturing Method for Mg containing Hot Dipped Galvanizing Strip with Good Adhesive Bonding Performace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210019873A KR20220116698A (en) 2021-02-15 2021-02-15 Manufacturing Method for Mg containing Hot Dipped Galvanizing Strip with Good Adhesive Bonding Performace

Publications (1)

Publication Number Publication Date
KR20220116698A true KR20220116698A (en) 2022-08-23

Family

ID=83092560

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210019873A KR20220116698A (en) 2021-02-15 2021-02-15 Manufacturing Method for Mg containing Hot Dipped Galvanizing Strip with Good Adhesive Bonding Performace

Country Status (1)

Country Link
KR (1) KR20220116698A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100324893B1 (en) 1996-12-13 2002-08-21 닛신 세이코 가부시키가이샤 HOT-DIP Zn-Al-Mg COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND SURFACE APPEARANCE AND PROCESS FOR THE PRODUCTION THEREOF
KR101940882B1 (en) 2016-12-23 2019-01-21 주식회사 포스코 Zinc or zinc alloy plated steel material having excellent sealer adhesiveness and coating composition for forming film having excellent sealer adhesiveness
KR101950079B1 (en) 2012-04-25 2019-02-19 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 Method for producing a metal sheet having zn-al-mg coatings, comprising the application of an acid solution and an adhesive, and corresponding metal sheet and assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100324893B1 (en) 1996-12-13 2002-08-21 닛신 세이코 가부시키가이샤 HOT-DIP Zn-Al-Mg COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND SURFACE APPEARANCE AND PROCESS FOR THE PRODUCTION THEREOF
KR101950079B1 (en) 2012-04-25 2019-02-19 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 Method for producing a metal sheet having zn-al-mg coatings, comprising the application of an acid solution and an adhesive, and corresponding metal sheet and assembly
KR101940882B1 (en) 2016-12-23 2019-01-21 주식회사 포스코 Zinc or zinc alloy plated steel material having excellent sealer adhesiveness and coating composition for forming film having excellent sealer adhesiveness

Similar Documents

Publication Publication Date Title
JP5986185B2 (en) Method for producing coated metal strip with improved appearance
JP5270172B2 (en) Coated steel plate or strip
JP5669824B2 (en) Method for producing a coated metal band having an improved appearance
JP6112131B2 (en) Molten Al-Zn-based plated steel sheet and method for producing the same
JP7311040B2 (en) Method for producing Fe-based electroplated steel sheet and method for producing galvannealed steel sheet
JP6065043B2 (en) Molten Al-Zn-based plated steel sheet and method for producing the same
KR101647229B1 (en) HOT DIP Zn ALLOY PLATED STEEL WIRE HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL WIRE USING THE SAME
JP6704669B1 (en) Hot-dip Al-Zn alloy plated steel sheet having excellent corrosion resistance in worked part and method for producing the same
JPH0688187A (en) Production of alloyed galvannealed steel sheet
KR20190026057A (en) Metal coated steel strip
KR20220116698A (en) Manufacturing Method for Mg containing Hot Dipped Galvanizing Strip with Good Adhesive Bonding Performace
KR101934524B1 (en) Manufacfuring Apparatus and Method for Galvanized steel sheet having a Mg
KR102031308B1 (en) Plated steel wire and manufacturing method for the same
JPH0688193A (en) Production of galvannealed steel sheet
JP6065042B2 (en) Molten Al-Zn-based plated steel sheet and method for producing the same
KR20150135605A (en) Coated steel plate and mehtod for manufacturing the same
KR102453008B1 (en) Plated steel sheet having excellent corrosion resistance and surface property and method for manufacturing the same
CN117295829A (en) Method for refining surface modifications with the aim of improving surface properties
JP7265217B2 (en) Galvanized steel sheet for hot stamping
KR102330604B1 (en) Zinc plated steel sheet having excellent fatigue strength of electrical resistance spot welds and manufacturing method thereof
JP5565191B2 (en) Fused Al-Zn plated steel sheet
JP3376914B2 (en) Manufacturing method and apparatus for hot-dip galvanized steel sheet
JPS6348945B2 (en)
JPH02118088A (en) Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property
JPH11158594A (en) Hot dip galvanized steel plate excellent in corrosion resistance and plating adhesion, and its production