KR20210155351A - 증기 주입 피스톤 압축기 - Google Patents

증기 주입 피스톤 압축기 Download PDF

Info

Publication number
KR20210155351A
KR20210155351A KR1020210061219A KR20210061219A KR20210155351A KR 20210155351 A KR20210155351 A KR 20210155351A KR 1020210061219 A KR1020210061219 A KR 1020210061219A KR 20210061219 A KR20210061219 A KR 20210061219A KR 20210155351 A KR20210155351 A KR 20210155351A
Authority
KR
South Korea
Prior art keywords
cylinder
bores
compressor
central bore
fluid
Prior art date
Application number
KR1020210061219A
Other languages
English (en)
Other versions
KR102539868B1 (ko
Inventor
지. 미카엘 씨오도르 제이알
칸왈 바티아
칼 코디
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Publication of KR20210155351A publication Critical patent/KR20210155351A/ko
Application granted granted Critical
Publication of KR102539868B1 publication Critical patent/KR102539868B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1081Casings, housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0878Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0891Component parts, e.g. sealings; Manufacturing or assembly thereof casings, housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0895Component parts, e.g. sealings; Manufacturing or assembly thereof driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • F04B27/1018Cylindrical distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1045Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

피스톤형 압축기는 실린더 하우징을 포함하는 메인 하우징을 가진다. 상기 실린더 하우징은 그 제 1 표면을 통해 내부에 샤프트를 수용하기 위한 중앙 보어(bore) 및 상기 제 1 표면을 통해 내부에 복수의 피스톤을 수용하도록 구성된 복수의 보어를 가진다. 유입구는 상기 복수의 보어에 1 차 유체를 전달하도록 구성된다. 배출구는 상기 복수의 보어로부터 상기 1 차 유체를 전달하도록 구성된다. 다수의 통로는 상기 유입구 및 상기 배출구와 분리되어 있다. 상기 복수의 통로 각각은 상기 메인 하우징에 형성되고 상기 복수의 보어 중 하나에 보충 유체를 전달하도록 구성된다.

Description

증기 주입 피스톤 압축기{VAPOR INJECTED PISTON COMPRESSOR}
본 발명은 압축기에 관한 것으로 특히 유체를 압축기의 실린더 하우징으로 직접 주입하는 포트를 가지는 증기 주입 피스톤 압축기에 관한 것이다.
일반적으로 알려진 바와 같이, 차량은 일반적으로 난방, 환기 및 공조(HVAC) 시스템을 포함한다. HVAC 시스템은 희망하는 난방, 냉방 및 환기를 객실에 공급하여 객실 내의 온도를 탑승자를 위한 편안한 수준으로 유지한다. HVAC 시스템은 시스템을 흐르는 공기의 흐름을 조절하고, 조절된 공기를 객실 전체에 걸쳐 분배한다.
피스톤형 가변 또는 고정 냉매 압축기는 일반적으로 차량의 HVAC 시스템에 사용된다. 이러한 압축기는 일반적으로 응용 분야에 따라 크기가 결정되고, 설계 및 구성된다. 압축기의 크기, 설계 및 구성을 결정하는 요소들 중 하나는 차량이 일정 시간 정지한 후 압축기가 일정 시간 내에 차량의 객실을 원하는 온도로 효율적으로 냉각시키도록 하는데에 필요한 압축기의 실린더 또는 피스톤의 변위이다. 압축기가 객실을 원하는 온도로 냉각하는 데 걸리는 시간을 "풀다운"이라고 한다. 압축기가 원하는 일정 시간 내에 "풀다운"을 달성하면 압축기는 올바르게 구성된 것이다.
현재, 원하는 시간 내에 "풀다운"을 달성하기 위해, 차량에는 최대 변위가 증가된 압축기가 제공되며, 압축기의 실린더 보어(bore)의 길이 및 직경과 같은 크기가 증가하거나 실린더 수가 증가한다. 그 결과, 압축기를 통한 냉매 질량 흐름의 증가량이 증가하여 차량의 난방 및/또는 냉방 용량이 증가한다.
그러나, 압축기의 변위를 증가시키는 것은 문제가 될 수 있다. 첫째, 최대 변위를 가지는 압축기는 더 많은 공간을 차지한다. 둘째, 압축기의 최대 변위를 증가시키면 제조 비용을 증가시키는 압축기의 질량 증가(즉, 추가 재료 및 구성 요소)를 초래한다. 셋째, 가변 변위 압축기의 경우, 압축기의 최대 변위가 증가함에 따라 압축기의 효율이 저하된다. 예를 들어, "풀다운"이 달성되면, 가변 변위 압축기가 가변 모드로 작동한다. 최대 변위가 증가함에 따라 가변 모드에서 보어-대-스트로크 비율이 감소하여 난방 및/또는 냉방을 위한 높은 전력 및 에너지 소비가 발생한다. 전력 및 에너지 소비가 증가할수록 차량에서 원하지 않는 배출량이 증가한다.
전술한 문제를 해결하기 위하여, 압축기의 최대 변위를 증가시키는 대안이 알려져 있다. 상기 대안은 증기 주입 압축기를 사용하는 것이다. 이러한 증기 주입 기술은 스크롤 압축기와 함께 사용된다. 그러나 피스톤 압축기에 증기 주입 기술을 포함하는 것은 일반적으로 문제가 되었다. 피스톤 압축기에 증기를 주입하면 일반적으로 압축기의 흡입 챔버로 증기 주입을 초래한다. 그 결과, 실린더 하우징의 실린더에 의해 흡입 챔버 및 흡입 중 증기의 온도가 상승하고 고압에서 증기의 재팽창이 야기된다. 이로 인해 이전에 수행한 작업이 손실된다. 실린더 보어에 주입하기 전에 고압 증기의 팽창을 최소화하는 것은 압축 작업 손실의 최소화를 보장하기 위해 바람직하다. 실린더에 주입되는 증기의 밀도를 극대화하는 것은 압축기를 통한 질량 흐름 극대화를 실현하는 데 필수적이다.
압축기에 증기를 유입하려는 다른 시도는 일반적으로 실린더 보어에서 실린더의 유격 또는 무용 부피를 증가시켜 압축기의 효율을 감소시키고 원하지 않는 배출을 증가시킨다.
따라서, 압축기의 효율을 최대화하면서 압축기의 최대 변위 증가 및 제조 비용의 증가를 최소화하는 증기 주입 피스톤 압축기를 제공하는 것이 바람직할 것이다.
본 발명에 따르면, 압축기의 효율을 최대화하면서 압축기의 최대 변위 증가 및 제조 비용의 증가를 최소화하는 증기 주입 피스톤 압축기가 놀랍게도 발견되었다.
본 발명의 일 실시 예에 따르면, 피스톤형 압축기는 실린더 하우징을 포함하는 메인 하우징을 가진다. 상기 실린더 하우징은 그 제 1 표면을 통해 내부에 샤프트를 수용하기 위한 중앙 보어(bore) 및 상기 제 1 표면을 통해 내부에 복수의 실린더를 수용하도록 구성된 복수의 보어를 가진다. 유입구는 상기 복수의 보어에 1 차 유체를 전달하도록 구성된다. 배출구는 상기 복수의 보어로부터 상기 1 차 유체를 전달하도록 구성된다. 다수의 통로는 상기 유입구 및 상기 배출구와 분리되어 있다. 상기 복수의 통로 각각은 상기 메인 하우징에 형성되고 상기 복수의 보어 중 하나에 보충 유체를 전달하도록 구성된다.
본 발명의 다른 실시 예에 따르면, 피스톤형 압축기가 개시된다. 상기 압축기는 실린더 하우징을 포함한다. 상기 실린더 하우징은 중앙 보어(bore) 및 상기 실린더 하우징을 통해 형성된 복수의 실린더 보어를 가진다. 샤프트는 상기 실린더 하우징의 제 1 표면을 지나 상기 중앙 보어를 통해 수용된다. 복수의 피스톤은 상기 실린더 하우징의 상기 제 1 표면을 통해 상기 복수의 실린더 보어 내에서 왕복 운동한다. 복수의 통로는 상기 중앙 보어와 상기 복수의 실린더 보어 사이에 유체 연통을 제공한다.
본 발명의 또 다른 실시 예에 따르면, 압축기의 실린더 하우징에 복수의 유체 통로를 형성하는 방법은 실린더 블록을 제공하고 상기 실린더 블록을 통해 중앙 보어를 형성하고, 상기 중앙 보어로부터 반경 방향 바깥쪽으로 이격되는 복수의 실린더 보어를 형성하는 단계를 포함한다. 상기 방법은 상기 실린더 블록을 회전시키는 단계 및 상기 중앙 보어의 축 방향에 대해 일정한 각도로 상기 중앙 보어를 통해 도구를 삽입하는 단계를 포함한다. 추가로, 상기 방법은 상기 실린더 블록이 회전함에 따라 상기 도구로 상기 실린더 블록을 통과하는 상기 복수의 통로를 천공하는 단계를 포함한다. 상기 복수의 통로 각각은 상기 중앙 보어에서 상기 복수의 실린더 보어 중 하나로 연장된다.
본 발명의 다른 목적 및 이점뿐만 아니라 상기 내용은 첨부된 도면을 고려할 때 본 발명의 실시 예에 대한 다음의 상세한 설명을 읽음으로써 당업자에게 쉽게 명백해질 것이다.
도 1은 본 개시에 따른 압축기의 정면 사시도이다.
도 2는 도 1의 압축기의 하우징의 부분 분해 정면 사시도이다.
도 3은 도 1의 압축기의 3-3선에 따른 좌측 입면 단면도이다.
도 4는 도 1 내지 도 3의 압축기의 실린더 하우징의 후면 사시도이다.
도 5는 도 1 내지 도 3의 압축기의 후면 하우징의 정면 사시도이다.
도 6은 도 4의 실린더 하우징의 부분 좌측 입면 단면도이고, 실린더 하우징을 형성하는 방법 및 공정이 개략적으로 도시되어 있다.
다음의 상세한 설명 및 첨부된 도면은 본 발명의 다양한 실시 예를 설명하고 예시한다. 상기 설명 및 도면은 당업자가 본 발명을 제작하고 사용할 수 있도록 하는 역할을 하며, 어떠한 방식으로도 본 발명의 범위를 제한하려는 것이 아니다. 개시된 방법과 관련하여, 제시된 단계들은 본질적으로 예시적이며, 따라서 단계들의 순서는 반드시 필요하거나 중요한 것은 아니다.
여기에 사용된 "한" 및 "하나"는 항목의 "적어도 하나"가 존재함을 나타내고; 가능한 경우 이러한 항목이 복수개가 존재할 수 있다. "앞의", "뒤의", “내부의”, “외부의”, "하단의", "상단의", "수평의", "수직의", "위에", "아래에", "측면의", "상부에", "하부에", "밑에" 등과 같은 공간적으로 상대적인 용어들은 도면들에 도시된 바와 같이 하나의 요소 또는 특징의 다른 요소(들) 또는 특징(들)과의 관계의 설명의 편의를 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시된 방향 이외에 이용 또는 동작 중인 장치의 상이한 방향들을 포함하도록 의도될 수 있다.
본 명세서에서 사용된 바와 같이, “실질적으로”는 "상당한 정도로" 또는 "근접한"으로 정의되거나 또는 당업자에 의해 달리 이해되는 바와 같이 정의된다. 달리 명시적으로 나타내어지는 경우를 제외하고, 본 설명에서의 모든 수치는 "약"이라는 단어로 수정된 것으로 이해되어야 하며 모든 기하학적 및 공간 기술어구는 기술의 가장 넓은 범위를 설명하는데 있어서 "실질적으로"라는 단어로 수정된 것으로 이해되어야 한다. 수치에 적용할 때의 "약"은 계산 또는 측정이 값에 있어서 (값의 정확성에 대한 접근 방식으로; 값에 대략 또는 합리적으로 근접하여; 거의) 약간의 부정확함을 허용하는 것을 나타낸다. 어떤 이유로 "약" 및/또는 "실질적으로"에 의해 제공된 부정확함이 이러한 일반적인 의미로 당업계에서 달리 이해되지 않는 경우, 여기에서 사용되는 "약" 및/또는 "실질적으로"는 이러한 매개 변수들을 측정하거나 사용하는 일반적인 방법으로부터 야기될 수 있는 변화들을 적어도 나타낸다.
참조에 의해 통합된 문서와 본 상세한 설명 사이에 상충 또는 모호성이 존재할 수 있는 경우, 본 상세한 설명이 우선한다. 제1, 제2, 제3 등의 용어는 본 명세서에서 다양한 요소들, 구성 요소들, 영역들, 층들 및/또는 섹션들을 설명하기 위해 사용될 수 있지만, 이들 요소들, 구성 요소들, 영역들, 층들 및/또는 섹션들은 이 용어들에 의해 제한되지 않아야 한다. 이 용어들은 하나의 요소, 구성 요소, 영역, 층 또는 섹션을 다른 영역, 층 또는 섹션과 구별하기 위해서만 사용될 수 있다. 본 명세서에서 사용될 때 “제 1”, “제 2” 및 다른 숫자 용어들과 같은 용어는 문맥상 명확하게 표시되지 않는 한 순서 또는 차례를 의미하지는 않는다. 따라서, 이하에서 논의되는 제 1 요소, 구성 요소, 영역, 층 또는 섹션은 예시적인 실시의 예들의 내용을 벗어나지 않고 제 2 요소, 구성 요소, 영역, 층 또는 섹션으로 지칭될 수 있다.
도 1은 본 발명의 일 실시 예에 따른 압축기(10)를 도시한다. 도시된 압축기(10)는 가변 변위 압축기로서 구성된다. 그러나, 압축기(10)는 원하는 대로 가변 변위 또는 비가변 변위의 임의의 피스톤 압축기일 수 있다. 압축기(10)는 하우징(11)을 포함한다. 하우징(11)은 실린더 블록 또는 실린더 하우징(12), 실린더 하우징(12)의 제 1 단부 또는 제 1 표면(38)에 결합된 전방 하우징(14) 및 실린더 하우징(12)의 제 2 단부 또는 제 2 표면(40)에 결합된 후방 하우징(16)으로부터 형성된다. 전방 하우징(14), 후방 하우징(16) 및 실린더 하우징(12)은 로드(rod) 및 볼트(18)로 서로 결합된다. 그러나 하우징들(12, 14, 16)은 다른 결합 장치 또는 방법에 의해 결합될 수 있다.
후면 하우징(16)은 복수의 포트(22, 24, 26)를 포함한다. 포트(22, 24, 26)는 유입 또는 흡입 포트(22), 배출 또는 배기 포트(24) 및 증기 주입 포트(26)로서 구성된다. 흡입 포트(22)는 예를 들어 제 1 유체 소스(source)로부터 냉매와 같은 1 차 유체(실선 화살표로 표시됨)를 수용하고 1 차 유체를 실린더 하우징(12)으로 전달한다. 배기 포트(24)는 1 차 유체를 실린더 하우징(12)으로부터 다시 제 1 유체 소스로 전달한다. 증기 주입 포트(26)는 예를 들어 제 2 유체 소스로부터 냉매와 같은 보충 유체(파선 화살표로 표시됨)를 수용한다. 제 1 유체 소스는 제 2 유체 소스와 동일할 수 있다. 예를 들어, 유체 소스들은 차량의 난방, 환기 및 공조(HVAC) 시스템의 냉매 회로일 수 있다. 증기 주입 포트(26)는 흡입 포트(22)에 의해 수용되는 1 차 유체와 동일한 밀도 및 압력 또는 상이한 밀도 및 압력으로 보충 유체를 수용할 수 있다. 증기 주입 포트(26)가 제 2 유체 소스로부터 흐르는 1 차 유체와 비교하여 증가된 밀도 또는 최대 밀도로 보충 유체를 수용하는 것이 유리한 것으로 밝혀졌다. 그러나, 증기 주입 포트(26)는 임의의 밀도로 또는 압축기(10)의 효율을 증가시키는데 유리할 수 있는 임의의 특성을 가지는 보충 유체를 수용할 수 있다.
도 2 내지 도 5에 도시된 바와 같이, 후방 하우징(16)은 실린더 하우징(12)에 형성된 복수의 보어(bore)(32)와 유체 연통하는 흡입 챔버(28), 배기 챔버(30) 및 증기 주입 챔버(34)를 포함한다. 보어(32)는 흡입 챔버(28)를 거쳐 흡입 포트(22), 배기 챔버(30)를 거쳐 배기 포트(24) 및 증기 주입 챔버(34)를 거쳐 증기 주입 포트(26)와 유체 연통한다. 흡입 챔버(28), 배기 챔버(30) 및 증기 주입 챔버(34)는 서로 동심을 이룬다. 그러나, 챔버들(28, 30, 34)은 정렬되거나 산발적으로 배열되는 것과 같은 다른 위치에 또는 원하는 대로 임의의 다른 배열로 서로에 대해 배열될 수 있음을 알 수 있다.
보어(32)는 중앙 보어(33)를 중심으로 실린더 하우징(12)을 통해 방사상으로 형성된다. 보어(32)는 실린더 하우징(12)의 제 1 표면(38)으로부터 실린더 하우징(12)의 제 2 표면(40)까지 연장된다. 각각의 보어(32)는 그 안에 피스톤 또는 실린더(36)를 수용한다. 각각의 피스톤(36)은 보어(32)의 길이(l)를 따라 각 하나의 보어(32)내에서 선형 왕복 운동을 할 수 있다. 도시된 바와 같이, 6 개의 피스톤(36)을 수용하기 위한 6 개의 보어(32)가 있다. 그러나, 주어진 적용에 필요한 피스톤(36)의 개수에 따라 보어(32)가 6개보다 많거나 적을 수 있다.
샤프트(shaft)(44)는 전방 하우징(14)의 크랭크 챔버(43)와 실린더 하우징(12)의 중앙 보어(33)를 통해 연장된다. 샤프트(44)는 피스톤 압축기에 대해 당업계에 일반적으로 알려진 구동 수단에 의해 회전한다. 예를 들어, 구동 수단은 차량의 엔진 또는 모터, 체인, 다른 샤프트, 기어 시스템, 또는 원하는 대로 임의의 다른 구동 수단과 같은 차량의 장치에 의해 구동되는 풀리(pulley) 또는 벨트(belt)일 수 있다. 구동 수단은 베어링, 부싱(bushings), 클러치 및 회전 운동에 일반적으로 사용되는 유사한 유형의 장치를 포함할 수 있다. 로터(rotor)(46)는 샤프트(44)의 일단에 인접한 크랭크 챔버(43)내에 배치된다. 로터(46)는 샤프트(44)와 일체로 회전한다. 로터(46)는 샤프트(44)를 크랭크 챔버(43) 내에 중앙 위치에 위치시켜서 실린더 하우징(12)의 중앙 보어(33)와 정렬되도록 크랭크 챔버(43) 내에 위치된다.
사판(swash plate)(50)은 샤프트(44) 주위에 배치되고 로터(46)로부터 이격된다. 사판(50)은 로터(46)와 회전 연통하며, 사판(50)은 로터(46)와 일체로 회전한다. 그 결과, 사판(50)은 또한 샤프트(44)와 일체로 회전한다. 예를 들어, 사판(50)은 힌지 조립체(52)에 의해 로터(46)에 결합되고, 힌지 조립체(52)는 로터(46)의 표면으로부터 크랭크 챔버(43)로 바깥쪽으로 연장되는 제 1 힌지부를 포함하고 제 2 힌지부는 사판(50)으로부터 제 1 힌지부를 향해 외측으로 연장된다. 힌지부들은 힌지 핀을 통해 서로 결합된다. 스프링(도시된 바와 같이)은 또한 회전자(46)와 사판(50) 사이에 위치하여 회전자(46)로부터 멀리 사판(50)을 편향시킬 수 있다. 그러나, 다른 결합 장치들이 원하는 대로 사용될 수 있다. 본 개시에 따르면, 힌지 조립체(52)는 사판(50)으로 하여금 평행(0도)보다 크고 샤프트(44)의 축 방향에 대해 실질적으로 수직(90도)까지 샤프트(44)의 축 방향에 대해 일정한 각도로 배치되게 한다. 사판(50)은 샤프트(44)에 대해 기울어진다. 따라서, 가변 변위 압축기에서 사판(50)의 각도는 전술한 범위 사이에서 변할 수 있다.
사판(50)은 사판(50)의 외주 가장자리에 배치된 슈(shoe)(54)에 의해 각 피스톤(36)에 결합된다. 그 결과, 사판(50)의 회전 운동은 피스톤(36)의 왕복 선형 운동으로 변환된다. 피스톤(36)은 사판(50)이 샤프트(44)에 대해 0도에 근접하는 각도로 배치되는 경우 더 큰 선형 거리로 그리고 사판(50)이 90도에 근접하거나 샤프트(44)에 수직인 경우 더 작은 선형 거리로 보어(32) 내에서 왕복 운동한다. 도 3에 도시된 바와 같이, 사판(50)은 본 개시에 따라 예시용으로 샤프트(44)의 축 방향에 실질적으로 수직인 위치에 위치된다.
밸브 조립체(56)는 실린더 하우징(12)과 후방 하우징(16)의 중간에 배치된다. 밸브 조립체(56)는 제 1 플레이트(56a), 제 2 플레이트(56b) 및 제 3 플레이트(56c)를 포함한다. 제 1 플레이트(56a)는 실린더 하우징(12)에 인접하고, 제 2 플레이트(56b)는 제 1 플레이트(56a) 및 제 3 플레이트(56c)의 중간에 배치되고, 제 3 플레이트(56c)는 제 2 플레이트(56b) 및 후방 하우징(16)의 중간에 배치된다. 플레이트들(56a, 56b, 56c)은 서로 협력하여 밸브 조립체(56)를 통해 유입구(58)와 배출구(60)를 정의한다. 유입구(58)는 1 차 유체를 흡입 챔버(28)로부터 피스톤(36)에 의해 압축될 보어(32)로 전달하도록 구성된다. 배출구(60)는 압축된 유체(1 차 유체 및/또는 보충 유체)를 보어(32)로부터 배기 챔버(30)로 전달하도록 구성된다.
중앙 보어(33)는 실질적으로 원형 단면의 제 1 부분(64) 및 제 1 부분(64)과 연속하는 복수의 반경 방향 연장 리세스(recess)에 의해 정의되는 제 2 부분(66)을 가진다. 각 리세스는 보어(32)들 중 인접한 것들의 중간 공간으로 연장된다. 예시된 실시 예에서, 제 2 부분(66)을 정의하는 6 개의 리세스가 있다. 제 1 부분(64) 및 제 2 부분(66)은 협력하여 중앙 보어(33)의 실질적인 6선 성형(六線 星形) 단면 형상을 형성한다. 그러나, 중앙 보어(33)는 보어(32)의 개수에 따라 제 2 부분(66)을 정의하기 위해 6 개보다 많거나 적은 리세스를 포함할 수 있음을 알 수 있다. 예시된 실시 예에서, 중앙 보어(33)의 제 2 부분(66)을 형성하는 리세스는 실질적으로 삼각형 단면 형상을 가진다. 그러나, 중앙 보어(33)의 제 2 부분(66)은 다각형, 알(卵)모양, 원형, 길게 늘인 또는 원하는 대로 임의의 형상 또는 형상들의 조합과 같은 원하는 대로 교번(交番) 형상을 가질 수 있다. 중앙 보어(33)의 제 2 부분(66)은 증기 주입 챔버(34)로부터 보충 유체를 수용하기 위한 챔버로서 구성되어 보충 유체가 샤프트(44) 주위로 흐른다.
실린더 하우징(12)은 중앙 보어(33)로부터 보어(32)들 중 하나로 각각 연장되는 복수의 통로(62)를 포함하고, 각각의 통로(62)는 중앙 보어(33)를 정의하는 벽(68)으로부터 보어(32)들의 각각의 하나를 정의하는 벽(70)까지 연장된다. 각각의 통로(62)는 제 2 부분(66)을 형성하는 리세스들 중 인접한 것들의 중간에 있는 중앙 보어(33)의 제 1 부분(64)으로부터 연장된다. 통로(62)는 중앙 보어(33)의 제 2 부분(66)을 형성하는 리세스들 중 인접한 것들 사이에서 연속적이다. 통로(62)는 제 2 부분(66)을 형성하는 리세스들 중 인접한 것들 사이에 유체 연통을 제공한다. 통로(62)는 비원형 단면 형상을 가진다. 예를 들어, 도시된 바와 같이, 통로(62)는 타원형 단면 형상을 가진다. 그러나, 통로(62)는 원형 단면 형상 또는 원하는 대로 및/또는 통로(62)의 형성 또는 제조로 인해 다른 단면 형상을 가질 수 있음을 알 수 있다.
통로(62)는 샤프트(44)의 축 방향에 대해 각을 이루고, 실린더 하우징(12)의 제 2 표면(40) 또는 후방 하우징(16)으로부터 멀어지는 방향으로 또는 실린더 하우징(12)의 제 1 표면(38) 또는 전방 하우징(14)을 향하는 방향으로 중앙 보어(33)로부터 보어(32)로 테이퍼진다. 통로(62)는 실린더 하우징(12)의 제 2 표면(40)으로부터 측정된 보어(32)의 길이(l)의 약 25% 이상에서 보어(32)와 교차한다. 따라서, 통로(62)는 보어(32)의 길이(l)의 대략 25%를 나타내는 보어(32)의 제 1 부분(32a)과 교차하지 않고 보어(32)의 길이(l)의 대략 75%를 나타내는 보어(32)의 길이(l)의 제 2 부분(32b)에서만 보어(32)와 교차한다. 그 결과, 피스톤(36)이 실린더 하우징(12)의 제 2 표면(40)에 직접 인접하거나, 보어(32) 길이의 약 0 %에 있고 제 2 표면(40)에서 멀어지기 시작하는 경우, 피스톤(36)이 제 2 부분(32b)의 통로(62)를 통과할 때까지 피스톤(36)이 보어(32)의 제 1 부분(32a)을 따라 그리고 보어(32)의 제 2 부분(32b)을 따라 이동함에 따라 흡입 챔버(28)로부터의 1 차 유체는 보어(32)에만 들어간다. 피스톤(36)이 통로(62)를 넘어 지나갈 때, 통로(62)를 통해 흐르는 보충 유체는 보어(32)를 통한 피스톤(36)의 스트로크의 나머지 길이에 대해 보어(32) 내로 끌려 들어간다.
일 예에서, 피스톤(36)이 실린더 하우징(12)의 제 2 표면(40)으로부터 실린더 하우징(12)의 제 1 표면(38)으로의 방향으로 이동할 때, 흡입 챔버(28)로부터 보어(32)로의 1 차 유체의 흡입량은 설명을 위해 x로 표시된다. 피스톤(36)이 실린더 하우징(12)의 제 2 표면(40)으로부터 실린더 하우징(12)의 제 1 표면(38)으로의 방향으로 이동할 때, 통로(62)로부터 보어(32)로의 보충 유체의 흡입량은 y로 표시된다. 따라서, 피스톤(36)이 실린더 하우징(12)의 제 2 표면(40)으로부터 실린더 하우징(12)의 제 1 표면(38)으로 이동함에 따라, 보어(32)에 들어가는 모든 압축 유체(즉, 1 차 유체 및/또는 보충 유체)의 총량은 실린더 하우징(12)의 제 2 표면(40)으로부터 통로(62) 직전까지의 x이다. 그런 다음 피스톤(36)이 통로(62)를 지나 동일한 방향으로 스트로크를 계속함에 따라, 보어(32)로 들어가는 모든 압축 유체의 총량은 동일한 방향으로의 피스톤(36)의 스트로크가 끝날 때까지 x + y와 같다. 압축 유체의 압축이 완료되면, 피스톤(36)은 실린더 하우징(12)의 제 1 표면(38)에서 제 2 표면(40)으로인 반대 방향으로 이동하여 압축된 유체를 배기 챔버(30)로 배출한다.
보충 유체는 증기 주입 포트(26)로부터 증기 주입 챔버(34)로, 샤프트(44) 주위로 및 중앙 보어(33)로 흐른다. 중앙 보어(33)로부터 보조 유체는 보어(32)로 흐른다. 그러면, 보충 유체는 압축되어 1 차 유체와 함께 밸브 조립체(56)의 배출구(60)를 통해 배기 챔버(30)로 그리고 압축기(10)로부터 배기 포트(24)를 통해 외부로 배기된다.
후방 하우징(16)은 실린더 하우징(12)의 중앙 보어(33)와 정렬되고 흡입 챔버(28)와 동심을 이루는 크랭크실 압력 챔버(84)를 포함한다. 크랭크실 압력 챔버(84)는 또한 샤프트(44)와 축 방향으로 정렬된다. 크랭크실 압력 챔버(84)는 전방 하우징(14)으로부터 크랭크실 유체(점선 화살표로 도시됨)를 수용한다. 채널(72)이 실린더 하우징(12)에 형성되어 크랭크실 압력 챔버(84)와 흡입 챔버(28) 사이에 유체 연통을 제공한다. 이와 같이, 피스톤(36)에 의해 전방 하우징(14)의 크랭크 챔버(43) 내로 통과하는 유체 또는 보충 유체의 '블로우 바이(blow by)'에 의한 크랭크 유체는 채널(72)을 통해 흡입 챔버(28)로 전달될 수 있고 피스톤(36)에 의한 흡입을 위해 재활용될 수 있다. 추가적으로, 샤프트(44)는 샤프트를 관통하여 형성된 통로(passageway)(86)를 포함한다. 통로(86)는 전방 하우징(14)으로부터 또는 전방 하우징(14)에 바로 인접하여 후방 하우징(16)에 인접한 샤프트(44)의 단부까지 샤프트(44) 내에서 연장된다. 통로(86)는 샤프트(44)에 형성된 유입구(미도시)를 통해 전방 하우징(14)과 유체 연통한다. 유입구는 중앙 보어(33) 내에 위치한다. 그러나, 유입구는 원하는 경우 전방 하우징(14) 내에 배치될 수 있음을 알 수 있다. 샤프트(44)를 통해 흐르는 크랭크실 유체는 중앙 보어(33)에서 크랭크실 압력 챔버(84)로 흡입 챔버(28)로 전달될 수 있다. 통로(86)의 일부는 후방 하우징(16)에 인접한 샤프트에 형성된 오리피스(orifice)(96)로 형성된다.
일 예에서, 가변 변위 압축기의 경우, 흡입 챔버(28)로 흐르는 1 차 유체는 흡입 압력(Ps)을 가진다. 배기 챔버(30)로 흐르는 압축 유체는 토출 압력(Pd)을 가진다. 크랭크실 유체는 크랭크실 압력(Pc)을 가진다. 크랭크실 압력(Pc)은 실린더 하우징(12)에서 피스톤(36)의 변위량을 제어하는 압력의 결과이다. 증기 주입 챔버(34)로 흘러 보어(32)로 유입되는 보충 유체는 증기압(Pv)을 가진다. 증기압(Pv)은 흡입 압력(Ps)보다 크지만 토출 압력(Pd)보다는 작다. 그 결과, 더 큰 증기압(Pv)이 통로(62)를 통해 흡입 압력(Ps)에 더해진다. 크랭크실 압력(Pc)은 흡입 압력(Ps)에 추가될 수 있어서 채널(72)을 통해 흡입 압력(Ps)을 증가시킨다.
실린더 하우징(12)은 원통형 돌출부(80)를 포함하는데, 원통형 돌출부(80)는 크랭크실 압력 챔버(84)를 정의하고 샤프트(44)의 단부를 수용하는 벽으로부터 연장된다. 돌출부(80)는 후방 하우징(16)의 결합 표면(82)으로부터 외측으로 연장된다. 이와 같이, 돌출부(80)는 실린더 하우징(12)의 제 2 표면(40)을 지나 중앙 보어(33)로 연장된다. 그 결과, 돌출부(80)가 중앙 보어(33) 내의 추가 공간을 차지하기 때문에, 보충 유체의 팽창 체적이 감소되거나 최소화된다. 왜냐하면 중앙 보어(33) 내부의 돌출부(80)가 보충 유체가 팽창할 수 있는 부피를 최소화하기 때문이다. 따라서, 돌출부(80)가 없는 실린더 하우징에 비해 보충 유체의 밀도, 압력 및 질량 흐름이 증가한다. 돌출부(80)의 또 다른 장점은 샤프트(44)가 후방 하우징(16)으로 연장되지 않아 제조 비용을 감소시키기 때문에 샤프트(44)의 길이를 줄일 수 있다는 것이다.
적용시, 압축기(10)는 HVAC의 증발기와 같은 제 1 유체 소스로부터 흡입 챔버(28)로 1 차 유체를 수용한다. 피스톤(36)이 보어(32)에서 왕복 운동함에 따라, 피스톤(36)은 압축된 유체를 압축 및 배출한다. 피스톤(36)이 실린더 하우징(12)의 제 2 표면(40)으로부터 실린더 하우징(12)의 제 1 표면(38)으로의 방향으로 이동함에 따라, 1 차 유체는 밸브 조립체(56)를 통해 흡입 챔버(28)로부터 보어(32)로 흡입된다. 피스톤(36)이 통로(62)에 도달하면, 보충 유체는 또한 보어(32)로 흡입되어 1 차 유체와 함께 압축된다. 보조 유체는 증기 주입 챔버(34), 중앙 보어(33) 및 통로(62)를 통해 제 2 유체 소스로부터 보어(32)로 전달된다. 그 결과, 보조 유체는 보어(32)에 직접 결합되고, 압축되는 1 차 유체의 압력이 증가된다. 통로(62)가 보어(32)의 제 2 부분(32b)에서 보어(32)로 진입하기 때문에, 피스톤(36)이 최소 변위(도 3에 도시된 바와 같이)에 있을 때의 압축기(10)의 효율은 보어(32)의 제 1 부분(32a)에 통로(62)를 배치함으로써 피스톤(36) 내의 유격 또는 무용 부피가 증가하지 않기 때문에 손상되지 않는다. 제 2 부분(32b)에서의 통로(62)의 위치는 밸브 조립체(56)를 통해 흐르는 1 차 유체의 흐름을 또한 저해하지 않는다. 밸브 조립체(56)는 1 차 유체가 흡입 챔버(28)로부터 유동하도록 개방된 상태로 유지된다.
피스톤(36)이 실린더 하우징(12)의 제 1 표면(38)에서 제 2 표면(40)으로 이동함에 따라, 압축된 유체는 밸브 조립체(56)를 통해 배기 챔버(30)로 배출되고 제 1 유체 소스 및/또는 다른 임의의 유체 소스로 복귀된다. 임의의 크랭크실 유체는 통로(86)를 통해 전방 하우징(14)으로부터 크랭크실 압력 챔버(84)로 복귀될 수 있다.
유리하게는, 본 개시에 따른 압축기(10)에서, 압축 유체의 밀도 및 질량 흐름이 증가되어, 비용을 증가시키는 압축기(10)의 크기 또는 압축기(10)의 구성 요소를 증가시키지 않으면서 효율을 최대화한다.
실린더 하우징(12)에 통로(62)를 형성하는 방법이 이제 도 6을 참조하여 설명된다. 제 1 단계에 따르면, 보어(32, 33)는 인덱싱 공정, 성형 공정, 스탬핑 공정, 보링(boring) 공정, 선반 공정, 이들의 조합 또는 원하는 대로 또는 압축기용 실린더 하우징 형성 분야에서 일반적으로 알려진 기타 공정에 의해 형성된다.
제 2 단계에서, 보링(boring) 도구, 절단 도구, 나이프, 레이저, 톱, 회중 전등, 열 요소 또는 금속과 같은 재료를 관통하는 것으로 알려진 기타 도구와 같은 도구(100)가 중앙 보어(33)를 형성하는 벽(68)과 맞물린다. 압력이 도구(100)에 가해져서 실린더 하우징(12)을 통해 보어(32)로 통로(62)를 천공한다. 제 1 단계 및 제 2 단계는 개별적으로 또는 동시에 발생할 수 있음을 알 수 있다.
일 례에 따르면, 보어(32, 33)는 예를 들어 선반과 같은 선회 장치에 의해 실린더 하우징(12)에 형성된다. 보어(32)는 동시에 또는 한 번에 하나씩 형성될 수 있다. 실린더 하우징(12)은 실선 화살표로 표시된 방향으로 선반(12) 상에서 회전한다. 실린더 하우징(12)이 회전함에 따라, 도구(100)는 중앙 보어(33)의 축 방향에 대해 일정한 각도로 중앙 보어(33)에 삽입되고, 파선 화살표로 표시된 방향으로 중앙 보어(33)에 대해 내측 및 외측으로 이동할 수 있다. 도구(100)는 중앙 보어(33)와 보어(32)의 중간에 있는 실린더 하우징(12)에 압력을 가하여 통로(62)를 형성한다. 도구(100)는 선반에서 실린더 하우징(12)의 단일 회전 동안 각각의 통로(62)를 형성할 수 있다.
통로(62)를 형성하는 방법은 다른 방법에 비해 더 적은 단계가 발생하기 때문에 유리하다. 예를 들어, 다른 방법은 각각의 보어(32)를 통해 개별적으로 삽입되는 도구를 요구하여 6 개의 보어(32)를 가지는 실린더 하우징(12)에서 6 개 이상의 단계 또는 실린더 하우징(12)에서 보어(32)의 개수에 따라 더 많은 단계를 취할 수 있다. 본 발명의 방법의 결과, 제조 비용이 최소화되고 품질 관리가 최대화된다.
전술한 설명으로부터 당업자는 본 발명의 본질적인 특징을 쉽게 확인할 수 있고, 본 발명의 정신 및 범위를 벗어나지 않고 다양한 용도 및 조건에 적응하기 위해 본 발명에 다양한 변경 및 수정을 할 수 있다.

Claims (20)

  1. 피스톤형 압축기로서,
    제 1 표면을 통해 내부에 샤프트를 수용하기 위한 중앙 보어(bore) 및 상기 제 1 표면을 통해 내부에 복수의 피스톤을 수용하도록 구성된 복수의 보어를 가지는 실린더 하우징을 포함하는 메인(main) 하우징;
    상기 복수의 보어에 1 차 유체를 전달하도록 구성되는 유입구;
    상기 복수의 보어로부터 상기 1 차 유체를 전달하도록 구성되는 배출구; 및
    상기 유입구 및 상기 배출구와 분리된 복수의 통로-상기 복수의 통로 각각은 상기 메인 하우징에 형성되고 상기 복수의 보어 중 하나에 보충 유체를 전달하도록 구성됨-를 포함하는,
    피스톤형 압축기.
  2. 제1항에 있어서,
    상기 복수의 통로 각각은 상기 복수의 보어 중 각각 하나를 정의하는 벽을 통해 연장하는,
    피스톤형 압축기.
  3. 제1항에 있어서,
    상기 복수의 통로 각각은 상기 중앙 보어와 상기 복수의 보어의 각 하나 사이에 유체 연통을 제공하는,
    피스톤형 압축기.
  4. 제1항에 있어서,
    상기 복수의 통로 각각은 상기 제 1 표면과 반대편에 있는 상기 실린더 하우징의 제 2 표면으로부터 측정된 상기 복수의 보어의 길이의 25 % 보다 큰 길이에서 상기 복수의 보어와 접하는,
    피스톤형 압축기.
  5. 제1항에 있어서,
    상기 복수의 통로 각각은 상기 실린더 하우징의 축 방향에 대하여 각을 이루는,
    피스톤형 압축기.
  6. 제1항에 있어서,
    상기 하우징은 상기 제 1 표면과 반대편에 있는 상기 실린더 하우징의 제 2 표면에 인접하는 후방 하우징을 더 포함하고, 상기 후방 하우징은 상기 복수의 보어에 상기 1차 유체를 전달하도록 구성된 흡입 챔버, 상기 복수의 보어로부터 상기 1차 유체를 수용하도록 구성된 배기 챔버 및 상기 복수의 통로에 상기 보충 유체를 전달하는 증기 주입 챔버를 가지는,
    피스톤형 압축기.
  7. 제6항에 있어서,
    상기 후방 하우징은 가압 크랭크실 유체를 수용하도록 구성된 크랭크실 압력 챔버를 더 포함하고, 상기 크랭크실 압력 챔버는 상기 증기 주입 챔버와 동심을 이루는,
    피스톤형 압축기.
  8. 제7항에 있어서,
    채널은 상기 흡입 챔버 및 상기 크랭크실 챔버 사이에 유체 연통을 제공하는,
    피스톤형 압축기.
  9. 제7항에 있어서,
    상기 후방 하우징은 상기 후방 하우징의 결합 표면으로부터 바깥쪽으로 연장되는 환형 돌출부를 포함하고, 상기 돌출부는 상기 크랭크실 챔버와 연속되고 상기 실린더 하우징의 상기 중앙 보어로 연장되는,
    피스톤형 압축기.
  10. 제6항에 있어서,
    상기 배기 챔버, 상기 흡입 챔버 및 상기 증기 주입 챔버는 서로 동심을 이루는,
    피스톤형 압축기.
  11. 제1항에 있어서,
    상기 압축기는 가변 변위 압축기인,
    피스톤형 압축기.
  12. 제1항에 있어서,
    벽은 상기 중앙 보어의 제1 부분을 정의하고, 상기 중앙 보어의 상기 제1 부분은 상기 샤프트를 수용하도록 구성되며, 상기 중앙 보어는 상기 벽으로부터 반경 방향으로 연장되고 상기 중앙 보어의 상기 제 1 부분과 연속되는 복수의 리세스(recess)에 의해 정의되는 제 2 부분을 포함하는,
    피스톤형 압축기.
  13. 제12항에 있어서,
    상기 복수의 통로는 상기 복수의 리세스들 중 인접한 것들과 연속되는,
    피스톤형 압축기.
  14. 피스톤형 압축기로서,
    실린더 하우징-중앙 보어(bore) 및 상기 실린더 하우징을 통해 형성된 복수의 실린더 보어를 가짐-;
    상기 실린더 하우징의 제 1 표면을 지나 상기 중앙 보어를 통해 수용되는 샤프트;
    상기 실린더 하우징의 상기 제 1 표면을 통해 상기 복수의 실린더 보어 내에서 왕복 운동하는 복수의 피스톤; 및
    상기 중앙 보어와 상기 복수의 실린더 보어 사이에 유체 연통을 제공하는 복수의 통로를 포함하는,
    피스톤형 압축기.
  15. 제14항에 있어서,
    상기 복수의 피스톤의 왕복 운동은 상기 복수의 실린더 보어에 대한 상기 복수의 통로를 개방 및 폐쇄하는,
    피스톤형 압축기.
  16. 제15항에 있어서,
    상기 압축기는 제 1 작동 모드 및 제 2 작동 모드에서 작동하고, 상기 제 1 작동 모드 동안 상기 복수의 실린더 보어 내의 상기 복수의 피스톤의 스트로크 길이는 일정하고 최대 스트로크(stroke) 길이이며, 상기 제 2 작동 모드 동안 상기 복수의 보어 내의 상기 복수의 피스톤의 스트로크 길이는 변하고, 상기 복수의 통로는 상기 제 2 작동 모드 동안 상기 복수의 피스톤에 의해 폐쇄되는,
    피스톤형 압축기.
  17. 제14항에 있어서,
    상기 실린더 하우징의 상기 제 1 표면 반대편에 있는 상기 실린더 하우징의 제 2 표면에 인접한 후방 하우징을 더 포함하고, 상기 후방 하우징은 상기 실린더 하우징의 제 2 단부를 통해 상기 복수의 실린더 보어에 1 차 유체를 전달하는 흡입 챔버, 상기 복수의 실린더 보어로부터 상기 1 차 유체를 수용하는 배기 챔버, 상기 복수의 통로를 통해 상기 복수의 실린더 보어에 보충 유체를 전달하는 증기 주입 챔버, 및 상기 샤프트로부터 크랭크실 유체를 수용하는 크랭크실 압력 챔버를 포함하는,
    피스톤형 압축기.
  18. 제17항에 있어서,
    상기 샤프트에서 통로(passageway)가 형성되고 상기 크랭크실 유체를 상기 크랭크실 압력 챔버에 전달하는,
    피스톤형 압축기.
  19. 제17항에 있어서,
    상기 후방 하우징은 상기 후방 하우징으로부터 바깥쪽으로 연장되는 돌출부를 포함하고, 상기 돌출부는 상기 실린더 하우징의 상기 중앙 보어에 수용되며, 상기 샤프트는 상기 돌출부와 맞물리는,
    피스톤형 압축기.
  20. 압축기의 실린더 하우징에 복수의 유체 통로를 형성하는 방법으로서, 상기 방법은
    실린더 블록을 제공하는 단계;
    상기 실린더 블록을 통해 중앙 보어(bore)를 형성하고 상기 중앙 보어로부터 반경 방향 바깥쪽으로 이격되는 복수의 실린더 보어를 형성하는 단계;
    상기 실린더 블록을 회전시키는 단계;
    상기 중앙 보어의 축 방향에 대해 일정한 각도로 상기 중앙 보어를 통해 도구를 삽입하는 단계; 및
    상기 실린더 블록이 회전함에 따라 상기 도구로 상기 실린더 블록을 통해 상기 복수의 통로를 천공하는 단계-상기 복수의 통로 각각은 상기 중앙 보어에서 상기 복수의 실린더 보어 중 하나로 연장됨-를 포함하는,
    압축기의 실린더 하우징에 복수의 유체 통로를 형성하는 방법.
KR1020210061219A 2020-06-15 2021-05-12 증기 주입 피스톤 압축기 KR102539868B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/901,095 US11629709B2 (en) 2020-06-15 2020-06-15 Vapor injected piston compressor
US16/901,095 2020-06-15

Publications (2)

Publication Number Publication Date
KR20210155351A true KR20210155351A (ko) 2021-12-22
KR102539868B1 KR102539868B1 (ko) 2023-06-12

Family

ID=78824598

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210061219A KR102539868B1 (ko) 2020-06-15 2021-05-12 증기 주입 피스톤 압축기

Country Status (2)

Country Link
US (1) US11629709B2 (ko)
KR (1) KR102539868B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150035448A (ko) * 2013-09-27 2015-04-06 가부시키가이샤 도요다 지도숏키 용량 가변형 사판식 압축기

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117195U (ja) 1991-04-02 1992-10-20 サンデン株式会社 スクロール型圧縮機
JP3047842B2 (ja) 1997-02-10 2000-06-05 株式会社豊田自動織機製作所 圧縮機用ピストンの加工方法
JP3891099B2 (ja) * 2001-11-12 2007-03-07 株式会社豊田自動織機 ピストン式圧縮機
JP3896822B2 (ja) 2001-11-12 2007-03-22 株式会社豊田自動織機 斜板型圧縮機
JP4096703B2 (ja) * 2001-11-21 2008-06-04 株式会社豊田自動織機 ピストン式圧縮機における冷媒吸入構造
JP2006009789A (ja) * 2004-05-25 2006-01-12 Toyota Industries Corp ピストン式圧縮機
JP5741554B2 (ja) * 2012-11-02 2015-07-01 株式会社豊田自動織機 ピストン型圧縮機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150035448A (ko) * 2013-09-27 2015-04-06 가부시키가이샤 도요다 지도숏키 용량 가변형 사판식 압축기

Also Published As

Publication number Publication date
US20210388827A1 (en) 2021-12-16
KR102539868B1 (ko) 2023-06-12
US11629709B2 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
US11608830B2 (en) Scroll compressor
US7186096B2 (en) Swash plate type variable displacement compressor
KR100917449B1 (ko) 압축기
US6293763B1 (en) Guide passage between the piston and housing of a compressor
US6871512B2 (en) Motor-driven compressor
US4761119A (en) Compressor having pulsating reducing mechanism
EP0881386B1 (en) Swash plate compressor
US4507065A (en) Vane compressor having drive shaft journalled by roller bearings
KR102539868B1 (ko) 증기 주입 피스톤 압축기
US11187219B2 (en) Swash plate type compressor
US20220042503A1 (en) Swash plate compressor
US20040194209A1 (en) Piston compressor
US5181831A (en) Variable capacity wobble plate compressor
US20050158182A1 (en) Piston type compressor
KR101843756B1 (ko) 가변 용량형 사판식 압축기
KR102051661B1 (ko) 컨트롤 밸브 및 가변 용량식 압축기
US20050142016A1 (en) Heat insulating structure in piston type compressor
KR101328855B1 (ko) 왕복동식 압축기의 오일분리구조 일체형 하우징
US12037995B2 (en) Swash plate compressor
KR101763979B1 (ko) 가변 용량형 사판식 압축기
US20060239833A1 (en) Motor driven compressor
KR20080055117A (ko) 가변용량형 사판식 압축기
JPH11230032A (ja) 斜板式圧縮機
KR101065978B1 (ko) 압축기
KR20090089429A (ko) 왕복동식 압축기의 단열 오일분리기

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right