KR20220075115A - Method for manufacturing stretchable microelectrode - Google Patents

Method for manufacturing stretchable microelectrode Download PDF

Info

Publication number
KR20220075115A
KR20220075115A KR1020200162894A KR20200162894A KR20220075115A KR 20220075115 A KR20220075115 A KR 20220075115A KR 1020200162894 A KR1020200162894 A KR 1020200162894A KR 20200162894 A KR20200162894 A KR 20200162894A KR 20220075115 A KR20220075115 A KR 20220075115A
Authority
KR
South Korea
Prior art keywords
stretchable
substrate
metal pattern
flexible substrate
microelectrode
Prior art date
Application number
KR1020200162894A
Other languages
Korean (ko)
Other versions
KR102485298B1 (en
Inventor
강경태
김채원
안건식
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020200162894A priority Critical patent/KR102485298B1/en
Publication of KR20220075115A publication Critical patent/KR20220075115A/en
Application granted granted Critical
Publication of KR102485298B1 publication Critical patent/KR102485298B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F3/00Cylinder presses, i.e. presses essentially comprising at least one cylinder co-operating with at least one flat type-bed
    • B41F3/02Cylinder presses, i.e. presses essentially comprising at least one cylinder co-operating with at least one flat type-bed with impression cylinder or cylinders rotating unidirectionally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0023Digital printing methods characterised by the inks used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/0047Digital printing on surfaces other than ordinary paper by ink-jet printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 상부에 금속 패턴이 양각으로 형성된 유연기판을 준비하는 단계; 상기 상부에 금속 패턴이 양각으로 형성된 유연기판의 하부를 원통형 롤러의 외주면에 점착시키는 단계; 상기 외주면에 유연기판의 하부가 점착된 롤러를 신축성 기판 상에 롤링하여, 상기 신축성 기판 상에 유연기판을 위치시키고, 상기 금속 패턴을 신축성 기판 내부에 매립시키는 단계; 및 상기 유연기판을 제거하는 단계;를 포함하는 신축성 미세 전극의 제조방법을 제공한다. The present invention comprises the steps of preparing a flexible substrate having a metal pattern embossed thereon; adhering the lower part of the flexible substrate on which the metal pattern is embossed to the outer peripheral surface of the cylindrical roller; rolling a roller having a lower portion of the flexible substrate adhered to the outer circumferential surface on the stretchable substrate, positioning the flexible substrate on the stretchable substrate, and embedding the metal pattern in the stretchable substrate; and removing the flexible substrate.

Description

신축성 미세 전극의 제조방법{Method for manufacturing stretchable microelectrode}Method for manufacturing stretchable microelectrode

본 발명은 신축성 미세 전극의 제조방법에 관한 것으로, 더욱 상세하게는 잉크젯 프린팅 음각패턴을 이용하여 제조된 금속 패턴을 신축성 기판에 매립하여 제조되는 신축성 미세 전극의 제조방법, 상기 제조방법에 의해 제조된 신축성 미세 전극에 관한 것이다. The present invention relates to a method of manufacturing a stretchable microelectrode, and more particularly, to a manufacturing method of a stretchable microelectrode manufactured by embedding a metal pattern manufactured using an inkjet printing engraved pattern in a stretchable substrate, and the manufacturing method manufactured by the manufacturing method It relates to a stretchable microelectrode.

인쇄전자(printed electronics)기술은 인쇄가 가능한 기능성 전자 잉크 소재를 이용하여 초 저가격의 프린팅 공정을 통해서 다양한 전자소자 및 부품을 제작하는 기술로써, 가격이 낮고 친환경적이며 유연성 있는 소자 제작이 가능하고 대량생산에 유리한 장점이 있어 스마트 의류, 플렉서블 디스플레이, RFID, 태양광 패널 등에 광범위한 활용이 가능한 기술로 각광받고 있다. Printed electronics technology is a technology for manufacturing various electronic devices and parts through an ultra-low-priced printing process using functional electronic ink materials that can be printed. Because of its advantageous advantages, it is spotlighted as a technology that can be widely used in smart clothing, flexible displays, RFID, and solar panels.

이러한 인쇄전자소자를 제조하기 위한 공정 기술로 잉크젯 프린팅 기술을 적용한 기법이 가장 널리 사용되고 있다. 상기 잉크젯 프린팅 기술은 금속 나노 파티클 잉크를 직접 기판에 인쇄하여 전기적 전도성을 가지는 금속 패턴을 형성하는 방식으로, 디지털 제어가 가능하며 타 기술과 비교하여 단순한 공정으로도 높은 프린팅 정밀도와 대량 생산을 가능하게 하는 low cost 기술이라는 장점을 가진다. As a process technology for manufacturing such printed electronic devices, a technique to which inkjet printing technology is applied is the most widely used. The inkjet printing technology is a method of forming a metal pattern having electrical conductivity by directly printing metal nanoparticle ink on a substrate, digital control is possible, and high printing precision and mass production are possible even with a simple process compared to other technologies. It has the advantage of being a low cost technology.

그러나 상술한 잉크젯 프린팅 기술을 이용하여 금속을 기판에 직접 인쇄하기 위해서는 금속 재료의 잉크화가 선행되어야 하는데, 이러한 금속 잉크는 잉크젯에 의해 원활히 분사가 될 수 있는 표면 장력, 점도 등 일정한 특성이 확보되어야 하므로 그 연구에 많은 시간과 비용이 요구되고, 액적의 사이즈로 인해 초미세 패턴 형성을 통한 고해상도 구현에는 한계가 있다는 문제점이 있었다. However, in order to directly print metal on a substrate using the above-described inkjet printing technology, inking of a metal material must be preceded. Since such metal ink must have certain characteristics such as surface tension and viscosity that can be smoothly jetted by inkjet, certain characteristics must be secured. The research requires a lot of time and money, and there is a problem in that there is a limit to realizing a high resolution through formation of an ultra-fine pattern due to the size of the droplet.

이를 해결하기 위한 방법으로 최근에는 전기장을 이용하여 전도성 액체를 토출하는 방식으로 10 μm 이하의 선폭 인쇄가 가능한 Electro hydro dynamic (EHD) jet 기술이 이용되고 있으나, 다수의 노즐과 고전압 전원으로 시스템을 구성하기 어려워 대량생산 기술로 구현하기 어려운 문제점이 있다.Recently, as a method to solve this problem, Electro hydro dynamic (EHD) jet technology that can print a line width of 10 μm or less is used as a method of discharging a conductive liquid using an electric field. There is a problem that it is difficult to implement with mass production technology because it is difficult to do.

또한, 상술한 문제를 해결하기 위한 방법으로, 한국 등록특허 제 10-1963886 호 등에서는 소수성 격벽 사이 친수성 공간에 금속 잉크를 인쇄하는 방식으로 선폭을 축소하는 기술을 개시하고 있으나, 상술한 기술을 이용하기 위해서는 정밀한 간격으로 2 회 이상의 횟수로 소수성 격벽을 인쇄하는 공정이 요구되고, 이로 인한 고 정밀 alignment 이슈가 발생할 수 있는 문제점이 있다. In addition, as a method for solving the above-mentioned problem, Korean Patent Registration No. 10-1963886, etc. discloses a technology for reducing the line width by printing metal ink in the hydrophilic space between the hydrophobic barrier ribs. In order to do this, a process of printing the hydrophobic barrier ribs two or more times at precise intervals is required, and there is a problem that high precision alignment may occur due to this.

간단한 공정으로 초미세 패턴 형성이 가능하며, 고해상도를 구현할 수 있는 신규한 미세 전극의 제조방법이 요구된다.A novel microelectrode manufacturing method capable of forming ultra-fine patterns with a simple process and realizing high resolution is required.

대한민국 등록특허 제 10-1963886 호Republic of Korea Patent No. 10-1963886

상기와 같은 종래 기술의 문제점을 해결하기 위하여 본 발명이 이루고자 하는 기술적 과제는, 금속 재료의 잉크화 없이 잉크젯 프린팅을 이용하여 형성되는 왕관 구조(edge crown)의 금속 패턴을 신축성 기판 내부에 매립하여, 전기적 이슈를 해결한 신축성 미세 전극의 제조방법을 제공하는 것이다. The technical problem to be achieved by the present invention in order to solve the problems of the prior art as described above is to embed a metal pattern of an edge crown formed using inkjet printing without inking the metal material in a stretchable substrate, An object of the present invention is to provide a method for manufacturing a stretchable microelectrode that solves electrical issues.

본 발명의 다른 기술적 과제는 상기 제조방법에 의하여 제조된 신축성 미세전극을 제공하는 것이다. Another technical object of the present invention is to provide a stretchable microelectrode manufactured by the above manufacturing method.

본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved by the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned can be clearly understood by those of ordinary skill in the art to which the present invention belongs from the description below. There will be.

상기 기술적 과제를 달성하기 위하여, 본 발명의 일 양태는 상부에 금속 패턴이 양각으로 형성된 유연기판을 준비하는 단계; 상기 상부에 금속 패턴이 양각으로 형성된 유연기판의 하부를 원통형 롤러의 외주면에 점착시키는 단계; 상기 외주면에 유연기판의 하부가 점착된 롤러를 신축성 기판 상에 롤링하여, 상기 신축성 기판 상에 유연기판을 위치시키고, 상기 금속 패턴을 신축성 기판 내부에 매립시키는 단계; 및 상기 유연기판을 제거하는 단계; 를 포함하는 신축성 미세 전극의 제조방법을 제공한다. In order to achieve the above technical object, one aspect of the present invention comprises the steps of preparing a flexible substrate having a metal pattern embossed thereon; adhering the lower part of the flexible substrate on which the metal pattern is embossed to the outer peripheral surface of the cylindrical roller; rolling a roller having a lower portion of the flexible substrate adhered to the outer circumferential surface on the stretchable substrate, positioning the flexible substrate on the stretchable substrate, and embedding the metal pattern in the stretchable substrate; and removing the flexible substrate. Provided is a method for manufacturing a stretchable microelectrode comprising:

본 발명의 일 실시예에서, 상기 금속 패턴은 잉크젯 프린팅을 이용하여 형성될 수 있다. In an embodiment of the present invention, the metal pattern may be formed using inkjet printing.

본 발명의 일 실시예에서, 상기 금속 패턴은 왕관 구조를 가질 수 있다. In an embodiment of the present invention, the metal pattern may have a crown structure.

본 발명의 일 실시예에서, 상기 왕관 구조는 상기 금속 패턴의 엣지 부분의 높이가 중앙 부분의 높이 보다 높게 형성된 구조일 수 있다. In an embodiment of the present invention, the crown structure may have a structure in which a height of an edge portion of the metal pattern is higher than a height of a central portion.

본 발명의 일 실시예에서, 상기 금속 패턴은 은, 구리, 알루미늄, 금, 니켈, 티타늄, 몰리브덴, 텅스텐, 크롬 및 백금으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. In one embodiment of the present invention, the metal pattern may include any one or more selected from the group consisting of silver, copper, aluminum, gold, nickel, titanium, molybdenum, tungsten, chromium, and platinum.

본 발명의 일 실시예에서, 상기 신축성 기판은 고무(rubber), PDMS, 폴리우레탄(poly-urethane), 신축성 섬유, 에코플렉스(ecoflex), 드래곤스킨(dragonskin) 및 신축성 테입(strectchable tape) 중 어느 하나를 포함할 수 있다. In an embodiment of the present invention, the stretchable substrate is any one of rubber, PDMS, polyurethane, stretchable fiber, ecoflex, dragonskin, and stretchable tape. may contain one.

본 발명의 일 실시예에서, 상기 신축성 기판은 하부에 캐리어 기판이 형성되어 있고, 상기 유연기판을 제거하는 단계 이후에, 상기 캐리어 기판을 제거하는 단계를 더 포함할 수 있다. In an embodiment of the present invention, the stretchable substrate has a carrier substrate formed thereunder, and after removing the flexible substrate, the method may further include removing the carrier substrate.

본 발명의 일 양태는 상기 제조방법에 의해 제조되는 신축성 미세 전극을 제공한다. One aspect of the present invention provides a stretchable microelectrode manufactured by the above manufacturing method.

본 발명의 신축성 미세 전극의 제조방법은 잉크젯 프린팅 기술을 이용하되, 금속 재료의 잉크화 없이도 미세 조절이 가능한 금속 패턴을 제조할 수 있고, 이를 신축성 기판으로 매립시키는 공정을 이용하여, 표면 거칠기가 향상되고, 전기적 특성이 저해되지 않는 신축성 미세 전극을 형성할 수 있다. The method for manufacturing a stretchable microelectrode of the present invention uses inkjet printing technology, but it is possible to manufacture a metal pattern that can be finely adjusted without ink-izing a metal material, and the surface roughness is improved by using a process of embedding it with a stretchable substrate and it is possible to form a stretchable microelectrode in which electrical properties are not impaired.

또한, 본 발명의 신축성 미세 전극을 이용하면, 형상 정밀도가 우수하고 10 μm 이하의 미세 선폭을 가지는 전극 패턴 형성이 가능하므로 대량 생산 및 고해상도 구현이 가능한 금속 메쉬 터치스크린 패널을 제공할 수 있다. In addition, when the stretchable microelectrode of the present invention is used, it is possible to provide an electrode pattern having excellent shape precision and a fine line width of 10 μm or less, so that a metal mesh touch screen panel capable of mass production and high resolution can be provided.

본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It should be understood that the effects of the present invention are not limited to the above-described effects, and include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.

도 1은 본 발명의 신축성 미세 전극의 제조방법의 흐름도이다.
도 2는 본 발명의 일 실시예의 금속 패턴을 형성하는 방법의 흐름도이다.
도 3 및 도 4는 상기 도 2의 금속 패턴을 형성하는 방법의 모식도이다.
도 5는 본 발명의 일 실시예의 금속 패턴을 신축성 기판에 매립하는 공정의 모식도이다.
도 6은 본 발명의 일 실시예에서, 비교예의 모식도(a) 및 본 발명의 신축성 미세전극의 모식도(b)이다.
도 7은 본 발명의 일 실시예에 의하여 제조된 신축성 미세전극 단면의 현미경 이미지이다.
1 is a flowchart of a method for manufacturing a stretchable microelectrode according to the present invention.
2 is a flowchart of a method of forming a metal pattern according to an embodiment of the present invention.
3 and 4 are schematic diagrams of a method of forming the metal pattern of FIG. 2 .
5 is a schematic diagram of a process of embedding a metal pattern in a stretchable substrate according to an embodiment of the present invention.
6 is a schematic diagram (a) of a comparative example and a schematic diagram (b) of a stretchable microelectrode of the present invention in an embodiment of the present invention.
7 is a microscope image of a cross-section of a stretchable microelectrode manufactured according to an embodiment of the present invention.

이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, the present invention will be described with reference to the accompanying drawings. However, the present invention may be embodied in several different forms, and thus is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.

명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be “connected (connected, contacted, coupled)” with another part, it is not only “directly connected” but also “indirectly connected” with another member interposed therebetween. "Including cases where In addition, when a part "includes" a certain component, this means that other components may be further provided without excluding other components unless otherwise stated.

본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is used only to describe specific embodiments, and is not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present specification, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It should be understood that this does not preclude the existence or addition of numbers, steps, operations, components, parts, or combinations thereof.

이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 일 양태는 신축성 미세 전극의 제조방법을 제공한다. One aspect of the present invention provides a method of manufacturing a stretchable microelectrode.

도 1은 본 발명의 신축성 미세 전극의 제조방법의 흐름도이다. 1 is a flowchart of a method for manufacturing a stretchable microelectrode according to the present invention.

도 1을 참조하면, 본 발명의 신축성 미세 전극의 제조방법은 상부에 금속 패턴이 양각으로 형성된 유연기판을 준비하는 단계(S210); 상기 상부에 금속 패턴이 양각으로 형성된 유연기판의 하부를 원통형 롤러의 외주면에 점착시키는 단계(S220); 상기 외주면에 유연기판의 하부가 점착된 롤러를 신축성 기판 상에 롤링하여, 상기 신축성 기판 상에 유연기판을 위치시키고, 상기 금속 패턴을 신축성 기판 내부에 매립시키는 단계(S230); 및 상기 유연기판을 제거하는 단계(S240);를 포함한다. Referring to FIG. 1 , the method of manufacturing a stretchable microelectrode according to the present invention includes: preparing a flexible substrate having a metal pattern embossed thereon (S210); adhering the lower portion of the flexible substrate on which the metal pattern is embossed to the outer peripheral surface of the cylindrical roller (S220); rolling a roller having a lower portion of the flexible substrate adhered to the outer circumferential surface on the stretchable substrate, positioning the flexible substrate on the stretchable substrate, and embedding the metal pattern in the stretchable substrate (S230); and removing the flexible substrate (S240).

먼저, 본 발명의 신축성 미세 전극의 제조방법은 상부에 금속 패턴이 양각으로 형성된 유연기판을 준비하는 단계(S210)를 포함한다. First, the method of manufacturing a stretchable microelectrode of the present invention includes the step of preparing a flexible substrate having a metal pattern embossed thereon (S210).

본 발명의 일 실시예에서, 상기 금속 패턴은 잉크젯 프린팅을 이용하여 형성된 것일 수 있고, 상기 상부에 금속 패턴이 양각으로 형성된 유연기판을 준비하는 단계(S210)는 금속 패턴을 형성하는 방법을 포함할 수 있다. In one embodiment of the present invention, the metal pattern may be formed using inkjet printing, and the step of preparing a flexible substrate on which the metal pattern is embossed (S210) may include a method of forming a metal pattern. can

도 2는 본 발명의 일 실시예의 금속 패턴을 형성하는 방법의 흐름도이고, 도 3 및 도 4는 상기 금속 패턴을 형성하는 방법의 모식도이다. 2 is a flowchart of a method of forming a metal pattern according to an embodiment of the present invention, and FIGS. 3 and 4 are schematic diagrams of a method of forming the metal pattern.

도 2내지 도 4를 참조하면, 상기 금속 패턴(32)을 형성하는 방법은 잉크젯 프린팅을 이용하여 유연기판(100) 위에 포토레지스트(20)를 인쇄함으로써 포토레지스트(20) 패턴을 형성하는 포토레지스트(20) 패턴 형성 단계(S110); 상기 포토레지스트(20) 패턴 형성 단계를 통해 포토레지스트(20) 패턴이 인쇄된 상기 유연기판(100) 위에 금속(30)을 증착하는 금속(30) 증착 단계(S120); 상기 금속(30)이 증착된 유연기판(100)으로부터 상기 포토레지스트(20)를 제거하여, 상기 포토레지스트(20) 위에 증착 되었던 금속(31; 이하, 제거 금속)은 상기 포토레지스트(20)와 함께 제거되고, 상기 포토레지스트(20) 패턴 사이의 음각 부분에 증착된 금속(32; 이하, 금속 패턴)만이 남아 금속 메쉬 패턴을 형성하도록 하는 금속 메쉬 패턴 형성 단계(S130);를 포함한다. 2 to 4 , in the method of forming the metal pattern 32 , the photoresist 20 pattern is formed by printing the photoresist 20 on the flexible substrate 100 using inkjet printing. (20) pattern forming step (S110); A metal 30 deposition step (S120) of depositing a metal 30 on the flexible substrate 100 on which the photoresist 20 pattern is printed through the photoresist 20 pattern forming step (S120); By removing the photoresist 20 from the flexible substrate 100 on which the metal 30 is deposited, the metal 31 deposited on the photoresist 20 (hereinafter referred to as removal metal) is combined with the photoresist 20 . and a metal mesh pattern forming step (S130) which is removed together and only the metal 32 (hereinafter, a metal pattern) deposited on the intaglio portion between the photoresist 20 patterns remains to form a metal mesh pattern.

먼저, 도 3을 참조하면, 본 발명의 금속 패턴(32)을 형성하는 방법의 상기 포토레지스트(20) 패턴 형성 단계(S110)는, 잉크젯 프린팅을 이용하여 유연기판(100) 위에 포토레지스트(20)를 인쇄함으로써 포토레지스트(20) 패턴이 형성될 수 있다. First, referring to FIG. 3 , the photoresist 20 pattern forming step ( S110 ) of the method of forming the metal pattern 32 of the present invention includes the photoresist 20 on the flexible substrate 100 using inkjet printing. ) by printing the photoresist 20 pattern can be formed.

또한, 상기 인쇄되는 포토레지스트(20) 패턴의 인쇄 간격은 70 μm 내지 200 μm 로 조절될 수 있다. 이때, 상기 포토레지스트(20)는 노볼락, 메타크릴산메탈 수지 및 폴리하이드록시스틸렌 수지로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함할 수 있으나, 이에 제한되는 것은 아니다. In addition, the printing interval of the photoresist 20 pattern to be printed may be adjusted to 70 μm to 200 μm. In this case, the photoresist 20 may include at least one selected from the group consisting of novolac, metal methacrylate resin, and polyhydroxystyrene resin, but is not limited thereto.

본 발명의 일 실시예에서, 상기 유연기판(100)은 후술하는 원통형 롤러(500)의 외주면에 점착시키는 단계(S220) 및 금속 패턴(32)을 신축성 기판 내부에 매립시키는 단계(S230)에서, 원통형의 롤러(500)의 외주면에 부착되었다가 상기 원통형의 롤러(500)가 롤링함으로써, 상기 원통형의 롤러(500)의 외주면에서 탈착되어, 신축성 기판(200)의 상부에 위치하게 된다. In one embodiment of the present invention, the flexible substrate 100 is adhered to the outer circumferential surface of the cylindrical roller 500 to be described later (S220) and in the step of embedding the metal pattern 32 in the stretchable substrate (S230), After being attached to the outer circumferential surface of the cylindrical roller 500 , as the cylindrical roller 500 rolls, it is detached from the outer circumferential surface of the cylindrical roller 500 and is positioned on the stretchable substrate 200 .

이후, 상기 유연 기판(100)은 상기 유연기판(100)을 제거하는 단계(S240)에서 최종적으로 제거되는 것으로, 굽힘이 용이하고, 제거가 용이한 재질로 구성되며, 예를 들면, 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리카보네이트, 폴리스티렌, 폴리프로필렌, 폴리이미드, 폴리옥시메틸렌, 폴리에테르에테르케톤, 폴리에테르설폰 및 폴리에테르이미드로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함할 수 있으나, 이에 제한되는 것은 아니다. Thereafter, the flexible substrate 100 is finally removed in the step (S240) of removing the flexible substrate 100, and is made of a material that is easy to bend and easy to remove, for example, polyethylene terephthalate. , polyethylene naphthalate, polycarbonate, polystyrene, polypropylene, polyimide, polyoxymethylene, polyether ether ketone, polyether sulfone, and may include at least one selected from the group consisting of polyether imide, but is limited thereto it is not

다음으로, 본 발명의 금속 패턴(32)을 형성하는 방법의 상기 금속(30) 증착 단계(S120)에서는, 상기 포토레지스트(20) 패턴이 형성된 상기 유연기판(100) 상에 금속(30)이 증착될 수 있다.Next, in the metal 30 deposition step (S120) of the method of forming the metal pattern 32 of the present invention, the metal 30 is deposited on the flexible substrate 100 on which the photoresist 20 pattern is formed. can be deposited.

본 발명의 일 실시예에서, 상기 금속(30)은 은, 구리, 알루미늄, 금, 니켈, 티타늄, 몰리브덴, 텅스텐, 크롬 및 백금으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함할 수 있다. 따라서, 상기 금속(30)으로부터 형성되게 되는 상기 금속 패턴(32) 또한, 은, 구리, 알루미늄, 금, 니켈, 티타늄, 몰리브덴, 텅스텐, 크롬 및 백금으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함할 수 있다. In one embodiment of the present invention, the metal 30 may include at least one selected from the group consisting of silver, copper, aluminum, gold, nickel, titanium, molybdenum, tungsten, chromium, and platinum. Accordingly, the metal pattern 32 to be formed from the metal 30 also includes at least one selected from the group consisting of silver, copper, aluminum, gold, nickel, titanium, molybdenum, tungsten, chromium, and platinum. can

본 발명의 일 실시예에서, 상기 금속(30) 증착 단계(S120)는 PVD(physical vapor deposition) 증착법, 예를 들면, 열 증착법, 전자빔 증착법 및 스퍼터링 증착법 중 어느 하나를 이용하여 수행될 수 있으나 이에 제한되는 것은 아니고, 본 발명의 또 다른 실시예에서, 상기 금속(30) 증착 단계(S120)는 CVD(chemical vapor deposition)증착법, 예를 들면, thermal CVD, PECVD(plasma enhanced CVD), APCVD(atmospheric pressure CVD), LPCVD(Low pressure CVD) 및 ALCVD(atomic layer CVD) 중 어느 하나를 이용하여 수행될 수 있으나 이에 제한되는 것은 아니다. In an embodiment of the present invention, the metal 30 deposition step S120 may be performed using a physical vapor deposition (PVD) deposition method, for example, any one of a thermal deposition method, an electron beam deposition method, and a sputtering deposition method. Without being limited thereto, in another embodiment of the present invention, the depositing of the metal 30 ( S120 ) may be performed by a chemical vapor deposition (CVD) deposition method, for example, thermal CVD, plasma enhanced CVD (PECVD), or atmospheric vapor deposition (APCVD). pressure CVD), low pressure CVD (LPCVD), and atomic layer CVD (ALCVD) may be used, but is not limited thereto.

다음으로, 도 4를 참조하면, 본 발명의 금속 패턴(32)을 형성하는 방법의 상기 금속 메쉬 패턴 형성 단계(S130)에서는, 상기 인쇄된 포토레지스트(20) 위에 금속(30)이 증착된 유연기판(100)으로부터 상기 포토레지스트(20)가 제거되며, 유연기판(100) 위에 금속 패턴(32)을 형성할 수 있다.Next, referring to FIG. 4 , in the metal mesh pattern forming step ( S130 ) of the method of forming the metal pattern 32 of the present invention, the metal 30 is deposited on the printed photoresist 20 . The photoresist 20 is removed from the substrate 100 , and a metal pattern 32 may be formed on the flexible substrate 100 .

본 발명의 일 실시예에서, 상기 금속(30)은 상기 유연기판(100)의 포토레지스트(20) 패턴이 형성된 부분 및 상기 포토레지스트(20) 패턴이 형성되지 않은 포토레지스트(20) 패턴 사이의 음각 부분에 모두 증착될 수 있다. In one embodiment of the present invention, the metal 30 is formed between the photoresist 20 pattern formed portion of the flexible substrate 100 and the photoresist 20 pattern not formed with the photoresist 20 pattern. All of the intaglio parts may be deposited.

따라서, 금속(30)이 증착된 유연기판(100)을 포토레지스트(20)를 제거하는 공정, 예를 들면, 초음파 처리를 이용한 제거, 현상액을 이용한 현상 공정, 용해도 차이를 이용한 선택적 용해법 중 어느 하나의 방법을 이용하여 수행하게 되면, 상기 포토레지스트(20) 상에 증착 되었던 제거 금속(31)은 상기 포토레지스트(20)와 함께 제거될 수 있고, 상기 포토레지스트 패턴 사이의 음각 부분에 증착 되었던 금속 패턴(32)만이 남아있게 될 수 있다. Therefore, any one of a process of removing the photoresist 20 from the flexible substrate 100 on which the metal 30 is deposited, for example, a removal using ultrasonic treatment, a developing process using a developer, and a selective dissolution method using a difference in solubility When performed using the method of Only the pattern 32 may remain.

본 발명의 금속 패턴 형성 공정을 통하여 제조되는 금속 패턴은 10 μm 이하의 선폭을 가질 수 있고, 삼각형 또는 사각형 형태의 메쉬 패턴을 포함할 수 있고, 왕관 구조를 가질 수 있다. The metal pattern manufactured through the metal pattern forming process of the present invention may have a line width of 10 μm or less, may include a triangular or rectangular mesh pattern, and may have a crown structure.

상기 왕관 구조를 가지는 금속 패턴은 상기 금속 메쉬 패턴 형성 단계(S130)에서 수행되는 포토레지스트(20)의 제거 공정에 의하여 형성될 수 있고, 상기 왕관 구조는 상기 금속 패턴(32)의 엣지 부분의 높이가 중앙 부분의 높이 보다 높게 형성된 구조로, 추후 상기 금속 패턴(32) 상에 형성되는 박막 적층 공정을 방해하고 전기적 특성이 저해되는 문제를 야기할 수 있게 된다. The metal pattern having the crown structure may be formed by the photoresist 20 removal process performed in the metal mesh pattern forming step S130 , and the crown structure is the height of the edge portion of the metal pattern 32 . As a structure in which is formed higher than the height of the central portion, it is possible to interfere with a thin film lamination process formed on the metal pattern 32 later and cause a problem in which electrical characteristics are impaired.

본 발명의 신축성 미세 전극의 제조방법은 상기 문제점을 해결하기 위하여 도출된 것으로, 상기 금속 패턴(32)을 신축성 기판(200)에 매립하는 공정, 구체적으로, 상부에 금속 패턴(32)이 양각으로 형성된 유연기판(100)의 하부를 원통형 롤러(500)의 외주면에 점착시키는 단계(S220); 및 상기 외주면에 유연기판(100)의 하부가 점착된 원통형 롤러(500)를 신축성 기판(200) 상에 롤링하여, 상기 금속 패턴(32)을 신축성 기판(200) 내부에 매립시키는 단계(S230);를 포함한다.The method of manufacturing a stretchable microelectrode of the present invention was derived to solve the above problem, and the process of embedding the metal pattern 32 in the stretchable substrate 200 , specifically, the metal pattern 32 on the top is embossed. Adhering the lower portion of the formed flexible substrate 100 to the outer peripheral surface of the cylindrical roller 500 (S220); and rolling the cylindrical roller 500 to which the lower portion of the flexible substrate 100 is adhered to the outer circumferential surface on the stretchable substrate 200, and embedding the metal pattern 32 in the stretchable substrate 200 (S230) includes ;

도 5는 본 발명의 일 실시예의 금속 패턴(32)을 신축성 기판(200)에 매립하는 공정의 모식도이다.5 is a schematic diagram of a process of embedding the metal pattern 32 in the stretchable substrate 200 according to an embodiment of the present invention.

도 5를 참조하여, 금속 패턴(32)을 신축성 기판(200)에 매립하는 공정을 구체적으로 설명하면, 먼저, 상기 유연기판(100)을 준비하는 단계(S210)에서 준비되는 금속 패턴(32)이 양각으로 형성된 유연기판(100), 예를 들면, 왕관 구조의 금속 메쉬 패턴(32)이 형성된 유연기판(100)의 하부를 원통형의 롤러(500)의 외주면에 점착시키는 단계(S220)를 수행한다.Referring to FIG. 5 , the process of embedding the metal pattern 32 in the stretchable substrate 200 will be described in detail. First, the metal pattern 32 prepared in the step of preparing the flexible substrate 100 ( S210 ). The embossed flexible substrate 100, for example, a step (S220) of attaching the lower portion of the flexible substrate 100 on which the metal mesh pattern 32 of the crown structure is formed to the outer peripheral surface of the cylindrical roller 500 is performed (S220). do.

본 발명의 일 실시예에서, 상기 원통형의 롤러(500)는 상기 금속 패턴(32)이 양각으로 형성된 유연기판(100)의 너비를 모두 포함할 수 있는 외주면 너비를 가지고, 나무, 플라스틱, 금속 등의 강성을 가지는 물질로 구성될 수 있고, 상기 원통형 롤러(500)의 외주면의 너비는 상기 유연기판(100)의 너비에 따라 선택될 수 있다.In one embodiment of the present invention, the cylindrical roller 500 has an outer circumferential width that can include all of the width of the flexible substrate 100 on which the metal pattern 32 is embossed, wood, plastic, metal, etc. may be made of a material having a rigidity of , and the width of the outer circumferential surface of the cylindrical roller 500 may be selected according to the width of the flexible substrate 100 .

또한, 상기 점착시키는 단계(S220)는 점착제 등을 이용하여 수행될 수 있으며, 상기 점착제는 상기 원통형 롤러(500)의 외주면 및 유연기판(100)의 하부를 부착 및 탈착 시킬 수 있는 물질이라면 이를 제한하지 않고 사용될 수 있다. In addition, the sticking step (S220) may be performed using an adhesive, etc., and the adhesive is a material capable of attaching and detaching the outer circumferential surface of the cylindrical roller 500 and the lower part of the flexible substrate 100, and this is limited. It can be used without

상기 점착시키는 단계(S220)를 통하여, 상기 원통형 롤러(500)의 외주면 중 일부 또는 전부는 유연기판(100)의 하부가 점착되어 위치할 수 있고, 이때, 상기 양각으로 형성된 금속 패턴(32)은 상기 원통형 롤러(500)의 외주면의 바깥쪽에 위치하게 될 수 있다.Through the sticking step (S220), some or all of the outer circumferential surface of the cylindrical roller 500 may be positioned with the lower portion of the flexible substrate 100 attached to it, and in this case, the metal pattern 32 formed in the embossed shape is It may be located outside the outer peripheral surface of the cylindrical roller (500).

다음으로, 금속 패턴(32)을 신축성 기판(200) 내부에 매립시키는 단계(S230)는, 상기 점착시키는 단계(S220)에서 형성된 금속 패턴(32)이 외주면의 바깥쪽에 위치하는 원통형 롤러(500)를 신축성 기판(200)의 상부에 롤링하여 상기 유연기판(100)이 상기 원통형 롤러(500)에서 탈착되는 동시에, 상기 신축성 기판(200)의 상부에 위치하도록 하여 수행될 수 있다.Next, the step (S230) of embedding the metal pattern 32 in the stretchable substrate 200 is a cylindrical roller 500 on which the metal pattern 32 formed in the step of sticking (S220) is located outside the outer circumferential surface. Rolling on the upper portion of the stretchable substrate 200 may be performed so that the flexible substrate 100 is detached from the cylindrical roller 500 and positioned on the stretchable substrate 200 at the same time.

또한, 상기 신축성 기판(200)의 상부에 상기 유연기판(100)이 위치되는 동시에, 상기 금속 패턴(32)은 상기 롤링공정을 통하여, 상기 신축성 기판(200) 위로 정밀하게 압축 및 전사되어 매립이 가능하게 될 수 있다. In addition, while the flexible substrate 100 is positioned on the stretchable substrate 200, the metal pattern 32 is precisely compressed and transferred onto the stretchable substrate 200 through the rolling process to facilitate embedding. can be made possible

이때, 상기 신축성 기판(200)은 상기 양각으로 형성된 금속 패턴(32)이 매립되어 매립된 금속 패턴(32')이 형성될 수 있도록, 탄성을 가지는 물질, 예를 들면, 고무(rubber), PDMS(polydimethylsiloane), 폴리우레탄(poly-urethane), 신축성 섬유, 에코플렉스(ecoflex), 드래곤스킨(dragonskin) 및 신축성 테입(strectchable tape) 중 어느 하나를 포함하여 구성될 수 있다. In this case, the stretchable substrate 200 is made of a material having elasticity, for example, rubber, PDMS, so that the metal pattern 32 formed in the embossing is buried so that the buried metal pattern 32' can be formed. (polydimethylsiloane), polyurethane (poly-urethane), stretchable fibers, ecoflex (ecoflex), dragonskin (dragonskin), and may be configured to include any one of a stretchable tape (stretchable tape).

다음으로, 본 발명의 신축성 미세전극의 제조방법은 유연기판(100)을 제거하는 단계(S240)를 포함한다. Next, the method of manufacturing the stretchable microelectrode of the present invention includes removing the flexible substrate 100 ( S240 ).

도 5를 참조하면, 상기 유연기판(100)을 제거하는 단계(S240)는 상기 금속 패턴(32)을 신축성(200)기판에 매립하는 공정 이후, 내부에 매립된 금속 패턴(32')을 포함하고, 상부에 유연기판(100)을 포함하여 형성된 상기 신축성 기판(200)의 상부를 원통형 롤러(500)를 재 롤링하여 수행될 수 있다.Referring to FIG. 5 , the step of removing the flexible substrate 100 ( S240 ) includes the metal pattern 32 ′ embedded therein after the process of embedding the metal pattern 32 in the stretchable 200 substrate. and re-rolling the cylindrical roller 500 on the upper portion of the stretchable substrate 200 formed including the flexible substrate 100 thereon.

구체적인 실시예에서, 상기 유연기판(100)을 제거하는 단계(S240)는, 상기 상기 점착시키는 단계(S220)에서 이용되는 점착제 등을 이용하여 수행될 수 있으며, 상기 점착제는 상기 원통형 롤러(500)의 외주면 및 유연기판(100)의 하부를 부착 및 탈착 시킬 수 있는 물질이라면 이를 제한하지 않고 사용될 수 있다.In a specific embodiment, the step (S240) of removing the flexible substrate 100 may be performed using an adhesive used in the sticking step (S220), and the adhesive is the cylindrical roller (500). Any material capable of attaching and detaching the outer peripheral surface of the flexible substrate 100 and the lower portion of the flexible substrate 100 may be used without limitation.

본 발명의 일 실시예에서, 상기 신축성 기판(200)은 하부에 캐리어 기판(300)이 형성되어 있을 수 있고, 상기 캐리어 기판(300)은 상술한 금속 패턴(32)을 신축성(200)기판에 매립하는 공정에서, 롤링 공정 수행 시, 상기 신축성 기판(200) 상부에 상기 금속 패턴(32)이 정밀하게 압축 및 전사되어 매립되도록 상기 신축성 기판(200)을 고정 및 지지하는 역할을 할 수 있다. In one embodiment of the present invention, the stretchable substrate 200 may have a carrier substrate 300 formed thereunder, and the carrier substrate 300 includes the above-described metal pattern 32 on the stretchable 200 substrate. In the embedding process, when the rolling process is performed, the metal pattern 32 may be precisely compressed and transferred on the stretchable substrate 200 to fix and support the stretchable substrate 200 so that it is embedded.

본 발명의 일 실시예에서, 상기 유연기판(100)을 제거하는 단계(S240) 수행 후, 상기 캐리어 기판(300)에서 제거하는 공정을 추가로 수행할 수 있다.In an embodiment of the present invention, after the step of removing the flexible substrate 100 ( S240 ), a process of removing it from the carrier substrate 300 may be additionally performed.

본 발명의 일 실시예에서, 상기 캐리어 기판(300)은 유리기판일 수 있고, 상기 캐리어 기판(300)을 제거하는 단계는 상기 캐리어 기판(300)에서 매립된 금속 패턴(32')을 포함하는 신축성 기판(200)을 떼어내어 수행될 수 있다. In an embodiment of the present invention, the carrier substrate 300 may be a glass substrate, and removing the carrier substrate 300 includes a metal pattern 32 ′ embedded in the carrier substrate 300 . This may be performed by removing the stretchable substrate 200 .

상기 신축성 기판(200)을 떼어내는 공정은, 물리적인 방법, 예를 들면, 상기 매립된 금속 패턴(32')을 포함하는 신축성 기판(200)의 말단부터 상기 캐리어 기판(300)에서 물리적으로 탈착시켜 수행될 수 있으나, 이에 제한되는 것은 아니다. The process of removing the stretchable substrate 200 is performed by a physical method, for example, physically detaching from the carrier substrate 300 from the end of the stretchable substrate 200 including the buried metal pattern 32 ′. may be performed, but is not limited thereto.

도 6은 비교예로서, 왕관 구조의 금속 패턴(32)을 포함하는 유리기판(300)의 모식도(a) 및 본 발명의 일 실시예의 유연기판(100)을 제거하는 단계(S240) 이후 형성된 매립된 금속 패턴(32')을 포함하는 신축성 기판(200)의 모식도(b)이다.6 is a comparative example, a schematic diagram (a) of a glass substrate 300 including a metal pattern 32 of a crown structure and a step (S240) of removing the flexible substrate 100 according to an embodiment of the present invention. It is a schematic diagram (b) of the stretchable substrate 200 including the metal pattern 32'.

도 6을 참조하면, 상기 왕관 구조의 금속 패턴(32)을 포함하는 유리기판(300)의 경우, 왕관 구조가 외부를 향하여 형성되어 있어, 추후의 박막 적층 공정을 방해하고 전기적 특성이 저해되는 이슈가 발생될 수 있는 반면, 본 발명의 매립된 금속 패턴(32')을 포함하는 신축성 기판(200)의 경우, 왕관 구조가 신축성 기판(200)의 내부를 향하여 형성되는 바, 추후의 박막 적층 공정을 용이하게 하고, 전기적 특성이 저해되지 않고, 표면 거칠기가 향상된 신축성 미세 전극을 형성할 수 있게 된다. Referring to FIG. 6 , in the case of the glass substrate 300 including the metal pattern 32 of the crown structure, the crown structure is formed toward the outside, which interferes with the subsequent thin film lamination process and the electrical characteristics are impaired. On the other hand, in the case of the stretchable substrate 200 including the buried metal pattern 32 ′ of the present invention, the crown structure is formed toward the inside of the stretchable substrate 200 , and a subsequent thin film lamination process This makes it possible to form a stretchable microelectrode with improved surface roughness without compromising electrical properties.

본 발명의 일 양태는 상기 제조방법에 의하여 제조되는 신축성 미세전극을 제공한다. One aspect of the present invention provides a stretchable microelectrode manufactured by the above manufacturing method.

본 발명의 일 실시예에서, 상기 신축성 미세전극은 신축성 기판(200) 및 상기 신축성 기판(200)의 내부에 매립된 금속 패턴(32')을 포함한다. In an embodiment of the present invention, the stretchable microelectrode includes a stretchable substrate 200 and a metal pattern 32 ′ embedded in the stretchable substrate 200 .

본 발명의 일 실시예에서, 상기 신축성 기판(200)은 고무(rubber), PDMS(polydimethylsiloane), 폴리우레탄(poly-urethane), 신축성 섬유, 에코플렉스(ecoflex), 드래곤스킨(dragonskin) 및 신축성 테입(strectchable tape) 중 어느 하나를 포함하여 구성될 수 있다.In an embodiment of the present invention, the stretchable substrate 200 is made of rubber, polydimethylsiloane (PDMS), polyurethane, stretchable fiber, ecoflex, dragonskin, and stretchable tape. (Stretchable tape) may be configured to include any one.

또한, 상기 매립된 금속 패턴(32')은 은, 구리, 알루미늄, 금, 니켈, 티타늄, 몰리브덴, 텅스텐, 크롬 및 백금으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하여 구성되고, 10 μm 이하의 선폭을 가질 수 있고, 삼각형 또는 사각형 형태의 메쉬 패턴을 포함할 수 있다.In addition, the buried metal pattern 32' is configured to include any one or more selected from the group consisting of silver, copper, aluminum, gold, nickel, titanium, molybdenum, tungsten, chromium and platinum, and has a thickness of 10 μm or less. It may have a line width, and may include a triangular or rectangular mesh pattern.

또한, 상기 매립된 금속 패턴(32')은 잉크젯 프린팅을 이용하여 형성되어, 왕관 구조를 가질 수 있고, 상기 왕관 구조는 상기 신축성 기판(200)의 내부를 향하여 형성된 것일 수 있다. In addition, the buried metal pattern 32 ′ may be formed using inkjet printing to have a crown structure, and the crown structure may be formed toward the inside of the stretchable substrate 200 .

본 발명의 신축성 미세 전극은 형상 정밀도가 우수하고 10 μm 이하의 미세 선폭을 가지는 전극 패턴 형성이 가능하므로 대량 생산 및 고해상도 구현이 가능한 금속 메쉬 터치스크린 패널에 이용될 수 있다. The stretchable microelectrode of the present invention has excellent shape precision and can form an electrode pattern having a fine line width of 10 μm or less, so it can be used in a metal mesh touch screen panel capable of mass production and high resolution.

이하에서는 제조예 및 실험예를 통해 본 발명에 대해 더욱 상세하게 설명한다. 하지만 본 발명이 하기 제조예 및 실험예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail through Preparation Examples and Experimental Examples. However, the present invention is not limited to the following Preparation Examples and Experimental Examples.

실시예Example

실시예 1. 신축성 미세전극의 제조. Example 1. Preparation of stretchable microelectrodes.

본 발명의 일 실시예에 따른 신축성 미세 전극을 제조하였다. A stretchable microelectrode according to an embodiment of the present invention was manufactured.

상기 신축성 미세전극을 제조하기 위하여, 먼저 유연기판 위에 잉크젯 프린팅으로 포토레지스트를 75 μm 간격, 삼각형 형태의 패턴으로 인쇄하였다.In order to prepare the stretchable microelectrode, photoresist was first printed on a flexible substrate in a triangular pattern with an interval of 75 μm by inkjet printing.

상기 포토레지스트가 인쇄된 유연기판에 금속을 증착하였다. 상기 금속이 증착된 기판에 초음파 처리(Ultrasonication)를 하여 상기 포토레지스트를 제거하여, 상기 포토레지스트가 제거되고 상기 포토레지스트 패턴 사이의 음각 부분에 증착되었던 금속만이 남아 기판 위에 금속 메쉬 패턴이 형성된 전극을 수득 하였다. A metal was deposited on the flexible substrate on which the photoresist was printed. The photoresist is removed by ultrasonication on the metal-deposited substrate, and the photoresist is removed and only the metal deposited on the intaglio between the photoresist patterns remains, and the metal mesh pattern is formed on the substrate. was obtained.

이때, 상기 기판은 PDMS 기판을 이용하였고, 상기 포토레지스트는 AZ4330 및 AZ1500의 혼합액을 이용하였으며, 상기 금속은 알루미늄을 이용하였다.In this case, a PDMS substrate was used as the substrate, a mixture of AZ4330 and AZ1500 was used as the photoresist, and aluminum was used as the metal.

상기 금속 메쉬 패턴이 형성된 전극의 유연기판의 끝 부분을 점착제를 이용하여 원통형 롤러의 외주면의 일부에 점착하고, 상기 원통형 롤러를 롤링하여, 외주면에 상기 유연기판의 하부가 맞닿도록 하고, 상기 롤러를 신축성 기판상에서 다시 롤링하여, 상기 금속 메쉬 패턴이 상기 신축성 기판의 내부에 매립되도록 하였다. The end of the flexible substrate of the electrode on which the metal mesh pattern is formed is adhered to a part of the outer circumferential surface of the cylindrical roller using an adhesive, and the cylindrical roller is rolled so that the lower portion of the flexible substrate is in contact with the outer circumferential surface, and the roller By rolling again on the stretchable substrate, the metal mesh pattern was buried inside the stretchable substrate.

이후, 유연 기판 및 캐리어 기판을 제거하여, 금속 메쉬 패턴이 신축성 기판의 내부에 매립되어 형성된 신축성 미세전극을 제조하였다. Thereafter, the flexible substrate and the carrier substrate were removed to prepare a stretchable microelectrode in which a metal mesh pattern was embedded in the stretchable substrate.

도 7은 본 발명의 일 실시예에 의하여 제조된 신축성 미세전극 단면의 현미경 이미지이다. 7 is a microscopic image of a cross-section of a stretchable microelectrode manufactured according to an embodiment of the present invention.

도 7을 참조하면, 신축성 기판 내부에 금속 패턴이 매립되어 있는 것을 확인할 수 있었다. Referring to FIG. 7 , it was confirmed that the metal pattern was embedded in the stretchable substrate.

상기와 같은 구성의 특징으로 인하여, 본 발명의 신축성 미세 전극의 제조방법은 잉크젯 프린팅 기술을 이용하되, 금속 재료의 잉크화 없이도 미세 조절이 가능한 금속 패턴을 제조할 수 있고, 이를 신축성 기판으로 매립시키는 공정을 이용하여, 표면 거칠기가 향상되고, 전기적 특성이 저해되지 않는 신축성 미세 전극을 형성할 수 있다. Due to the characteristics of the above configuration, the method for manufacturing the stretchable microelectrode of the present invention uses inkjet printing technology, but it is possible to manufacture a metal pattern that can be finely adjusted without inkling the metal material, and to embed it with a stretchable substrate. By using the process, it is possible to form a stretchable microelectrode with improved surface roughness and not impaired electrical properties.

또한, 본 발명의 신축성 미세 전극을 이용하면, 형상 정밀도가 우수하고 10 μm 이하의 미세 선폭을 가지는 전극 패턴 형성이 가능하므로 대량 생산 및 고해상도 구현이 가능한 금속 메쉬 터치스크린 패널을 제공할 수 있다. In addition, when the stretchable microelectrode of the present invention is used, it is possible to provide an electrode pattern having excellent shape precision and a fine line width of 10 μm or less, so that a metal mesh touch screen panel capable of mass production and high resolution can be provided.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The description of the present invention described above is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. For example, each component described as a single type may be implemented in a dispersed form, and likewise components described as distributed may be implemented in a combined form.

본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention.

100: 유연기판
20: 포토레지스트
30: 금속
31: 제거 금속
32: 금속 패턴
32': 매립된 금속 패턴
200: 신축성기판
300: 캐리어 기판(유리 기판)
100: flexible substrate
20: photoresist
30: metal
31: remove metal
32: metal pattern
32': buried metal pattern
200: stretchable substrate
300: carrier substrate (glass substrate)

Claims (8)

상부에 금속 패턴이 양각으로 형성된 유연기판을 준비하는 단계;
상기 상부에 금속 패턴이 양각으로 형성된 유연기판의 하부를 원통형 롤러의 외주면에 점착시키는 단계;
상기 외주면에 유연기판의 하부가 점착된 롤러를 신축성 기판 상에 롤링하여, 상기 신축성 기판 상에 유연기판을 위치시키고, 상기 금속 패턴을 신축성 기판 내부에 매립시키는 단계; 및
상기 유연기판을 제거하는 단계;
를 포함하는 신축성 미세 전극의 제조방법.
Preparing a flexible substrate on which a metal pattern is embossed;
adhering the lower portion of the flexible substrate on which the metal pattern is embossed to the outer circumferential surface of the cylindrical roller;
rolling a roller having a lower portion of the flexible substrate adhered to the outer circumferential surface on a stretchable substrate, positioning the flexible substrate on the stretchable substrate, and embedding the metal pattern in the stretchable substrate; and
removing the flexible substrate;
A method of manufacturing a stretchable microelectrode comprising a.
제 1 항에 있어서,
상기 금속 패턴은 잉크젯 프린팅을 이용하여 형성되는 것을 특징으로 하는 신축성 미세 전극의 제조방법.
The method of claim 1,
The method of manufacturing a stretchable microelectrode, characterized in that the metal pattern is formed using inkjet printing.
제 1 항에 있어서,
상기 금속 패턴은 왕관 구조를 가지는 것을 특징으로 하는 신축성 미세 전극의 제조방법.
The method of claim 1,
The method of manufacturing a stretchable microelectrode, wherein the metal pattern has a crown structure.
제 3 항에 있어서,
상기 왕관 구조는 상기 금속 패턴의 엣지 부분의 높이가 중앙 부분의 높이 보다 높게 형성된 구조인 것을 특징으로 하는 신축성 미세 전극의 제조방법.
4. The method of claim 3,
The method for manufacturing a stretchable microelectrode, wherein the crown structure has a structure in which an edge portion of the metal pattern has a height higher than a height of the central portion.
제 1 항에 있어서,
상기 금속 패턴은 은, 구리, 알루미늄, 금, 니켈, 티타늄, 몰리브덴, 텅스텐, 크롬 및 백금으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 것을 특징으로 하는 신축성 미세 전극의 제조방법.
The method of claim 1,
The method for manufacturing a stretchable microelectrode, wherein the metal pattern includes at least one selected from the group consisting of silver, copper, aluminum, gold, nickel, titanium, molybdenum, tungsten, chromium, and platinum.
제 1 항에 있어서,
상기 신축성 기판은 고무(rubber), PDMS, 폴리우레탄(poly-urethane), 신축성 섬유, 에코플렉스(ecoflex), 드래곤스킨(dragonskin) 및 신축성 테입(strectchable tape) 중 어느 하나를 포함하는 것을 특징으로 하는 신축성 미세 전극의 제조방법.
The method of claim 1,
The stretchable substrate comprises any one of rubber, PDMS, polyurethane, stretchable fiber, ecoflex, dragonskin, and stretchable tape. A method for manufacturing a stretchable microelectrode.
제 1 항에 있어서,
상기 신축성 기판은 하부에 캐리어 기판이 형성되어 있고,
상기 유연기판을 제거하는 단계 이후에, 상기 캐리어 기판을 제거하는 단계를 더 포함하는 것을 특징으로 하는 신축성 미세 전극의 제조방법.
The method of claim 1,
The stretchable substrate has a carrier substrate formed thereunder,
The method for manufacturing a stretchable microelectrode according to claim 1, further comprising removing the carrier substrate after removing the flexible substrate.
제 1 항의 제조방법에 의해 제조된 신축성 미세 전극. A stretchable microelectrode manufactured by the method of claim 1 .
KR1020200162894A 2020-11-27 2020-11-27 Method for manufacturing stretchable microelectrode KR102485298B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200162894A KR102485298B1 (en) 2020-11-27 2020-11-27 Method for manufacturing stretchable microelectrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200162894A KR102485298B1 (en) 2020-11-27 2020-11-27 Method for manufacturing stretchable microelectrode

Publications (2)

Publication Number Publication Date
KR20220075115A true KR20220075115A (en) 2022-06-07
KR102485298B1 KR102485298B1 (en) 2023-01-09

Family

ID=81987245

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200162894A KR102485298B1 (en) 2020-11-27 2020-11-27 Method for manufacturing stretchable microelectrode

Country Status (1)

Country Link
KR (1) KR102485298B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144610B1 (en) * 2011-08-02 2012-05-11 한국기계연구원 Embeded method of conductive mesh for transparent electrode
KR20140066492A (en) * 2012-11-23 2014-06-02 삼성전자주식회사 Method of forming conductive pattern using inkjet printing technique
KR101963886B1 (en) 2017-03-16 2019-04-01 한국생산기술연구원 Method for fabrication of micro electrodes using inkjet printing
KR20190131189A (en) * 2018-05-16 2019-11-26 (주)유니젯 Method for forming micro line pattern using inkjet printing
KR20190137182A (en) * 2015-05-22 2019-12-10 벌시테크 리미티드 Transparent conductive films with embedded metal grids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144610B1 (en) * 2011-08-02 2012-05-11 한국기계연구원 Embeded method of conductive mesh for transparent electrode
KR20140066492A (en) * 2012-11-23 2014-06-02 삼성전자주식회사 Method of forming conductive pattern using inkjet printing technique
KR20190137182A (en) * 2015-05-22 2019-12-10 벌시테크 리미티드 Transparent conductive films with embedded metal grids
KR101963886B1 (en) 2017-03-16 2019-04-01 한국생산기술연구원 Method for fabrication of micro electrodes using inkjet printing
KR20190131189A (en) * 2018-05-16 2019-11-26 (주)유니젯 Method for forming micro line pattern using inkjet printing

Also Published As

Publication number Publication date
KR102485298B1 (en) 2023-01-09

Similar Documents

Publication Publication Date Title
US8628818B1 (en) Conductive pattern formation
CN105723817B (en) Flexible printed circuit board and method for manufacturing the same
US7802599B2 (en) Printing method and a printing apparatus
US9365025B2 (en) Method for forming fine patterns on a substrate with a disposable cliche
WO2012137923A1 (en) Transfer sheet provided with transparent conductive film mainly composed of graphene, method for manufacturing same, and transparent conductor
US7544395B2 (en) Patterning method of liquid crystal display device
KR100957487B1 (en) Method for fabricating plastic electrode film
US9085132B2 (en) Reverse gravure offset printing method and apparatus using disposable cliche
US8795778B2 (en) Photo-patterning using a translucent cylindrical master to form microscopic conductive lines on a flexible substrate
KR102397955B1 (en) Method for manufacturing electrode for metal mesh touch screen panel using lift-off from the inkjet-printed pattern
KR20220075115A (en) Method for manufacturing stretchable microelectrode
JP5109446B2 (en) Pattern forming method and electronic device manufacturing method
CN109402559B (en) Mask plate and manufacturing method thereof, evaporation device and display device
Nomura et al. Advanced screen-offset printing for fabricating thick electrodes on the concave surface of cylindrically curved glass
WO2018025299A1 (en) Printing blanket and printing method
JP5562283B2 (en) Transparent conductive material comprising transparent conductive film mainly composed of graphene and method for producing the same
Shin et al. Fabrication of replica cliché with fine pattern using reverse offset printing process
CN106058050B (en) A kind of production method of conducting channel
US20180332712A1 (en) High-resolution printing technique
CN104837638A (en) Blanket for offset printing and micro pattern formed using same
KR101460072B1 (en) Method of manufacturing micro pattern having high resolution
JP2012155369A (en) Capacitive touch panel
US10414151B2 (en) Printing apparatus and method of operating the same
CN112162424A (en) Display device and method for manufacturing the same
US20020098618A1 (en) Method and apparatus for transferring a feature pattern from an inked surface to a substrate

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant