KR20220090068A - MANUFACTURING METHOD FOR MOLYBDEN DISUlFIDE CATALYST ELECTRODE FOR SEAWATER BATTERY AND MOLYBDEN DISUlFIDE CATALYST ELECTRODE - Google Patents

MANUFACTURING METHOD FOR MOLYBDEN DISUlFIDE CATALYST ELECTRODE FOR SEAWATER BATTERY AND MOLYBDEN DISUlFIDE CATALYST ELECTRODE Download PDF

Info

Publication number
KR20220090068A
KR20220090068A KR1020200180883A KR20200180883A KR20220090068A KR 20220090068 A KR20220090068 A KR 20220090068A KR 1020200180883 A KR1020200180883 A KR 1020200180883A KR 20200180883 A KR20200180883 A KR 20200180883A KR 20220090068 A KR20220090068 A KR 20220090068A
Authority
KR
South Korea
Prior art keywords
mos
catalyst electrode
manufacturing
seawater battery
electrode
Prior art date
Application number
KR1020200180883A
Other languages
Korean (ko)
Other versions
KR102548276B1 (en
Inventor
강석주
유종훈
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Priority to KR1020200180883A priority Critical patent/KR102548276B1/en
Publication of KR20220090068A publication Critical patent/KR20220090068A/en
Application granted granted Critical
Publication of KR102548276B1 publication Critical patent/KR102548276B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/886Powder spraying, e.g. wet or dry powder spraying, plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 해수전지용 MoS2 촉매 전극 제조방법 및 이에 의해 제조된 MoS2 촉매 전극에 관한 것으로, 이황화몰리브덴(MoS2)을 카본소재에 코팅하는 단계; 및 상기 MoS2가 코팅된 카본소재를 줄-발열 열처리하는 단계; 를 포함함으로써 간단한 제조방법으로 해수전지용 MoS2 촉매 전극을 제조할 수 있으므로, 제조가 용이하고 생산성 및 경제성 또한 우수하다.The present invention relates to a method for manufacturing a MoS 2 catalyst electrode for a seawater battery and a MoS 2 catalyst electrode prepared thereby, comprising: coating molybdenum disulfide (MoS 2 ) on a carbon material; and Joule-heating heat treatment of the MoS 2 coated carbon material; By including the MoS 2 catalyst electrode for a seawater battery can be manufactured by a simple manufacturing method, it is easy to manufacture and has excellent productivity and economical efficiency.

Description

해수전지용 이황화몰리브덴 촉매 전극 제조방법 및 이에 의해 제조된 이황화몰리브덴 촉매 전극{MANUFACTURING METHOD FOR MOLYBDEN DISUlFIDE CATALYST ELECTRODE FOR SEAWATER BATTERY AND MOLYBDEN DISUlFIDE CATALYST ELECTRODE}Molybdenum disulfide catalyst electrode manufacturing method for seawater battery and molybdenum disulfide catalyst electrode manufactured thereby

본 발명은 해수전지 양극용 이황화몰리브덴(MoS2) 촉매 전극 제조방법 및 이에 의해 제조된 이황화몰리브덴(MoS2) 촉매 전극에 관한 것이다.The present invention relates to a method for manufacturing a molybdenum disulfide (MoS 2 ) catalyst electrode for a seawater battery positive electrode and a molybdenum disulfide (MoS 2 ) catalyst electrode prepared thereby.

현대사회에서는 기술발전과 함께 에너지의 중요성도 커지고 있으며, 화석에너지처럼 고갈 문제 및 환경오염 문제없이 지속적으로 이용 가능하며 친환경적인 깨끗한 에너지를 개발하기 위한 연구가 많이 진행되고 있다. 그 결과로 환경을 이용하는 태양열/광, 풍력 에너지 등이 개발되었다. 그러나 상기한 친환경적인 에너지원들은 흐리거나 바람이 불지 않는 등의 경우에는 이용할 수 없어 에너지를 만들 수 없기 때문에 친환경적으로 만든 에너지를 저장하는 기술의 중요성 또한 증가하고 있다.In modern society, along with technological development, the importance of energy is increasing, and many studies are being conducted to develop environmentally friendly clean energy that can be used continuously without depletion and environmental pollution problems like fossil energy. As a result, solar/light and wind energy using the environment has been developed. However, since the above-mentioned eco-friendly energy sources cannot be used when it is cloudy or there is no wind, so that energy cannot be produced, the importance of a technology for storing environmentally friendly energy is also increasing.

현재 대표적인 에너지 저장방법으로 리튬이온전지를 들 수 있는데, 이 전지는 원료인 리튬이 비싸고 양이 한정되어 있다는 단점이 있다. 따라서 최근에는 리튬이온전지를 대체할 방법으로 해수전지에 대한 기술 개발이 부각되고 있다.Currently, a lithium ion battery is a typical energy storage method, but this battery has the disadvantage that lithium, a raw material, is expensive and the amount is limited. Therefore, in recent years, technology development for seawater batteries has been highlighted as a method to replace lithium-ion batteries.

해수전지는 바닷물(해수)에서 용이하게 얻을 수 있는 나트륨(Na)를 이용하여 전기를 저장하고 그 저장된 에너지를 제공하는 이차전지의 일종이다. 지구 표면적은 약 70%가 바다로 이루어져 있고, 그 중 약 35%가 이온으로 이루어져 있으며, 상기 35% 이온 중 나트륨 이온은 약 30.6%가 존재한다. 따라서 해수전지에 필요한 나트륨 이온을 고갈 염려 없이 저비용으로 쉽게 얻을 수 있는 점이 중요한 장점 중 하나이다.A seawater battery is a type of secondary battery that stores electricity using sodium (Na), which can be easily obtained from seawater (seawater), and provides the stored energy. About 70% of the Earth's surface area consists of the ocean, of which about 35% consists of ions, and about 30.6% of the sodium ions among the 35% ions are present. Therefore, one of the important advantages is that it can be easily obtained at low cost without worrying about depletion of sodium ions required for seawater batteries.

한편, 상기 해수 전지는 전기를 공급해 충전을 하게 되면, 양극에 있는 해수에서 나트륨 이온이 음극으로 이동하여 전지가 저장되고, 충전된 전기를 쓸 때, 즉 방전시에는 저장된 나트륨 이온이 다시 양극의 해수로 이동하면서 전기를 발생시키게 된다. 따라서 충전시 음극에서는 Na 환원, 양극에서는 산소 발생 반응이 일어나며, 방전시 음극에서는 Na 산화, 양극에서는 산소환원반응이 일어난다.On the other hand, when the seawater battery is charged by supplying electricity, sodium ions from the seawater at the positive electrode move to the negative electrode and the battery is stored. As it moves, electricity is generated. Therefore, during charging, Na reduction reaction occurs at the negative electrode and oxygen generation reaction occurs at the positive electrode. During discharge, Na oxidation occurs at the negative electrode and oxygen reduction reaction occurs at the positive electrode.

이에 따라, 해수전지의 효율을 높이기 위해서는 우수한 전기전도성을 가지는 양극 제조가 무엇보다 중요하다.Accordingly, in order to increase the efficiency of the seawater battery, it is most important to manufacture a positive electrode having excellent electrical conductivity.

종래, 양극은 열수합성(hydrothermal), 고온 열처리 합성 등의 방법으로 제조해왔으나, 제조 절차가 복잡하고, 고비용이 요구되어, 양극 제조의 경제성이 떨어질 뿐만아니라 제조된 양극의 효율 또한 떨어지는 문제점이 있어왔다.Conventionally, the positive electrode has been manufactured by methods such as hydrothermal and high-temperature heat treatment synthesis, but the manufacturing procedure is complicated and high cost is required, so there is a problem that not only the economic feasibility of manufacturing the positive electrode is deteriorated, but also the efficiency of the manufactured positive electrode is lowered. come.

따라서, 간단하고, 경제적인 방법으로 해수전지의 효율을 높일 수 있는 양극 제조에 대한 연구가 필요한 실정이다.Therefore, there is a need for research on manufacturing a positive electrode capable of increasing the efficiency of a seawater battery in a simple and economical way.

1. 대한민국 공개특허 제10-2018-0003813호(2018.01.10. 공개)1. Republic of Korea Patent Publication No. 10-2018-0003813 (published on Jan. 10, 2018)

본 발명의 목적은 간단하고, 경제적인 방법으로 해수전지의 효율을 높일 수 있는 양극 제조방법을 제공하는 데에 있다.An object of the present invention is to provide a method for manufacturing a positive electrode capable of increasing the efficiency of a seawater battery in a simple and economical way.

또한, 본 발명의 다른 목적은 상기 제조방법으로 제조된 양극 및 이를 이용한 해수전지를 제공하는 하는 데에 있다.Another object of the present invention is to provide a positive electrode manufactured by the above manufacturing method and a seawater battery using the same.

상기 목적을 달성하기 위하여, 본 발명은 이황화몰리브덴(MoS2)을 카본소재에 코팅하는 단계; 및 상기 MoS2가 코팅된 카본소재를 줄-발열 열처리하는 단계; 를 포함하는 MoS2 촉매 전극 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of coating molybdenum disulfide (MoS 2 ) on a carbon material; and Joule-heating heat treatment of the MoS 2 coated carbon material; MoS 2 It provides a catalyst electrode manufacturing method comprising a.

또한, 본 발명은 상기의 MoS2 촉매 전극 제조방법에 의해 제조된 MoS2 촉매 전극을 제공한다.In addition, the present invention is the MoS 2 MoS 2 prepared by the catalyst electrode manufacturing method A catalyst electrode is provided.

또한, 본 발명은 상기 MoS2 촉매 전극을 포함하는 해수전지를 제공한다.In addition, the present invention is the MoS 2 A seawater battery including a catalyst electrode is provided.

본 발명에 따른 해수전지용 MoS2 촉매 전극은 간단한 제조방법으로 제조되므로, 제조가 용이하고 생산성 및 경제성 또한 우수하다.Since the MoS 2 catalyst electrode for seawater battery according to the present invention is manufactured by a simple manufacturing method, it is easy to manufacture and has excellent productivity and economy.

또한, 본 발명에 따라 제조된 MoS2 촉매 전극은 해수전지의 양극으로 이용되어, 해수전지의 충ㆍ방전 전압차를 감소시키고, 출력을 증가시켜 결과적으로 해수전지의 효율을 높일 수 있다.In addition, the MoS 2 catalyst electrode prepared according to the present invention is used as an anode of a seawater battery, reduces the difference in charge and discharge voltage of the seawater battery, and increases the output, thereby increasing the efficiency of the seawater battery.

도 1은 본 발명의 한 구체예에 따른 MoS2 촉매 전극 제조방법을 나타낸 개략도이다.
도 2는 본 발명의 한 구체예에 따라 제조된 MoS2 촉매 전극의 주사전자현미경(scanning electron microscope; SEM) 이미지를 나타낸 도면이다.
도 3은 본 발명의 한 구체예에 따라 제조된 MoS2 촉매 전극의 에너지분산형 분광분석법(Energy-Dispersive X-ray spectroscopy; EDX) 결과를 나타낸 도면이다.
도 4는 본 발명의 한 구체예에 따라 제조된 MoS2 촉매 전극의 X-레이 회절(X-ray diffraction; XRD) 결과를 나타낸 도면이다.
도 5는 본 발명의 한 구체예에 따라 줄-발열 시간에 따른 해수전지 성능 평가 결과를 나타낸 도면이다(a-해수전지의 용량(capacity)에 따른 충ㆍ방전 전압 그래프, b-해수전지의 출력 특성 그래프, c-줄-발열 시간에 따른 해수전지의 충전전압 및 최대출력을 나타낸 그래프).
도 6은 본 발명의 한 구체예에 따라 스프레이 코팅 시간에 따른 해수전지 성능 평가 결과를 나타낸 도면이다(a-해수전지의 용량(capacity)에 따른 충ㆍ방전 전압 그래프, b-해수전지의 출력 특성 그래프, c-스프레이 코팅 시간에 따른 해수전지의 충전전압 및 최대출력을 나타낸 그래프).
도 7은 본 발명의 한 구체예에 따라 스프레이 성분에 따른 해수전지 성능 평가 결과를 나타낸 도면이다(a-해수전지의 용량(capacity)에 따른 충ㆍ방전 전압 그래프, b-해수전지의 출력 특성 그래프).
도 8은 본 발명의 한 구체예에 따라 열처리 방법에 따른 해수전지 성능 평가 결과를 나타낸 도면이다(a-열처리 조건에 따른 MoS2/carbon felt 전극의 이미지, b-해수전지의 용량(capacity)에 따른 충ㆍ방전 전압 그래프).
도 9는 본 발명의 한 구체예에 따라 최적 조건에 따른 해수전지 성능 평가 결과를 나타낸 도면이다(a-해수전지의 용량(capacity)에 따른 충ㆍ방전 전압 그래프, b-해수전지의 출력 특성 그래프).
도 10은 본 발명의 한 구체예에 따른 해수전지를 나타낸 도면이다.
1 is a schematic diagram showing a MoS 2 catalyst electrode manufacturing method according to an embodiment of the present invention.
2 is a view showing a scanning electron microscope (SEM) image of the MoS 2 catalyst electrode prepared according to an embodiment of the present invention.
3 is a diagram showing the results of energy-dispersive X-ray spectroscopy (EDX) of the MoS 2 catalyst electrode prepared according to an embodiment of the present invention.
Figure 4 is a diagram showing the X-ray diffraction (X-ray diffraction; XRD) results of the MoS 2 catalyst electrode prepared according to an embodiment of the present invention.
5 is a view showing the seawater battery performance evaluation results according to the Joule-heating time according to an embodiment of the present invention (a-charging/discharging voltage graph according to the capacity of the seawater battery, b- output of the seawater battery Characteristic graph, c-Joule-Graph showing charging voltage and maximum output of seawater battery according to heating time).
6 is a view showing the seawater battery performance evaluation results according to the spray coating time according to an embodiment of the present invention (a-charging/discharging voltage graph according to the capacity of the seawater battery, b- output characteristics of the seawater battery Graph, c-Graph showing charging voltage and maximum output of seawater battery according to spray coating time).
7 is a view showing the seawater battery performance evaluation results according to the spray component according to one embodiment of the present invention (a-charging/discharging voltage graph according to the capacity of the seawater battery, b- output characteristic graph of the seawater battery ).
8 is a view showing the seawater battery performance evaluation results according to the heat treatment method according to one embodiment of the present invention (a- MoS 2 /carbon felt electrode image according to heat treatment conditions, b- the capacity (capacity) of the seawater battery charging/discharging voltage graph).
9 is a view showing the seawater battery performance evaluation results according to the optimal conditions according to an embodiment of the present invention (a-charging/discharging voltage graph according to the capacity of the seawater battery, b- output characteristic graph of the seawater battery ).
10 is a view showing a seawater battery according to an embodiment of the present invention.

이하에서는 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 상용 이황화몰리브덴(MoS2) 스프레이를 카본소재에 도포하여 코팅하고, 이를 줄-발열 열처리하여 간단한 방법에 의해 MoS2 촉매 전극을 제조하였으며, 이는 해수전지의 양극으로 이용하였을 때, 낮은 충전(Oxygen evolution reaction; OER) 전압, 낮은 충ㆍ방전 전압차 및 최대출력을 증가시킬 수 있음을 밝혀내어 본 발명을 완성하였다.The present inventors applied a commercial molybdenum disulfide (MoS 2 ) spray to a carbon material and coated it, and this was subjected to Joule-heat heat treatment to prepare a MoS 2 catalyst electrode by a simple method, which was used as a cathode of a seawater battery. (Oxygen evolution reaction; OER) voltage, low charge/discharge voltage difference, and found that it can increase the maximum output, completed the present invention.

본 발명은 이황화몰리브덴(MoS2)을 카본소재에 코팅하는 단계; 및 상기 MoS2가 코팅된 카본소재를 줄-발열 열처리하는 단계; 를 포함하는 MoS2 촉매 전극 제조방법을 제공한다.The present invention comprises the steps of coating molybdenum disulfide (MoS 2 ) on a carbon material; and Joule-heating heat treatment of the MoS 2 coated carbon material; MoS 2 It provides a catalyst electrode manufacturing method comprising a.

이때, 상기 이황화몰리브덴(MoS2)은 스프레이 코팅에 의해 카본소재 표면에 도포하여 형성하는 것을 특징으로 하며, 상기 이황화몰리브덴(MoS2) 스프레이는 균일한 코팅과 줄-발열 시, MoS2 이외 잔여물을 남겨두지 않기 위해 8% 이상 20% 미만의 MoS2를 함유하고 있으며, 이소프로필알콜, 자일렌, 1,2-디클로로에틸렌 (트랜스), 디메틸에테르 등을 포함할 수 있고, 흑연, 중질 파라핀 정제유(석유) 등은 포함하지 않는 스프레이를 사용할 수 있다.At this time, the molybdenum disulfide (MoS 2 ) is characterized in that it is formed by coating on the surface of the carbon material by spray coating, and the molybdenum disulfide (MoS 2 ) spray is uniformly coated and joules - Residues other than MoS 2 during heat It contains 8% or more and less than 20% MoS 2 in order not to leave a residue, and may contain isopropyl alcohol, xylene, 1,2-dichloroethylene (trans), dimethyl ether, etc. (petroleum) etc. can be used for the spray which does not contain it.

본 발명의 한 구체예에 따르면, MoS2 외에 흑연 및 중질 파라핀 정제유(석유) 용매 성분을 포함하는 MoS2 스프레이를 이용한 경우, 충ㆍ방전 사이클(1st cycle)에서의 전압차(ㅿV)가 자일렌(Xylene) 용매를 포함하는 MoS2 스프레이를 이용한 경우 보다 증가되며, 최대출력 특성 또한 감소됨을 확인하여, 결과적으로 해수전지의 효율이 감소됨을 확인하였다.According to one embodiment of the present invention, when MoS 2 spray containing graphite and heavy paraffin refined oil (petroleum) solvent components in addition to MoS 2 is used, the voltage difference (ㅿV) in the charge/discharge cycle (1 st cycle) is It was confirmed that it was increased compared to the case of using MoS 2 spray containing a xylene solvent, and the maximum output characteristic was also decreased, and as a result, it was confirmed that the efficiency of the seawater battery was reduced.

또한, 상기 카본소재는 카본 섬유로 직조된 직물 또는 카본 섬유 부직포인 것을 특징으로 하나, 해수전지의 양극 집전체로 사용할 수 있는 것이라면 제한 없이 모두 이용 가능하다.In addition, the carbon material is characterized in that it is a woven fabric or carbon fiber nonwoven fabric made of carbon fiber, but any one that can be used as a positive electrode current collector of a seawater battery can be used without limitation.

또한, 상기 이황화몰리브덴(MoS2)을 카본소재에 코팅하는 시간은 1 내지 10초인 것을 특징으로 한다.In addition, the time for coating the molybdenum disulfide (MoS 2 ) on the carbon material is 1 to 10 seconds.

본 발명의 한 구체예에 따르면, 1초 코팅은 육안으로도 코팅이 균일하게 되지 않음을 확인하였으며, 3초에서 가장 낮은 충전(Oxygen evolution reaction; OER) 전압인 3.52 V와 최대출력인 8.82 mW를 나타냄을 확인함에 따라 최적 MoS2 코팅시간은 3초임을 확인하였다.According to one embodiment of the present invention, it was confirmed that the coating for 1 second was not uniform even with the naked eye, and in 3 seconds, the lowest charging (Oxygen evolution reaction; OER) voltage of 3.52 V and the maximum output of 8.82 mW It was confirmed that the optimum MoS 2 coating time was 3 seconds, as it was confirmed that the

또한, 상기 줄-발열 열처리 시간은 1 내지 10초인 것을 특징으로 한다.In addition, the Joule-heating heat treatment time is characterized in that 1 to 10 seconds.

상기 줄-발열은 이황화몰리브덴(MoS2)이 코팅된 카본소재에 전류를 흘려 그때의 전열 효과에 의해 이황화몰리브덴(MoS2)이 코팅된 카본소재를 가열하는 것으로, 즉, 열저항가열방식을 이용해 이황화몰리브덴(MoS2)이 코팅된 카본소재의 온도를 올리는 것이다.The Joule-heating is to heat the carbon material coated with molybdenum disulfide (MoS 2 ) by flowing an electric current to the carbon material coated with molybdenum disulfide (MoS 2 ) by the heat transfer effect at that time, that is, using a heat resistance heating method. Molybdenum disulfide (MoS 2 ) is to raise the temperature of the coated carbon material.

본 발명의 한 구체예에 따르면, 본 발명에 따라 줄-발열 열처리를 통해 제조된 MoS2/carbon felt 전극은 열처리를 수행하지 않은 MoS2/carbon felt 전극(No joule heating), 공기 분위기의 퍼니스(furnace)에서 500℃, 4시간 조건으로 열처리를 수행한 MoS2/carbon felt 전극에 비해 가장 낮은 충ㆍ방전 사이클(1st cycle)에서의 전압차(ㅿV)를 나타냄을 확인하였다.According to one embodiment of the present invention, the MoS 2 /carbon felt electrode manufactured through Joule-heating heat treatment according to the present invention is a MoS 2 /carbon felt electrode without heat treatment (No joule heating), an air atmosphere furnace ( It was confirmed that it exhibited the lowest voltage difference (ㅿV) in the charge/discharge cycle (1 st cycle) compared to the MoS 2 /carbon felt electrode that was heat-treated at 500° C. for 4 hours in a furnace.

또한, 공기 분위기의 퍼니스(furnace)에서 1000℃ 조건으로 열처리를 수행한 경우, 카본 구조가 파괴되어 올바른 촉매 합성이 이루어질 수 없었다(도 8a). 그러나 본 발명의 줄-발열 반응은 카본 구조의 탄화 온도인 600℃ 보다 더 높은 온도인 1000℃ 이상의 온도에서 반응이 이루어져도 짧은 시간 동안 비활성 기체 존재하에서 반응이 이루어지기 때문에 카본 구조의 파괴나 구조의 변화와 같은 부반응을 일으키지 않아, 카본 구조를 유지시킬 수 있었다(도 2, 3). 또한, 줄-발열 반응을 통해 스프레이에 포함된 불순물을 제거하여 결과적으로 카본펠트 상에 결정성이 높은 MoS2 만을 형성하도록 할 수 있었다(도 4).In addition, when heat treatment was performed at 1000° C. in an air atmosphere furnace, the carbon structure was destroyed, so that the correct catalyst synthesis could not be achieved ( FIG. 8A ). However, in the Joule-exothermic reaction of the present invention, even if the reaction is made at a temperature of 1000°C or higher, which is higher than the carbonization temperature of the carbon structure, 600°C, the reaction is performed in the presence of an inert gas for a short time, so the destruction of the carbon structure or damage to the structure It did not cause side reactions such as changes, and it was possible to maintain the carbon structure ( FIGS. 2 and 3 ). In addition, by removing the impurities contained in the spray through the Joule-exothermic reaction, it was possible to form only MoS 2 having high crystallinity on the carbon felt as a result (FIG. 4).

또한, 본 발명의 한 구체예에 따르면, 5초의 줄-발열 열처리 시간에서 가장 낮은 충전(Oxygen evolution reaction; OER) 전압인 3.45 V와 최대출력인 8.56 mW를 나타냄을 확인함에 따라 최적 줄-발열 열처리 시간은 5초임을 확인하였다.In addition, according to one embodiment of the present invention, as it was confirmed that the lowest charging (Oxygen evolution reaction; OER) voltage of 3.45 V and the maximum output of 8.56 mW in the Joule-exothermic heat treatment time of 5 seconds, the optimum Joule-exothermic heat treatment It was confirmed that the time was 5 seconds.

또한, 상기 이황화몰리브덴(MoS2)을 카본소재에 코팅하고, 상온에서 10 내지 15시간 동안 건조하는 단계; 를 더 포함할 수도 있으나, 상기 과정을 포함할 수도, 포함하지 않을 수도 있고, 바람직하게는 상온에서 12시간 동안 건조할 수 있으나, 이에 제한되는 것은 아니다.In addition, the step of coating the molybdenum disulfide (MoS 2 ) on a carbon material, and drying at room temperature for 10 to 15 hours; It may further include, but may or may not include the above process, and preferably may be dried at room temperature for 12 hours, but is not limited thereto.

또한, 본 발명은 상기 MoS2 촉매 전극 제조방법에 의해 제조된 MoS2 촉매 전극을 제조한다. 상기 MoS2 촉매 전극은 해수전지의 양극 용도로 사용될 수 있다. 본 발명에 따른 MoS2 촉매 전극 제조방법에 의해 제조된 MoS2 촉매 전극은 전기화학적 성능이 우수하고, 제조가 용이하고 생산성 및 경제성이 우수하여 해수전지용 양극에 사용되기 적합할 수 있다.In addition, the present invention is the MoS 2 MoS 2 prepared by the catalyst electrode manufacturing method A catalyst electrode is prepared. The MoS 2 The catalyst electrode can be used as an anode of a seawater battery. MoS 2 according to the present invention MoS 2 prepared by the catalyst electrode manufacturing method The catalyst electrode has excellent electrochemical performance, is easy to manufacture, and has excellent productivity and economy, so it may be suitable for use in a positive electrode for a seawater battery.

또한, 본 발명은 상기 MoS2 촉매 전극을 포함하는 해수전지를 제공한다. 도 10은 본 발명의 한 구체예에 따른 해수전지를 나타낸 것이다. 도 10을 참조하면, 해수전지(100)는 해수(seawater)를 포함하는 양극 전해질 및 상기 양극 전해질에 침지된 양극(12)을 포함하는 양극부(10); 음극 전해질 및 상기 음극 전해질에 침지된 음극(22)을 포함하는 음극부(20); 및 상기 양극부 및 음극부 사이에 위치되는 고체 전해질(30); 을 포함하며, 상기 양극은 양극 집전체의 표면에 촉매 코팅층이 형성된 것이며, 상기 양극은 전술한 MoS2 촉매 전극을 포함할 수 있다.In addition, the present invention is the MoS 2 A seawater battery including a catalyst electrode is provided. 10 shows a seawater battery according to an embodiment of the present invention. Referring to FIG. 10 , the seawater battery 100 includes a positive electrode part 10 including a positive electrode including seawater and a positive electrode 12 immersed in the positive electrolyte; a negative electrode part 20 including a negative electrode and a negative electrode 22 immersed in the negative electrolyte; and a solid electrolyte 30 positioned between the anode part and the cathode part; Including, the positive electrode is a catalyst coating layer is formed on the surface of the positive electrode current collector, the positive electrode may include the above-described MoS 2 catalyst electrode.

한 구체예에서 상기 양극부의 일측에는 해수가 유입되는 유입부(14) 및 양극부 내부의 양극 전해질이 배출되는 유출부(16)가 위치하며, 유입부(14)를 통해 양극부 내부에 해수의 지속적인 공급이 가능할 수 있다.In one embodiment, an inlet 14 through which seawater is introduced and an outlet 16 through which the anode electrolyte inside the anode is discharged are located on one side of the anode part, and the seawater enters the anode part through the inlet 14 A continuous supply may be possible.

한 구체예에서 고체 전해질(30)은, 고밀도 전해질층(32) 및 다공성 구조층(34)을 포함할 수 있으나, 이에 제한되지 않는다.In one embodiment, the solid electrolyte 30 may include, but is not limited to, a high-density electrolyte layer 32 and a porous structure layer 34 .

한 구체예에서 상기 음극은 소듐(sodium)계 금속을 포함할 수 있다.In one embodiment, the negative electrode may include a sodium-based metal.

한 구체예에서 상기 음극의 적어도 일 표면에는, 음극 활물질층이 더 형성될 수 있다. 상기 음극 활물질층은, 음극 활물질, 도전재 및 바인더를 포함할 수 있다.In one embodiment, on at least one surface of the negative electrode, an anode active material layer may be further formed. The anode active material layer may include an anode active material, a conductive material, and a binder.

한 구체예에서 상기 음극 전해질은, 비수성 유기용매 및 나트륨염 중 하나 이상을 포함할 수 있다. 상기 비수성 유기 용매는 상기 해수전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있다. 상기 나트륨염은 상기 비수성 유기 용매에 용해되어, 해수전지 내에서 나트륨 이온의 공급원으로 작용하여 상기 해수전지의 작동을 가능하게 하고, 양극과 음극 사이의 나트륨 이온의 이동을 촉진할 수 있다.In one embodiment, the negative electrolyte may include at least one of a non-aqueous organic solvent and a sodium salt. The non-aqueous organic solvent may serve as a medium through which ions involved in the electrochemical reaction of the seawater battery can move. The sodium salt may be dissolved in the non-aqueous organic solvent to act as a source of sodium ions in the seawater battery to enable the operation of the seawater battery, and to promote the movement of sodium ions between the positive electrode and the negative electrode.

한 구체예에서 상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 및 비양성자성 용매 중 하나 이상 포함할 수 있다. 상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있다. 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 1,1-디메틸에틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다.In one embodiment, the non-aqueous organic solvent may include one or more of carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, and aprotic solvents. Examples of the carbonate-based solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC), etc. may be used. Examples of the ester solvent include methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethylethyl acetate, methylpropionate, ethylpropionate, γ-butyrolactone, decanolide, valero. Lactone, mevalonolactone (mevalonolactone), caprolactone (caprolactone) and the like may be used. Dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc. may be used as the ether solvent, and cyclohexanone etc. may be used as the ketone solvent. have.

또한, 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류 설포란(sulfolane)류 등이 사용될 수 있다.In addition, as the alcohol-based solvent, ethyl alcohol, isopropyl alcohol, etc. may be used, and the aprotic solvent is R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, nitriles such as nitriles (which may contain a double bond aromatic ring or ether bond); amides such as dimethylformamide; dioxolanes such as 1,3-dioxolane; sulfolanes;

한 구체예에서 상기 나트륨염은 NaClO4, NaPF4, NaPF6, NaAsF6, NaCF3SO3, Na[(C2F5)3PF3] (NaFAP), Na[B(C2O4)2] (NaBOB), Na[N(SO2F)2] (NaFSI) 및 NaBeti (NaN[SO2C2F5]2) 중 하나 이상 포함할 수 있다.In one embodiment, the sodium salt is NaClO 4 , NaPF 4 , NaPF 6 , NaAsF 6 , NaCF 3 SO 3 , Na[(C 2 F 5 ) 3 PF 3 ] (NaFAP), Na[B(C 2 O 4 ) 2 ] (NaBOB), Na[N(SO 2 F) 2 ] (NaFSI), and NaBeti (NaN[SO 2 C 2 F 5 ] 2 ).

한 구체예에서 상기 나트륨염의 농도는 0.001 내지 10 M 일 수 있다. 보다 구체적으로, 0.1 내지 2.0 M 범위 내일 수 있다. 상기 나트륨염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 나트륨 이온이 효과적으로 이동할 수 있다.In one embodiment, the concentration of the sodium salt may be 0.001 to 10 M. More specifically, it may be in the range of 0.1 to 2.0 M. When the concentration of the sodium salt is included in the above range, the electrolyte may exhibit excellent electrolyte performance because it has appropriate conductivity and viscosity, and sodium ions may move effectively.

한 구체예에서 상기 고체 전해질은 나트륨 이온의 이동 속도가 빠르고 수용액 및 유기용액과 안정할 수 있는 물질을 포함할 수 있다. 예를 들면, 비정질 이온 전도도 물질(phosphorus-based glass, oxide-based glass, oxide/sulfide based glass), 나시콘(Na superionic conductor, NASICON), 나트륨황화물계 고체 전해질, 나트륨산화물계 고체 전해질, PEO-NaClO4 고분자 고체 전해질, 또는 이들의 조합을 포함할 수 있다.In one embodiment, the solid electrolyte may include a material that has a fast movement rate of sodium ions and is stable with an aqueous solution and an organic solution. For example, amorphous ion conductive material (phosphorus-based glass, oxide-based glass, oxide/sulfide based glass), Na superionic conductor (NASICON), sodium sulfide-based solid electrolyte, sodium oxide-based solid electrolyte, PEO- NaClO 4 polymer solid electrolyte, or a combination thereof.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it is to those of ordinary skill in the art to which the present invention pertains that the scope of the present invention is not limited by these examples according to the gist of the present invention. it will be self-evident

<< 실시예Example 1> 1> MoSMoS 22 촉매 양극 제조 Catalyst Anode Manufacturing

해수전지용 이황화몰리브덴(MoS2) 양극 촉매를 합성하기 위해, MoS2 스프레이(남방CNA주식회사의 nabamoly MoS2 Coat #3003몰레브덴 건조피막형 윤활제)를 1, 3, 5 및 10초 동안 흄후드 내에서 2cm2의 면적을 가지는 원형 카본 펠트 상단에 뿌려 코팅하였다. MoS2를 코팅한 카본 펠트는 상온에서 12시간 건조한 뒤, 아르곤 분위기를 유지하는 글러브박스 내로 이동시켰다. 이후, 줄-발열 반응을 수행하였으며, 줄-발열 실험은 MoS2가 코팅된 카본 펠트에 구리 호일을 연결하고, 아르곤 분위기 글러브박스 내에서 전원장치 (TDP-3010B, TOYOTECH, Korea)에 연결하였다. 10 A/s의 전류 펄스를 0~10초 동안 인가하여 불순물을 제거하는 과정을 거쳐 최종적으로 MoS2 촉매가 합성된 카본펠트 양극(이하 'MoS2 전극'이라 칭함)을 제조하였다(도 1).To synthesize molybdenum disulfide (MoS 2 ) anode catalyst for seawater batteries, MoS 2 spray (nabamoly MoS 2 Coat #3003 molybdenum dry film type lubricant from Nambang CNA Co., Ltd.) was applied in a fume hood for 1, 3, 5 and 10 seconds. It was coated by spraying on the top of the circular carbon felt having an area of 2 cm 2 . The carbon felt coated with MoS 2 was dried at room temperature for 12 hours, and then moved into a glove box maintaining an argon atmosphere. After that, a Joule-exothermic reaction was performed, and for the Joule-exothermic experiment, copper foil was connected to the carbon felt coated with MoS 2 , and it was connected to a power supply (TDP-3010B, TOYOTECH, Korea) in an argon atmosphere glove box. After a process of removing impurities by applying a current pulse of 10 A/s for 0 to 10 seconds, a carbon felt anode (hereinafter referred to as 'MoS 2 electrode') in which the MoS 2 catalyst was finally synthesized was prepared (FIG. 1) .

<< 실시예Example 2> 해수전지 성능 평가 2> Seawater battery performance evaluation

해수전지 성능은 소듐 메탈 음극 (크기: 지름 16cm) / 테트라 에틸렌 글리콜 디메틸 에테르[Tetra ethylene glycol dimethyl ether (TEGDME)] 중 1 M NaCF3SO3 를 포함하는 음극 전해액 / NASICON 고체전해질 분리막 / 해수 양극 전해액 및 상기 <실시예 1>에서 제조된 MoS2 전극을 양극으로 사용하여 전지를 제조한 후, 평가를 수행하였다. 충전, 방전 전류 및 시간은 0.5 mA로 2 시간 동안 진행하였으며, 파워 출력 측정의 경우, 0.5 mA 2시간 충전 후 전류 스캔 (0.01 mA/s 속도)을 진행하여 측정하였다.Seawater battery performance is sodium metal anode (size: diameter 16cm) / cathode electrolyte containing 1 M NaCF 3 SO 3 in tetra ethylene glycol dimethyl ether (TEGDME) / NASICON solid electrolyte separator / seawater anode electrolyte And after preparing a battery using the MoS 2 electrode prepared in <Example 1> as a positive electrode, evaluation was performed. Charging, discharging current and time were conducted at 0.5 mA for 2 hours, and in the case of power output measurement, 0.5 mA was charged for 2 hours and then current scan (0.01 mA/s rate) was performed to measure.

<< 실험예Experimental example 1> 물성 평가 1> Physical property evaluation

상기 <제조예 1>에서 대표적으로 MoS2 스프레이를 3초 동안 뿌려 카본펠트에 코팅시키고, 10 A/s의 전류 펄스로 5초간 줄-발열 반응시킨 MoS2 전극을 주사전자현미경(scanning electron microscope; SEM) 및 에너지분산형 분광분석법(Energy-Dispersive X-ray spectroscopy; EDX)를 이용하여 분석한 결과, 도 2, 3과 같이 카본펠트 상단에 균일하게 MoS2 촉매가 합성되어 있음을 확인하였으며, 본 발명에 따라 제조된 MoS2 전극은 카본펠트에 탄소(C) 원소가 포함되어 있으며, 카본펠트 상에 형성된 MoS2는 황(S) 및 몰리브덴(Mo)의 원소를 포함하고 있음을 확인하였다.In <Preparation Example 1>, MoS 2 spray was typically sprayed for 3 seconds and coated on carbon felt, and the MoS 2 electrode, which was subjected to a Joule-exothermic reaction with a current pulse of 10 A/s for 5 seconds, was subjected to a scanning electron microscope; As a result of analysis using SEM) and energy-dispersive X-ray spectroscopy (EDX), it was confirmed that the MoS 2 catalyst was uniformly synthesized on the top of the carbon felt as shown in FIGS. 2 and 3, and this MoS 2 electrode prepared according to the invention contains carbon (C) element in the carbon felt, MoS 2 formed on the carbon felt It was confirmed that it contains elements of sulfur (S) and molybdenum (Mo).

또한, 상기 <제조예 1>에서 대표적으로 MoS2 스프레이를 3초 동안 뿌려 카본펠트에 코팅시키고, 10 A/s의 전류 펄스로 1, 5, 10초간 줄-발열 반응시킨 MoS2 전극과 어떠한 처리도 하지 않은 카본펠트(carbon felt)만을 X-레이 회절(X-ray diffraction; XRD)을 이용하여 분석한 결과, 도 4와 같이, MoS2 전극은 카본펠트와 비교하여 전혀 다른 피크(peak) 패턴을 보였으며, 1, 5, 10초간 줄-발열 반응시킨 MoS2 전극 모두 높은 결정도를 가지는 2H상의 MoS2가 형성됨을 확인하였다.In addition, in <Preparation Example 1>, a typical MoS 2 spray was sprayed for 3 seconds and coated on carbon felt, and Joule-exothermic reaction with a current pulse of 10 A/s for 1, 5, 10 seconds MoS 2 electrode and any treatment As a result of analyzing only carbon felt, which is not shown, using X-ray diffraction (XRD), as shown in FIG. 4 , the MoS 2 electrode has a completely different peak pattern compared to carbon felt. , and it was confirmed that MoS 2 in 2H phase having high crystallinity was formed in all of the MoS 2 electrodes subjected to Joule-exothermic reaction for 1, 5, and 10 seconds.

<< 실험예Experimental example 2> 줄-발열 시간에 따른 해수전지 성능 평가 2> Seawater battery performance evaluation according to Joule-heating time

상기 <제조예 1>에서 줄-발열 반응시간을 0초(No joule heating), 1초, 5초 및 10초로 변경하였을 때, 도 5와 같이, 5초에서 가장 낮은 충전(Oxygen evolution reaction; OER) 전압인 3.45 V와 최대출력인 8.56 mW를 나타냄을 확인하였다.In <Preparation Example 1>, when the Joule-exothermic reaction time was changed to 0 seconds (No joule heating), 1 second, 5 seconds, and 10 seconds, as shown in FIG. 5, the lowest charge (Oxygen evolution reaction; OER) in 5 seconds ) It was confirmed that the voltage was 3.45 V and the maximum output was 8.56 mW.

따라서, 최적 줄-발열 조건은 10A, 5초임을 확인하였으며, 이후, 이 조건을 고정하여 실험을 수행하였다.Therefore, it was confirmed that the optimal Joule-heating condition was 10A, 5 seconds, and then, the experiment was performed by fixing this condition.

<< 실험예Experimental example 3> 스프레이 코팅 시간에 따른 해수전지 성능 평가 3> Seawater battery performance evaluation according to spray coating time

상기 <제조예 1>에서 줄-발열 반응 조건을 10A, 5초로 고정한 채, MoS2 코팅시간을 1, 3, 5 및 10초로 변경하였을 때, 1초 코팅은 육안으로도 코팅이 균일하게 되지 않음을 확인하였으며, 도 6과 같이, 3초에서 가장 낮은 충전(Oxygen evolution reaction; OER) 전압인 3.52 V와 최대출력인 8.82 mW를 나타냄을 확인하였다.In the <Preparation Example 1>, when the Joule-exothermic reaction condition was fixed to 10A, 5 seconds, and the MoS 2 coating time was changed to 1, 3, 5 and 10 seconds, the coating for 1 second was not uniform even with the naked eye. was confirmed, and as shown in FIG. 6 , it was confirmed that the lowest charging (oxygen evolution reaction; OER) voltage of 3.52 V and the maximum output of 8.82 mW were exhibited in 3 seconds.

따라서, 최적 MoS2 코팅시간은 3초임을 확인하였으며, 이후, 최적 줄-발열 조건 및 MoS2 코팅시간 조건을 고정하여 실험을 수행하였다.Therefore, it was confirmed that the optimum MoS 2 coating time was 3 seconds, and then, the experiment was performed by fixing the optimum Joule-heating conditions and MoS 2 coating time conditions.

<< 실험예Experimental example 4> 스프레이 성분에 따른 해수전지 성능 평가 4> Seawater battery performance evaluation according to spray components

상기 <실험예 2 내지 3>에서 확인한 최적 조건에서 사용되는 MoS2 스프레이에 포함된 성분이 다른 스프레이를 이용하여 해수전지 성능을 평가하였다.The performance of the seawater battery was evaluated using sprays having different components included in the MoS 2 spray used under the optimal conditions confirmed in <Experimental Examples 2 to 3>.

상기 <실시예 1>에서 사용된 MoS2 스프레이는 유효성분인 MoS2 외에 자일렌(Xylene) 용매 성분을 포함하고 있는 것으로, MoS2 외에 흑연 및 중질 파라핀 정제유(석유) 용매 성분을 포함하는 MoS2 스프레이를 이용하여 동일한 조건 하에서 비교 실험하였다.The MoS 2 spray used in <Example 1> contains a xylene solvent component in addition to MoS 2 as an active ingredient, and MoS 2 containing a solvent component of graphite and heavy paraffin refined oil (petroleum) in addition to MoS 2 A comparative experiment was conducted under the same conditions using a spray.

그 결과, 도 7과 같이, 본 발명에 따라 자일렌 용매 성분을 포함하는 MoS2 스프레이를 이용하여 제조된 MoS2/carbon felt 전극은 석유를 포함하는 스프레이를 이용하여 제조된 MoS2/carbon felt 전극에 비해 충ㆍ방전 사이클(1st cycle)에서의 전압차(ㅿV)가 약 0.81 V 감소함을 확인하였다. 또한, 최대출력 특성도 본 발명에 따라 제조된 MoS2/carbon felt 전극의 경우, 석유를 포함하는 스프레이를 이용하여 제조된 MoS2/carbon felt 전극에 비해 최대출력이 140% 이상 증가 되었음을 확인하였다.As a result, as shown in FIG. 7, the MoS 2 /carbon felt electrode manufactured using a MoS 2 spray containing a xylene solvent component according to the present invention is a MoS 2 /carbon felt electrode manufactured using a spray containing petroleum. It was confirmed that the voltage difference (ㅿV) in the charging/discharging cycle (1 st cycle) decreased by about 0.81 V compared to that. In addition, in the case of the MoS 2 /carbon felt electrode manufactured according to the present invention, the maximum output characteristics were also confirmed that the maximum output was increased by 140% or more compared to the MoS 2 /carbon felt electrode manufactured using a spray containing petroleum.

따라서, MoS2 스프레이는 중질 석유 등 고온에서 제거가 불가능한 불순물을 포함하지 않는 것이 최적 조건임을 확인하였다.Therefore, it was confirmed that the MoS 2 spray does not contain impurities that cannot be removed at high temperatures, such as heavy petroleum, as an optimal condition.

<< 실험예Experimental example 5> 열처리 방법에 따른 해수전지 성능 평가 5> Seawater battery performance evaluation according to heat treatment method

상기 <실험예 2 내지 4>에서 확인한 최적 조건에서 열처리 방법만 변경하여 해수전지 성능을 평가하였다.Seawater battery performance was evaluated by changing only the heat treatment method under the optimal conditions confirmed in <Experimental Examples 2 to 4>.

상기 <실험예 2>에서 확인한 최적 줄-발열 조건인 10A, 5초 실시예의 비교예로서 열처리를 수행하지 않은 경우(No joule heating), 공기 분위기의 퍼니스(furnace)에서 500℃, 4시간 및 1000℃, 1분의 조건으로 열처리한 경우를 비교 실험하였다.As a comparative example of the 10A, 5 second embodiment, which is the optimal Joule-heating condition confirmed in <Experimental Example 2>, when no heat treatment was performed (No joule heating), 500° C., 4 hours and 1000 A comparative experiment was carried out in the case of heat treatment at °C for 1 minute.

그 결과, 도 8(b)과 같이, 본 발명에 따라 제조된 MoS2/carbon felt 전극은 열처리를 수행하지 않은 MoS2/carbon felt 전극(No joule heating), 공기 분위기의 퍼니스(furnace)에서 500℃, 4시간 조건으로 열처리를 수행한 MoS2/carbon felt 전극에 비해 가장 낮은 충ㆍ방전 사이클(1st cycle)에서의 전압차(ㅿV)를 나타냄을 확인하였다. As a result, as shown in Fig. 8(b), the MoS 2 /carbon felt electrode prepared according to the present invention was not heat treated MoS 2 /carbon felt electrode (No joule heating), 500 in an air atmosphere furnace It was confirmed that it exhibited the lowest voltage difference (ㅿV) in the lowest charge/discharge cycle (1 st cycle) compared to the MoS 2 /carbon felt electrode that was heat-treated under the conditions of ℃, 4 hours.

또한, 도 8(a)에서와 같이, 공기 분위기의 퍼니스(furnace)에서 1000℃ 조건으로 열처리를 수행한 경우, 카본 구조가 파괴되어 올바른 촉매 합성이 이루어질 수 없었다. 그러나 본 발명의 줄-발열 반응은 카본 구조의 탄화 온도인 600℃ 보다 더 높은 온도인 1000℃ 이상의 온도에서 반응이 이루어져도 짧은 시간 동안 비활성 기체 존재하에서 반응이 이루어지기 때문에 카본 구조 파괴나 구조의 변화와 같은 부반응을 일으키지 않아, 카본 구조를 유지시킬 수 있었다(도 2, 3). 또한, 줄-발열 반응을 통해 스프레이에 포함된 불순물을 제거하여 결과적으로 카본펠트 상에 결정성이 높은 MoS2 만을 형성하도록 할 수 있었다(도 4).In addition, as shown in FIG. 8( a ), when heat treatment was performed at 1000° C. in a furnace in an air atmosphere, the carbon structure was destroyed, so that the correct catalyst synthesis could not be achieved. However, in the Joule-exothermic reaction of the present invention, even if the reaction is made at a temperature of 1000°C or higher, which is higher than the carbonization temperature of 600°C, the carbon structure is destroyed or the structure is changed because the reaction is performed in the presence of an inert gas for a short time. It did not cause side reactions such as, and was able to maintain the carbon structure ( FIGS. 2 and 3 ). In addition, it was possible to form only MoS 2 having high crystallinity on carbon felt by removing impurities contained in the spray through Joule-exothermic reaction (FIG. 4).

따라서, 본 발명에 따라 줄-발열 방법을 통해 제조되는 MoS2 전극은 해수전지의 양극으로써 이용되기에 최적 방법임을 확인하였다.Therefore, it was confirmed that the MoS 2 electrode prepared through the Joule-heating method according to the present invention is an optimal method to be used as the anode of the seawater battery.

<< 실험예Experimental example 6> 최적조건에 따른 해수전지 성능 평가 6> Seawater battery performance evaluation according to optimal conditions

본 발명에 따라 도출된 최적 제조방법에 따라 제조된 MoS2 전극과 어떠한 처리도 하지 않은 카본펠트(carbon felt only)를 비교예(control)로서 해수전지의 양극으로 이용하여 비교 실험하였다.A comparative experiment was conducted using the MoS 2 electrode prepared according to the optimal manufacturing method derived according to the present invention and carbon felt only without any treatment as a comparative example (control) as a positive electrode of a seawater battery.

그 결과, 도 9와 같이, 본 발명에 따라 합성된 MoS2 전극을 해수전지의 양극으로 사용하였을 때, carbon felt only 대비 약 53% 감소된 전압차를 나타냄을 확인하였으며, 최대출력 역시 종래 carbon felt only(5.88 mW) 대비 약 42% 증가한 8.36 mW로 뛰어난 성능을 나타내는 것으로 확인하였다.As a result, as shown in FIG. 9, when the MoS 2 electrode synthesized according to the present invention was used as the anode of the seawater battery, it was confirmed that the voltage difference was reduced by about 53% compared to carbon felt only, and the maximum output was also conventional carbon felt Only (5.88 mW) increased by about 42% to 8.36 mW, which was confirmed to show excellent performance.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, for those of ordinary skill in the art, it is clear that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (9)

이황화몰리브덴(MoS2)을 카본소재에 코팅하는 단계; 및
상기 MoS2가 코팅된 카본소재를 줄-발열 열처리하는 단계; 를 포함하는 MoS2 촉매 전극 제조방법.
Coating molybdenum disulfide (MoS 2 ) on a carbon material; and
Joule-heating heat treatment of the MoS 2 coated carbon material; MoS 2 catalyst electrode manufacturing method comprising a.
제 1항에 있어서,
상기 이황화몰리브덴(MoS2)은 스프레이 코팅에 의해 카본소재 표면에 도포하여 형성하는 것을 특징으로 하는 MoS2 촉매 전극 제조방법.
The method of claim 1,
The molybdenum disulfide (MoS 2 ) is MoS 2 characterized in that it is formed by coating on the surface of the carbon material by spray coating. A method for manufacturing a catalyst electrode.
제 2항에 있어서,
상기 이황화몰리브덴(MoS2) 스프레이는 중질 석유를 포함하지 않는 것을 특징으로 하는 MoS2 촉매 전극 제조방법.
3. The method of claim 2,
The molybdenum disulfide (MoS 2 ) spray is MoS 2 , characterized in that it does not contain heavy petroleum A method for manufacturing a catalyst electrode.
제 1항에 있어서,
상기 카본소재는 카본 섬유로 직조된 직물 또는 카본 섬유 부직포인 것을 특징으로 하는 MoS2 촉매 전극 제조방법.
The method of claim 1,
The carbon material is MoS 2 catalyst electrode manufacturing method, characterized in that the carbon fiber woven fabric or carbon fiber nonwoven fabric.
제 1항에 있어서,
상기 코팅 시간은 1 내지 10초인 것을 특징으로 하는 MoS2 촉매 전극 제조방법.
The method of claim 1,
MoS 2 characterized in that the coating time is 1 to 10 seconds A method for manufacturing a catalyst electrode.
제 1항에 있어서,
상기 줄-발열 열처리 시간은 1 내지 10초인 것을 특징으로 하는 MoS2 촉매 전극 제조방법.
The method of claim 1,
The Joule - MoS 2 characterized in that the exothermic heat treatment time is 1 to 10 seconds A method for manufacturing a catalyst electrode.
제 1항에 있어서,
상기 이황화몰리브덴(MoS2)을 카본소재에 코팅하고, 상온에서 10 내지 15시간 동안 건조하는 단계; 를 더 포함하는 것을 특징으로 하는 MoS2 촉매 전극 제조방법.
The method of claim 1,
Coating the molybdenum disulfide (MoS 2 ) on a carbon material, and drying at room temperature for 10 to 15 hours; MoS 2 characterized in that it further comprises A method for manufacturing a catalyst electrode.
제 1항 내지 제 7항 중 어느 한 항의 MoS2 촉매 전극 제조방법에 의해 제조된 MoS2 촉매 전극.MoS 2 of any one of claims 1 to 7 MoS 2 Catalyst electrode prepared by the catalyst electrode manufacturing method. 제 8항의 MoS2 촉매 전극을 포함하는 해수전지.
MoS 2 of claim 8 A seawater battery comprising a catalyst electrode.
KR1020200180883A 2020-12-22 2020-12-22 MANUFACTURING METHOD FOR MOLYBDEN DISUlFIDE CATALYST ELECTRODE FOR SEAWATER BATTERY AND MOLYBDEN DISUlFIDE CATALYST ELECTRODE KR102548276B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200180883A KR102548276B1 (en) 2020-12-22 2020-12-22 MANUFACTURING METHOD FOR MOLYBDEN DISUlFIDE CATALYST ELECTRODE FOR SEAWATER BATTERY AND MOLYBDEN DISUlFIDE CATALYST ELECTRODE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200180883A KR102548276B1 (en) 2020-12-22 2020-12-22 MANUFACTURING METHOD FOR MOLYBDEN DISUlFIDE CATALYST ELECTRODE FOR SEAWATER BATTERY AND MOLYBDEN DISUlFIDE CATALYST ELECTRODE

Publications (2)

Publication Number Publication Date
KR20220090068A true KR20220090068A (en) 2022-06-29
KR102548276B1 KR102548276B1 (en) 2023-06-28

Family

ID=82269995

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200180883A KR102548276B1 (en) 2020-12-22 2020-12-22 MANUFACTURING METHOD FOR MOLYBDEN DISUlFIDE CATALYST ELECTRODE FOR SEAWATER BATTERY AND MOLYBDEN DISUlFIDE CATALYST ELECTRODE

Country Status (1)

Country Link
KR (1) KR102548276B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140110373A (en) * 2013-03-07 2014-09-17 경상대학교산학협력단 Sodium-Sulfur battery of atmospheric temperature
JP2014220115A (en) * 2013-05-08 2014-11-20 パナソニック株式会社 Sodium secondary battery
KR20160121998A (en) * 2015-04-13 2016-10-21 울산과학기술원 Secondary battery and pouch type secondary battery
KR20160133861A (en) * 2015-05-13 2016-11-23 울산과학기술원 Large area solid electrolyte, and rechargeable battery including the same
CN106663779A (en) * 2014-08-07 2017-05-10 中央研究院 Method of preparation a battery electrode by spray coating, an electrode and a battery made by method thereof
WO2018003724A1 (en) * 2016-07-01 2018-01-04 日本電信電話株式会社 Battery and method for producing positive electrode for same
KR20180003813A (en) 2016-07-01 2018-01-10 울산과학기술원 A battery using solution containing sodium and attachable battery
US20180369771A1 (en) * 2017-06-22 2018-12-27 University Of Maryland Nanoparticles and systems and methods for synthesizing nanoparticles through thermal shock
KR101953228B1 (en) * 2017-09-18 2019-02-28 울산과학기술원 Secondary Battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140110373A (en) * 2013-03-07 2014-09-17 경상대학교산학협력단 Sodium-Sulfur battery of atmospheric temperature
JP2014220115A (en) * 2013-05-08 2014-11-20 パナソニック株式会社 Sodium secondary battery
CN106663779A (en) * 2014-08-07 2017-05-10 中央研究院 Method of preparation a battery electrode by spray coating, an electrode and a battery made by method thereof
KR20160121998A (en) * 2015-04-13 2016-10-21 울산과학기술원 Secondary battery and pouch type secondary battery
KR20160133861A (en) * 2015-05-13 2016-11-23 울산과학기술원 Large area solid electrolyte, and rechargeable battery including the same
WO2018003724A1 (en) * 2016-07-01 2018-01-04 日本電信電話株式会社 Battery and method for producing positive electrode for same
KR20180003813A (en) 2016-07-01 2018-01-10 울산과학기술원 A battery using solution containing sodium and attachable battery
US20180369771A1 (en) * 2017-06-22 2018-12-27 University Of Maryland Nanoparticles and systems and methods for synthesizing nanoparticles through thermal shock
KR101953228B1 (en) * 2017-09-18 2019-02-28 울산과학기술원 Secondary Battery

Also Published As

Publication number Publication date
KR102548276B1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
KR101511206B1 (en) Lithium sulfur batteries
KR101447680B1 (en) Method for manufacturing electrode, electrode manufactured according to the method, supercapacitor including the electrode, and rechargable lithium battery including the electrode
Zhu et al. Ether-based electrolyte enabled Na/FeS2 rechargeable batteries
KR101353262B1 (en) Metal foam for electrode of lithium secondary battery, preparing method thereof and lithium secondary battery including the metalfoam
JP5777511B2 (en) Iron-air storage battery with lithium mediator
JP2014096326A (en) Negative electrode active material for secondary cell, and negative electrode and secondary cell using the same
KR20120010211A (en) Porous silicon based alloy, method of preparing the same, and negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
EP3329543B1 (en) Semi-solid flow li/o2 battery
KR20140065515A (en) Cathode catalyst for lithium-air battery, method of manufacturing the same, and lithium-air battery comprising the same
CN109524649B (en) Sodium-ion battery positive electrode material with coating structure and preparation method and application thereof
CN103579632A (en) Graphene composite negative current collector, preparation method thereof and lithium ion battery
CN1591936A (en) Lithium contained substrate and method for mfg non-aqueous electrolyte electrochemical accomulation apparatus containing the same
CN113508480A (en) Rechargeable metal halide battery
US20140255800A1 (en) Positive electrode for lithium air battery, method of preparing same, and lithium air battery including same
KR102548276B1 (en) MANUFACTURING METHOD FOR MOLYBDEN DISUlFIDE CATALYST ELECTRODE FOR SEAWATER BATTERY AND MOLYBDEN DISUlFIDE CATALYST ELECTRODE
JP5556618B2 (en) Lithium air battery
KR101657142B1 (en) Method for manufacturing positive electrode active material for rechargable lithium battery and rechargable lithium battery including the positive electrode active material
KR101669890B1 (en) Lithium recovering device and method for recovering lithium by using the same
KR102038943B1 (en) Sulfur-Carbon Tube Composite Originated from Biomass and the Fabrication Method Thereof
KR101620468B1 (en) Cathode for Metal-Air Battery, Method of Manufacturing the Same, and Metal-Air Battery Comprising the Same
KR101798153B1 (en) Electrode active material for battery and method of manufacturing the same and battery including the same
KR102080360B1 (en) Electrolyte solution for lithium air batteries, and lithium air battery
KR20240033970A (en) Complex-transition metal dichalcogenide-based catalyst electrode manufacturing method and complex-transition metal dichalcogenide-based catalyst electrode
KR102452938B1 (en) Electrolyte for lithium metal battery and lithium metal battery comprising the same
Thakur et al. Recent advances in nanostructured metal chalcogenides for energy conversion and storage

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right