KR20220036868A - Method for preparing lithium metal electrode, lithium metal electrode prepared by the same and lithium secondary battery including the same - Google Patents

Method for preparing lithium metal electrode, lithium metal electrode prepared by the same and lithium secondary battery including the same Download PDF

Info

Publication number
KR20220036868A
KR20220036868A KR1020210120225A KR20210120225A KR20220036868A KR 20220036868 A KR20220036868 A KR 20220036868A KR 1020210120225 A KR1020210120225 A KR 1020210120225A KR 20210120225 A KR20210120225 A KR 20210120225A KR 20220036868 A KR20220036868 A KR 20220036868A
Authority
KR
South Korea
Prior art keywords
lithium
lithium metal
metal electrode
protective layer
sulfur
Prior art date
Application number
KR1020210120225A
Other languages
Korean (ko)
Inventor
김명성
김수현
김기현
이건제
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US18/008,065 priority Critical patent/US20230299259A1/en
Priority to EP21869643.3A priority patent/EP4141989A4/en
Priority to CN202180043915.9A priority patent/CN115769399A/en
Priority to PCT/KR2021/012373 priority patent/WO2022060021A1/en
Priority to JP2023501303A priority patent/JP2023533051A/en
Publication of KR20220036868A publication Critical patent/KR20220036868A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a method for manufacturing a lithium metal electrode, a lithium metal electrode manufactured thereby, and a lithium metal electrode including the same and, more specifically, to a method for manufacturing a lithium metal electrode, including the steps of: (a) applying fluoroethylene carbonate on at least one surface of a lithium metal layer; and (b) rolling the lithium metal layer applied with the fluoroethylene carbonate to form a lithium fluoride protective layer on at least one surface of the lithium metal layer.

Description

리튬 금속 전극의 제조방법, 이에 의해 제조된 리튬 금속 전극, 및 이를 포함하는 리튬 이차 전지{METHOD FOR PREPARING LITHIUM METAL ELECTRODE, LITHIUM METAL ELECTRODE PREPARED BY THE SAME AND LITHIUM SECONDARY BATTERY INCLUDING THE SAME}A method of manufacturing a lithium metal electrode, a lithium metal electrode manufactured thereby, and a lithium secondary battery comprising the same

본 발명은 리튬 금속 전극의 제조방법, 이에 의해 제조된 리튬 금속 전극, 및 이를 포함하는 리튬 이차 전지에 관한 것이다.The present invention relates to a method for manufacturing a lithium metal electrode, a lithium metal electrode manufactured thereby, and a lithium secondary battery including the same.

리튬 이차 전지의 활용 범위가 휴대용 전자기기뿐만 아니라 전기자동차(electric vehicle; EV), 전력저장장치(electric storage system; ESS)까지 확대되면서 고용량, 고에너지 밀도 및 장수명의 리튬 이차 전지에 대한 요구가 높아지고 있다.As the application range of lithium secondary batteries is expanded to not only portable electronic devices, but also electric vehicles (EVs) and electric storage systems (ESSs), the demand for lithium secondary batteries with high capacity, high energy density and long lifespan is increasing. there is.

여러 리튬 이차 전지 중에서 리튬-황 전지는 황-황 결합(sulfur-sulfur bond)을 포함하는 황 계열 물질을 양극에 사용하며, 리튬 금속, 리튬 이온의 삽입/탈삽입이 일어나는 탄소계 물질 또는 리튬과 합금을 형성하는 실리콘이나 주석 등을 음극에 사용하는 전지 시스템이다.Among various lithium secondary batteries, lithium-sulfur batteries use a sulfur-based material containing a sulfur-sulfur bond for the positive electrode, and lithium metal, a carbon-based material in which lithium ion insertion/deintercalation occurs, or lithium It is a battery system that uses silicon or tin, which forms an alloy, for the negative electrode.

리튬-황 전지의 양극에 사용되는 황은 낮은 원자당 무게를 가지며, 자원이 풍부하여 수급이 용이하며 값이 저렴하고, 독성이 없으며, 환경친화적 물질이라는 장점이 있다. Sulfur used in the positive electrode of a lithium-sulfur battery has advantages of low weight per atom, easy supply and demand due to abundant resources, low cost, non-toxicity, and environment-friendly material.

또한, 리튬-황 전지는 양극에서 리튬 이온과 황의 변환(conversion) 반응(S8+16Li++16e- → 8Li2S)으로부터 나오는 이론 비용량(specific capacity)이 1,675 mAh/g에 이르고, 음극으로 리튬 금속을 사용하는 경우 2,600 Wh/kg의 이론 에너지 밀도를 나타낸다. 이는 현재 연구되고 있는 다른 전지 시스템 (Ni-MH 전지: 450 Wh/kg, Li-FeS 전지: 480 Wh/kg, Li-MnO2 전지: 1,000 Wh/kg, Na-S 전지: 800 Wh/kg) 및 리튬 이온 전지(250 Wh/kg)의 이론 에너지 밀도에 비하여 매우 높은 수치를 가지기 때문에 현재까지 개발되고 있는 이차 전지 중에서 고용량, 친환경 및 저가의 리튬 이차 전지로 주목 받고 있다. In addition, the lithium-sulfur battery has a theoretical specific capacity of 1,675 mAh/g from the conversion reaction of lithium ions and sulfur at the positive electrode (S 8 +16Li + +16e - → 8Li 2 S), and the negative electrode It shows a theoretical energy density of 2,600 Wh/kg when lithium metal is used. This is another cell system currently being studied (Ni-MH cell: 450 Wh/kg, Li-FeS cell: 480 Wh/kg, Li-MnO 2 cell: 1,000 Wh/kg, Na-S cell: 800 Wh/kg). And since it has a very high value compared to the theoretical energy density of a lithium ion battery (250 Wh/kg), it is attracting attention as a high-capacity, eco-friendly and low-cost lithium secondary battery among secondary batteries being developed so far.

이러한 리튬-황 전지에서 음극으로 리튬 금속을 사용하는 경우 이론 비용량이 3,860 mAh/g로 매우 높을 뿐만 아니라 표준 환원 전위(Standard Hydrogen Electrode; SHE)도 -3.045 V로 매우 낮아 고용량, 고에너지 밀도의 전지 구현이 가능하기 때문에 차세대 전지 시스템으로 여러 연구가 이루어지고 있다.When lithium metal is used as the negative electrode in such a lithium-sulfur battery, the theoretical specific capacity is very high as 3,860 mAh/g, and the standard hydrogen electrode (SHE) is also very low as -3.045 V, which is a high-capacity, high-energy-density battery. Because it is possible to implement, various studies are being conducted as a next-generation battery system.

그러나, 리튬 금속은 화학적/전기화학적 반응성이 높기 때문에 충/방전이 진행될수록 리튬 덴드라이트의 성장 및 다공화가 발생하며, 이로 인하여 전지의 수명 특성이 좋지 않은 문제가 있다. 이를 위해 리튬 금속의 표면에 형성하는 보호층에 대한 많은 연구가 진행되고 있다.However, since lithium metal has high chemical/electrochemical reactivity, growth and porosity of lithium dendrites occur as charging/discharging proceeds, which results in poor battery life characteristics. To this end, many studies on a protective layer formed on the surface of lithium metal are being conducted.

리튬 금속의 표면에 형성되는 보호층 중 리튬 플로라이드(LiF) 보호층은 높은 이온 전도도로 리튬 덴드라이트의 성장을 억제하므로, 전지에 적용 시 용량 및 수명 특성 향상 효과를 확보할 수 있다. 이에 종래 기술에서는 리튬 금속 표면에 리튬 플로라이드 보호층을 형성하기 위한 다양한 방법이 연구되고 있다.Among the protective layers formed on the surface of lithium metal, the lithium fluoride (LiF) protective layer suppresses the growth of lithium dendrites with high ionic conductivity, so that when applied to a battery, the effect of improving capacity and lifespan characteristics can be secured. Accordingly, in the prior art, various methods for forming a lithium fluoride protective layer on a lithium metal surface have been studied.

종래 기술에 있어서, 리튬 플로라이드 보호층은 리튬 금속을 플루오로에틸렌카보네이트(fluoroethylene carbonate; FEC)에 일정 시간 이상 침적 (immersion, 침지)시키거나 리튬 금속의 표면에 플루오로에틸렌카보네이트를 포함하는 용액을 도포하는 방법을 통해 형성된다.In the prior art, the lithium fluoride protective layer is formed by immersing lithium metal in fluoroethylene carbonate (FEC) for a certain period of time or longer or using a solution containing fluoroethylene carbonate on the surface of the lithium metal. It is formed through the method of coating.

그러나, 리튬 금속의 표면에는 LiOH, Li2O, Li2CO3 등의 산화층(native layer)이 존재하고, 이로 인하여 플루오로에틸렌카보네이트 또는 플루오로에틸렌카보네이트를 포함하는 용액과 리튬 금속 간의 반응이 불균일해지므로, 형성되는 리튬 플로라이드 보호층의 성분, 두께, 밀도 등의 물성 차이가 야기된다.However, a native layer such as LiOH, Li 2 O, Li 2 CO 3 is present on the surface of the lithium metal, and due to this, the reaction between fluoroethylene carbonate or a solution containing fluoroethylene carbonate and the lithium metal is non-uniform. Therefore, differences in physical properties such as components, thickness, and density of the formed lithium fluoride protective layer are caused.

이러한, 리튬 플로라이드 보호층의 물성 차이는 충/방전 시 국부상의 전류밀도 차이를 초래하여 리튬 금속 표면에 리튬 덴드라이트의 형성을 촉진시킨다. 또한, 이렇게 형성된 리튬 덴드라이트는 전지 내부단락과 불활성 리튬(dead lithium)을 야기하여 리튬 이차 전지의 물리적, 화학적 불안정성을 가중시킬 뿐만 아니라 전지의 용량 감소 및 사이클 수명 단축을 가속화시키는 문제를 발생시킨다.This difference in physical properties of the lithium fluoride protective layer promotes the formation of lithium dendrites on the lithium metal surface by causing a difference in local current density during charging/discharging. In addition, the lithium dendrite formed in this way causes an internal short circuit of the battery and inert lithium (dead lithium), which not only aggravates the physical and chemical instability of the lithium secondary battery, but also causes a problem of accelerating the reduction in capacity and cycle life of the lithium secondary battery.

따라서, 간단한 공정을 통해 리튬 금속의 표면에 균일한 리튬 플로라이드 보호층을 형성하여 리튬 금속의 반응성 문제를 해결할 수 있는 기술의 개발이 요구된다.Therefore, it is required to develop a technology capable of solving the problem of reactivity of lithium metal by forming a uniform lithium fluoride protective layer on the surface of lithium metal through a simple process.

대한민국 공개특허 제2019-0071618호(2019.06.24), 리튬 금속 전극의 표면에 부동태막을 형성하는 리튬 이차전지의 연속 제조 방법 및 이의 제조 방법으로 제조된 리튬 이차전지Republic of Korea Patent Publication No. 2019-0071618 (2019.06.24), a continuous manufacturing method of a lithium secondary battery forming a passivation film on the surface of a lithium metal electrode, and a lithium secondary battery manufactured by the manufacturing method

Ngoc Duc Trinh et al., An Artificial Lithium Protective Layer that Enables the Use of Acetonitrile-Based Electrolytes in Lithium Metal Batteries, Angewandte Chemie, 2018, 57(18), 5072-5075Ngoc Duc Trinh et al., An Artificial Lithium Protective Layer that Enables the Use of Acetonitrile-Based Electrolytes in Lithium Metal Batteries, Angewandte Chemie, 2018, 57(18), 5072-5075

이에 본 발명자들은 상기 문제를 해결하고자 다각적으로 연구를 수행한 결과, 플루오로에틸렌카보네이트를 리튬 금속의 표면에 직접 도포하여 압연하는 공정을 통해 리튬 플로라이드 보호층을 형성하는 경우 리튬 덴드라이트의 성장 억제 효과가 우수함을 확인하여 본 발명을 완성하였다.Accordingly, the present inventors have conducted various studies to solve the above problem, and as a result, when a lithium fluoride protective layer is formed through a process of rolling by applying fluoroethylene carbonate directly to the surface of lithium metal, growth inhibition of lithium dendrites The present invention was completed by confirming that the effect was excellent.

따라서, 본 발명의 목적은 리튬 금속 표면에 균일하면서도 불소 함량이 높은 리튬 플로라이드 보호층을 형성할 수 있는 리튬 금속 전극의 제조방법을 제공하는데 있다.Accordingly, an object of the present invention is to provide a method for manufacturing a lithium metal electrode capable of forming a lithium fluoride protective layer uniformly and having a high fluorine content on the surface of the lithium metal.

또한, 본 발명의 다른 목적은 상기 제조방법에 따라 제조된 리튬 금속 전극 및 이를 포함하는 리튬 이차 전지를 제공하는데 있다.Another object of the present invention is to provide a lithium metal electrode manufactured according to the above manufacturing method and a lithium secondary battery including the same.

상기 목적을 달성하기 위해, 본 발명은, (a) 리튬 금속층의 적어도 일면 상에 플루오로에틸렌카보네이트를 도포하는 단계; 및 (b) 상기 플루오로에틸렌카보네이트가 도포된 리튬 금속층을 압연하여 상기 리튬 금속층의 적어도 일면 상에 리튬 플로라이드 보호층을 형성하는 단계를 포함하는 리튬 금속 전극의 제조방법을 제공한다.In order to achieve the above object, the present invention, (a) applying a fluoroethylene carbonate on at least one surface of the lithium metal layer; and (b) rolling the lithium metal layer coated with the fluoroethylene carbonate to form a lithium fluoride protective layer on at least one surface of the lithium metal layer.

상기 리튬 금속층은 리튬 금속 또는 리튬 합금을 포함할 수 있다.The lithium metal layer may include lithium metal or a lithium alloy.

상기 압연은 상기 플루오로에틸렌카보네이트가 도포된 리튬 금속층을 압연 유닛 사이에 위치시키고 압력을 인가하는 방식으로 수행할 수 있다.The rolling may be performed by placing the lithium metal layer coated with the fluoroethylene carbonate between the rolling units and applying pressure.

상기 압연은 10 내지 80 ℃의 온도 조건 하에서 수행할 수 있다.The rolling may be performed under a temperature condition of 10 to 80 ℃.

상기 리튬 금속층은 압연 전과 후의 두께 감소율이 10 % 이상일 수 있다.The thickness reduction rate of the lithium metal layer before and after rolling may be 10% or more.

또한, 본 발명은 상기 제조방법에 의하여 제조되며, 리튬 금속층; 및 상기 리튬 금속층의 적어도 일면 상에 형성된 리튬 플로라이드 보호층을 포함하는 리튬 금속 전극을 제공한다.In addition, the present invention is manufactured by the above manufacturing method, a lithium metal layer; and a lithium fluoride protective layer formed on at least one surface of the lithium metal layer.

상기 리튬 플로라이드 보호층은 두께가 10 내지 500 ㎚일 수 있다.The lithium fluoride protective layer may have a thickness of 10 to 500 nm.

상기 리튬 플로라이드 보호층은 불소 함량이 0.1 내지 10 원자%일 수 있다.The lithium fluoride protective layer may have a fluorine content of 0.1 to 10 atomic %.

아울러, 본 발명은 상기 리튬 금속 전극을 포함하는 리튬 이차 전지를 제공한다.In addition, the present invention provides a lithium secondary battery including the lithium metal electrode.

본 발명에 따른 리튬 금속 전극의 제조방법은 리튬 금속의 표면에 플루오로에틸렌카보네이트를 직접 도포하여 압연함으로써 불소 함량이 높으면서도 균일한 리튬 플로라이드 보호층을 형성할 수 있어 리튬 덴드라이트의 생성을 효과적으로 억제할 수 있고, 이에 따라 리튬 금속 전극을 포함하는 리튬 이차 전지의 고용량화 및 장수명화를 가능케 한다.The method for manufacturing a lithium metal electrode according to the present invention can form a uniform lithium fluoride protective layer with a high fluorine content by directly coating and rolling fluoroethylene carbonate on the surface of lithium metal, thereby effectively reducing the generation of lithium dendrites. can be suppressed, thereby enabling high capacity and long lifespan of a lithium secondary battery including a lithium metal electrode.

도 1은 실험예 1에 따른 리튬 플로라이드 보호층의 XPS 스펙트라를 나타내는 그래프이다.
도 2는 실시예 1에 따른 리튬 플로라이드 보호층의 XPS 깊이 분석 결과를 나타내는 그래프이다.
도 3은 비교예 2에 따른 리튬 플로라이드 보호층의 XPS 깊이 분석 결과를 나타내는 그래프이다.
도 4는 실험예 2에 다른 리튬 이차 전지의 성능 평가 결과를 나타내는 그래프이다.
1 is a graph showing XPS spectra of a lithium fluoride protective layer according to Experimental Example 1. FIG.
FIG. 2 is a graph showing the XPS depth analysis result of the lithium fluoride protective layer according to Example 1. FIG.
3 is a graph showing the XPS depth analysis result of the lithium fluoride protective layer according to Comparative Example 2.
4 is a graph showing a performance evaluation result of a lithium secondary battery according to Experimental Example 2;

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims should not be construed as being limited to their ordinary or dictionary meanings, and the inventor may properly define the concept of the term in order to best describe his invention. Based on the principle that there is, it should be interpreted as meaning and concept consistent with the technical idea of the present invention.

본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, ‘포함하다’ 또는 ‘가지다’등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present invention, terms such as 'comprising' or 'having' are intended to designate that the features, numbers, steps, operations, components, parts, or combinations thereof described in the specification exist, and one or more other features It should be understood that this does not preclude the existence or addition of numbers, steps, operations, components, parts, or combinations thereof.

본 명세서에서 사용되고 있는 용어 “복합체(composite)”란 두 가지 이상의 재료가 조합되어 물리적·화학적으로 서로 다른 상(phase)를 형성하면서 보다 유효한 기능을 발현하는 물질을 의미한다.As used herein, the term “composite” refers to a material in which two or more materials are combined to form different phases physically and chemically while exhibiting more effective functions.

본 명세서에서 사용되고 있는 용어 “폴리설파이드”는 “폴리설파이드 이온(Sx 2-, x = 8, 6, 4, 2))” 및 “리튬 폴리설파이드(Li2Sx 또는 LiSx -, x = 8, 6, 4, 2)”를 모두 포함하는 개념이다.As used herein, the term “polysulfide” refers to “polysulfide ions (S x 2- , x = 8, 6, 4, 2))” and “lithium polysulfide (Li 2 S x or LiS x , x = 8, 6, 4, 2)”.

리튬-황 전지는 여러 이차전지 중에서 높은 이론 방전용량 및 이론 에너지 밀도를 나타낼 뿐만 아니라 음극 활물질로 주로 사용되는 리튬 금속은 원자량(6.94g/a.u.) 및 밀도(0.534 g/㎤)가 매우 작기 때문에 소형화 및 경량화가 용이하여 차세대 전지로 각광받고 있다.Lithium-sulfur batteries exhibit high theoretical discharge capacity and theoretical energy density among secondary batteries, and lithium metal, which is mainly used as an anode active material, has very small atomic weight (6.94 g/au) and density (0.534 g/cm 3 ). And it is easy to reduce the weight, so it is spotlighted as a next-generation battery.

그러나, 리튬 금속을 전지 내 음극으로 활용하는 경우, 전지 구동에 따른 여러 요인으로 인하여 리튬 금속의 표면에 전류밀도 불균일화가 일어날 수 있다. 이로 인해 리튬 덴드라이트가 생성되며, 이는 전지의 단락을 초래하여 전지의 제반 성능을 저하시키는 문제를 일으킨다.However, when lithium metal is used as an anode in a battery, current density non-uniformity may occur on the surface of the lithium metal due to various factors according to battery driving. Due to this, lithium dendrites are generated, which causes a short circuit of the battery, which causes a problem of lowering the overall performance of the battery.

이와 더불어, 리튬-황 전지의 경우, 전지 구동 시 양극에서 형성된 리튬 폴리설파이드(lithium polysulfide, Li2Sx, x = 8, 6, 4, 2) 중 황의 산화수가 높은 리튬 폴리설파이드(Li2Sx, 보통 x > 4)는 전해질에 대한 용해도가 높아 지속적으로 녹아나며, 양극 반응 영역 밖으로 용출되어 음극으로 이동하게 된다. 이때 양극으로부터 용출된 리튬 폴리설파이드는 음극인 리튬 금속 전극과 부반응을 일으켜 리튬 금속 전극의 표면에 리튬 설파이드가 고착됨에 따라 리튬 금속 전극의 부동화를 야기할 뿐만 아니라 리튬 폴리설파이드의 용출로 인해 황의 이용률이 낮아져 이론 방전용량의 최대 70 % 정도 까지만 구현이 가능하고, 사이클이 진행됨에 따라 용량 및 수명의 저하가 가속화되는 문제가 발생한다.In addition, in the case of a lithium-sulfur battery, lithium polysulfide (Li 2 S) with a high oxidation number of sulfur among lithium polysulfide (Li 2 S x , x = 8, 6, 4, 2) formed at the positive electrode when the battery is driven x , usually x > 4) has high solubility in the electrolyte, so it continuously dissolves, elutes out of the anode reaction region and moves to the cathode. At this time, the lithium polysulfide eluted from the positive electrode causes a side reaction with the lithium metal electrode, which is the negative electrode, and as the lithium sulfide is fixed on the surface of the lithium metal electrode, not only causes passivation of the lithium metal electrode, but also the utilization rate of sulfur is decreased due to the elution of lithium polysulfide. It can be realized only up to about 70% of the theoretical discharge capacity, and as the cycle progresses, the deterioration of capacity and lifespan is accelerated.

종래 기술에서는 리튬 덴드라이트의 성장을 방지하기 위해 리튬 금속의 표면에 이온 전도 특성이 우수한 리튬 플로라이드(LiF) 보호층을 도입하였다. 구체적으로, 종래 기술은 리튬 금속 표면에 리튬 플로라이드 보호층을 형성하기 위해 플루오로에틸렌카보네이트(fluoroethylene carbonate; FEC)에 침지 또는 플루오로에틸렌카보네이트를 포함하는 용액을 도포 등의 방법을 사용하였다.In the prior art, in order to prevent the growth of lithium dendrites, a lithium fluoride (LiF) protective layer having excellent ion conductivity is introduced on the surface of lithium metal. Specifically, the prior art used a method such as immersion in fluoroethylene carbonate (FEC) or applying a solution containing fluoroethylene carbonate to form a lithium fluoride protective layer on the lithium metal surface.

그러나, 종래 기술에서 사용된 방법의 경우 리튬 금속에 필연적으로 존재하는 산화층으로 인해 균일한 리튬 플로라이드 보호층의 형성이 어렵기 때문에, 리튬 덴드라이트 생성 억제 효과를 충분히 확보하기 어려운 문제가 있다.However, in the case of the method used in the prior art, since it is difficult to form a uniform lithium fluoride protective layer due to the oxide layer inevitably present in lithium metal, there is a problem in that it is difficult to sufficiently secure the effect of inhibiting the formation of lithium dendrites.

이에 본 발명에서는 플루오로에틸렌카보네이트를 리튬 금속의 표면에 직접 도포하여 압연하는 공정에 의해 리튬 금속의 표면에 리튬 플로라이드 보호층을 균일하게 형성함으로써 리튬 덴드라이트의 성장 억제 효과가 우수한 리튬 금속 전극의 제조방법을 제공한다.Accordingly, in the present invention, a lithium fluoride protective layer is uniformly formed on the surface of lithium metal by applying fluoroethylene carbonate directly to the surface of lithium metal and rolling. A manufacturing method is provided.

본 발명에 따른 리튬 금속 전극의 제조방법은,A method of manufacturing a lithium metal electrode according to the present invention,

(a) 리튬 금속층의 적어도 일면 상에 플루오로에틸렌카보네이트를 도포하는 단계; 및(a) applying fluoroethylene carbonate on at least one surface of the lithium metal layer; and

(b) 상기 플루오로에틸렌카보네이트가 도포된 리튬 금속층을 압연하여 상기 리튬 금속층의 적어도 일면 상에 리튬 플로라이드 보호층을 형성하는 단계를 포함한다.(b) rolling the lithium metal layer coated with the fluoroethylene carbonate to form a lithium fluoride protective layer on at least one surface of the lithium metal layer.

본 발명의 경우 플루오로에틸렌카보네이트를 리튬 금속 표면에 직접 도포하여 압연함으로써 리튬 금속의 표면에 불소 함량이 높으면서도 두께가 균일한 리튬 플로라이드 보호층을 형성할 수 있다. 종래 기술에서는 리튬 금속을 플루오로에틸렌카보네이트에 침지시키거나 플루오로에틸렌카보네이트를 포함하는 용매를 리튬 금속의 표면에 도포하는 방법 등을 이용하였다. 그러나, 이러한 종래의 리튬 플로라이드 보호층 형성방법은 리튬 금속 표면에 형성된 산화층으로 인해 두께가 불균일하거나 불소 함량이 적은 리튬 플로라이드 보호층이 형성되기 때문에 리튬 덴드라이트의 성장을 효과적으로 방지할 수 없었다. 또한, 테트라플루오로에틸렌, 폴리비닐리덴 플로라이드와 같이 불소를 포함하는 고분자막과의 압착 (압연 접착) 과정을 통해 리튬 플로라이드 보호층을 형성하는 방법이 제안되었다. 이와 같이 불소 함유 고분자막과 리튬의 압착으로 리튬 플로라이드 보호층을 형성하는 방법의 경우 리튬과 반응 후 남게 되는 잔류 고분자막으로 인해 리튬 이온의 이동을 방해하여 리튬 덴드라이트의 성장을 방지할 수 없는 문제가 있다.In the present invention, a lithium fluoride protective layer having a high fluorine content and a uniform thickness can be formed on the surface of the lithium metal by applying fluoroethylene carbonate directly to the lithium metal surface and rolling. In the prior art, a method of immersing lithium metal in fluoroethylene carbonate or applying a solvent containing fluoroethylene carbonate to the surface of lithium metal was used. However, this conventional lithium fluoride protective layer formation method could not effectively prevent the growth of lithium dendrites because the lithium fluoride protective layer having a non-uniform thickness or a low fluorine content is formed due to the oxide layer formed on the surface of the lithium metal. In addition, a method of forming a lithium fluoride protective layer through a compression (rolling adhesion) process with a polymer film containing fluorine such as tetrafluoroethylene or polyvinylidene fluoride has been proposed. In the case of the method of forming a lithium fluoride protective layer by compressing a fluorine-containing polymer film and lithium as described above, there is a problem that the growth of lithium dendrite cannot be prevented by interfering with the movement of lithium ions due to the residual polymer film remaining after reaction with lithium. there is.

이와 비교하여, 본 발명에서는 플루오로에틸렌카보네이트를 직접 리튬 금속 표면에 도포하고 이를 압연함에 따라 리튬 금속의 표면에서 플루오로에틸렌카보네이트와 리튬 금속의 균일한 반응이 진행될 수 있기 때문에 리튬 금속 표면에 리튬 플로라이드 보호층이 고르게 형성되며, 리튬 플로라이드 보호층에 포함된 불소의 함량 또한 높다. 이렇게 형성된 리튬 플로라이드 보호층은 리튬 덴드라이트의 형성을 효과적으로 억제함으로써 리튬 금속 전극의 안정성을 향상시킬 수 있고, 이를 포함하는 리튬 이차 전지의 용량 및 수명 특성을 개선시킬 수 있다. 또한, 본 발명에 따른 리튬 금속 전극의 제조방법은 공정이 매우 간단하고 적용이 용이하다는 이점을 가지고 있다.In contrast, in the present invention, as fluoroethylene carbonate is directly applied to the surface of lithium metal and rolled, a uniform reaction between fluoroethylene carbonate and lithium metal can proceed on the surface of lithium metal. The Ride protective layer is formed evenly, and the content of fluorine included in the lithium fluoride protective layer is also high. The lithium fluoride protective layer thus formed may improve the stability of the lithium metal electrode by effectively suppressing the formation of lithium dendrites, and may improve the capacity and lifespan characteristics of a lithium secondary battery including the same. In addition, the manufacturing method of the lithium metal electrode according to the present invention has the advantage that the process is very simple and easy to apply.

이하, 각 단계별로 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail in each step.

먼저, (a) 단계는 리튬 금속층의 표면에 플루오로에틸렌카보네이트를 도포를 위한 것으로, 리튬 금속층의 적어도 일면 상에 플루오로에틸렌카보네이트를 도포한다.First, in step (a), fluoroethylene carbonate is applied to the surface of the lithium metal layer, and fluoroethylene carbonate is applied on at least one surface of the lithium metal layer.

상기 리튬 금속층은 리튬 금속 또는 리튬 합금(Li-M)을 포함할 수 있다.The lithium metal layer may include lithium metal or a lithium alloy (Li-M).

상기 리튬 합금에 포함된 금속(M)은 알루미늄(Al), 마그네슘(Mg), 아연(Zn), 붕소(B), 규소(Si), 주석(Sn), 저마늄(Ge), 스트론튬(Sr), 란타넘(La), 은(Ag), 인듐(In), 탄탈럼(Ta), 나이오븀(Nb)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.The metal (M) included in the lithium alloy is aluminum (Al), magnesium (Mg), zinc (Zn), boron (B), silicon (Si), tin (Sn), germanium (Ge), strontium (Sr) ), lanthanum (La), silver (Ag), indium (In), tantalum (Ta), and may be at least one selected from the group consisting of niobium (Nb).

본 발명에 있어서, 상기 도포는 플루오로에틸렌카보네이트를 리튬 금속층의 적어도 일면에 직접 도포하는 방식으로 이루어진다.In the present invention, the application is made in a way that fluoroethylene carbonate is directly applied to at least one surface of the lithium metal layer.

상기 도포는 일반적으로 알려진 통상의 방법이 가능한데, 예를 들어, 붓기(pouring), 분사(spraying), 흩뿌리기(sprinkling), 분무(atomization) 등의 여러 방법을 이용하여 수행할 수 있다.The application may be performed by a commonly known method, for example, pouring, spraying, sprinkling, atomization, and the like may be used.

상기 플루오로에틸렌카보네이트의 도포 횟수에는 제한이 없으며, 1회 이상 수행될 수 있다.There is no limit to the number of times of application of the fluoroethylene carbonate, and may be performed one or more times.

이어서, (b) 단계는 전술한 (a) 단계에서 제조된 플루오로에틸렌카보네이트가 도포된 리튬 금속층을 압연하여 상기 리튬 금속층의 적어도 일면 상에 리튬 플로라이드 보호층을 형성한다.Subsequently, in step (b), the lithium metal layer coated with fluoroethylene carbonate prepared in step (a) is rolled to form a lithium fluoride protective layer on at least one surface of the lithium metal layer.

상기 (b) 단계의 압연을 통해 리튬 금속층의 표면에 도포된 플루오로에틸렌카보네이트와 리튬 금속을 반응시킴으로써 리튬 금속층 표면에 균일한 리튬 플로라이드 보호층을 형성할 수 있다.A uniform lithium fluoride protective layer can be formed on the surface of the lithium metal layer by reacting the lithium metal with the fluoroethylene carbonate applied to the surface of the lithium metal layer through the rolling in step (b).

상기 압연 횟수에는 제한이 없으며, 1회 이상 수행될 수 있다.The number of rolling is not limited, and may be performed one or more times.

상기 압연은 상기 플루오로에틸렌카보네이트가 도포된 리튬 금속층을 압연 유닛 사이에 위치시키고 압력을 인가하는 방식으로 수행할 수 있다.The rolling may be performed by placing the lithium metal layer coated with the fluoroethylene carbonate between the rolling units and applying pressure.

상기 압연 유닛은 해당 기술분야에서 사용하는 통상의 것으로 특별히 한정하지 않는다. 일례로, 상기 압연 유닛은 롤 프레스(roll press), 라미네이터(laminator) 등을 이용할 수 있다.The rolling unit is not particularly limited to a conventional one used in the art. For example, the rolling unit may use a roll press, a laminator, or the like.

상기 압연은 10 내지 80 ℃의 온도 조건에서 동안 수행할 수 있다. 상기 압연 시 온도 및 시간은 공정 조건에 따라 달라질 수 있다. 상기 압연 온도 및 시간이 상기 범위 미만인 경우 플루오로에틸렌카보네이트와 리튬 금속 간의 충분한 반응이 이루어지지 않아 리튬 플로라이드 보호층이 불균일하게 형성될 수 있으며, 이와 반대로 상기 범위를 초과하는 경우 리튬 금속이 변질되는 문제가 있다.The rolling may be performed during a temperature condition of 10 to 80 ℃. The rolling temperature and time may vary depending on process conditions. When the rolling temperature and time are less than the above ranges, a sufficient reaction between fluoroethylene carbonate and lithium metal may not be achieved, so that the lithium fluoride protective layer may be non-uniformly formed. there is a problem.

상기 (b) 단계의 압연을 통해 리튬 금속층의 두께가 감소하며, 구체적으로 하기의 수학식 1에 따른 두께 감소율이 10 % 이상, 바람직하기로 10 내지 30 %일 수 있다. 상기 압연을 통한 리튬 금속층의 두께 감소율이 전술한 범위에 해당하는 경우 리튬 금속층의 표면에 고른 리튬 플로라이드 보호층을 형성할 수 있는 이점이 있고, 이에 따라 리튬 덴드라이트의 생성을 보다 효과적으로 억제할 수 있다.The thickness of the lithium metal layer is reduced through the rolling of step (b), and specifically, the thickness reduction rate according to Equation 1 below may be 10% or more, preferably 10 to 30%. When the thickness reduction rate of the lithium metal layer through the rolling falls within the above-mentioned range, there is an advantage in that an even lithium fluoride protective layer can be formed on the surface of the lithium metal layer, and thus the generation of lithium dendrites can be more effectively suppressed. there is.

[수학식 1][Equation 1]

Figure pat00001
Figure pat00001

본 발명에 있어서, 상기 (b) 단계의 압연 이후, 잔존하는 플루오로에틸렌카보네이트를 제거하고, 리튬 플로라이드 보호층을 리튬 금속층 표면에 견고히 고정시키기 위한 건조하는 단계를 추가로 수행할 수 있다.In the present invention, after the rolling in step (b), the drying step for removing the remaining fluoroethylene carbonate and firmly fixing the lithium fluoride protective layer to the surface of the lithium metal layer may be additionally performed.

상기 건조는 플루오로에틸렌카보네이트를 충분히 제거할 수 있는 수준의 온도 및 시간에서 수행하며, 그 조건은 공정 조건에 따라 달라질 수 있으므로 본 발명에 특별히 제한되지 않는다. The drying is carried out at a temperature and time at a level sufficient to remove fluoroethylene carbonate, and the conditions may vary depending on process conditions, so the present invention is not particularly limited.

일례로, 상기 건조는 온풍, 열풍, 저습풍에 의한 건조, 진공 건조, (원)적외선 및 전자선 등의 조사에 의한 방법을 이용할 수 있다. For example, the drying may be carried out by a method of drying by hot air, hot air, low humidity, vacuum drying, (far) infrared rays, and electron beam irradiation.

전술한 바와 같이, 본 발명에 따른 리튬 금속 전극의 제조방법은 플루오로에틸렌카보네이트를 리튬 금속층의 표면에 직접 도포하여 압연함으로써 균일하면서도 불소 함량이 높은 리튬 플로라이드 보호층을 포함하는 리튬 금속 전극을 용이하게 제조할 수 있다. 본 발명의 제조방법으로부터 제조된 리튬 플로라이드 보호층은 균일성이 우수하여 리튬 금속 표면에서의 리튬 덴드라이트 성장 억제 효과가 우수할 뿐만 아니라 일정 수준의 이온 전도도를 나타내는 바, 이를 포함하는 리튬 이차 전지의 용량 및 수명 특성을 향상시킬 수 있다.As described above, in the method for manufacturing a lithium metal electrode according to the present invention, a lithium metal electrode including a lithium fluoride protective layer having a uniform and high fluorine content can be easily produced by applying fluoroethylene carbonate directly to the surface of the lithium metal layer and rolling it. can be manufactured. The lithium fluoride protective layer prepared by the manufacturing method of the present invention has excellent uniformity and thus exhibits an excellent effect of inhibiting lithium dendrite growth on the surface of lithium metal and exhibits a certain level of ionic conductivity, a lithium secondary battery comprising the same capacity and lifespan characteristics of

또한, 본 발명은 상기 제조방법으로 제조된 리튬 금속 전극을 제공한다.In addition, the present invention provides a lithium metal electrode manufactured by the above manufacturing method.

상기 리튬 금속 전극은 리튬 금속층; 및 상기 리튬 금속층의 적어도 일면 상에 형성된 리튬 플로라이드 보호층을 포함한다.The lithium metal electrode may include a lithium metal layer; and a lithium fluoride protective layer formed on at least one surface of the lithium metal layer.

상기 리튬 금속층은 리튬 금속 또는 리튬 합금을 포함할 수 있다. 또한, 상기 리튬 금속층은 리튬 금속 박막 또는 리튬 금속 분말을 포함하거나 음극 집전체의 적어도 일면에 리튬 금속 박막이 형성된 리튬 금속판일 수 있다.The lithium metal layer may include lithium metal or a lithium alloy. In addition, the lithium metal layer may be a lithium metal plate including a lithium metal thin film or lithium metal powder, or a lithium metal thin film formed on at least one surface of the negative electrode current collector.

상기 음극 집전체는 음극 활물질인 상기 리튬 금속층의 지지를 위한 것으로, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 팔라듐, 소성 탄소, 구리나 스테인리스 스틸 표면에 카본, 니켈, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.The anode current collector is for supporting the lithium metal layer, which is an anode active material, and is not particularly limited as long as it has high conductivity without causing a chemical change in the battery. For example, copper, stainless steel, aluminum, nickel, titanium, palladium, fired carbon, a copper or stainless steel surface treated with carbon, nickel, silver, etc., an aluminum-cadmium alloy, etc. may be used.

상기 음극 집전체는 그것의 표면에 미세한 요철을 형성하여 음극 활물질인 리튬 금속 박막과의 결합력을 강화시킬 수 있으며, 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.The negative electrode current collector can form fine concavities and convexities on its surface to strengthen the bonding force with the lithium metal thin film, which is an anode active material, and can take various forms such as films, sheets, foils, meshes, nets, porous bodies, foams, and nonwovens. can be used

상기 리튬 금속 박막의 형성방법은 특별히 제한되지 않으며, 당업계에서 통상적으로 사용되는 층 또는 막의 형성방법을 이용할 수 있다. 예컨대 압착, 코팅, 증착 등의 방법을 이용할 수 있다.The method of forming the lithium metal thin film is not particularly limited, and a method of forming a layer or a film commonly used in the art may be used. For example, a method such as pressing, coating, or vapor deposition may be used.

상기 리튬 플로라이드 보호층은 전술한 바의 제조방법에 따라 형성된 것으로, 두께가 10 내지 500 ㎚, 바람직하게는 50 내지 200 ㎚일 수 있다. 상기 리튬 플로라이드 보호층의 두께가 상기 범위 미만이면 전술한 바의 리튬 플로라이드 보호층을 통한 효과가 미미하며, 이와 반대로 상기 범위를 초과하는 경우 충/방전 중 과전압 문제가 발생할 수 있다.The lithium fluoride protective layer is formed according to the manufacturing method described above, and may have a thickness of 10 to 500 nm, preferably 50 to 200 nm. If the thickness of the lithium fluoride protective layer is less than the above range, the effect through the lithium fluoride protective layer as described above is insignificant. On the contrary, if it exceeds the above range, an overvoltage problem may occur during charging/discharging.

상기 리튬 플로라이드 보호층의 불소 함량은 X-선 광전자 분광(X-ray photoelectron spectroscopy, XPS) 분석 결과, 리튬 플로라이드 보호층에 포함되는 전체 원소 중에 0.1 내지 10 원자%, 바람직하게는 0.5 내지 5 원자%일 수 있다. 본 발명에 따른 리튬 금속 전극은 전술한 바의 제조방법에 따라 리튬 플로라이드 보호층이 균일하게 형성됨으로써 종래 리튬 플로라이드 보호층을 포함하는 리튬 금속 전극에 비해 리튬 플로라이드 보호층 내 불소 함량이 높다.As a result of X-ray photoelectron spectroscopy (XPS) analysis, the fluorine content of the lithium fluoride protective layer is 0.1 to 10 atomic %, preferably 0.5 to 5 atomic %, among all elements included in the lithium fluoride protective layer. atomic %. The lithium metal electrode according to the present invention has a higher fluorine content in the lithium fluoride protective layer than in a lithium metal electrode including a conventional lithium fluoride protective layer because the lithium fluoride protective layer is uniformly formed according to the manufacturing method as described above. .

상기 리튬 플로라이드 보호층의 이온 전도도는 10-20 내지 10-4 S/㎝, 바람직하게는 10-12 내지 10-7 S/㎝ 범위일 수 있다. The ionic conductivity of the lithium fluoride protective layer may be in the range of 10 -20 to 10 -4 S/cm, preferably 10 -12 to 10 -7 S/cm.

또한, 상기 리튬 플로라이드 보호층이 형성된 리튬 금속 전극의 전해질 내에서의 표면 저항은 100 내지 300 Ω, 바람직하게는 150 내지 200 Ω으로서, 1 내지 72 시간, 바람직하게는 24 내지 65 시간, 보다 바람직하게는 36 내지 60 시간 동안 표면 저항의 변화가 없다. 이는, 기존과 달리 리튬 금속 전극의 표면에서 전지의 지속적인 전기화학적 반응이 유지되는 것으로서, 이는 상기 리튬 플로라이드 보호층이 전해질과 반응하지 않고 안정한 상태로 유지됨을 의미한다.In addition, the surface resistance of the lithium metal electrode on which the lithium fluoride protective layer is formed in the electrolyte is 100 to 300 Ω, preferably 150 to 200 Ω, and 1 to 72 hours, preferably 24 to 65 hours, more preferably In most cases, there is no change in surface resistance for 36 to 60 hours. This means that the continuous electrochemical reaction of the battery is maintained on the surface of the lithium metal electrode unlike the conventional one, which means that the lithium fluoride protective layer is maintained in a stable state without reacting with the electrolyte.

또한, 본 발명은 상기 리튬 금속 전극을 포함하는 리튬 이차 전지를 제공한다.In addition, the present invention provides a lithium secondary battery including the lithium metal electrode.

상기 리튬 이차 전지는 양극; 음극; 및 이들 사이에 개재되는 전해질을 포함하며, 상기 음극으로서 본 발명에 따른 리튬 금속 전극을 포함한다.The lithium secondary battery may include a positive electrode; cathode; and an electrolyte interposed therebetween, and a lithium metal electrode according to the present invention as the negative electrode.

바람직하기로, 상기 리튬 이차 전지는 양극 활물질로 황을 포함하는 리튬-황 전지일 수 있다.Preferably, the lithium secondary battery may be a lithium-sulfur battery including sulfur as a positive electrode active material.

상기 양극은 양극 집전체와 상기 양극 집전체의 적어도 일면에 도포된 양극 활물질층을 포함할 수 있다.The positive electrode may include a positive electrode current collector and a positive electrode active material layer coated on at least one surface of the positive electrode current collector.

상기 양극 집전체는 양극 활물질을 지지를 위한 것으로, 상기 음극 집전체에서 설명한 바와 같다.The positive electrode current collector is for supporting the positive electrode active material, as described in the negative electrode current collector.

상기 양극 활물질층은 양극 활물질을 포함하며, 선택적으로 도전재, 바인더 및 첨가제 등을 더 포함할 수 있다.The positive electrode active material layer includes a positive electrode active material, and may optionally further include a conductive material, a binder, and an additive.

상기 양극 활물질은 황 계열 화합물, 구체적으로, 황 원소 및 황 화합물로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 상기 황 원소는 무기 황(S8)을 포함할 수 있다. 또한, 상기 황 화합물은 Li2Sn(n≥1), 디설파이드 화합물, 유기황 화합물 및 탄소-황 폴리머((C2Sx)n, x=2.5 내지 50, n≥2)로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 바람직하기로, 상기 양극 활물질은 무기 황(S8)을 포함할 수 있다.The positive active material may include a sulfur-based compound, specifically, at least one selected from the group consisting of elemental sulfur and a sulfur compound. The element sulfur may include inorganic sulfur (S 8 ). In addition, the sulfur compound is from the group consisting of Li 2 S n (n≥1), disulfide compounds, organosulfur compounds, and carbon-sulfur polymers ((C 2 S x ) n , x=2.5 to 50, n≥2). It may be one or more selected. Preferably, the positive active material may include inorganic sulfur (S 8 ).

상기 양극 활물질로 포함되는 황의 경우 단독으로는 전기 전도성이 없기 때문에 탄소재와 같은 전도성 소재와 복합화하여 사용된다. 이에 따라, 상기 황은 황-탄소 복합체의 형태로 포함될 수 있다. 바람직하기로, 상기 양극 활물질은 황-탄소 복합체일 수 있다.In the case of sulfur included as the positive electrode active material, since it does not have electrical conductivity alone, it is used in combination with a conductive material such as carbon material. Accordingly, the sulfur may be included in the form of a sulfur-carbon complex. Preferably, the cathode active material may be a sulfur-carbon composite.

상기 황-탄소 복합체에 포함되는 탄소는 다공성 탄소재로 상기 황이 균일하고 안정적으로 고정될 수 있는 골격을 제공하며, 황의 낮은 전기 전도도를 보완하여 전기화학적 반응이 원활하게 진행될 수 있도록 한다.The carbon included in the sulfur-carbon composite is a porous carbon material that provides a skeleton in which the sulfur can be uniformly and stably fixed, and compensates for the low electrical conductivity of sulfur so that the electrochemical reaction can proceed smoothly.

상기 다공성 탄소재는 일반적으로 다양한 탄소 재질의 전구체를 탄화시킴으로써 제조될 수 있다. 상기 다공성 탄소재는 내부에 일정하지 않은 기공을 포함하며, 상기 기공의 평균 직경은 1 내지 200 ㎚ 범위이며, 기공도 또는 공극률은 다공성 탄소재 전체 체적의 10 내지 90 % 범위일 수 있다. 만일 상기 기공의 평균 직경이 상기 범위 미만인 경우 기공 크기가 분자 수준에 불과하여 황의 함침이 불가능하며, 이와 반대로 상기 범위를 초과하는 경우 다공성 탄소재의 기계적 강도가 약화되어 전극의 제조공정에 적용하기에 바람직하지 않다.The porous carbon material may be generally prepared by carbonizing precursors of various carbon materials. The porous carbon material includes non-uniform pores therein, and the average diameter of the pores is in the range of 1 to 200 nm, and the porosity or porosity may be in the range of 10 to 90% of the total volume of the porous carbon material. If the average diameter of the pores is less than the above range, the impregnation of sulfur is impossible because the pore size is only at the molecular level. Not desirable.

상기 다공성 탄소재의 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형으로 리튬-황 전지에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다.The shape of the porous carbon material is spherical, rod-shaped, needle-shaped, plate-shaped, tube-shaped or bulk-shaped, as long as it is commonly used in lithium-sulfur batteries, and may be used without limitation.

상기 다공성 탄소재는 다공성 구조이거나 비표면적이 높은 것으로 당업계에서 통상적으로 사용되는 것이라면 어느 것이든 무방하다. 예를 들어, 상기 다공성 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소 나노튜브(SWCNT), 다중벽 탄소 나노튜브(MWCNT) 등의 탄소 나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 천연 흑연, 인조 흑연, 팽창 흑연 등의 흑연 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한되지 않는다. 바람직하기로 상기 다공성 탄소재는 탄소나노튜브일 수 있다.The porous carbon material may have a porous structure or a high specific surface area, so long as it is commonly used in the art. For example, the porous carbon material may include graphite; graphene; carbon black such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; carbon nanotubes (CNTs) such as single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs); carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); It may be at least one selected from the group consisting of graphite and activated carbon such as natural graphite, artificial graphite, and expanded graphite, but is not limited thereto. Preferably, the porous carbon material may be a carbon nanotube.

상기 황-탄소 복합체는 황-탄소 복합체 100 중량부를 기준으로 황을 60 내지 90 중량부, 바람직하기로 65 내지 85 중량부, 보다 바람직하기로 70 내지 80 중량부로 포함할 수 있다. 상기 황의 함량이 전술한 범위 미만인 경우 황-탄소 복합체 내 다공성 탄소재의 함량이 상대적으로 많아짐에 따라 비표면적이 증가하여 양극 제조시에 바인더의 함량이 증가한다. 이러한 바인더의 사용량 증가는 결국 양극의 면저항을 증가시키고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 전지의 성능을 저하시킬 수 있다. 이와 반대로 상기 황의 함량이 전술한 범위를 초과하는 경우 다공성 탄소재와 결합하지 못한 황이 그들끼리 뭉치거나 다공성 탄소재의 표면으로 재용출됨에 따라 전자를 받기 어려워져 전기화학적 반응에 참여하지 못하게 되어 전지의 용량 손실이 발생할 수 있다.The sulfur-carbon composite may include sulfur in an amount of 60 to 90 parts by weight, preferably 65 to 85 parts by weight, more preferably 70 to 80 parts by weight, based on 100 parts by weight of the sulfur-carbon composite. When the sulfur content is less than the above-mentioned range, the specific surface area increases as the content of the porous carbon material in the sulfur-carbon composite is relatively increased, so that the binder content increases when the positive electrode is manufactured. An increase in the amount of the binder used may eventually increase the sheet resistance of the positive electrode and act as an insulator to prevent electron pass, thereby degrading the performance of the battery. Conversely, when the sulfur content exceeds the above range, the sulfur that cannot be combined with the porous carbon material aggregates with each other or re-elutes to the surface of the porous carbon material, making it difficult to receive electrons and thus not participating in the electrochemical reaction of the battery. Capacity loss may occur.

또한, 상기 황-탄소 복합체에서 상기 황은 전술한 다공성 탄소재의 내부 및 외부 표면 중 적어도 어느 한 곳에 위치하며 이때 상기 다공성 탄소재의 내부 및 외부 전체 표면의 100% 미만, 바람직하기로 1 내지 95 %, 보다 바람직하기로 60 내지 90 % 영역에 존재할 수 있다. 상기 황이 다공성 탄소재의 내부 및 외부 표면에 상기 범위 내로 존재할 때 전자 전달 면적 및 전해질과의 젖음성 면에서 최대 효과를 나타낼 수 있다. 구체적으로, 상기 범위 영역에서 황이 다공성 탄소재의 내부 및 외부 표면에 얇고 고르게 함침되므로 충·방전 과정에서 전자 전달 접촉 면적을 증가시킬 수 있다. 만약, 상기 황이 다공성 탄소재의 내부 및 외부 전체 표면의 100% 영역에 위치하는 경우, 상기 탄소재가 완전히 황으로 덮여 전해질에 대한 젖음성이 떨어지고 전극 내 포함되는 도전재와 접촉성이 저하되어 전자 전달을 받지 못해 전기화학 반응에 참여할 수 없게 된다.In addition, in the sulfur-carbon composite, the sulfur is located on at least one of the inner and outer surfaces of the porous carbon material, wherein less than 100%, preferably 1 to 95% of the total inner and outer surfaces of the porous carbon material , more preferably 60 to 90%. When the sulfur is present on the inner and outer surfaces of the porous carbon material within the above range, the maximum effect may be exhibited in terms of electron transport area and wettability with the electrolyte. Specifically, since sulfur is thinly and evenly impregnated on the inner and outer surfaces of the porous carbon material in the above range, the electron transport contact area can be increased in the charge/discharge process. If the sulfur is located in 100% of the entire inner and outer surface of the porous carbon material, the carbon material is completely covered with sulfur, so that the wettability to the electrolyte is reduced and the contact with the conductive material included in the electrode is lowered to prevent electron transfer. They cannot participate in the electrochemical reaction.

상기 황-탄소 복합체의 제조방법은 본 발명에서 특별히 한정하지 않으며 당 업계에서 통상적으로 사용되는 방법이 사용될 수 있다. 일례로, 상기 황과 다공성 탄소재를 단순 혼합한 다음 열처리하여 복합화하는 방법이 사용될 수 있다.The method for preparing the sulfur-carbon composite is not particularly limited in the present invention, and a method commonly used in the art may be used. As an example, a method of simply mixing the sulfur and the porous carbon material and then heat-treating the compound may be used.

상기 양극 활물질은 전술한 조성 이외에 전이금속 원소, ⅢA족 원소, ⅣA족 원소, 이들 원소들의 황 화합물, 및 이들 원소들과 황의 합금 중에서 선택되는 하나 이상의 첨가제를 더 포함할 수 있다.The positive active material may further include one or more additives selected from a transition metal element, a group IIIA element, a group IVA element, a sulfur compound of these elements, and an alloy of these elements and sulfur in addition to the composition described above.

상기 전이금속 원소로는 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au 또는 Hg 등이 포함되고, 상기 ⅢA족 원소로는 Al, Ga, In, Tl 등이 포함되며, 상기 ⅣA족 원소로는 Ge, Sn, Pb 등이 포함될 수 있다.Examples of the transition metal element include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au or Hg and the like are included, and the group IIIA elements include Al, Ga, In, Tl, and the like, and the group IVA elements include Ge, Sn, Pb, and the like.

상기 양극 활물질은 상기 양극을 구성하는 양극 활물질층 전체 100 중량%를 기준으로 40 내지 95 중량%, 바람직하게는 50 내지 90 중량%로 포함할 수 있다. 상기 양극 활물질의 함량이 상기 범위 미만인 경우 양극의 전기화학적 반응을 충분하게 발휘하기 어렵고, 이와 반대로 상기 범위를 초과하는 경우 후술하는 도전재와 바인더의 함량이 상대적으로 부족하여 양극의 저항이 상승하며, 양극의 물리적 성질이 저하되는 문제가 있다.The positive active material may be included in an amount of 40 to 95% by weight, preferably 50 to 90% by weight, based on 100% by weight of the total positive active material layer constituting the positive electrode. When the content of the positive electrode active material is less than the above range, it is difficult to sufficiently exhibit the electrochemical reaction of the positive electrode. On the contrary, when it exceeds the above range, the content of the conductive material and the binder to be described later is relatively insufficient, and the resistance of the positive electrode increases, There is a problem in that the physical properties of the anode are deteriorated.

상기 양극 활물질층은 선택적으로 전자가 양극(구체적으로는 양극 활물질) 내에서 원활하게 이동하도록 하기 위한 도전재 및 양극 활물질을 집전체에 잘 부착시키기 위한 바인더를 더 포함할 수 있다.The positive electrode active material layer may optionally further include a conductive material for allowing electrons to smoothly move within the positive electrode (specifically, the positive electrode active material) and a binder for well adhering the positive electrode active material to the current collector.

상기 도전재는 전해질과 양극 활물질을 전기적으로 연결시켜 주어 집전체(current collector)로부터 전자가 양극 활물질까지 이동하는 경로의 역할을 하는 물질로서, 도전성을 갖는 것이라면 제한없이 사용할 수 있다.The conductive material electrically connects the electrolyte and the positive electrode active material to serve as a path for electrons to move from the current collector to the positive electrode active material, and may be used without limitation as long as it has conductivity.

예를 들어, 상기 도전재로는 천연 흑연, 인조 흑연 등의 흑연; 슈퍼 P(Super-P), 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 탄소 나노튜브, 플러렌 등의 탄소 유도체; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등의 전도성 고분자를 단독 또는 혼합하여 사용할 수 있다.For example, the conductive material may include graphite such as natural graphite and artificial graphite; carbon black such as Super-P, Denka Black, Acetylene Black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, and Summer Black; carbon derivatives such as carbon nanotubes and fullerenes; conductive fibers such as carbon fibers and metal fibers; carbon fluoride; A metal powder such as aluminum or nickel powder or a conductive polymer such as polyaniline, polythiophene, polyacetylene, or polypyrrole may be used alone or in combination.

상기 도전재는 상기 양극을 구성하는 양극 활물질층 전체 100 중량%를 기준으로 0.01 내지 30 중량%로 포함할 수 있다. 상기 도전재의 함량이 상기 범위 미만이면 양극 활물질과 집전체 간의 전자 전달이 용이하지 않아 전압 및 용량이 감소한다. 이와 반대로, 상기 범위 초과이면 상대적으로 양극 활물질의 비율이 감소하여 전지의 총 에너지(전하량)이 감소할 수 있으므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.The conductive material may be included in an amount of 0.01 to 30% by weight based on 100% by weight of the total positive active material layer constituting the positive electrode. When the content of the conductive material is less than the above range, electron transfer between the positive active material and the current collector is not easy, and thus the voltage and capacity are reduced. Conversely, if the amount exceeds the above range, the ratio of the positive electrode active material is relatively reduced, and thus the total energy (charge amount) of the battery may decrease. Therefore, it is preferable to determine an appropriate content within the above range.

상기 바인더는 양극 활물질을 양극 집전체에 유지시키고, 양극 활물질 사이를 유기적으로 연결시켜 이들 간의 결착력을 보다 높이는 것으로, 당해 업계에서 공지된 모든 바인더를 사용할 수 있다.The binder maintains the positive electrode active material on the positive electrode current collector and organically connects the positive electrode active materials to increase the binding force therebetween, and any binder known in the art may be used.

예를 들어 상기 바인더는 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVdF) 또는 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무(styrene butadiene rubber, SBR), 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로오스(carboxyl methyl cellulose, CMC), 전분, 히드록시 프로필셀룰로오스, 재생 셀룰로오스를 포함하는 셀룰로오스계 바인더; 폴 리 알코올계 바인더; 폴리에틸렌, 폴리프로필렌를 포함하는 폴리 올레핀계 바인더; 폴리 이미드계 바인더; 폴리 에스테르계 바인더; 및 실란계 바인더;로 이루어진 군으로부터 선택된 1종, 2종 이상의 혼합물 또는 공중합체를 사용할 수 있다.For example, the binder may include a fluororesin-based binder including polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE); a rubber-based binder including styrene-butadiene rubber (SBR), acrylonitrile-butydiene rubber, and styrene-isoprene rubber; Cellulose binders including carboxyl methyl cellulose (CMC), starch, hydroxypropyl cellulose, and regenerated cellulose; polyalcohol-based binders; Polyolefin-based binders including polyethylene and polypropylene; polyimide-based binders; polyester-based binders; and a silane-based binder; one selected from the group consisting of, a mixture of two or more, or a copolymer may be used.

상기 바인더의 함량은 상기 양극을 구성하는 양극 활물질층 전체 100 중량%를 기준으로 0.5 내지 30 중량%일 수 있다. 상기 바인더의 함량이 상기 범위 미만이면 양극의 물리적 성질이 저하되어 양극 활물질과 도전재가 탈락할 수 있고, 상기 범위 초과이면 양극에서 양극 활물질과 도전재의 비율이 상대적으로 감소되어 전지 용량이 감소될 수 있으므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.The content of the binder may be 0.5 to 30% by weight based on 100% by weight of the total of the positive active material layer constituting the positive electrode. If the content of the binder is less than the above range, the physical properties of the positive electrode may be deteriorated, and the positive electrode active material and the conductive material may fall off. It is preferable to determine the appropriate content within the above-mentioned range.

본 발명에서 상기 양극의 제조방법은 특별히 한정되지 않으며, 통상의 기술자에 의해 공지의 방법 또는 이를 변형하는 다양한 방법이 사용 가능하다.In the present invention, the method for manufacturing the positive electrode is not particularly limited, and a method known by those skilled in the art or various methods for modifying it may be used.

일례로, 상기 양극은 상술한 바의 조성을 포함하는 양극 슬러리 조성물을 제조한 후, 이를 상기 양극 집전에의 적어도 일면에 도포함으로써 제조된 것일 수 있다.For example, the positive electrode may be prepared by preparing a positive electrode slurry composition including the composition as described above and then applying it to at least one surface of the positive electrode current collector.

상기 양극 슬러리 조성물은 전술한 바의 양극 활물질, 도전재 및 바인더를 포함하며, 이외 용매를 더 포함할 수 있다.The positive electrode slurry composition includes the positive electrode active material, the conductive material, and the binder as described above, and may further include a solvent.

상기 용매로는 양극 활물질, 도전재 및 바인더를 균일하게 분산시킬 수 있는 것을 사용한다. 이러한 용매로는 수계 용매로서 물이 가장 바람직하며, 이때 물은 증류수(distilled water), 탈이온수(deionzied water)일 수 있다. 다만 반드시 이에 한정하는 것은 아니며, 필요한 경우 물과 쉽게 혼합이 가능한 저급 알코올이 사용될 수 있다. 상기 저급 알코올로는 메탄올, 에탄올, 프로판올, 이소프로판올 및 부탄올 등이 있으며, 바람직하기로 이들은 물과 함께 혼합하여 사용될 수 있다.As the solvent, one capable of uniformly dispersing the positive electrode active material, the conductive material, and the binder is used. As the solvent, water is most preferable as an aqueous solvent, and in this case, the water may be distilled water or deionzied water. However, the present invention is not necessarily limited thereto, and if necessary, a lower alcohol that can be easily mixed with water may be used. Examples of the lower alcohol include methanol, ethanol, propanol, isopropanol and butanol, and preferably, these may be used by mixing with water.

상기 용매의 함량은 코팅을 용이하게 할 수 있는 정도의 농도를 갖는 수준으로 함유될 수 있으며, 구체적인 함량은 도포 방법 및 장치에 따라 달라진다.The content of the solvent may be contained at a level having a concentration capable of facilitating coating, and the specific content varies depending on the application method and apparatus.

상기 양극 슬러리 조성물은 필요에 따라 해당 해당 기술분야에서 그 기능의 향상 등을 목적으로 통상적으로 사용되는 물질을 필요에 따라 추가적으로 포함할 수 있다. 예를 들어 점도 조정제, 유동화제, 충진제 등을 들 수 있다.The positive electrode slurry composition may additionally include, if necessary, a material commonly used in the relevant technical field for the purpose of improving its function. For example, a viscosity modifier, a fluidizing agent, a filler, etc. are mentioned.

상기 양극 슬러리 조성물의 도포 방법은 본 발명에서 특별히 한정하지 않으며, 예컨대, 닥터 블레이드(doctor blade), 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 들 수 있다. 또한, 별도의 기재(substrate) 위에 성형한 후 프레싱(pressing) 또는 라미네이션(lamination) 방법에 의해 양극 슬러리를 양극 집전체 상에 도포할 수도 있다.The method of applying the positive electrode slurry composition is not particularly limited in the present invention, and for example, methods such as doctor blade, die casting, comma coating, screen printing, etc. can In addition, after forming on a separate substrate, the positive electrode slurry may be applied on the positive electrode current collector by pressing or lamination.

상기 도포 후, 용매 제거를 위한 건조 공정을 수행할 수 있다. 상기 건조 공정은 용매를 충분히 제거할 수 있는 수준의 온도 및 시간에서 수행하며, 그 조건은 용매의 종류에 따라 달라질 수 있으므로 본 발명에 특별히 제한되지 않는다. 일례로, 온풍, 열풍, 저습풍에 의한 건조, 진공 건조, (원)적외선 및 전자선 등의 조사에 의한 건조법을 들 수 있다. 건조 속도는 통상 응력 집중에 의해 양극 활물질층에 균열이 생기거나 양극 활물질층이 양극 집전체로부터 박리되지 않을 정도의 속도 범위 내에서 가능한 한 빨리 용매를 제거할 수 있도록 조정한다.After the application, a drying process for removing the solvent may be performed. The drying process is performed at a temperature and time at a level sufficient to remove the solvent, and the conditions may vary depending on the type of the solvent, so the present invention is not particularly limited. As an example, drying by warm air, hot air, low-humidity air, vacuum drying, (far) infrared rays and a drying method by irradiation with an electron beam, etc. are mentioned. The drying rate is usually adjusted to remove the solvent as quickly as possible within a speed range such that the positive electrode active material layer is not cracked or the positive electrode active material layer is not peeled off from the positive electrode current collector due to stress concentration.

추가적으로, 상기 건조 후 집전체를 프레스함으로써 양극 내 양극 활물질의 밀도를 높일 수도 있다. 프레스 방법으로는 금형 프레스 및 롤 프레스 등의 방법을 들 수 있다.Additionally, the density of the positive electrode active material in the positive electrode may be increased by pressing the current collector after drying. Methods, such as a metal mold|die press and roll press, are mentioned as a press method.

전술한 바의 조성 및 제조방법으로 제조된 상기 양극, 구체적으로 양극 활물질층의 기공도는 50 내지 80 %, 바람직하기로 60 내지 75 %일 수 있다. 상기 양극의 기공도가 50 %에 미치지 못하는 경우에는 양극 활물질, 도전재 및 바인더를 포함하는 양극 슬러리 조성물의 충진도가 지나치게 높아져서 양극 활물질 사이에 이온전도 및/또는 전기 전도를 나타낼 수 있는 충분한 전해질이 유지될 수 없게 되어 전지의 출력특성이나 사이클 특성이 저하될 수 있으며, 전지의 과전압 및 방전용량 감소가 심하게 되는 문제가 있다. 이와 반대로 상기 양극의 기공도가 80 % 를 초과하여 지나치게 높은 기공도를 갖는 경우 집전체와 물리적 및 전기적 연결이 낮아져 접착력이 저하되고 반응이 어려워지는 문제가 있으며, 높아진 기공도를 전해질이 충진되어 전지의 에너지 밀도가 낮아질 수 있는 문제가 있으므로 상기 범위에서 적절히 조절한다.The porosity of the positive electrode prepared by the composition and manufacturing method as described above, specifically, the positive electrode active material layer may be 50 to 80%, preferably 60 to 75%. When the porosity of the positive electrode is less than 50%, the filling degree of the positive electrode slurry composition including the positive electrode active material, the conductive material and the binder is excessively high, so that sufficient electrolyte to exhibit ionic and/or electrical conduction between the positive electrode active materials is provided. Since it cannot be maintained, the output characteristics or cycle characteristics of the battery may be deteriorated, and there is a problem in that the overvoltage and the discharge capacity of the battery are severely reduced. On the other hand, when the porosity of the positive electrode exceeds 80% and has an excessively high porosity, the physical and electrical connection with the current collector is lowered, so there is a problem that adhesion is lowered and the reaction is difficult. Since there is a problem that the energy density of the can be lowered, it is appropriately adjusted within the above range.

또한, 본 발명에 따른 양극에서 황 로딩량, 즉 양극 내 양극 활물질층의 단위 면적당 황의 질량은 0.5 내지 15 ㎎/㎠, 바람직하기로 1 내지 10 ㎎/㎠일 수 있다.In addition, the sulfur loading in the positive electrode according to the present invention, that is, the mass of sulfur per unit area of the positive electrode active material layer in the positive electrode may be 0.5 to 15 mg/cm 2 , preferably 1 to 10 mg/cm 2 .

상기 음극은 전술한 바를 따른다.The negative electrode is as described above.

상기 전해질은 리튬 이온을 포함하며, 이를 매개로 양극과 음극에서 전기 화학적인 산화 또는 환원 반응을 일으키기 위한 것이다.The electrolyte contains lithium ions, and is to cause an electrochemical oxidation or reduction reaction in the positive electrode and the negative electrode through this.

상기 전해질은 리튬 금속과 반응하지 않는 비수 전해액 또는 고체 전해질이 가능하나 바람직하게는 비수 전해질이고, 전해질 염 및 유기 용매를 포함한다.The electrolyte may be a non-aqueous electrolyte or a solid electrolyte that does not react with lithium metal, but is preferably a non-aqueous electrolyte, and includes an electrolyte salt and an organic solvent.

상기 비수 전해액에 포함되는 전해질 염은 리튬염이다. 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다. 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 리튬 이미드 등이 사용될 수 있다.The electrolyte salt included in the non-aqueous electrolyte is a lithium salt. The lithium salt may be used without limitation as long as it is commonly used in an electrolyte for a lithium secondary battery. For example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, ( CF 3 SO 2 ) 2 NLi, LiN(SO 2 F) 2 , lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4-phenyl borate, lithium imide, or the like may be used.

상기 리튬염의 농도는 전해질 용매 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 내지 2 M, 구체적으로 0.4 내지 2 M, 더욱 구체적으로 0.4 내지 1.7 M일 수 있다. 상기 리튬염의 농도가 0.2 M 미만으로 사용하면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 2 M을 초과하여 사용하면 전해질의 점도가 증가하여 리튬 이온의 이동성이 감소될 수 있다.The concentration of the lithium salt varies from 0.2 to 2 M, depending on several factors such as the exact composition of the electrolyte solvent mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and preconditioning of the cell, the operating temperature and other factors known in the art of lithium batteries; Specifically, it may be 0.4 to 2 M, more specifically 0.4 to 1.7 M. If the concentration of the lithium salt is used less than 0.2 M, the conductivity of the electrolyte may be lowered, and thus the electrolyte performance may be deteriorated.

상기 비수 전해액에 포함되는 유기 용매로는 리튬 이차 전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 그 중에서 대표적으로는 에테르계 화합물을 포함할 수 있다.As the organic solvent included in the non-aqueous electrolyte, those commonly used in electrolytes for lithium secondary batteries may be used without limitation, for example, ethers, esters, amides, linear carbonates, cyclic carbonates, etc. individually or in a mixture of two or more can be used by Among them, an ether-based compound may be typically included.

상기 에테르계 화합물은 비환형 에테르 및 환형 에테르를 포함할 수 있다.The ether-based compound may include an acyclic ether and a cyclic ether.

예를 들어, 상기 비환형 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르, 에틸프로필 에테르, 디메톡시에탄, 디에톡시에탄, 에틸렌글리콜 에틸메틸에테르, 디에틸렌 글리콜 디메틸 에테르, 디에틸렌 글리콜 디에틸 에테르, 디에틸렌 글리콜 메틸에틸 에테르, 트리에틸렌 글리콜 디메틸 에테르, 트리에틸렌 글리콜 디에틸 에테르, 트리에틸렌 글리콜 메틸에틸 에테르, 테트라에틸렌 글리콜 디메틸 에테르, 테트라에틸렌 글리콜 디에틸 에테르, 테트라에틸렌 글리콜 메틸에틸 에테르, 폴리에틸렌 글리콜 디메틸 에테르, 폴리에틸렌 글리콜 디에틸 에테르, 폴리에틸렌 글리콜 메틸에틸 에테르로 이루어진 군에서 선택되는 1종 이상이 사용될 수 있으나, 이에 한정되는 것은 아니다.For example, the acyclic ether includes dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, ethylpropyl ether, dimethoxyethane, diethoxyethane, ethylene glycol ethylmethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methylethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methylethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, One or more selected from the group consisting of tetraethylene glycol methylethyl ether, polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, and polyethylene glycol methylethyl ether may be used, but the present invention is not limited thereto.

일례로, 상기 환형 에테르는 1,3-디옥솔란, 4,5-디메틸-디옥솔란, 4,5-디에틸-디옥솔란, 4-메틸-1,3-디옥솔란, 4-에틸-1,3-디옥솔란, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 2,5-디메틸테트라하이드로퓨란, 2,5-디메톡시테트라하이드로퓨란, 2-에톡시테트라하이드로퓨란, 2-메틸-1,3-디옥솔란, 2-비닐-1,3-디옥솔란, 2,2-디메틸-1,3-디옥솔란, 2-메톡시-1,3-디옥솔란, 2-에틸-2-메틸-1,3-디옥솔란, 테트라하이드로파이란, 1,4-디옥산, 1,2-디메톡시 벤젠, 1,3-디메톡시 벤젠, 1,4-디메톡시 벤젠, 아이소소바이드 디메틸 에테르(isosorbide dimethyl ether)로 이루어진 군에서 선택되는 1종 이상이 사용될 수 있으나, 이에 한정되는 것은 아니다.In one example, the cyclic ether is 1,3-dioxolane, 4,5-dimethyl-dioxolane, 4,5-diethyl-dioxolane, 4-methyl-1,3-dioxolane, 4-ethyl-1, 3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 2,5-dimethoxytetrahydrofuran, 2-ethoxytetrahydrofuran, 2-methyl-1,3 -dioxolane, 2-vinyl-1,3-dioxolane, 2,2-dimethyl-1,3-dioxolane, 2-methoxy-1,3-dioxolane, 2-ethyl-2-methyl-1, 3-dioxolane, tetrahydropyran, 1,4-dioxane, 1,2-dimethoxy benzene, 1,3-dimethoxy benzene, 1,4-dimethoxy benzene, isosorbide dimethyl ether One or more selected from the group consisting of may be used, but is not limited thereto.

상기 유기 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.Esters in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, γ-butyrolactone, γ-valerolactone, γ-caprolactone, σ- Any one selected from the group consisting of valerolactone and ε-caprolactone or a mixture of two or more thereof may be used, but the present invention is not limited thereto.

상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.Specific examples of the linear carbonate compound include any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate, and ethylpropyl carbonate or among them A mixture of two or more types may be typically used, but is not limited thereto.

또한 상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 이들의 할로겐화물로는 예를 들면, 플루오로에틸렌카보네이트 등이 있으며, 이에 한정되는 것은 아니다.In addition, specific examples of the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate , 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate, and any one selected from the group consisting of halides thereof, or a mixture of two or more thereof. Examples of these halides include, but are not limited to, fluoroethylene carbonate.

상기 전해질은 전술한 전해질 염과 유기 용매 이외에 첨가제로서 질산 또는 아질산계 화합물을 더 포함할 수 있다. 상기 질산 또는 아질산계 화합물은 음극인 리튬 금속 전극에 안정적인 피막을 형성하고 충/방전 효율을 향상시키는 효과가 있다.The electrolyte may further include nitric acid or a nitrite-based compound as an additive in addition to the above-described electrolyte salt and the organic solvent. The nitric acid or nitrite-based compound has the effect of forming a stable film on the lithium metal electrode, which is the negative electrode, and improving the charge/discharge efficiency.

이러한 질산 또는 아질산계 화합물로는 본 발명에서 특별히 한정하지는 않으나, 질산리튬(LiNO3), 질산칼륨(KNO3), 질산세슘(CsNO3), 질산바륨(Ba(NO3)2), 질산암모늄(NH4NO3), 아질산리튬(LiNO2), 아질산칼륨(KNO2), 아질산세슘(CsNO2), 아질산암모늄(NH4NO2) 등의 무기계 질산 또는 아질산 화합물; 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트 등의 유기계 질산 또는 아질산 화합물; 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔 등의 유기 니트로 화합물 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하며, 바람직하게는 질산리튬을 사용한다.The nitric acid or nitrite-based compound is not particularly limited in the present invention, but lithium nitrate (LiNO 3 ), potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), barium nitrate (Ba(NO 3 ) 2 ), ammonium nitrate inorganic nitric acid or nitrite compounds such as (NH 4 NO 3 ), lithium nitrite (LiNO 2 ), potassium nitrite (KNO 2 ), cesium nitrite (CsNO 2 ), and ammonium nitrite (NH 4 NO 2 ); Organic nitric acids such as methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, and octyl nitrite or a nitrite compound; One selected from the group consisting of organic nitro compounds such as nitromethane, nitropropane, nitrobutane, nitrobenzene, dinitrobenzene, nitropyridine, dinitropyridine, nitrotoluene, dinitrotoluene, and combinations thereof is possible, preferably uses lithium nitrate.

상기 전해질의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전기화학소자의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전기화학소자 조립 전 또는 전기화학소자 조립 최종 단계 등에서 적용될 수 있다.The injection of the electrolyte may be performed at an appropriate stage during the manufacturing process of the electrochemical device according to the manufacturing process of the final product and required physical properties. That is, it may be applied before assembling the electrochemical device or in the final stage of assembling the electrochemical device.

상기 양극과 음극 사이에는 추가적으로 분리막이 포함될 수 있다.A separator may be additionally included between the anode and the cathode.

상기 분리막은 상기 양극과 음극을 서로 분리 또는 절연시키고, 양극과 음극 사이에 리튬 이온 수송을 가능하게 하는 것으로 다공성 비전도성 또는 절연성 물질로 이루어질 수 있다. 상기 분리막은 통상 리튬 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용 가능하다. 상기 분리막은 필름과 같은 독립적인 부재일 수도 있고, 양극 및/또는 음극에 부가된 코팅층일 수도 있다.The separator separates or insulates the positive electrode and the negative electrode from each other and enables lithium ions to be transported between the positive electrode and the negative electrode, and may be made of a porous non-conductive or insulating material. The separator may be used without any particular limitation as long as it is used as a separator in a lithium secondary battery. The separator may be an independent member such as a film, or may be a coating layer added to the positive electrode and/or the negative electrode.

상기 분리막으로는 전해질의 이온 이동에 대하여 저저항이면서 전해질에 대한 함습 능력이 우수한 것이 바람직하다.As the separator, it is preferable that the electrolyte has low resistance to ion movement and has excellent moisture content to the electrolyte.

상기 분리막은 다공성 기재로 이루어질 수 있는데 상기 다공성 기재는 통상적으로 리튬-황 전지에 사용되는 다공성 기재라면 모두 사용이 가능하고, 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 예를 들어, 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포 또는 폴리올레핀계 다공성 막을 사용할 수 있으나, 이에 한정되는 것은 아니다.The separator may be made of a porous substrate. The porous substrate may be used as long as it is a porous substrate typically used in lithium-sulfur batteries, and a porous polymer film may be used alone or by stacking them, for example, A non-woven fabric or a polyolefin-based porous membrane made of a melting point glass fiber, polyethylene terephthalate fiber, or the like may be used, but is not limited thereto.

상기 다공성 기재의 재질로는 본 발명에서 특별히 한정하지 않고, 통상적으로 리튬 이차 전지에 사용되는 다공성 기재라면 모두 사용이 가능하다. 예를 들어, 상기 다공성 기재는 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene) 등의 폴리올레핀(polyolefin), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate) 등의 폴리에스테르(polyester), 폴리아미드(polyamide), 폴리아세탈(polyacetal), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalate), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리염화비닐(polyvinyl chloride), 폴리아크릴로니트릴(polyacrylonitrile), 셀룰로오스(cellulose), 나일론(nylon), 폴리파라페닐렌벤조비스옥사졸(poly(p-phenylene benzobisoxazole) 및 폴리아릴레이트(polyarylate)로 이루어진 군에서 선택된 1종 이상의 재질을 포함할 수 있다.The material of the porous substrate is not particularly limited in the present invention, and any porous substrate commonly used in lithium secondary batteries may be used. For example, the porous substrate may include a polyolefin such as polyethylene and polypropylene, a polyester such as polyethyleneterephthalate, a polybutyleneterephthalate, and a polyamide. (polyamide), polyacetal (polyacetal), polycarbonate (polycarbonate), polyimide (polyimide), polyetheretherketone (polyetheretherketone), polyethersulfone (polyethersulfone), polyphenyleneoxide (polyphenyleneoxide), polyphenylenesulfide ( polyphenylenesulfide, polyethylenenaphthalate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyacrylonitrile, cellulose, nylon (nylon), polyparaphenylene benzobisoxazole (poly(p-phenylene benzobisoxazole) and polyarylate (polyarylate) may include at least one material selected from the group consisting of.

상기 다공성 기재의 두께는 특별히 제한되지 않으나, 1 내지 100 ㎛, 바람직하게는 5 내지 50 ㎛일 수 있다. 상기 다공성 기재의 두께 범위가 전술한 범위로 한정되는 것은 아니지만, 두께가 전술한 하한보다 지나치게 얇을 경우에는 기계적 물성이 저하되어 전지 사용 중 분리막이 쉽게 손상될 수 있다.The thickness of the porous substrate is not particularly limited, but may be 1 to 100 μm, preferably 5 to 50 μm. Although the thickness range of the porous substrate is not limited to the above range, when the thickness is excessively thinner than the above-described lower limit, mechanical properties are deteriorated and the separator may be easily damaged during battery use.

상기 다공성 기재에 존재하는 기공의 평균 직경 및 기공도 역시 특별히 제한되지 않으나 각각 0.001 내지 50 ㎛ 및 10 내지 95 %일 수 있다.The average diameter and pore size of the pores present in the porous substrate are also not particularly limited, but may be 0.001 to 50 μm and 10 to 95%, respectively.

본 발명에 따른 리튬 이차 전지는 일반적인 공정인 권취(winding) 이외에도 세퍼레이터와 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.In the lithium secondary battery according to the present invention, in addition to winding, which is a general process, lamination, stack, and folding processes of a separator and an electrode are possible.

상기 리튬 이차 전지의 형상은 특별히 제한되지 않으며 원통형, 적층형, 코인형 등 다양한 형상으로 할 수 있다.The shape of the lithium secondary battery is not particularly limited and may have various shapes such as a cylindrical shape, a stacked type, and a coin type.

또한, 본 발명은 상기 리튬 이차 전지를 단위전지로 포함하는 전지모듈을 제공한다.In addition, the present invention provides a battery module including the lithium secondary battery as a unit battery.

상기 전지모듈은 고온 안정성, 긴 사이클 특성 및 높은 용량 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.The battery module may be used as a power source for medium-to-large devices requiring high-temperature stability, long cycle characteristics, and high capacity characteristics.

상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(electric vehicle, EV), 하이브리드 전기자동차(hybrid electric vehicle, HEV), 플러그-인 하이브리드 전기자동차(plug-in hybrid electric vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.Examples of the medium-large device include a power tool that is powered by an omniscient motor; electric vehicles, including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooter); electric golf carts; and a power storage system, but is not limited thereto.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are presented to help the understanding of the present invention, but the following examples are merely illustrative of the present invention, and it will be apparent to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention, It goes without saying that such variations and modifications fall within the scope of the appended claims.

실시예 및 비교예Examples and Comparative Examples

[실시예 1][Example 1]

두께가 60 ㎛인 리튬 금속 박막의 표면에 플루오로에틸렌카보네이트 10 ㎖을 분사한 후, 이를 상온(25 ℃)에서 롤 프레스 기기로 압연하고, 80 ℃의 진공 오븐에서 12 시간 건조하여 리튬 금속 박막의 표면에 리튬 플로라이드 보호층이 형성된 두께가 45 ㎛의 리튬 금속 전극을 제조하였다.After spraying 10 ml of fluoroethylene carbonate on the surface of the lithium metal thin film having a thickness of 60 μm, it was rolled with a roll press machine at room temperature (25 ℃) and dried in a vacuum oven at 80 ℃ for 12 hours to obtain a lithium metal thin film. A lithium metal electrode having a thickness of 45 μm with a lithium fluoride protective layer formed on the surface was prepared.

[실시예 2][Example 2]

양극 활물질로 황-탄소 복합체(S:C=75:25(중량비)) 90.0 중량%, 도전재로 덴카블랙 5.0 중량%, 바인더로 스티렌 부타디엔 고무/카르복시메틸 셀룰로오스(SBR:CMC=70:30(중량비)) 5.0 중량%를 혼합하여 양극 슬러리 조성물을 제조하였다.Sulfur-carbon composite (S:C=75:25 (weight ratio)) 90.0% by weight as a cathode active material, 5.0% by weight of Denka Black as a conductive material, styrene butadiene rubber/carboxymethyl cellulose as a binder (SBR:CMC=70:30 (SBR:CMC=70:30) Weight ratio)) 5.0 wt% was mixed to prepare a positive electrode slurry composition.

20 ㎛ 두께의 알루미늄 집전체 상에 상기 제조된 양극 슬러리 조성물을 도포하고 50 ℃에서 12 시간 동안 건조하고 롤 프레스(roll press) 기기로 압착하여 양극을 제조하였다. 이때 양극 활물질의 로딩량은 5.4 mAh/㎠ 이하였으며, 양극의 기공도는 68 %이었다.A positive electrode was prepared by coating the prepared positive electrode slurry composition on an aluminum current collector having a thickness of 20 μm, drying it at 50° C. for 12 hours, and pressing it with a roll press device. At this time, the loading amount of the positive electrode active material was 5.4 mAh/cm 2 or less, and the porosity of the positive electrode was 68%.

상기 제조된 양극과 상기 실시예 1에서 제조한 리튬 금속 전극을 대면하도록 위치시키고 그 사이에 두께 20 ㎛, 기공도 68 %의 폴리에틸렌 분리막을 개재한 후, 전해질 0.1 ㎖를 주입하여 리튬 이차 전지를 제조하였다.A lithium secondary battery was prepared by placing the prepared positive electrode and the lithium metal electrode prepared in Example 1 to face each other and interposing a polyethylene separator having a thickness of 20 μm and a porosity of 68% between them, and then injecting 0.1 ml of electrolyte did

이때 전해질로는 1,3-디옥솔란과 디메틸 에테르(DOL:DME=1:1(부피비))로 이루어진 유기 용매에 1.0 M 농도의 리튬 비스(트리플루오로메탄설포닐)이미드(LiTFSI)와 1.0 중량%의 질산 리튬(LiNO3)를 용해시킨 혼합액을 사용하였다.At this time, as the electrolyte, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) at a concentration of 1.0 M in an organic solvent consisting of 1,3-dioxolane and dimethyl ether (DOL:DME=1:1 (volume ratio)) and A mixture solution in which 1.0 wt% of lithium nitrate (LiNO 3 ) was dissolved was used.

[비교예 1][Comparative Example 1]

리튬 플로라이드 보호층을 형성하지 않은 두께가 45 ㎛인 리튬 금속 박막으로 리튬 금속 전극을 제조하였다.A lithium metal electrode was prepared using a lithium metal thin film having a thickness of 45 μm without forming a lithium fluoride protective layer.

[비교예 2][Comparative Example 2]

두께가 45 ㎛인 리튬 금속 박막을 플루오로에틸렌카보네이트에 1 시간동안 침지시킨 후, 80 ℃의 진공 오븐에서 12 시간 건조하여 리튬 금속 박막의 표면에 리튬 플로라이드 보호층이 형성된 리튬 금속 전극을 제조하였다.A lithium metal thin film having a thickness of 45 μm was immersed in fluoroethylene carbonate for 1 hour, and then dried in a vacuum oven at 80° C. for 12 hours to prepare a lithium metal electrode having a lithium fluoride protective layer formed on the surface of the lithium metal thin film. .

[비교예 3][Comparative Example 3]

실시예 1의 리튬 금속 전극 대신 비교예 1의 리튬 금속 전극을 사용한 것을 제외하고는 상기 실시예 2와 동일하게 수행하여 리튬 이차 전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 2, except that the lithium metal electrode of Comparative Example 1 was used instead of the lithium metal electrode of Example 1.

[비교예 4][Comparative Example 4]

실시예 1의 리튬 금속 전극 대신 비교예 2의 리튬 금속 전극을 사용한 것을 제외하고는 상기 실시예 2와 동일하게 수행하여 리튬 이차 전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 2, except that the lithium metal electrode of Comparative Example 2 was used instead of the lithium metal electrode of Example 1.

실험예 1. X-선 광전자 분광 분석Experimental Example 1. X-ray photoelectron spectroscopy

실시예 1 및 비교예 1 내지 2에서 제조한 리튬 금속 전극의 표면에 대하여 X-선 광전자 분광(X-ray photoelectron spectroscopy, XPS) 분석을 수행하였다. 상기 분석에 이용된 XPS 장치는 Thermo Fieher scientific사의 K-ALPHA이며, 이때 에칭 속도는 0.09 ㎚/s이고, 얻어진 데이터는 Avantage software를 이용하여 분석하였다. 이때 얻어진 결과는 표 1 내지 3과 도 1 내지 3에 나타내었다.X-ray photoelectron spectroscopy (XPS) analysis was performed on the surfaces of the lithium metal electrodes prepared in Example 1 and Comparative Examples 1 and 2. The XPS apparatus used for the analysis was K-ALPHA of Thermo Fieher scientific, where the etching rate was 0.09 nm/s, and the obtained data was analyzed using Avantage software. The results obtained at this time are shown in Tables 1 to 3 and FIGS.

원소(원자%)Element (atomic %) FF LiLi CC OO NN ClCl SS SiSi 실시예 1Example 1 2.42.4 27.327.3 45.945.9 23.023.0 0.60.6 0.20.2 0.20.2 0.40.4 비교예 1Comparative Example 1 0.00.0 37.737.7 21.821.8 40.240.2 0.10.1 0.10.1 0.10.1 0.00.0 비교예 2Comparative Example 2 1.51.5 25.625.6 50.650.6 21.621.6 0.50.5 0.20.2 0.00.0 0.00.0

실시예 1Example 1 에칭 시간
(s)
Etching time
(s)
원소
(원자%)
element
(atom%)
FF LiLi CC OO NN ClCl SS SiSi 00 3.43.4 28.228.2 41.541.5 25.825.8 0.50.5 0.20.2 0.30.3 0.10.1 1010 4.74.7 36.336.3 26.926.9 31.131.1 0.40.4 0.20.2 0.30.3 0.10.1 3030 5.85.8 41.541.5 19.719.7 32.032.0 0.40.4 0.20.2 0.30.3 0.10.1 5050 6.36.3 44.944.9 16.316.3 31.631.6 0.30.3 0.20.2 0.30.3 0.10.1 100100 6.76.7 54.354.3 10.410.4 27.827.8 0.30.3 0.20.2 0.20.2 0.10.1 200200 5.35.3 60.660.6 6.96.9 26.726.7 0.20.2 0.10.1 0.10.1 0.10.1 500500 2.32.3 68.968.9 4.04.0 24.424.4 0.40.4 0.00.0 0.00.0 0.00.0 10001000 1.31.3 76.176.1 3.13.1 18.818.8 0.60.6 0.00.0 0.10.1 0.00.0 20002000 0.70.7 82.682.6 2.62.6 13.413.4 0.70.7 0.00.0 0.00.0 0.00.0 30003000 0.40.4 86.186.1 1.71.7 10.810.8 1.01.0 0.00.0 0.00.0 0.00.0 50005000 0.30.3 90.190.1 1.31.3 7.37.3 1.01.0 0.00.0 0.00.0 0.00.0

비교예 2Comparative Example 2 에칭 시간
(s)
Etching time
(s)
원소
(원자%)
element
(atom%)
FF LiLi CC OO NN ClCl SS SiSi 00 1.71.7 22.622.6 52.152.1 23.023.0 0.40.4 0.20.2 0.00.0 0.00.0 1010 2.62.6 35.835.8 29.729.7 31.331.3 0.40.4 0.20.2 0.00.0 0.00.0 3030 2.32.3 41.441.4 22.022.0 33.833.8 0.30.3 0.20.2 0.00.0 0.00.0 5050 2.12.1 45.445.4 18.218.2 33.833.8 0.30.3 0.20.2 0.00.0 0.00.0 100100 1.51.5 56.356.3 12.412.4 29.529.5 0.20.2 0.10.1 0.00.0 0.00.0 200200 1.01.0 61.661.6 8.38.3 28.728.7 0.30.3 0.10.1 0.00.0 0.00.0 500500 0.60.6 68.968.9 4.74.7 25.325.3 0.40.4 0.10.1 0.00.0 0.00.0 10001000 0.30.3 76.576.5 3.43.4 19.219.2 0.50.5 0.10.1 0.00.0 0.00.0 20002000 0.30.3 81.981.9 2.82.8 14.214.2 0.70.7 0.10.1 0.00.0 0.00.0 30003000 0.30.3 84.284.2 2.32.3 12.012.0 1.11.1 0.10.1 0.00.0 0.00.0 50005000 0.20.2 90.890.8 1.11.1 6.86.8 1.01.0 0.10.1 0.00.0 0.00.0

도 1 및 표 1은 플로라이드 보호층의 XPS 스펙트라(spextra)를 나타내는 것으로, 실시예 1의 경우 비교예 2 대비 불소 함량이 1.6 배 높은 것을 확인할 수 있다.1 and Table 1 show the XPS spectra of the fluoride protective layer, and it can be seen that Example 1 has a fluorine content 1.6 times higher than Comparative Example 2.

또한, 도 2 내지 3 및 표 2 내지 3은 리튬 플로라이드 보호층의 XPS 깊이 분석(depth profiling)을 나타내는 것으로, 리튬 플로라이드 보호층이 실시예 1의 경우 90 ㎚(에칭 시간: 1000 s)인 반면, 비교예 2의 경우 18 ㎚(에칭 시간: 200 s)임을 알 수 있다. In addition, FIGS. 2 to 3 and Tables 2 to 3 show XPS depth profiling of the lithium fluoride protective layer, in which the lithium fluoride protective layer was 90 nm (etching time: 1000 s) in Example 1. On the other hand, in the case of Comparative Example 2, it can be seen that 18 nm (etching time: 200 s).

이러한 결과로부터 본 발명의 제조방법에 따라 제조된 리튬 금속 전극은 불소 함량이 높으면서도 두꺼운 리튬 플로라이드 보호층이 형성됨을 확인할 수 있다.From these results, it can be confirmed that the lithium metal electrode manufactured according to the manufacturing method of the present invention has a high fluorine content and a thick lithium fluoride protective layer is formed.

실험예 2. 전지 성능 평가Experimental Example 2. Battery performance evaluation

실시예 2 및 비교예 3 내지 4에서 제조한 전지에 대해, 충/방전 측정장치(LAND CT-2001A, 우한(Wuhan)사 제품)를 사용하여 성능을 평가하였다.For the batteries prepared in Example 2 and Comparative Examples 3 to 4, performance was evaluated using a charge/discharge measuring device (LAND CT-2001A, manufactured by Wuhan Co., Ltd.).

구체적으로, 25 ℃에서 방전 전류 속도를 0.5 C으로 설정한 후 충전/방전을 110 사이클 반복하여 용량 및 수명 특성을 측정하였다. 이때 얻어진 결과는 표 4 및 도 4에 나타내었다.Specifically, the capacity and lifespan characteristics were measured by repeating 110 cycles of charging/discharging after setting the discharge current rate to 0.5 C at 25°C. The results obtained at this time are shown in Table 4 and FIG. 4 .

7 번째 사이클 대비 용량 유지율
(%)
Capacity retention versus 7th cycle
(%)
실시예 2Example 2 87.087.0 비교예 3Comparative Example 3 50.050.0 비교예 4Comparative Example 4 67.067.0

도 4 및 표 4에 나타낸 바와 같이, 실시예 2에 따른 전지의 경우 전반적인 성능이 비교예 3 내지 4의 전지에 비해 우수함을 알 수 있다.4 and Table 4, in the case of the battery according to Example 2, it can be seen that the overall performance is superior to that of the batteries of Comparative Examples 3 to 4.

구체적으로, 도 4 및 표 4를 통해 본 발명에 따라 제조된 리튬 플로라이드 보호층을 포함하는 리튬 금속 전극을 사용한 실시예 2의 전지의 경우, 리튬 플로라이드 보호층을 포함하지 않는 리튬 금속 전극을 사용한 비교예 3 및 종래의 침지 방법으로 리튬 플로라이드 보호층을 형성한 리튬 금속 전극을 사용한 비교예 4 에 비해 용량 및 이의 유지율이 높음을 확인할 수 있다.Specifically, in the case of the battery of Example 2 using the lithium metal electrode including the lithium fluoride protective layer prepared according to the present invention through FIGS. 4 and 4, the lithium metal electrode not including the lithium fluoride protective layer was used. It can be seen that the capacity and its retention rate are higher than those of Comparative Example 3 and Comparative Example 4 using a lithium metal electrode having a lithium fluoride protective layer formed thereon by a conventional immersion method.

이러한 결과로부터, 본 발명의 제조방법에 따라 제조된 리튬 금속 전극을 포함하는 리튬 이차 전지의 경우 우수한 용량 및 수명 특성을 나타냄을 알 수 있다.From these results, it can be seen that the lithium secondary battery including the lithium metal electrode manufactured according to the manufacturing method of the present invention exhibits excellent capacity and lifespan characteristics.

Claims (12)

(a) 리튬 금속층의 적어도 일면 상에 플루오로에틸렌카보네이트를 도포하는 단계; 및
(b) 상기 플루오로에틸렌카보네이트가 도포된 리튬 금속층을 압연하여 상기 리튬 금속층의 적어도 일면 상에 리튬 플로라이드 보호층을 형성하는 단계를 포함하는 리튬 금속 전극의 제조방법.
(a) applying fluoroethylene carbonate on at least one surface of the lithium metal layer; and
(b) rolling the lithium metal layer coated with the fluoroethylene carbonate to form a lithium fluoride protective layer on at least one surface of the lithium metal layer.
제1항에 있어서,
상기 리튬 금속층은 리튬 금속 또는 리튬 합금을 포함하는, 리튬 금속 전극의 제조방법.
According to claim 1,
The lithium metal layer comprises a lithium metal or a lithium alloy, a method of manufacturing a lithium metal electrode.
제1항에 있어서,
상기 압연은 상기 플루오로에틸렌카보네이트가 도포된 리튬 금속층을 압연 유닛 사이에 위치시키고 압력을 인가하는 방식으로 수행하는, 리튬 금속 전극의 제조방법.
According to claim 1,
The rolling is performed by placing the fluoroethylene carbonate-coated lithium metal layer between the rolling units and applying pressure.
제1항에 있어서,
상기 압연은 10 내지 80 ℃의 온도 조건 하에서 수행하는, 리튬 금속 전극의 제조방법.
According to claim 1,
The rolling is performed under a temperature condition of 10 to 80 ℃, a method of manufacturing a lithium metal electrode.
제1항에 있어서,
상기 리튬 금속층은 압연 전과 후의 두께 감소율이 10 % 이상인, 리튬 금속 전극의 제조방법.
According to claim 1,
The lithium metal layer has a thickness reduction rate of 10% or more before and after rolling, a method of manufacturing a lithium metal electrode.
제1항의 제조방법에 따라 제조되며,
리튬 금속층; 및
상기 리튬 금속층의 적어도 일면 상에 형성된 리튬 플로라이드 보호층을 포함하는 리튬 금속 전극.
It is manufactured according to the manufacturing method of claim 1,
lithium metal layer; and
A lithium metal electrode comprising a lithium fluoride protective layer formed on at least one surface of the lithium metal layer.
제6항에 있어서,
상기 리튬 플로라이드 보호층은 두께가 10 내지 500 ㎚인, 리튬 금속 전극.
7. The method of claim 6,
The lithium fluoride protective layer has a thickness of 10 to 500 nm, a lithium metal electrode.
제6항에 있어서,
상기 리튬 플로라이드 보호층은 불소 함량이 0.1 내지 10 원자%인, 리튬 금속 전극.
7. The method of claim 6,
The lithium fluoride protective layer has a fluorine content of 0.1 to 10 atomic%, a lithium metal electrode.
제6항에 있어서,
상기 리튬 금속 전극은 리튬 이차 전지용 음극으로 사용되는, 리튬 금속 전극.
7. The method of claim 6,
The lithium metal electrode is used as a negative electrode for a lithium secondary battery, a lithium metal electrode.
양극 활물질을 포함하는 양극;
제6항에 따른 리튬 금속 전극을 포함하는 음극; 및
전해질을 포함하는 리튬 이차 전지.
a positive electrode including a positive electrode active material;
A negative electrode comprising the lithium metal electrode according to claim 6; and
A lithium secondary battery comprising an electrolyte.
제10항에 있어서,
상기 양극 활물질은 황 원소 및 황 화합물로 이루어진 군에서 선택되는 1종 이상을 포함하는, 리튬 이차 전지.
11. The method of claim 10,
The positive active material is a lithium secondary battery comprising at least one selected from the group consisting of elemental sulfur and sulfur compounds.
제11항에 있어서,
상기 양극 활물질은 무기 황, Li2Sn(n≥1), 디설파이드 화합물, 유기황 화합물 및 탄소-황 폴리머((C2Sx)n, x=2.5 내지 50, n≥2)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 리튬 이차 전지.
12. The method of claim 11,
The positive active material is an inorganic sulfur, Li 2 S n (n≥1), a disulfide compound, an organic sulfur compound, and a carbon-sulfur polymer ((C 2 S x ) n , x=2.5 to 50, n≥2). A lithium secondary battery comprising at least one selected from
KR1020210120225A 2020-09-16 2021-09-09 Method for preparing lithium metal electrode, lithium metal electrode prepared by the same and lithium secondary battery including the same KR20220036868A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/008,065 US20230299259A1 (en) 2020-09-16 2021-09-10 Method for manufacturing lithium metal electrode, lithium metal electrode manufactured thereby, and lithium secondary battery comprising same
EP21869643.3A EP4141989A4 (en) 2020-09-16 2021-09-10 Method for manufacturing lithium metal electrode, lithium metal electrode manufactured thereby, and lithium secondary battery comprising same
CN202180043915.9A CN115769399A (en) 2020-09-16 2021-09-10 Method for manufacturing lithium metal electrode, lithium metal electrode manufactured thereby, and lithium secondary battery comprising same
PCT/KR2021/012373 WO2022060021A1 (en) 2020-09-16 2021-09-10 Method for manufacturing lithium metal electrode, lithium metal electrode manufactured thereby, and lithium secondary battery comprising same
JP2023501303A JP2023533051A (en) 2020-09-16 2021-09-10 Method for manufacturing lithium metal electrode, lithium metal electrode manufactured by the method, and lithium secondary battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200118835 2020-09-16
KR1020200118835 2020-09-16

Publications (1)

Publication Number Publication Date
KR20220036868A true KR20220036868A (en) 2022-03-23

Family

ID=80963789

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210120225A KR20220036868A (en) 2020-09-16 2021-09-09 Method for preparing lithium metal electrode, lithium metal electrode prepared by the same and lithium secondary battery including the same

Country Status (1)

Country Link
KR (1) KR20220036868A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190071618A (en) 2017-12-14 2019-06-24 주식회사 엘지화학 Continuous Manufacturing Method of Lithium Secondary Battery Forming Passive layer on the Surface of Lithium Metal Electrode and Lithium Secondary Battery prepared by the Same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190071618A (en) 2017-12-14 2019-06-24 주식회사 엘지화학 Continuous Manufacturing Method of Lithium Secondary Battery Forming Passive layer on the Surface of Lithium Metal Electrode and Lithium Secondary Battery prepared by the Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ngoc Duc Trinh et al., An Artificial Lithium Protective Layer that Enables the Use of Acetonitrile-Based Electrolytes in Lithium Metal Batteries, Angewandte Chemie, 2018, 57(18), 5072-5075

Similar Documents

Publication Publication Date Title
EP4141989A1 (en) Method for manufacturing lithium metal electrode, lithium metal electrode manufactured thereby, and lithium secondary battery comprising same
EP3996170B1 (en) Method for manufacturing lithium metal negative electrode, lithium metal negative electrode manufactured thereby, and lithium-sulfur battery comprising same
CN114730870B (en) Positive electrode active material for lithium-sulfur battery, preparation method thereof and lithium-sulfur battery comprising same
KR20200129519A (en) Electrode for lithium sulfur battery and lithium sulfur battery comprising the same
KR20210100313A (en) Lithium secondary battery
EP4207424A1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
EP4138169A1 (en) Lithium secondary battery
KR20210109455A (en) Method for preparing lithium metal negative electrode, lithium metal negative electrode prepared by the same and lithium-sulfur battery including the same
EP3985776A1 (en) Lithium-sulfur battery electrolyte and lithium-sulfur battery including same
US20220376253A1 (en) Negative electrode and lithium-sulfur battery comprising same
KR102567965B1 (en) Lithium secondary battery
KR20220136099A (en) Lithium secondary battery
KR20210120858A (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
KR20210113055A (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
CN116250099A (en) Sulfur-carbon composite material, preparation method thereof and lithium-sulfur battery comprising same
KR20220163101A (en) Lithium metal electrode and lithium secondary battery comprising the same
KR20210154023A (en) Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising thereof
KR20210088025A (en) Lithium secondary battery
KR20220036868A (en) Method for preparing lithium metal electrode, lithium metal electrode prepared by the same and lithium secondary battery including the same
EP4250389A1 (en) Cathode for lithium secondary battery, and lithium secondary battery comprising same
US20220384849A1 (en) Electrolyte for lithium-sulfur battery, and lithium-sulfur battery including same
EP4068417A1 (en) Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising same
US20220263136A1 (en) Lithium-sulfur battery electrolyte and lithium-sulfur battery comprising same
KR20220070889A (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
KR20210127622A (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof

Legal Events

Date Code Title Description
A201 Request for examination