KR20220103493A - Carbon fiber-reinforced epoxy composites with ozone-treated graphitic nanofibers and manuacutring method thereof - Google Patents

Carbon fiber-reinforced epoxy composites with ozone-treated graphitic nanofibers and manuacutring method thereof Download PDF

Info

Publication number
KR20220103493A
KR20220103493A KR1020210006145A KR20210006145A KR20220103493A KR 20220103493 A KR20220103493 A KR 20220103493A KR 1020210006145 A KR1020210006145 A KR 1020210006145A KR 20210006145 A KR20210006145 A KR 20210006145A KR 20220103493 A KR20220103493 A KR 20220103493A
Authority
KR
South Korea
Prior art keywords
carbon fiber
hours
composite material
epoxy resin
ogfs
Prior art date
Application number
KR1020210006145A
Other languages
Korean (ko)
Other versions
KR102496991B1 (en
Inventor
박수진
김성황
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020210006145A priority Critical patent/KR102496991B1/en
Publication of KR20220103493A publication Critical patent/KR20220103493A/en
Application granted granted Critical
Publication of KR102496991B1 publication Critical patent/KR102496991B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Abstract

The present invention is to provide a carbon fiber reinforced epoxy composite material reinforced with ozone-treated graphite nanofibers. Ozone-treated graphite nanofibers and epoxy resin are sonicated and mixed in acetone to obtain a stable dispersion. After removing an organic solvent, mixing with a hardening agent is performed, and manual impregnation into carbon fiber is performed. Then, hardening in a hot press for 3 to 6 hours is performed in three steps to improve interface and mechanical strength. More specifically, a carbon fiber reinforced epoxy composite material reinforced with ozone-treated graphite nanofibers is prepared through the steps of: (1) ozonating graphite nanofibers using an ozone generator; (2) mixing the ozonated graphite nanofibers in step (1) with an epoxy resin using acetone as an organic solvent; (3) stabilizing a mixture prepared in step (2); (4) adding 4,4'-diaminodiphenylmethane as a hardening agent to a mixture prepared in step (3); (5) stabilizing a mixture prepared in step (4) in a vacuum oven; and (6) impregnating and hardening a mixture of the ozonated graphite nanofibers prepared in step (5), an epoxy resin, and a hardening agent into carbon fibers. The present invention provides a carbon fiber reinforced epoxy composite material having improved interfacial adhesion and mechanical strength of the carbon fiber reinforced epoxy composite material by introducing ozone-treated graphite nanofibers.

Description

오존 처리된 흑연나노섬유로 강화된 탄소섬유 강화 에폭시 복합소재 및 이의 제조 방법{CARBON FIBER-REINFORCED EPOXY COMPOSITES WITH OZONE-TREATED GRAPHITIC NANOFIBERS AND MANUACUTRING METHOD THEREOF}Carbon fiber-reinforced epoxy composite material reinforced with ozone-treated graphite nanofibers and manufacturing method thereof

본 발명은 오존 처리한 흑연나노섬유(ozone-treated graphitic nanofibers: OGFs)로 강화된 탄소 섬유(carbon fibers: CFs) 강화 에폭시(epoxy) 복합소재 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 탄소섬유 강화 에폭시 복합소재의 계면 접착력 및 기계적 강도가 향상된 OGFs가 도입한 탄소섬유 강화 에폭시 복합소재 및 이의 제조 방법에 관한 것이다.The present invention relates to a carbon fiber (CFs) reinforced epoxy composite material reinforced with ozone-treated graphitic nanofibers (OGFs) and a method for manufacturing the same, and more particularly, to carbon fibers It relates to a carbon fiber reinforced epoxy composite material introduced by OGFs with improved interfacial adhesion and mechanical strength of the reinforced epoxy composite material, and a method for manufacturing the same.

분자 내에 epoxy group(C-O-C)을 두 개 이상 가지고 있는 에폭시는 탄소섬유와 경화시켜 단단하며 용해되지 않는 CFRPs(Carbon fibers-reinforced polymer composites) 소재로 제조할 수 있다. 에폭시의 높은 인장탄성률, 접착 특성, 내화학성, 구조적 안정성 등의 특성과 탄소섬유의 고강도, 저 비중 및 부식에 대한 강한 내 화학성 때문에 탄소섬유로 강화된 고분자 복합체의 좋은 대안으로 대두되고 있으며, 우주항공, 선박, 자동차 부품, 해양장비, 전기전자 산업 등에 적용되고 있다. 그러나 탄소 섬유는 구조적 결함과 화학적으로 불활성인 표면 때문에 에폭시 매트릭스 내부에서 낮은 계면 접착력을 나타낸다. 이 문제는 계면 접착력 및 기계적 강도를 저하시키고 다양한 현대 산업 분야에서 제한이 될 수 있다.Epoxy having two or more epoxy groups (C-O-C) in its molecule can be made into hard, insoluble CFRPs (Carbon fibers-reinforced polymer composites) by curing with carbon fibers. Because of the high tensile modulus of elasticity of epoxy, adhesive properties, chemical resistance, structural stability, etc., and the high strength, low specific gravity and strong chemical resistance of carbon fiber against corrosion, it is emerging as a good alternative to polymer composites reinforced with carbon fibers. , ships, automobile parts, marine equipment, and electric and electronic industries. However, carbon fibers exhibit low interfacial adhesion inside the epoxy matrix due to structural defects and chemically inert surfaces. This problem degrades interfacial adhesion and mechanical strength and can be a limitation in various modern industrial fields.

한편, 최근 이러한 계면 접착력 및 기계적 강도를 향상시키기 위해 다른 고분자나 탄소소재, 나노 사이즈의 입자를 복합하는 등의 방법을 도입한 연구들이 확인되고 있다.On the other hand, recent studies have been confirmed to introduce methods such as compositing other polymers, carbon materials, and nano-sized particles in order to improve the interfacial adhesion and mechanical strength.

다양한 필러소재들 중 탄소소재는 에폭시 기지에 복합되어 계면 접착력 및 기계적 강도를 월등히 향상시킬 수 있다. 다양한 탄소소재 중 흑연나노섬유 (GFs)는 나노 스케일의 우수한 특성을 마이크로 스케일로 전달할 수 있는 기능성을 제공한다. 그러나 GFs는 본질적으로 소수성 물질이며 입자 사이에 van der Waals 힘으로 인해 에폭시 매트릭스 내에서 계면상호작용과 관련하여 GFs가 자체적으로 응집되는 어려움이 있다. 흑연나노섬유의 구조는 Basal plane 및 Prismatic surfaces 구조로 형성되어 있으며, 이 중 Prismatic surfaces는 basal plane보다 활성이 높아 표면처리를 통해 산소함유 관능기를 쉽게 부착할 수 있다. Among various filler materials, carbon materials can be combined with an epoxy matrix to significantly improve interfacial adhesion and mechanical strength. Among various carbon materials, graphite nanofibers (GFs) provide the functionality to deliver excellent nano-scale properties to the micro-scale. However, GFs are inherently hydrophobic and there is a difficulty in self-aggregation of GFs with respect to interfacial interactions within the epoxy matrix due to van der Waals forces between particles. The structure of graphite nanofibers is composed of basal plane and prismatic surfaces. Among them, the prismatic surfaces have higher activity than the basal plane, so that oxygen-containing functional groups can be easily attached through surface treatment.

이와 관련하여 다양한 표면 기능화 방법 중에서 건식오존처리는 손상/결함 없이 산화 분위기에서 쉽게 산소 라디칼을 생성할 수 있기 때문에 우수한 표면처리 방법 중 하나이며, 건식오존처리는 에폭시 수지와의 상호작용을 촉진하기 위해 연구가 수행되었으며 GFs에 -OH, -C=O, -COOH 와 같은 산소 함유 관능기를 도입하여 에폭시 매트릭스 내에서의 계면상호작용 및 접착력을 향상시킨다. 따라서, 건식오존 처리된 흑연나노섬유를 탄소섬유 강화 에폭시 매트릭스에 도입하여 계면 접착력 및 기계적 강도를 향상시키는 필러로써 매우 활발히 연구되고 있다. In this regard, among various surface functionalization methods, dry ozone treatment is one of the excellent surface treatment methods because it can easily generate oxygen radicals in an oxidizing atmosphere without damage/defects. Studies have been carried out and introduce oxygen-containing functional groups such as -OH, -C=O, and -COOH into GFs to improve interfacial interaction and adhesion in the epoxy matrix. Therefore, graphite nanofibers treated with dry ozone are being actively studied as fillers to improve interfacial adhesion and mechanical strength by introducing carbon fiber-reinforced epoxy matrix.

본 발명의 목적은, 계면 접착력 및 기계적 강도가 향상된 탄소 섬유 강화 에폭시 복합소재를 제공하는데 있어서, 흑연나노섬유를 사용하여 계면 접착력 및 기계적 강도가 향상된 오존처리된 흑연나노섬유로 강화된 탄소섬유 강화 에폭시 복합소재 및 이의 제조 방법을 제공하는데 있다.An object of the present invention is to provide a carbon fiber reinforced epoxy composite material with improved interfacial adhesion and mechanical strength, carbon fiber reinforced epoxy reinforced with ozonated graphite nanofibers with improved interfacial adhesion and mechanical strength using graphite nanofibers To provide a composite material and a method for manufacturing the same.

상기 목적을 달성하기 위하여, 본 발명은 계면 접착력 및 기계적 강도가 향상된 탄소 섬유 강화 에폭시 복합소재 및 제조 방법을 제공한다.In order to achieve the above object, the present invention provides a carbon fiber reinforced epoxy composite material with improved interfacial adhesion and mechanical strength and a manufacturing method.

본 발명의 다른 유형에 따르는 OGFs로 강화된 탄소 섬유 강화 에폭시 복합소재의 제조 방법은 (1) 건식오존발생기를 사용하여 흑연나노섬유를 오존처리하는 단계; (2) 상기 (1) 단계에서 오존처리된 흑연나노섬유(ozone-treated graphitic nanofibers: OGFs)를 유기용매로서 acetone을 이용하여 에폭시 수지와 혼합하는 단계; (3) 상기 (2) 단계에서 제조된 혼합물을 안정화하는 단계; (4) 상기 (3) 단계에서 제조된 혼합물에 경화제로서 4,4’-diaminodiphenylmethane을 첨가하는 단계; (5) 상기 (4) 단계에서 제조된 혼합물을 진공오븐에서 안정화하는 단계; (6) 상기 (5) 단계에서 제조된 흑연나노섬유, 에폭시 수지 및 경화제의 혼합물을 탄소섬유에 함침하여 경화하는 단계; 를 포함하는 OGFs로 강화된 탄소섬유 강화 에폭시 복합소재의 제조방법을 제공한다.A method for producing a carbon fiber reinforced epoxy composite material reinforced with OGFs according to another type of the present invention comprises the steps of (1) ozonating graphite nanofibers using a dry ozone generator; (2) mixing the ozone-treated graphitic nanofibers (OGFs) in step (1) with an epoxy resin using acetone as an organic solvent; (3) stabilizing the mixture prepared in step (2); (4) adding 4,4'-diaminodiphenylmethane as a curing agent to the mixture prepared in step (3); (5) stabilizing the mixture prepared in step (4) in a vacuum oven; (6) curing the carbon fiber by impregnating the mixture of graphite nanofiber, epoxy resin and curing agent prepared in step (5); It provides a method of manufacturing a carbon fiber reinforced epoxy composite material reinforced with OGFs comprising a.

상기와 같은 본 발명에 따르면, OGFs를 필러로 사용하여 에폭시 수지에 첨가함으로써, OGFs의 많은 산소함유 관능기가 열경화성 수지로 가공이 용이한 에폭시 수지와의 강한 계면 상호작용 및 접착력을 이끌어내어, 계면 특성 및 기계적 강도가 향상된 탄소 섬유 강화 에폭시 복합소재가 제조되는 효과가 있다.According to the present invention as described above, by adding OGFs to the epoxy resin using OGFs as a filler, many oxygen-containing functional groups in OGFs lead to strong interfacial interaction and adhesion with the epoxy resin, which can be easily processed into a thermosetting resin. And carbon fiber reinforced epoxy composite material with improved mechanical strength is produced.

도 1은 본 발명의 다른 실시예에 따른 OGFs으로 강화된 탄소섬유 강화 에폭시 복합소재와 비교예의 표면 에너지 및 향상정도의 비교 그래프이다
도 2는 본 발명의 다른 실시예에 따른 OGFs으로 강화된 탄소섬유 강화 에폭시 복합소재와 비교예의 층간전단강도(ILSS) 및 향상정도의 비교 그래프이다.
도 3은 본 발명의 다른 실시예에 따른 OGFs으로 강화된 탄소섬유 강화 에폭시 복합소재와 비교예의 파괴인성 및 향상정도의 비교 그래프이다.
도 4는 본 발명에서 제조한 OGFs으로 강화된 탄소섬유 강화 에폭시 복합소재의 실시예 3 및 비교예 3의 파괴인성 측정 후 파단면의 SEM 사진이다.
1 is a comparative graph of the surface energy and improvement degree of a carbon fiber reinforced epoxy composite material reinforced with OGFs according to another embodiment of the present invention and a comparative example.
2 is a comparative graph of the interlaminar shear strength (ILSS) and the degree of improvement of the carbon fiber reinforced epoxy composite material reinforced with OGFs according to another embodiment of the present invention and a comparative example.
3 is a comparative graph of fracture toughness and improvement degree of a carbon fiber reinforced epoxy composite material reinforced with OGFs according to another embodiment of the present invention and a comparative example.
4 is an SEM photograph of the fracture toughness of Example 3 and Comparative Example 3 of the carbon fiber reinforced epoxy composite material reinforced with OGFs prepared in the present invention after measurement of fracture toughness.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 다른 유형에 따르는 OGFs로 강화된 탄소섬유 강화 에폭시 복합소재의 제조방법은 (1) 건식오존발생기를 사용하여 흑연나노섬유를 오존처리하는 단계; (2) 상기 (1) 단계에서 오존처리된 흑연나노섬유(ozone-treated graphitic nanofibers: OGFs)를 유기용매로서 acetone을 이용하여 에폭시 수지와 혼합하는 단계; (3) 상기 (2) 단계에서 제조된 혼합물을 안정화하는 단계; (4) 상기 (3) 단계에서 제조된 혼합물에 경화제로서 4,4’-diaminodiphenylmethane을 첨가하는 단계; (5) 상기 (4) 단계에서 제조된 혼합물을 진공오븐에서 안정화하는 단계; (6) 상기 (5) 단계에서 제조된 흑연나노섬유, 에폭시 수지 및 경화제의 혼합물을 탄소섬유에 함침하여 경화하는 단계; 를 포함하는 OGFs로 강화된 탄소섬유 강화 에폭시 복합소재의 제조방법을 제공한다.A method for producing a carbon fiber reinforced epoxy composite material reinforced with OGFs according to another type of the present invention comprises the steps of: (1) ozonating graphite nanofibers using a dry ozone generator; (2) mixing the ozone-treated graphitic nanofibers (OGFs) in step (1) with an epoxy resin using acetone as an organic solvent; (3) stabilizing the mixture prepared in step (2); (4) adding 4,4'-diaminodiphenylmethane as a curing agent to the mixture prepared in step (3); (5) stabilizing the mixture prepared in step (4) in a vacuum oven; (6) curing the carbon fiber by impregnating the mixture of graphite nanofiber, epoxy resin and curing agent prepared in step (5); It provides a method of manufacturing a carbon fiber reinforced epoxy composite material reinforced with OGFs comprising a.

본 발명의 일 측면에 따른 OGFs로 강화된 탄소섬유 강화 에폭시 복합소재는 에폭시 매트릭스에 OGFs가 첨가되어 얻어진다.Carbon fiber reinforced epoxy composite material reinforced with OGFs according to an aspect of the present invention is obtained by adding OGFs to an epoxy matrix.

본 발명의 제조과정을 상세히 살펴보면, 상기 (1) 오존발생기(Ozonizer, Ozone Tech Co, Lab II, Korea)를 오존가스 유량 0.1 l/min에서 0.8 l/min 속도와 압력 0.01에서 0.08 MPa 조건에서 1시간에서 10시간 동안 흑연나노섬유를 개질하였다. 상기 (2) 개질된 OGFs를 유기용매를 이용하여 에폭시 수지와 혼합하였다. 아세톤(C3H6O) 150 mL에 1g에서 4g의 OGFs를 넣은 뒤, 10°C에서 50°C의 온도범위에서 1시간 에서 2시간 동안 초음파 처리를 진행한다. 상기 반응이 끝난 혼합물에 100g의 에폭시 수지를 넣은 뒤 30°C에서 65°C의 온도범위에서 가열하여 유지시키고 1시간에서 4시간 동안 교반한다.Looking at the manufacturing process of the present invention in detail, (1) the ozone generator (Ozonizer, Ozone Tech Co, Lab II, Korea) was 1 at a rate of 0.8 l/min at an ozone gas flow rate of 0.1 l/min and a pressure of 0.01 at 0.08 MPa. Graphite nanofibers were modified for 10 hours. The (2) modified OGFs were mixed with an epoxy resin using an organic solvent. Add 1 g to 4 g of OGFs to 150 mL of acetone (C 3 H 6 O), and then perform sonication at a temperature range of 10°C to 50°C for 1 to 2 hours. After adding 100 g of epoxy resin to the reaction mixture, the mixture is heated and maintained in a temperature range of 30°C to 65°C and stirred for 1 hour to 4 hours.

상기 제조된 혼합물을 사용하여 상기 (3) 단계의 제조된 혼합물의 안정화하는 단계를 진행하였다. 상기 (2) 단계에서 제조된 혼합물은 유기용매를 100°C에서 150°C의 온도범위에서 4시간에서 10시간 동안 제거하는 것이 바람직하다. 그 다음, 잔류하는 OGFs와 에폭시 수지를 상기 (4) 단계의 경화제를 첨가하여 혼합하는 단계를 진행하였다. 상기 (4) 단계에서 유기용매 제거된 혼합물은 경화제로서 4,4’-diaminodiphenylmethane을 에폭시 수지 100중량% 대비 34중량%에서 36중량%를 첨가하여 20°C에서 70°C 온도 범위에서 1에서 5시간 동안 반응시킨다. 상기 (5) 단계의 제조된 혼합물을 진공 오븐에서 안정화하는 단계는 상기 (4) 단계에서 제조된 혼합물은 에폭시 수지에 경화제가 첨가되어 화학적 반응으로 인해 기포가 생기며 진공 오븐에서 감압 하에 10°C에서 60°C 온도 범위에서 1시간에서 3시간 동안 기포를 제거하는 것이 바람직하다. 혼합과정에서 발생한 기포는 최종적으로 제조된 에폭시 복합소재 내에 기공 (Void)을 형성하여 탄소섬유 강화 복합소재의 계면 접착력 및 기계적 강도를 저하시킬 수 있다. 상기 (6) 단계의 제조된 에폭시 혼합물을 탄소섬유와 함침하여 경화시켜 OGFs으로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하는 단계로써, 금형에 상기 (5) 단계에서 제조된 혼합물과 탄소섬유를 수작업으로 함침시킨다. 그 다음, 핫 프레스에서 1단계는 60°C에서 90°C 온도 범위에서 1시간에서 2시간(안정화단계), 2단계는 90°C에서 125°C 온도 범위에서 1에서 2시간(가경화단계), 3단계는 140°C에서 170°C 온도 범위에서 1시간에서 2시간(경화단계)으로 총 3단계로 3시간에서 6시간 경화시켜 OGFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다. 경화단계를 3단계로 진행하지 않을 경우, Void가 생기며 함침성 및 계면 특성이 저하된다. 또한, 경화온도가 110°C 미만일 경우에는 완전히 경화되지 않으며, 170°C 이상일 경우에는 물성저하를 초래한다. The step of stabilizing the mixture prepared in step (3) was performed using the prepared mixture. In the mixture prepared in step (2), it is preferable to remove the organic solvent in a temperature range of 100°C to 150°C for 4 to 10 hours. Then, the remaining OGFs and the epoxy resin were mixed by adding the curing agent of step (4). The mixture from which the organic solvent has been removed in step (4) is obtained by adding 4,4'-diaminodiphenylmethane as a curing agent from 34% to 36% by weight relative to 100% by weight of the epoxy resin in the temperature range of 20°C to 70°C from 1 to 5 react for time. In the step of stabilizing the mixture prepared in step (5) in a vacuum oven, in the mixture prepared in step (4), a curing agent is added to the epoxy resin and bubbles are generated due to a chemical reaction at 10 ° C under reduced pressure in a vacuum oven. It is desirable to remove air bubbles for 1 hour to 3 hours at a temperature range of 60 °C. The bubbles generated during the mixing process may form voids in the finally manufactured epoxy composite material, thereby reducing the interfacial adhesion and mechanical strength of the carbon fiber reinforced composite material. By impregnating the epoxy mixture prepared in step (6) with carbon fiber and curing it to prepare a carbon fiber-reinforced epoxy composite material reinforced with OGFs, the mixture prepared in step (5) and carbon fiber are manually applied to a mold. impregnated with Then, in the hot press, step 1 is 1 to 2 hours at a temperature range of 60°C to 90°C (stabilization step), and step 2 is 1 to 2 hours at a temperature range of 90°C to 125°C (temporary curing step). ), 3 steps were cured for 3 hours to 6 hours in 1 hour to 2 hours (curing step) in the temperature range of 140 °C to 170 °C to prepare a carbon fiber reinforced epoxy composite material reinforced with OGFs. If the curing step is not carried out in step 3, voids are formed and the impregnability and interfacial properties are deteriorated. In addition, when the curing temperature is less than 110°C, it is not completely cured, and when it is 170°C or more, physical properties are deteriorated.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1.Example 1.

오존발생기(Ozonizer, Ozone Tech Co, Lab II, Korea)를 사용하여 오존가스 유량 0.1 l/min에서 0.8 l/min 속도와 압력 0.01 MPa에서 0.08 MPa 조건에서 1시간에서 10시간 동안 흑연나노섬유를 개질하였다. 오존처리된 흑연나노섬유 (OGFs)를 유기용매를 이용하여 에폭시 수지와 혼합하였다. 아세톤(C3H6O) 150 mL에 1g의 OGFs를 넣은 뒤, 10°C에서 50°C의 온도범위에서 1시간에서 2시간 동안 초음파 처리를 하였다. 반응이 끝난 OGFs 혼합물에 100g의 에폭시 수지를 넣은 뒤 30°C에서 65°C의 온도범위에서 가열하여 유지시키고 1시간에서 4시간 동안 교반한다. 그 다음, 유기 용매를 100°C에서 150°C의 온도범위에서 4시간에서 10시간 동안 제거하였다. 그 다음, 잔류하는 OGFs와 에폭시 수지에 경화제를 에폭시 수지 100중량% 대비 34중량%에서 36중량% 첨가하여 20°C에서 70°C 온도 범위에서 1시간에서 5시간 동안 반응시켰다. 이 후, 진공 오븐에서 감압 하에 10°C에서 60°C 온도 범위에서 1시간에서 3시간 동안 기포를 제거하였다. 그다음 금형에 탄소섬유를 수작업으로 함침 후, 핫 프레스에서 60°C에서 90°C 온도 범위에서 1시간에서 2시간 경화, 이어서90°C에서 125°C 온도 범위에서 1시간에서 2시간 경화, 이어서 140°C에서 170°C 온도 범위에서 1시간에서 2시간 경화시켜 OGFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.Using an ozone generator (Ozonizer, Ozone Tech Co, Lab II, Korea), the graphite nanofiber was reformed for 1 hour to 10 hours at a rate of 0.8 l/min at an ozone gas flow rate of 0.1 l/min and a pressure of 0.08 MPa at a pressure of 0.01 MPa. did. Ozone-treated graphite nanofibers (OGFs) were mixed with an epoxy resin using an organic solvent. After putting 1 g of OGFs in 150 mL of acetone (C 3 H 6 O), it was sonicated for 1 to 2 hours at a temperature range of 10 °C to 50 °C. After adding 100 g of epoxy resin to the OGFs mixture after the reaction, it is heated and maintained in a temperature range of 30°C to 65°C and stirred for 1 to 4 hours. Then, the organic solvent was removed at a temperature range of 100 °C to 150 °C for 4 to 10 hours. Then, 34 wt% to 36 wt% of a curing agent was added to the remaining OGFs and epoxy resin relative to 100 wt% of the epoxy resin, and reacted at a temperature range of 20 °C to 70 °C for 1 hour to 5 hours. After that, air bubbles were removed in a temperature range of 10 °C to 60 °C under reduced pressure in a vacuum oven for 1 hour to 3 hours. The mold is then manually impregnated with carbon fiber, cured in a hot press for 1 hour to 2 hours at a temperature range of 60°C to 90°C, followed by curing for 1 hour to 2 hours at a temperature range of 90°C to 125°C, followed by curing Carbon fiber reinforced epoxy composites reinforced with OGFs were prepared by curing for 1 to 2 hours at a temperature range of 140 °C to 170 °C.

실시예 2.Example 2.

상기 실시예 1과 동일하게 과정을 실시하되, 에폭시 수지 100중량% 대비 OGFs의 함량을 2중량%로 하여 OGFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.A carbon fiber reinforced epoxy composite material reinforced with OGFs was prepared in the same manner as in Example 1, except that the content of OGFs was 2% by weight relative to 100% by weight of the epoxy resin.

실시예 3.Example 3.

상기 실시예 1과 동일하게 과정을 실시하되, 에폭시 수지 100중량% 대비 OGFs의 함량을 3중량%로 하여 OGFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.A carbon fiber reinforced epoxy composite material reinforced with OGFs was prepared in the same manner as in Example 1, except that the content of OGFs was 3% by weight relative to 100% by weight of the epoxy resin.

실시예 4.Example 4.

상기 실시예 1과 동일하게 과정을 실시하되, 에폭시 수지 100중량% 대비 OGFs의 함량을 4중량%로 하여 OGFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.A carbon fiber reinforced epoxy composite material reinforced with OGFs was prepared in the same manner as in Example 1, except that the content of OGFs was 4% by weight relative to 100% by weight of the epoxy resin.

실시예 5.Example 5.

상기 실시예 1과 동일하게 과정을 실시하되, 에폭시 수지 100중량% 대비 OGFs의 함량을 5중량%로 하여 OGFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.A carbon fiber reinforced epoxy composite material reinforced with OGFs was prepared in the same manner as in Example 1, except that the content of OGFs was 5% by weight relative to 100% by weight of the epoxy resin.

비교예 1.Comparative Example 1.

GFs를 유기용매를 이용하여 에폭시 수지와 혼합하였다. 아세톤(C3H6O) 150 mL에 에폭시 수지1g의 GFs를 넣은 뒤, 10°C에서 50°C의 온도범위에서 1시간에서 2시간 동안 초음파 처리를 하였다. 반응이 끝난 GFs 혼합물에 100g의 에폭시 수지를 넣은 뒤 30에서 65°C의 온도범위에서 가열하여 유지시키고 1시간에서 4시간 동안 교반한다. 그 다음, 유기용매를 100°C에서 150°C의 온도범위에서 4시간에서 10시간 동안 제거하였다. 그 다음, 잔류하는 GFs와 에폭시 수지에 경화제를 에폭시 수지 100중량% 대비 34중량%에서 36중량%를 첨가하여 20°C에서 70°C 온도 범위에서 1시간에서 5시간 동안 반응시켰다. 이 후, 진공 오븐에서 감압 하에 45°C에서 65°C 온도 범위에서 1시간에서 3시간 동안 기포를 제거하였다. 그다음 금형에 탄소섬유를 수작업으로 함침 후, 핫 프레스에서 60°C에서 90°C 온도 범위에서 1시간에서 2시간 경화, 이어서 90°C에서 125°C 온도 범위에서 1시간에서 2시간 경화, 이어서 140°C에서 170°C 온도 범위에서 1시간 경화시켜 GFs로 강화된 탄소 섬유 강화 에폭시 복합소재를 제조하였다.GFs were mixed with an epoxy resin using an organic solvent. After putting GFs of 1 g of epoxy resin in 150 mL of acetone (C 3 H 6 O), it was sonicated for 1 to 2 hours at a temperature range of 10 °C to 50 °C. After adding 100 g of epoxy resin to the GFs mixture after the reaction, it is heated and maintained in a temperature range of 30 to 65 °C and stirred for 1 to 4 hours. Then, the organic solvent was removed at a temperature range of 100 °C to 150 °C for 4 to 10 hours. Then, 34 wt% to 36 wt% of a curing agent was added to the remaining GFs and epoxy resin relative to 100 wt% of the epoxy resin, and reacted at a temperature range of 20 °C to 70 °C for 1 hour to 5 hours. Thereafter, air bubbles were removed in a temperature range of 45 °C to 65 °C under reduced pressure in a vacuum oven for 1 hour to 3 hours. The mold is then manually impregnated with carbon fiber, cured in a hot press for 1 hour to 2 hours at a temperature range of 60°C to 90°C, followed by curing for 1 hour to 2 hours at a temperature range of 90°C to 125°C, followed by curing Carbon fiber reinforced epoxy composites reinforced with GFs were prepared by curing at a temperature range of 140 °C to 170 °C for 1 h.

비교예 2.Comparative Example 2.

상기 비교예 1과 동일하게 과정을 실시하되, 에폭시 수지 100중량% 대비 GFs의 함량을 2중량%로 하여 GFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.A carbon fiber reinforced epoxy composite material reinforced with GFs was prepared in the same manner as in Comparative Example 1, except that the content of GFs was 2% by weight relative to 100% by weight of the epoxy resin.

비교예 3.Comparative Example 3.

상기 비교예 1과 동일하게 과정을 실시하되, 에폭시 수지 100중량% 대비 GFs의 함량을 3중량%로 하여 GFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.A carbon fiber reinforced epoxy composite material reinforced with GFs was prepared in the same manner as in Comparative Example 1, except that the content of GFs was 3% by weight relative to 100% by weight of the epoxy resin.

비교예 4.Comparative Example 4.

상기 비교예 1과 동일하게 과정을 실시하되, 에폭시 수지 100중량% 대비 GFs의 함량을 4중량%로 하여 GFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.A carbon fiber reinforced epoxy composite material reinforced with GFs was prepared in the same manner as in Comparative Example 1, except that the content of GFs was 4% by weight relative to 100% by weight of the epoxy resin.

비교예 5.Comparative Example 5.

상기 비교예 1과 동일하게 과정을 실시하되, 에폭시 수지 100중량% 대비 GFs의 함량을 5중량%로 하여 GFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.A carbon fiber reinforced epoxy composite material reinforced with GFs was prepared in the same manner as in Comparative Example 1, except that the content of GFs was 5% by weight relative to 100% by weight of the epoxy resin.

측정예 1. 본 발명에서 제조한 OGFs 및 GFs로 강화된 탄소섬유 강화 에폭시 복합소재 표면 자유 에너지 시험Measurement Example 1. Surface free energy test of carbon fiber reinforced epoxy composite material reinforced with OGFs and GFs prepared in the present invention

표면 자유 에너지는 Rame-Hart 고니 오 미터 (Phoenix 300 Plus, SEO Co.)를 사용하여 3가지 표준 습윤액 (증류수, 디요오도 메탄, 에틸렌 글리콜)에 대한 OGFs 및 GFs로 강화된 탄소 섬유 강화 에폭시 복합소재의 접촉각을 측정하였다. Surface free energy was measured using a Rame-Hart goniometer (Phoenix 300 Plus, SEO Co.) to carbon fiber reinforced epoxy reinforced with OGFs and GFs for three standard wetting fluids (distilled water, diiodomethane, ethylene glycol). The contact angle of the composite material was measured.

측정예 2. 본 발명에서 제조한 OGFs 및 GFs로 강화된 탄소섬유 강화 에폭시 복합소재 ILSS 시험Measurement Example 2. ILSS test of carbon fiber reinforced epoxy composite material reinforced with OGFs and GFs prepared in the present invention

ILSS 시험은 만능재료시험기(Lloyd LR5k)를 사용하여 OGFs 및 GFs로 강화된 탄소섬유 강화 에폭시 복합소재를 ASTM D-2344에 따라 시편을 제조한 후 short-beam 3포인트 굽힘시험 방법 측정하였다. For the ILSS test, a short-beam 3-point bending test method was measured after preparing a specimen according to ASTM D-2344 of a carbon fiber-reinforced epoxy composite material reinforced with OGFs and GFs using a universal testing machine (Lloyd LR5k).

측정예 3. 본 발명에서 제조한 OGFs 및 GFs로 강화된 탄소섬유 강화 에폭시 복합소재 파괴인성 시험Measurement Example 3. Fracture toughness test of carbon fiber reinforced epoxy composite material reinforced with OGFs and GFs prepared in the present invention

파괴인성 시험은 만능재료시험기(Lloyd LR5k)를 사용하여 OGFs 및 GFs로 강화된 탄소섬유 강화 에폭시 복합소재를 ASTM E399에 따라 시편을 제조한 후 3포인트 굽힘시험 방법 측정하였다.The fracture toughness test was conducted using a universal testing machine (Lloyd LR5k) to prepare a specimen of a carbon fiber reinforced epoxy composite material reinforced with OGFs and GFs according to ASTM E399, followed by a 3-point bending test method.

측정예 4. 본 발명에서 제조한 OGFs 및 GFs로 강화된 탄소섬유 강화 에폭시 복합소재 파괴인성 시험 후 파단면 관찰Measurement Example 4. Observation of fracture surface after fracture toughness test of carbon fiber reinforced epoxy composite material reinforced with OGFs and GFs prepared in the present invention

본 발명에서 scanning electron microscopy (SEM, SU 8010, Hitachi, Ltd., Japan)을 사용하여 제조된 OGFs 및 GFs로 강화된 탄소섬유 강화 에폭시 복합소재의 구조를 변화시켰는지 관찰하였다.In the present invention, by using scanning electron microscopy (SEM, SU 8010, Hitachi, Ltd., Japan), it was observed whether the structure of the carbon fiber-reinforced epoxy composite material reinforced with OGFs and GFs was changed.

다음은 본 발명에 따른 OGFs 및 GFs로 강화된 탄소섬유 강화 에폭시 복합소재의 제조조건을 표 1에 표시하고, 본 발명에 따른 OGFs 및 GFs로 강화된 탄소섬유 강화 에폭시 복합소재로 제조된 복합소재의 표면에너지, ILSS, 파괴인성 및 향상정도, 수치값을 표 2에 표시한다.The following shows the manufacturing conditions of the carbon fiber reinforced epoxy composite material reinforced with OGFs and GFs according to the present invention in Table 1, and the composite material manufactured with the carbon fiber reinforced epoxy composite material reinforced with OGFs and GFs according to the present invention. Table 2 shows surface energy, ILSS, fracture toughness and degree of improvement, and numerical values.

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.Above, a specific part of the present invention has been described in detail, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, it is intended that the substantial scope of the invention be defined by the appended claims and their equivalents.

Claims (6)

(1) 건식오존발생기를 사용하여 흑연나노섬유를 오존처리하는 단계;
(2) 상기 (1) 단계에서 오존처리된 흑연나노섬유(ozone-treated graphitic nanofibers: OGFs)를 유기용매로서 acetone을 이용하여 에폭시 수지와 혼합하는 단계;
(3) 상기 (2) 단계에서 제조된 혼합물을 안정화하는 단계;
(4) 상기 (3) 단계에서 제조된 혼합물에 경화제로서 4,4’-diaminodiphenylmethane을 첨가하는 단계;
(5) 상기 (4) 단계에서 제조된 혼합물을 진공오븐에서 안정화하는 단계;
(6) 상기 (5) 단계에서 제조된 흑연나노섬유, 에폭시 수지 및 경화제의 혼합물을 탄소섬유에 함침하여 경화하는 단계; 를 포함하는 OGFs로 강화된 탄소섬유 강화 에폭시 복합소재의 제조방법.
(1) ozone treatment of graphite nanofibers using a dry ozone generator;
(2) mixing the ozone-treated graphitic nanofibers (OGFs) in step (1) with an epoxy resin using acetone as an organic solvent;
(3) stabilizing the mixture prepared in step (2);
(4) adding 4,4'-diaminodiphenylmethane as a curing agent to the mixture prepared in step (3);
(5) stabilizing the mixture prepared in step (4) in a vacuum oven;
(6) curing the carbon fiber by impregnating the mixture of graphite nanofiber, epoxy resin and curing agent prepared in step (5); A method of manufacturing a carbon fiber reinforced epoxy composite material reinforced with OGFs comprising a.
제 1 항에 있어서,
상기 (1) 단계에서는 건식오존발생기를 사용하여 오존가스 유량을 0.1 l/min에서 0.8 l/min, 압력을 0.01 MPa에서 0.08 MPa 조건에서 1시간에서 10시간 동안 흑연나노섬유를 오존처리하고,
상기 (2) 단계에서는 아세톤(C3H6O) 150 mL에 1g에서 5g의 오존처리된 흑연나노섬유를 넣은 뒤, 10°C에서 40°C 온도범위에서 1시간에서 2시간 동안 초음파 처리를 진행하여 상기 반응이 끝난 혼합물에 100g의 에폭시 수지를 넣은 뒤 30°C에서 65°C의 온도범위에서 가열하여 유지시키고 1시간에서 4시간 동안 교반하는, OGFs로 강화된 탄소섬유 강화 에폭시 복합소재의 제조방법.
The method of claim 1,
In step (1), the graphite nanofibers were ozonated for 1 hour to 10 hours under conditions of an ozone gas flow rate of 0.1 l/min to 0.8 l/min and a pressure of 0.01 MPa to 0.08 MPa using a dry ozone generator,
In step (2), 1 g to 5 g of ozonated graphite nanofibers were put in 150 mL of acetone (C 3 H 6 O), and then sonicated at a temperature range of 10°C to 40°C for 1 hour to 2 hours. After adding 100 g of epoxy resin to the reaction mixture, it is heated and maintained in a temperature range of 30°C to 65°C and stirred for 1 hour to 4 hours. manufacturing method.
제 1 항에 있어서,
상기 (3) 단계에서는 상기 (2) 단계에서 제조된 혼합물에 존재하는 유기용매인 아세톤을 100oC에서 150oC까지의 온도 범위에서 4시간에서 10시간 동안 제거하여 안정화하는, OGFs로 강화된 탄소섬유 강화 에폭시 복합소재의 제조방법.
The method of claim 1,
In step (3), acetone, which is an organic solvent present in the mixture prepared in step (2), is removed at a temperature range from 100 o C to 150 o C for 4 to 10 hours to stabilize, OGFs-strengthened A method of manufacturing a carbon fiber reinforced epoxy composite material.
제 3 항에 있어서,
상기 (4) 단계에서는 유기용매가 제거된 오존 처리된 흑연나노섬유와 에폭시 수지의 혼합물에 경화제로서 4,4’-diaminodiphenylmethane을 에폭시 수지 100중량% 대비 34중량%에서 36중량% 첨가하여 20°C에서 70°C 온도 범위에서 1시간에서 5시간 동안 반응시키는, OGFs로 강화된 탄소섬유 강화 에폭시 복합소재의 제조방법.
4. The method of claim 3,
In step (4), 4,4'-diaminodiphenylmethane as a curing agent was added to a mixture of ozone-treated graphite nanofibers from which the organic solvent was removed and an epoxy resin from 34 wt% to 36 wt% compared to 100 wt% of the epoxy resin at 20 °C A method for producing a carbon fiber reinforced epoxy composite material reinforced with OGFs by reacting it for 1 to 5 hours at a temperature range of 70 °C.
제 1 항에 있어서,
상기 (5) 단계에서는 오존처리된 흑연나노섬유, 에폭시 수지 및 경화제의 혼합물을 진공 오븐에서 감압 하에 10°C에서 60°C 온도 범위에서 1시간에서 3시간 동안 기포를 제거하여 안정화하는, OGFs로 강화된 탄소섬유 강화 에폭시 복합소재의 제조방법.
The method of claim 1,
In step (5), the mixture of ozonated graphite nanofibers, epoxy resin and curing agent is stabilized by removing air bubbles for 1 hour to 3 hours at a temperature range of 10 °C to 60 °C under reduced pressure in a vacuum oven. A method for manufacturing a reinforced carbon fiber reinforced epoxy composite material.
제 5 항에 있어서,
상기 (6) 단계에서는 기포 제거된 오존처리된 흑연나노섬유, 에폭시 수지 및 경화제의 혼합물과 탄소섬유를 금형에 수작업으로 함침시킨 다음 핫 프레스에서 60°C에서 90°C 온도 범위에서 1시간에서 2시간 경화, 이어서 90°C에서 125°C 온도 범위에서 1시간에서 2시간 경화, 이어서 140°C에서 170°C 온도 범위에서 1시간에서 2시간 경화시키는, OGFs로 강화된 탄소섬유 강화 에폭시 복합소재의 제조방법.
6. The method of claim 5,
In step (6), a mixture of debubbled ozonated graphite nanofibers, epoxy resin, and curing agent and carbon fibers were manually impregnated into the mold, and then in a hot press in a temperature range of 60°C to 90°C for 1 hour to 2 hours. Carbon Fiber Reinforced Epoxy Composite Reinforced with OGFs, Time Cure, followed by 1 hour to 2 hours curing at 90°C to 125°C temperature range, followed by 1 hour to 2 hours curing at 140°C to 170°C temperature range. manufacturing method.
KR1020210006145A 2021-01-15 2021-01-15 Carbon fiber-reinforced epoxy composites with ozone-treated graphitic nanofibers and manuacutring method thereof KR102496991B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210006145A KR102496991B1 (en) 2021-01-15 2021-01-15 Carbon fiber-reinforced epoxy composites with ozone-treated graphitic nanofibers and manuacutring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210006145A KR102496991B1 (en) 2021-01-15 2021-01-15 Carbon fiber-reinforced epoxy composites with ozone-treated graphitic nanofibers and manuacutring method thereof

Publications (2)

Publication Number Publication Date
KR20220103493A true KR20220103493A (en) 2022-07-22
KR102496991B1 KR102496991B1 (en) 2023-02-09

Family

ID=82606146

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210006145A KR102496991B1 (en) 2021-01-15 2021-01-15 Carbon fiber-reinforced epoxy composites with ozone-treated graphitic nanofibers and manuacutring method thereof

Country Status (1)

Country Link
KR (1) KR102496991B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665130B1 (en) * 2005-09-16 2007-01-04 한국화학연구원 Method for manufacturing epoxy nanocomposite material containing vapor-grown carbon nanofibers and its products thereby
KR20180042978A (en) * 2016-10-19 2018-04-27 인하대학교 산학협력단 Graphene oxide synthesized from pitch-based carbon fiber and manufacturing method thereof
KR20180045796A (en) * 2016-10-26 2018-05-04 주식회사 스탠다드그래핀 Carbon fiber prepreg or carbon fiber - reinforced plastic, and materials including the same
KR20200086123A (en) * 2019-01-08 2020-07-16 인하대학교 산학협력단 Basalt fiber reinforced epoxy composites reinforced with ozone treated single-walled carbon nanotubes and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665130B1 (en) * 2005-09-16 2007-01-04 한국화학연구원 Method for manufacturing epoxy nanocomposite material containing vapor-grown carbon nanofibers and its products thereby
KR20180042978A (en) * 2016-10-19 2018-04-27 인하대학교 산학협력단 Graphene oxide synthesized from pitch-based carbon fiber and manufacturing method thereof
KR20180045796A (en) * 2016-10-26 2018-05-04 주식회사 스탠다드그래핀 Carbon fiber prepreg or carbon fiber - reinforced plastic, and materials including the same
KR20200086123A (en) * 2019-01-08 2020-07-16 인하대학교 산학협력단 Basalt fiber reinforced epoxy composites reinforced with ozone treated single-walled carbon nanotubes and method for manufacturing the same

Also Published As

Publication number Publication date
KR102496991B1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
Jiang et al. Effect of surface silanization of carbon fiber on mechanical properties of carbon fiber reinforced polyurethane composites
KR102185383B1 (en) Basalt fiber reinforced epoxy composites reinforced with ozone treated single-walled carbon nanotubes and method for manufacturing the same
Jin et al. Recent advances in carbon-nanotube-based epoxy composites
KR102214478B1 (en) Carbon fiber-reinforced epoxy composites with ozone-treated carbon blacks and manufacturing method.
Taraghi et al. The effect of MWCNTs on the mechanical properties of woven Kevlar/epoxy composites
KR102185380B1 (en) Manufacturing method of basalt fiber-reinforced epoxy composites with natural graphite flakes intrduced
Zhang et al. The modification of Kevlar fibers in coupling agents by γ-ray co-irradiation
KR20080050735A (en) A method for preparation of silicone rubber/carbon nanotube composites with electrical insulating properties
Jaafar et al. Preparation and characterisation of epoxy/silica/kenaf composite using hand lay-up method
Acar et al. Graphene oxide modified carbon fiber prepregs: A mechanical comparison of the effects of oxidation methods
Jahandideh et al. Mechanical and thermal properties of octadecylamine-functionalized graphene oxide reinforced epoxy nanocomposites
Yao et al. Improved interfacial properties of carbon fiber/epoxy composites through graphene oxide-assisted deposition of carbon nanotubes on carbon fiber surface
Khan et al. Novel carbon fibers synthesis, plasma functionalization, and application to polymer composites.
JP2009138032A (en) Manufacturing method of matrix resin containing carbon nano tube
KR102008760B1 (en) Epoxy nanocomposite reinforced with graphene oxide decorated with nanodiamond nanocluster and method for manufacturing thereof
Kim et al. Pitch coating of SiC and its effects on the thermal stability and oxidation resistance of SiC/epoxy composites
JP2020169424A (en) Carbon fibers and resin composition containing the same
KR102496991B1 (en) Carbon fiber-reinforced epoxy composites with ozone-treated graphitic nanofibers and manuacutring method thereof
Awan et al. Study of interfacial properties of carbon fiber epoxy matrix composites containing graphene nanoplatelets
KR102404145B1 (en) Basalt fiber-reinforced epoxy composites with graphene oxide and method for manufacturing the same
Hao et al. Enhancing performances of polyamide 66 short fiber/natural rubber composites via in situ vulcanization reaction
KR102496995B1 (en) Carbon fibers-reinforced epoxy composites with graphene oxide/graphitic nanofibers composites and manufacturing method thereof
KR101730437B1 (en) Epoxy composites having enhanced thermal stability and mechnical behaviors and manufacturing method of the same
Kim et al. 3-Aminopropyltriethoxysilane effect on thermal and mechanical properties of multi-walled carbon nanotubes reinforced epoxy composites
Ramamoorthi et al. Experimental investigations of influence of halloysite nanotube on mechanical and chemical resistance properties of glass fiber reinforced epoxy nano composites

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right