KR20220094420A - Casting steel for ore crushing with excellent strength and its manufacturing methods - Google Patents

Casting steel for ore crushing with excellent strength and its manufacturing methods Download PDF

Info

Publication number
KR20220094420A
KR20220094420A KR1020200185620A KR20200185620A KR20220094420A KR 20220094420 A KR20220094420 A KR 20220094420A KR 1020200185620 A KR1020200185620 A KR 1020200185620A KR 20200185620 A KR20200185620 A KR 20200185620A KR 20220094420 A KR20220094420 A KR 20220094420A
Authority
KR
South Korea
Prior art keywords
less
cast steel
heat treatment
strength
steel
Prior art date
Application number
KR1020200185620A
Other languages
Korean (ko)
Inventor
차준현
박병호
Original Assignee
재단법인 포항금속소재산업진흥원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항금속소재산업진흥원 filed Critical 재단법인 포항금속소재산업진흥원
Priority to KR1020200185620A priority Critical patent/KR20220094420A/en
Publication of KR20220094420A publication Critical patent/KR20220094420A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

The present invention relates to a high-strength cast steel used as a material for crushing aggregates and rocks due to excellent strength and wear resistance thereof and a manufacturing method thereof, and more specifically, a cast steel for ore crushing containing iron (Fe) as a main component. The cast steel for ore crushing comprises 0.26 to 0.31 wt% of carbon (C), 1.00 to 1.35 wt% of silicon (Si), 0.80 wt% of manganese (Mn) or less, 1.95 wt% chromium (Cr) or less, 0.25 wt% of molybdenum (Mo) or less, 0.030 to 0.060 wt% of aluminum (Al); and 0.025 to 0.045 w% of titanium (Ti). According to the present invention, by securing excellent hardenability with the optimal alloy design of the material and performing heat treatment, it is possible to manufacture a cast steel whose strength is higher than that of conventional steel, and which has excellent strength-hardness combined characteristics, and good deformation and abrasion resistance, and thus can enhance the durability of parts.

Description

강도 및 내마모성이 우수한 광석파쇄용 주강 및 그 제조방법{Casting steel for ore crushing with excellent strength and its manufacturing methods}Casting steel for ore crushing with excellent strength and its manufacturing methods

본 발명은 강도 및 내마모성이 우수하여 골재 및 암석을 파쇄하기 위한 소재로 사용되는 고강도 주강 및 그 제조방법에 관한 것으로서, 보다 상세하게는 열처리를 통한 적절한 미세조직 구현 및 미세한 탄화물의 석출강화를 이용하여 로크웰경도 48 HRC이상, 인장강도 1400 MPa, 항복강도 1190 MPa 이상, 연신율 5% 이상급의 주강 및 그 제조방법에 관한 것이다.The present invention relates to a high-strength cast steel used as a material for crushing aggregates and rocks due to its excellent strength and abrasion resistance and a method for manufacturing the same, and more particularly, by realizing an appropriate microstructure through heat treatment and precipitation strengthening of fine carbides. It relates to a cast steel having a Rockwell hardness of 48 HRC or more, a tensile strength of 1400 MPa, a yield strength of 1190 MPa or more, and an elongation of 5% or more, and a method for manufacturing the same.

일반적으로 시멘트, 광산, 토목 등의 광석 및 암석파쇄기용 부품소재로 널리 사용되고 있는 고망간강은 Mn 함량 3~27% 강종으로 기존 소재 대비 성능 및 경제성을 향상시킨 World First(WF) 소재로서, 격렬한 충격하중이 작용하는 곳에 사용되고 있으며, 표면층에 현저한 힘이 부여되어도 재료 자체의 인성이 유지되어 내마모성을 유지할 수 있는 소재 특성을 바탕으로 산업 전반에 널리 사용되고 있다.In general, high manganese steel, which is widely used as a component material for ore and rock crushers in cement, mines, civil engineering, etc., is a World First (WF) material with improved performance and economic feasibility compared to existing materials with a Mn content of 3 to 27%. It is used where a load is applied, and is widely used throughout the industry based on the material properties that can maintain abrasion resistance by maintaining the toughness of the material itself even when a significant force is applied to the surface layer.

사용 환경적인 측면에서 현재 추세는 크고 무거운 원료를 파쇄할 시 원료의 낙하에 의하여 발생하는 부품 표면부의 충격 하중 및 파쇄 과정시 발생하는 압축력에 의하여 부품의 변형 및 마모가 발생되고 있다. In terms of usage environment, the current trend is that when crushing large and heavy raw materials, deformation and wear of parts occur due to the impact load on the surface of the part caused by the fall of the raw material and the compressive force generated during the crushing process.

특히 파쇄된 원료의 미분화를 위하여 사용되는 부품은 보다 미세한 원료가 부품 표면부에 인가되어 소재 표면 내 작은 구역에 국소적으로 하중이 부여되므로 발생하는 Micro-Cutting 및 피로 파괴의 저항성 향상이 요구된다.In particular, for parts used for pulverization of crushed raw materials, micro-cutting and fatigue fracture resistance that occurs because finer raw materials are applied to the surface of the parts and a load is locally applied to a small area within the surface of the material is required.

상기와 같은 사용환경에 알맞은 광석파쇄용 주강을 제작하기 위하여 고강도-고경도의 소재개발이 요구된다. In order to produce cast steel for crushing ore suitable for the above use environment, it is required to develop high-strength and high-hardness materials.

한국등록특허 제 0504365호Korea Patent No. 0504365

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 사용환경에 요구되는 기계적 성질을 만족할 수 있는 로크웰 경도 48 HRC 이상, 인장강도 1400 MPa 이상, 항복강도 1190MPa 이상, 연신율 5% 이상의 광석 파쇄용 주강 및 그 제조방법을 제공하는데 있다.The present invention has been devised to solve the above problems, and an object of the present invention is to satisfy the mechanical properties required for the use environment of Rockwell hardness of 48 HRC or more, tensile strength of 1400 MPa or more, yield strength of 1190 MPa or more, and elongation of 5 % or more to provide a cast steel for crushing ores and a method for manufacturing the same.

상기와 같은 목적을 달성하기 위한 본 발명의 일측면에 따르면, 철(Fe)을 주성분으로 하는 광석파쇄용 주강에 있어서, 탄소(C) 0.26~0.31 중량%, 규소(Si) 1.00~1.35 중량%, 망간(Mn) 0.80 중량% 이하, 크롬(Cr) 1.95 중량% 이하, 몰리브덴(Mo) 0.25 중량% 이하, 알루미늄(Al) 0.030~0.060 중량%, 티타늄(Ti) 0.025~0.045 중량%를 포함하여 제공된다.According to one aspect of the present invention for achieving the above object, in the cast steel for ore crushing containing iron (Fe) as a main component, carbon (C) 0.26 to 0.31 wt%, silicon (Si) 1.00 to 1.35 wt% , manganese (Mn) 0.80 wt% or less, chromium (Cr) 1.95 wt% or less, molybdenum (Mo) 0.25 wt% or less, aluminum (Al) 0.030 to 0.060 wt%, titanium (Ti) 0.025 to 0.045 wt% provided

강도 및 내마모성이 우수한 광석파쇄용 주강의 제조방법은 철(Fe)을 주성분으로 하고, 탄소(C) 0.26 ~ 0.31 중량%, 규소(Si) 1.00~1.35 중량%, 망간(Mn) 0.80 중량% 이하, 크롬(Cr) 1.95 중량% 이하, 몰리브덴(Mo) 0.25 중량% 이하, 알루미늄(Al) 0.030~0.060 중량%, 티타늄(Ti) 0.025~0.045 중량%를 포함하는 강재를 전기로에서 용해 후 사형주조를 수행하는 단계, 상기 사형주조 이후 강재를 소입 열처리하는 단계 및 소려 열처리하는 단계를 포함하여 제공된다.The manufacturing method of cast steel for ore crushing excellent in strength and wear resistance has iron (Fe) as a main component, carbon (C) 0.26 to 0.31 wt%, silicon (Si) 1.00 to 1.35 wt%, manganese (Mn) 0.80 wt% or less , chromium (Cr) 1.95 wt% or less, molybdenum (Mo) 0.25 wt% or less, aluminum (Al) 0.030 to 0.060 wt%, titanium (Ti) 0.025 to 0.045 wt% after melting in an electric furnace, sand casting It is provided including the step of performing, the step of quenching heat treatment and tempering heat treatment of the steel after the sand casting.

여기서, 상기 소입 열처리 단계에서는 강재를 0.055~0.075℃/sec의 승온속도로 900~950℃로 승온 후 3~5시간동안 유지하고 8~10℃/sec의 냉각속도로 20~30℃ 범위까지 물 또는 오일을 통하여 강재를 급속히 냉각시킨다.Here, in the quenching heat treatment step, the steel material is heated to 900 to 950 °C at a temperature increase rate of 0.055 to 0.075 °C/sec, then maintained for 3 to 5 hours, and then water to a range of 20 to 30 °C at a cooling rate of 8 to 10 °C/sec. Alternatively, the steel is rapidly cooled through oil.

아울러, 상기 소려 열처리 단계에서는 250~290℃ 또는 320~350℃ 각 온도조건에서 소려 열처리가 수행된다.In addition, in the tempering heat treatment step, tempering heat treatment is performed at each temperature condition of 250 to 290 °C or 320 to 350 °C.

더욱이, 상기 소려 열처리 단계에서 상기 강재를 250℃~290℃ 온도조건에서 6~8시간 유지하고 공냉시키거나, 320~350℃ 온도조건에서 4~6시간 유지하고 공냉시킨다.Furthermore, in the tempering heat treatment step, the steel is maintained at a temperature condition of 250 ° C. to 290 ° C. for 6 to 8 hours and air-cooled, or maintained at a temperature condition of 320 to 350 ° C. for 4 to 6 hours and air cooled.

상기와 같은 본 발명에 따르면, 소재의 최적 합금설계로 우수한 소입성을 확보하고 열처리를 수행함으로써, 종래 강보다 강도-경도 조합 특성이 우수하면서도 변형 저항성 및 내마모성이 우수한 주강품을 제조할 수 있으며, 이로 인해 부품의 수명을 증가시킬 수 있는 효과가 있다.According to the present invention as described above, by performing heat treatment and securing excellent hardenability through the optimal alloy design of the material, it is possible to manufacture a cast steel product having excellent strength-hardness combination characteristics and excellent deformation resistance and wear resistance than conventional steel, This has the effect of increasing the lifespan of the parts.

도 1은 본 발명에 따른 강도 및 내마모성이 우수한 광석파쇄용 주강의 열처리 순서를 나타낸 순서도이다.
도 2는 본 발명에 따른 강도 및 내마모성이 우수한 광석파쇄용 주강의 열처리 방법을 도식화하여 나타낸 공정순서도이다.
도 3은 본 발명에 따른 제조공정을 통해 제조된 주강품 샘플 미세조직을 광학현미경으로 분석한 결과를 나타낸 사진이다.
도 4는 본 발명에 따른 제조공정을 통해 제조된 주강품 샘플의 기계적 특성을 분석한 그래프이다.
1 is a flowchart showing the heat treatment sequence of cast steel for crushing ore having excellent strength and wear resistance according to the present invention.
2 is a process flow chart schematically showing the heat treatment method of the cast steel for crushing ore having excellent strength and wear resistance according to the present invention.
3 is a photograph showing the result of analyzing the microstructure of the cast steel sample manufactured through the manufacturing process according to the present invention with an optical microscope.
4 is a graph analyzing the mechanical properties of the cast steel sample manufactured through the manufacturing process according to the present invention.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 일 실시예를 상세하게 설명하기로 한다.Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 강도 및 내마모성이 우수한 광석파쇄용 주강은 철(Fe)을 주성분으로 하고, 탄소(C) 0.26~0.31 중량%, 규소(Si) 1.00~1.35 중량%, 망간(Mn) 0.80 중량% 이하, 크롬(Cr) 1.95 중량% 이하, 몰리브덴(Mo) 0.25 중량% 이하, 알루미늄(Al) 0.030~0.060 중량%, 티타늄(Ti) 0.025~0.045 중량%를 포함하고, 나머지는 불가피한 불순물로 조성되는 것이 바람직하다. The cast steel for ore crushing excellent in strength and wear resistance according to the present invention has iron (Fe) as a main component, carbon (C) 0.26 to 0.31 wt%, silicon (Si) 1.00 to 1.35 wt%, manganese (Mn) 0.80 wt% or less, chromium (Cr) 1.95 wt% or less, molybdenum (Mo) 0.25 wt% or less, aluminum (Al) 0.030 to 0.060 wt%, titanium (Ti) 0.025 to 0.045 wt%, and the rest is composed of unavoidable impurities it is preferable

바람직하게는, 상기 주강은 불가피한 불순물로서 인(P) 0.025 중량% 이하(0 미포함), 황(S) 0.025 중량% 이하 (0 미포함)을 포함할 수도 있다.Preferably, the cast steel may contain 0.025 wt% or less of phosphorus (P) (0 not included) and 0.025 wt% or less (0 not included) of sulfur (S) as unavoidable impurities.

본 발명의 주요 조성물 중 탄소(C)는 용탕의 유동성을 증가시키는 작용 및 부분적으로 기지 내 고용되어 고용강화를 하는 작용과, Cr 및 Mo와 탄화물의 형성에 의한 기계적 강도를 높이는 작용 등을 수행하며 그 함량이 증가하면 소입성 및 강도가 증가되지만 인성을 해치고, 반대로 함량이 감소하면 소입성과 강도를 감소시켜 강도 확보가 불가능하므로 주요 목적으로 요구되는 탄소(C) 성분 범위 내 최소한으로 첨가하는 범위인 0.26~0.31 중량%로 제한한다.In the main composition of the present invention, carbon (C) performs an action of increasing the fluidity of the molten metal, strengthening of solid solution by being partially dissolved in a matrix, and increasing mechanical strength by forming carbides with Cr and Mo. If the content increases, hardenability and strength increase, but toughness is impaired. Conversely, if the content decreases, hardenability and strength are reduced, making it impossible to secure strength. It is limited to 0.26-0.31 wt%.

그리고 규소(Si)는 일반적으로 용탕의 탈산제로 작용하는 것 외에 용탕의 유동성을 향상시키는 작용 및 부품의 사용 환경상 파쇄과정 중 지속적인 국소부 충격에 의한 열피로 발생에 저항하여 소재 수명 개선에 유효한 원소이다. 이와 같은 특성을 얻기 위하여 규소(Si)의 함유량은 1.00 중량% 이상 필요하나, 과잉의 규소(Si)는 페라이트 생성을 촉진하여 오스테나이트 조직을 불안정화하여 소재의 주조성을 열화시키므로 규소(Si) 함량은 1.35 중량% 이하로 제한한다.In addition to generally acting as a deoxidizing agent for molten metal, silicon (Si) is an effective element for improving the fluidity of molten metal and improving the life of the material by resisting thermal fatigue caused by continuous local impact during the crushing process due to the use environment of parts. . In order to obtain such a characteristic, the content of silicon (Si) is 1.00 wt% or more, but excess silicon (Si) promotes ferrite formation and destabilizes the austenite structure, thereby deteriorating the castability of the material. It is limited to 1.35% by weight or less.

그리고 망간(Mn)은 Si와 마찬가지로 용탕의 탈산제로서 유효한 것 외에 황(S)과 결합하여 MnS를 형성하여 주강의 피삭성을 개선한다. 또한, 고용 강화 및 탄화물 석출에 의한 석출 강화로 소입성을 향상시킨다. 그리고 펄라이트의 핵성장 속도를 감소시켜 마르텐사이트 변태를 촉진시킨다. 그러나 과잉의 망간(Mn)은 내산화성을 열화시키므로 망간(Mn)의 함유량은 0.80 중량% 이하로 제한한다.And manganese (Mn), like Si, is effective as a deoxidizer for molten metal, and combines with sulfur (S) to form MnS to improve the machinability of cast steel. In addition, hardenability is improved by solid solution strengthening and precipitation strengthening by carbide precipitation. In addition, by reducing the nucleation rate of pearlite, it promotes martensite transformation. However, since excess manganese (Mn) deteriorates oxidation resistance, the content of manganese (Mn) is limited to 0.80 wt% or less.

그리고 크롬(Cr)은 소입성을 증대시키고 M3C, M7C3, M23C6 탄화물 생성을 통한 강도 및 경도 특성을 향상시키는 원소이다. 또한 소려연화를 억제하여 강도를 현저히 증가시키게 된다. 그러나 과잉의 크롬(Cr)은 소재의 취성을 유발하게 되므로 크롬(Cr)의 함유량은 1.95 중량% 이하로 제한한다.And chromium (Cr) is an element that increases hardenability and improves strength and hardness characteristics through the formation of M3C, M7C3, and M23C6 carbides. In addition, it suppresses soft softening and remarkably increases the strength. However, since excess chromium (Cr) causes brittleness of the material, the content of chromium (Cr) is limited to 1.95 wt% or less.

그리고 몰리브덴(Mo)은 크롬(Cr)과 마찬가지로 MoC 탄화물 생성을 통한 강도 및 경도 특성을 향상시키는 원소이다. 또한 MoC 탄화물에 의한 결정립 미세화 효과가 있으므로 몰리브덴(Mo)의 함유량은 0.25 중량% 이하로 한정하였다.And, like chromium (Cr), molybdenum (Mo) is an element that improves strength and hardness characteristics through the generation of MoC carbide. In addition, since there is a grain refinement effect by MoC carbide, the content of molybdenum (Mo) is limited to 0.25% by weight or less.

그리고 알루미늄(Al)은 망간(Mn), 규소(Si)와 마찬가지로 탈산을 위해 첨가되는 원소이며 오스테나이트 결정립 미세화를 통한 인성을 개선시키는 효과가 있으나 과잉의 알루미늄(Al)는 산화알루미늄(Al2O3) 및 질화알루미늄(AlN)과 같은 산화물 및 개재물로 주물에 잔류하게 되어 주조결함 및 취성을 조장하게 되므로 알루미늄(Al)의 함유량은 0.030~0.060 중량%로 제한하도록 한다.And, like manganese (Mn) and silicon (Si), aluminum (Al) is an element added for deoxidation and has an effect of improving toughness through austenite grain refinement, but excess aluminum (Al) is aluminum oxide (Al 2 O). 3) and oxides and inclusions such as aluminum nitride (AlN) remain in the casting and promote casting defects and brittleness, so the content of aluminum (Al) is limited to 0.030 to 0.060 wt%.

아울러, 티타늄(Ti)은 탄화물 핵생성 위치로 작용하여 오스테나이트 결정립 미세화를 촉진하기 위해 첨가되는 원소이며 인성을 개선시키는 효과가 있으나, 과잉의 티타늄(Ti)은 용강 중 매우 큰 주석(TiN)이 정출하여 개재물 함량의 증가를 초래하며, 결과적으로 인성을 매우 감소시키고 조업 시 노즐막힘등의 문제로 인한 주조결함을 조장하게 되므로 티타늄(Ti)의 함유량은 0.025~0.045 중량%로 제한한다.In addition, titanium (Ti) acts as a carbide nucleation site and is an element added to promote austenite grain refinement and has an effect of improving toughness, but excess titanium (Ti) is a very large tin (TiN) in molten steel. Crystallization causes an increase in the content of inclusions, and as a result, the toughness is greatly reduced and casting defects caused by problems such as nozzle clogging during operation are encouraged, so the content of titanium (Ti) is limited to 0.025 to 0.045 wt%.

더욱이, 인(P)과 황(S)은 불가피한 불순물로서 0.025 중량% 이하로 제한한다. Moreover, phosphorus (P) and sulfur (S) are unavoidable impurities and are limited to 0.025 wt% or less.

도 1은 본 발명에 따른 강도 및 내마모성이 우수한 광석파쇄용 주강의 열처리 순서를 나타낸 순서도이고, 도 2는 본 발명에 따른 강도 및 내마모성이 우수한 광석파쇄용 주강의 열처리 방법을 도식화하여 나타낸 공정순서도이다.1 is a flow chart showing the heat treatment procedure of the cast steel for ore crushing excellent in strength and wear resistance according to the present invention, and FIG. 2 is a process flow chart showing the heat treatment method of the cast steel for ore crushing excellent in strength and wear resistance according to the present invention. .

도면을 참조하면, 본 발명에 따른 강도 및 내마모성이 우수한 광석파쇄용 주강은 철(Fe)을 주성분으로 하고, 탄소(C) 0.26 ~ 0.31 중량%, 규소(Si) 1.00~1.35 중량%, 망간(Mn) 0.80 중량% 이하, 크롬(Cr) 1.95 중량% 이하, 몰리브덴(Mo) 0.25 중량% 이하, 알루미늄(Al) 0.030~0.060 중량%, 티타늄(Ti) 0.025~0.045 중량%를 포함하고, 나머지는 불가피한 불순물로 이루어진 강재를 용해/주입 단계(S110), 소입 열처리 단계(S120) 및 소려 열처리 단계(S130)를 거쳐 제조된다.Referring to the drawings, the cast steel for ore crushing excellent in strength and wear resistance according to the present invention contains iron (Fe) as a main component, carbon (C) 0.26 to 0.31 wt%, silicon (Si) 1.00 to 1.35 wt%, manganese ( Mn) 0.80 wt% or less, chromium (Cr) 1.95 wt% or less, molybdenum (Mo) 0.25 wt% or less, aluminum (Al) 0.030 to 0.060 wt%, titanium (Ti) 0.025 to 0.045 wt%, and the remainder It is manufactured through a melting/injecting step (S110), a quenching heat treatment step (S120), and an annealing heat treatment step (S130) of steel made of unavoidable impurities.

용해/주입 단계(S110)에서는 100톤 전기로에서 용해 후 사형주조를 수행하고, 이후 열처리로에서 소입 및 소려 열처리를 수행하게 된다.In the melting/injecting step (S110), sand casting is performed after melting in a 100-ton electric furnace, and then quenching and tempering heat treatment are performed in a heat treatment furnace.

소입 열처리 단계(S120)에서는 900~950℃에서 일정시간 가열하여 단상의 오스테나이트 조직을 얻고 소입(Quenching)한 후 마르텐사이트 조직을 얻게 된다. 이러한 소입은 강재를 0.055~0.075℃/sec, 바람직하게는 0.067℃/sec의 승온속도로 900~950℃로 승온 후 3~5시간동안 유지하고 8~10℃/sec의 냉각속도로 20~30℃, 바람직하게는 25℃ 범위까지 물 또는 오일을 통하여 강재를 급속히 냉각시킨다.In the quenching heat treatment step (S120), a single-phase austenite structure is obtained by heating at 900 to 950° C. for a predetermined time, and after quenching, a martensitic structure is obtained. In this quenching, the steel material is heated to 900 to 950 °C at a heating rate of 0.055 to 0.075 °C/sec, preferably 0.067 °C/sec, and then maintained for 3 to 5 hours, and 20 to 30 at a cooling rate of 8 to 10 °C/sec. The steel is rapidly cooled via water or oil to a range of ℃, preferably 25 ℃.

소려 열처리 단계(S130)에서는 250~290℃, 320~350℃ 각 온도조건에서 소려(Tempering) 열처리를 실시하여 마르텐사이트 결정립 내부에 미세한 시멘타이트(하부 베이나이트) 석출 및 잔류 오스테나이트 분해, 마르텐사이트 조직의 회복을 진행하도록 한다. 이러한 소려는 소재를 250℃~290℃ 온도조건에서 6~8시간 유지하고 공냉하거나, 320~350℃ 온도조건에서 4~6시간 유지하고 공냉한다.In the tempering heat treatment step (S130), tempering heat treatment is performed at each temperature condition of 250 to 290 ° C and 320 to 350 ° C. to proceed with the recovery of Such a soryeo material is maintained at a temperature of 250°C to 290°C for 6-8 hours and air-cooled, or at a temperature of 320°C to 350°C for 4-6 hours and air-cooled.

도 3은 본 발명에 따른 제조공정을 통해 제조된 주강품 샘플 미세조직을 광학현미경으로 분석한 결과를 나타낸 사진이고, 도 4는 본 발명에 따른 제조공정을 통해 제조된 주강품 샘플의 기계적 특성을 분석한 그래프이다.3 is a photograph showing the result of analyzing the microstructure of a cast steel sample manufactured through the manufacturing process according to the present invention with an optical microscope, and FIG. 4 is a mechanical characteristic analysis of the cast steel sample manufactured through the manufacturing process according to the present invention. It is a graph.

실시예 1과 실시예 2는 상기의 제조공정을 통해 제조되되, 실시예 1은 소려 열처리 과정에서 250℃ 온도조건에서 7시간 동안 소려된 주강품이며, 실시예 2는 소려 열처리 과정에서 350℃ 온도조건에서 5시간 동안 소려된 주강품이다.Example 1 and Example 2 are manufactured through the above manufacturing process, Example 1 is a cast steel tempered for 7 hours at 250 ℃ temperature condition in the tempering heat treatment process, Example 2 is a tempering heat treatment process at 350 ℃ temperature condition It is a cast steel that has been tempered for 5 hours.

도면을 참조하면, 실시예 1과 실시예 2에서와 같이 로크웰 경도는 48 HRC 이상, 인장강도는 1400 MPa 이상, 항복강도는 1200 MPa 이상, 연신율 5% 이상인 강재의 기계적 특성을 확보하는 것으로 나타난다.Referring to the drawings, as in Examples 1 and 2, the Rockwell hardness is 48 HRC or more, the tensile strength is 1400 MPa or more, the yield strength is 1200 MPa or more, and the mechanical properties of the steel are secured.

비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되어졌지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허등록청구의 범위는 본 발명의 요지에서 속하는 이러한 수정이나 변형을 포함할 것이다.Although the present invention has been described with reference to the above-mentioned preferred embodiments, various modifications and variations are possible without departing from the spirit and scope of the invention. Accordingly, the appended claims will cover such modifications and variations that fall within the scope of the present invention.

부호없음unsigned

Claims (5)

철(Fe)을 주성분으로 하는 광석파쇄용 주강에 있어서,
탄소(C) 0.26~0.31 중량%, 규소(Si) 1.00~1.35 중량%, 망간(Mn) 0.80 중량% 이하, 크롬(Cr) 1.95 중량% 이하, 몰리브덴(Mo) 0.25 중량% 이하, 알루미늄(Al) 0.030~0.060 중량%, 티타늄(Ti) 0.025~0.045 중량%를 포함하는 것을 특징으로 하는 강도 및 내마모성이 우수한 광석파쇄용 주강.
In the cast steel for ore crushing containing iron (Fe) as a main component,
Carbon (C) 0.26 to 0.31 wt%, silicon (Si) 1.00 to 1.35 wt%, manganese (Mn) 0.80 wt% or less, chromium (Cr) 1.95 wt% or less, molybdenum (Mo) 0.25 wt% or less, aluminum (Al) ) 0.030 to 0.060 wt%, titanium (Ti) 0.025 to 0.045 wt% cast steel for crushing ore excellent in strength and wear resistance, characterized in that it contains.
철(Fe)을 주성분으로 하고, 탄소(C) 0.26 ~ 0.31 중량%, 규소(Si) 1.00~1.35 중량%, 망간(Mn) 0.80 중량% 이하, 크롬(Cr) 1.95 중량% 이하, 몰리브덴(Mo) 0.25 중량% 이하, 알루미늄(Al) 0.030~0.060 중량%, 티타늄(Ti) 0.025~0.045 중량%를 포함하는 강재를 전기로에서 용해 후 사형주조를 수행하는 단계,
상기 사형주조 이후 강재를 소입 열처리하는 단계 및 소려 열처리하는 단계를 포함하는 것을 특징으로 하는 강도 및 내마모성이 우수한 광석파쇄용 주강의 제조방법.
Iron (Fe) as a main component, carbon (C) 0.26 to 0.31 wt%, silicon (Si) 1.00 to 1.35 wt%, manganese (Mn) 0.80 wt% or less, chromium (Cr) 1.95 wt% or less, molybdenum (Mo) ) 0.25% by weight or less, aluminum (Al) 0.030 ~ 0.060% by weight, titanium (Ti) 0.025 ~ 0.045% by weight of a steel material containing 0.025 ~ 0.045% by weight of melting in an electric furnace, followed by sand casting;
A method for producing cast steel for crushing ore having excellent strength and wear resistance, characterized in that it comprises the steps of quenching heat treatment and tempering heat treatment after the sand casting.
제 2항에 있어서,
상기 소입 열처리 단계에서는 강재를 0.055~0.075℃/sec의 승온속도로 900~950℃로 승온 후 3~5시간동안 유지하고 8~10℃/sec의 냉각속도로 20~30℃ 범위까지 물 또는 오일을 통하여 강재를 급속히 냉각시키는 것을 특징으로 하는 강도 및 내마모성이 우수한 광석파쇄용 주강의 제조방법.
3. The method of claim 2,
In the quenching heat treatment step, the steel is heated to 900 to 950 °C at a temperature increase rate of 0.055 to 0.075 °C/sec, then maintained for 3 to 5 hours, and water or oil up to 20-30 °C at a cooling rate of 8 to 10 °C/sec. A method for producing cast steel for ore crushing with excellent strength and wear resistance, characterized in that the steel is rapidly cooled through
제 3항에 있어서,
상기 소려 열처리 단계에서는 250~290℃ 또는 320~350℃ 각 온도조건에서 소려 열처리가 수행되는 것을 특징으로 하는 강도 및 내마모성이 우수한 광석파쇄용 주강의 제조방법.
4. The method of claim 3,
In the tempering heat treatment step, tempering heat treatment is performed at each temperature condition of 250 to 290°C or 320 to 350°C.
제 4항에 있어서,
상기 소려 열처리 단계에서 상기 강재를 250℃~290℃ 온도조건에서 6~8시간 유지하고 공냉시키거나, 320~350℃ 온도조건에서 4~6시간 유지하고 공냉시키는 것을 특징으로 하는 강도 및 내마모성이 우수한 광석파쇄용 주강의 제조방법.
5. The method of claim 4,
In the tempering heat treatment step, the steel material is maintained at a temperature of 250 ° C. to 290 ° C. for 6 to 8 hours and air-cooled, or maintained at a temperature of 320 to 350 ° C. for 4 to 6 hours and air-cooled. A method for producing cast steel for crushing ore.
KR1020200185620A 2020-12-29 2020-12-29 Casting steel for ore crushing with excellent strength and its manufacturing methods KR20220094420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200185620A KR20220094420A (en) 2020-12-29 2020-12-29 Casting steel for ore crushing with excellent strength and its manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200185620A KR20220094420A (en) 2020-12-29 2020-12-29 Casting steel for ore crushing with excellent strength and its manufacturing methods

Publications (1)

Publication Number Publication Date
KR20220094420A true KR20220094420A (en) 2022-07-06

Family

ID=82399959

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200185620A KR20220094420A (en) 2020-12-29 2020-12-29 Casting steel for ore crushing with excellent strength and its manufacturing methods

Country Status (1)

Country Link
KR (1) KR20220094420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115725909A (en) * 2022-12-21 2023-03-03 郑州海特机械有限公司 Manufacturing method of mine bucket tooth

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100504365B1 (en) 2000-08-19 2005-07-29 주식회사 포스코 Manufacturing method of sinter ore in high combined water ore mixing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100504365B1 (en) 2000-08-19 2005-07-29 주식회사 포스코 Manufacturing method of sinter ore in high combined water ore mixing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115725909A (en) * 2022-12-21 2023-03-03 郑州海特机械有限公司 Manufacturing method of mine bucket tooth
CN115725909B (en) * 2022-12-21 2023-10-24 郑州海特机械有限公司 Manufacturing method of mine bucket tooth

Similar Documents

Publication Publication Date Title
KR101165654B1 (en) Abrasion-resistant steel sheet having excellent processability, and method for production thereof
JP5423806B2 (en) High toughness wear resistant steel and method for producing the same
JP4650013B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
AU2013344748B2 (en) Method for the production of high-wear-resistance martensitic cast steel and steel with said characteristics
AU2013302197B2 (en) Method for producing molten steel having high wear resistance and steel having said characteristics
US20070231183A1 (en) Martensite Wear-Resistant Cast Steel with Film Austenite for Enhancement of Toughness and Method of Producing the Cast Street
CN108950432B (en) Manufacturing method of high-strength and high-toughness low-alloy wear-resistant steel
JP2013213255A (en) Hot working die steel
CN114729435A (en) High-hardness wear-resistant steel with excellent low-temperature impact toughness and manufacturing method thereof
JPWO2017115842A1 (en) Case-hardened steel, carburized parts and method for producing case-hardened steel
JP4893181B2 (en) Casting for wear-resistant member for crusher / crusher and method for producing the same
CN1276113C (en) High boron foundry iron base anti-wear alloy and its heat treatment method
CN106756565A (en) HB500 grades of Micro Alloying wear-resisting steel plate and its manufacture method
CN101497965B (en) Steel for cutting edge of shovel of loader and digger and production method thereof
CN103572176B (en) A kind of low-carbon martensitic steels and prepare the method for suspension ring
JP4645307B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP6729522B2 (en) Thick wear-resistant steel plate, method of manufacturing the same, and method of manufacturing wear-resistant member
KR20220094420A (en) Casting steel for ore crushing with excellent strength and its manufacturing methods
KR20160010930A (en) (High wear-resistant cold work tool steels with enhanced impact toughness
CN103243277A (en) HB 400 grade crack-resisting martensite wear-resistant steel with high strength and production method
JP5050515B2 (en) Non-tempered steel containing V for crankshaft
JPWO2020039485A1 (en) Steel plate and method of manufacturing the same
JPWO2019035401A1 (en) Steel with high hardness and excellent toughness
JP4645306B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP6791179B2 (en) Non-microalloyed steel and its manufacturing method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal