KR20210122055A - Resin molded article for optical semiconductor encapsulation and manufacturing method thereof - Google Patents

Resin molded article for optical semiconductor encapsulation and manufacturing method thereof Download PDF

Info

Publication number
KR20210122055A
KR20210122055A KR1020210007851A KR20210007851A KR20210122055A KR 20210122055 A KR20210122055 A KR 20210122055A KR 1020210007851 A KR1020210007851 A KR 1020210007851A KR 20210007851 A KR20210007851 A KR 20210007851A KR 20210122055 A KR20210122055 A KR 20210122055A
Authority
KR
South Korea
Prior art keywords
molding
optical
resin
dpa
optical semiconductor
Prior art date
Application number
KR1020210007851A
Other languages
Korean (ko)
Inventor
류스케 나이토
미노루 야마네
아키라 마츠오
다쿠토 하기하라
신야 오타
나오코 히메노
Original Assignee
닛토덴코 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛토덴코 가부시키가이샤 filed Critical 닛토덴코 가부시키가이샤
Publication of KR20210122055A publication Critical patent/KR20210122055A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4215Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof cycloaliphatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Led Device Packages (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Provided are the resin molding for optical semiconductor sealing having the wide production margin in optical semiconductor production, so as to be stably transfer-molded, and a manufacturing method thereof. The resin molding for optical semiconductor sealing contains the resin whose molecular weight distribution Mw/Mn which is ratio of weight average molecular weight Mw and number average molecular weight Mn is 2.7 or less.

Description

광 반도체 밀봉용 수지 성형물 및 그 제조 방법{RESIN MOLDED ARTICLE FOR OPTICAL SEMICONDUCTOR ENCAPSULATION AND MANUFACTURING METHOD THEREOF}Resin molding for optical semiconductor encapsulation and its manufacturing method TECHNICAL FIELD

본 발명은, 광 반도체 밀봉용 수지 성형물 및 그 제조 방법에 관한 것이다.The present invention relates to a resin molding for optical semiconductor encapsulation and a method for manufacturing the same.

광 반도체 소자는, 세라믹 패키지 또는 플라스틱 패키지에 의해 밀봉되어 장치화되어 있다. 여기서 세라믹 패키지는, 구성 재료가 비교적 고가라는 점, 양산성이 떨어진다는 점으로부터, 플라스틱 패키지를 사용하는 것이 주류로 되어 있다. 그 중에서도, 작업성, 양산성, 신뢰성의 점에서, 에폭시 수지 조성물을, 미리 태블릿상으로 타정 성형한 것을 트랜스퍼 몰드 성형하는 기술이 주류로 되어 있다.The optical semiconductor element is sealed by a ceramic package or a plastic package, and is deviceized. Here, as for the ceramic package, the use of a plastic package is mainstream because the constituent materials are relatively expensive and the mass productivity is inferior. Among them, from the viewpoints of workability, mass productivity, and reliability, a technique of transfer mold molding of an epoxy resin composition obtained by tableting in advance into a tablet form is mainstream.

그런데 플라스틱 패키지에 사용하는 광 반도체 밀봉용의 에폭시 수지 조성물에서는, 에폭시 수지, 경화제, 경화 촉진제의 각 성분은 비교적 분산되기 어려워, 전체를 균일하게 혼합 분산시키는 것이 용이하지 않으므로, 경화 반응이 불균일해져 성형 불균일이나 성형 보이드가 발생하기 쉽다고 하는 문제가 있다. 이들 불균일이나 보이드에 기인하여 광학 불균일을 발생시켜, 광 반도체 장치의 신뢰성을 손상시킨다고 하는 문제가 있다.However, in the epoxy resin composition for optical semiconductor encapsulation used in a plastic package, each component of the epoxy resin, curing agent, and curing accelerator is relatively difficult to disperse, and it is not easy to mix and disperse the whole uniformly. There is a problem that unevenness and molded voids are likely to occur. There exists a problem that it originates in these nonuniformity and a void, produces optical nonuniformity, and impairs the reliability of an optical semiconductor device.

이들 과제를 해결하기 위해, 특허문헌 1에서는, 에폭시 수지 조성물을 매우 잘게 미분쇄한 것을 사용하여 태블릿화함으로써 조성물의 균일 분산성을 확보하고, 성형 불균일이나 성형 보이드를 저감하여, 광학 불균일을 없애는 기술이 개시되어 있다. 또한 특허문헌 2에서는, 에폭시 수지 조성물을 입상으로 조립(造粒)하여 태블릿화하는 기술이 개시되어 있다.In order to solve these problems, in patent document 1, by using a very finely pulverized epoxy resin composition and tabletting, the uniform dispersion property of the composition is ensured, and a molding nonuniformity and a molding void are reduced, and optical nonuniformity is eliminated. This is disclosed. Moreover, in patent document 2, the technique of granulating an epoxy resin composition in a granular form to form into a tablet is disclosed.

일본 특허 공개 평3-3258호 공보Japanese Patent Laid-Open No. 3-3258 일본 특허 공개 제2011-9394호 공보Japanese Patent Laid-Open No. 2011-9394

본 발명은, 광 반도체 생산에 있어서의 생산 마진이 넓어, 안정적으로 트랜스퍼 성형 가능한 광 반도체 밀봉용 수지 성형물과, 그 제조 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a resin molding for optical semiconductor encapsulation that has a large production margin in optical semiconductor production and can be stably transfer molded, and a manufacturing method thereof.

본 발명은, 중량 평균 분자량 Mw와 수 평균 분자량 Mn의 비인 분자량 분포 Mw/Mn이 2.7 이하인 수지를 포함하는 광 반도체 밀봉용 수지 성형물에 관한 것이다.This invention relates to the resin molding for optical semiconductor sealing containing resin whose molecular weight distribution Mw/Mn which is ratio of weight average molecular weight Mw and number average molecular weight Mn is 2.7 or less.

상기 수지의 중량 평균 분자량 Mw가 3000 내지 7000이고, 수 평균 분자량 Mn이 1500 내지 2600인 것이 바람직하다.It is preferable that the weight average molecular weights Mw of the said resin are 3000-7000, and it is preferable that the number average molecular weights Mn are 1500-2600.

또한 본 발명은, EMMI(Epoxy Molding Materials Institute) 규격 1-66에 준하여, 금형 온도 150℃, 성형 압력 970㎏f/㎠, 경화 시간 120s, 사출 속도 2.0㎝/s의 조건에서 측정한 최저 용융 점도가 300dPa·s 이하이고, 지표 점도 800dPa·s로부터 최저 용융 점도를 뺀 값 b(dPa·s)와, 지표 점도 800dPa·s로부터 최저 용융 점도를 거쳐 경화 과정에서 다시 800dPa·s에 도달할 때까지의 시간 a(초)의 비 b/a가 20 이상인 광 반도체 밀봉용 수지 성형물에 관한 것이다.In addition, the present invention, in accordance with EMMI (Epoxy Molding Materials Institute) standard 1-66, mold temperature 150 ℃, molding pressure 970 kgf / ㎠, curing time 120s, the lowest melt viscosity measured under the conditions of 2.0 cm / s injection speed is 300 dPa s or less, the value b (dPa s) obtained by subtracting the lowest melt viscosity from the index viscosity 800 dPa s, and the index viscosity 800 dPa s through the lowest melt viscosity until it reaches 800 dPa s again It relates to a resin molding for optical semiconductor encapsulation in which the ratio b/a of the time a (second) is 20 or more.

상기 광 반도체 밀봉용 수지 태블릿은, 에폭시 수지와 경화제의 반응물, 및 경화 촉진제를 포함하는 것이 바람직하다.It is preferable that the said resin tablet for optical semiconductor sealing contains the reaction material of an epoxy resin and a hardening|curing agent, and a hardening accelerator.

또한 본 발명은, 상기 광 반도체 밀봉용 성형물을 성형하여 얻어지는 광 반도체 밀봉재, 및 광 반도체 소자와, 당해 광 반도체 소자를 밀봉하는 당해 광 반도체 밀봉재를 구비하는 광 반도체 장치에 관한 것이다.Furthermore, this invention relates to the optical-semiconductor sealing material obtained by shape|molding the said molding for optical semiconductor sealing, and an optical-semiconductor element, and relates to the optical-semiconductor device provided with the said optical-semiconductor sealing material which seals the said optical-semiconductor element.

또한 본 발명은, 열경화성 수지, 경화제 및 경화 촉진을 혼련하여, 경화성 수지 조성물을 얻는 공정과, 당해 경화성 수지 조성물을 열처리하는 공정과, 당해 경화성 수지 조성물을 조립하여, 입상 경화성 수지 조성물을 얻는 공정과, 당해 입상 경화성 수지 조성물을 성형하는 공정을 구비한 것을 특징으로 하는 상기 광 반도체 밀봉용 수지 성형물의 제법에 관한 것이다.Further, the present invention provides a step of kneading a thermosetting resin, a curing agent, and a curing accelerator to obtain a curable resin composition; a step of heat-treating the curable resin composition; a step of granulating the curable resin composition to obtain a granular curable resin composition; and the process of shape|molding the said granular curable resin composition was provided, It relates to the manufacturing method of the said resin molding for optical semiconductor sealing characterized by the above-mentioned.

본 발명의 광 반도체 밀봉용 수지 성형물은, 성형물에 포함되는 수지의 분자량 분포가 좁아, 광 반도체 생산 시에 최저 용융 점도의 도달 후, 경화될 때까지의 시간이 짧기 때문에, 광 반도체 생산에 있어서의 생산 마진이 넓어, 안정적으로 트랜스퍼 성형할 수 있다.The resin molding for optical semiconductor encapsulation of the present invention has a narrow molecular weight distribution of the resin contained in the molded product, and since the time from reaching the lowest melt viscosity to curing after reaching the lowest melt viscosity during optical semiconductor production is short, in optical semiconductor production The production margin is wide, and transfer molding can be carried out stably.

본 발명의 광 반도체 밀봉용 수지 성형물은, 중량 평균 분자량 Mw와 수 평균 분자량 Mn의 비인 분자량 분포 Mw/Mn이 2.7 이하인 수지를 포함하는 것을 특징으로 한다. 광 반도체 밀봉용 수지 성형물로서는, 태블릿, 시트 등을 들 수 있고, 광 반도체 장치를 구성하는 광 반도체 소자를 덮도록 형성되어, 당해 소자를 밀봉하는 부재이다.The resin molding for optical semiconductor sealing of this invention is characterized by including resin whose molecular weight distribution Mw/Mn which is ratio of the weight average molecular weight Mw and the number average molecular weight Mn is 2.7 or less. A tablet, a sheet, etc. are mentioned as a resin molding for optical semiconductor sealing, It is formed so that the optical-semiconductor element which comprises an optical-semiconductor device may be covered, and is a member which seals the said element.

분자량 분포는, 성형물에 포함되는 수지 성분을 유기 용매에 용해시켜, 겔 투과 크로마토그래피(GPC)법에 의해 측정한 중량 평균 분자량 Mw와 수 평균 분자량 Mn으로부터 계산할 수 있다. 분자량 분포 Mw/Mn은 2.7 이하이지만, 2.3 이하가 바람직하고, 2.0 이하가 보다 바람직하다. 2.7을 초과하면, 안정적으로 트랜스퍼 성형할 수 없게 되는 경우가 있다.The molecular weight distribution can be calculated from the weight average molecular weight Mw and the number average molecular weight Mn measured by gel permeation chromatography (GPC) method by dissolving the resin component contained in the molding in an organic solvent. Although molecular weight distribution Mw/Mn is 2.7 or less, 2.3 or less are preferable and 2.0 or less are more preferable. When it exceeds 2.7, transfer molding may become impossible stably.

중량 평균 분자량 Mw는 3000 내지 7000이 바람직하다. 또한, 수 평균 분자량 Mn은 1500 내지 2600이 바람직하다. Mw가 3000 미만, 또는 Mn이 1500 미만이면, 성형 시에 수지의 유동성이 지나치게 높아, 제품 밖으로 누출되어 버가 발생하여 외관을 손상시키는 경향이 있고, Mw가 7000을 초과하거나, 또는 Mn이 2600을 초과하면, 성형 시에 수지의 유동성이 낮아, 제품의 충전 불량이 되는 경향이 있다.As for the weight average molecular weight Mw, 3000-7000 are preferable. Moreover, as for the number average molecular weight Mn, 1500-2600 are preferable. If Mw is less than 3000, or Mn is less than 1500, the fluidity of the resin during molding is too high, and it tends to leak out of the product and cause burrs to damage the appearance, Mw exceeds 7000, or Mn is 2600 When it exceeds, the fluidity|liquidity of resin at the time of shaping|molding is low, and there exists a tendency to become poor filling of a product.

광 반도체 밀봉용 수지 성형체가 태블릿인 경우, 그 체적은 특별히 한정되지 않지만, 1 내지 100㎤가 바람직하고, 10 내지 100㎤가 보다 바람직하다. 체적이 지나치게 작으면, 반응 상태의 변동의 차이가 잘 보이지 않게 되는 경향이 있다.Although the volume is not specifically limited when the resin molded object for optical semiconductor sealing is a tablet, 1-100 cm<3> is preferable and 10-100 cm<3> is more preferable. When the volume is too small, the difference in the fluctuation of the reaction state tends to be less visible.

또한, 본 발명의 광 반도체 밀봉용 수지 성형물은, EMMI(Epoxy Molding Materials Institute) 규격 1-66에 준하여, 금형 온도 150℃, 성형 압력 970㎏f/㎠, 경화 시간 120s, 사출 속도 2.0㎝/s의 조건에서 측정한 최저 용융 점도가 300dPa·s 이하이고, 지표 점도 800dPa·s로부터 최저 용융 점도를 뺀 값 b(dPa·s)와, 지표 점도 800dPa·s로부터 최저 용융 점도를 거쳐 경화 과정에서 다시 800dPa·s에 도달할 때까지의 시간 a(초)의 비 b/a가 20 이상인 것을 특징으로 한다.In addition, the resin molding for optical semiconductor encapsulation of the present invention, according to EMMI (Epoxy Molding Materials Institute) standard 1-66, a mold temperature of 150 ° C., a molding pressure of 970 kgf/cm 2 , a curing time of 120 s, an injection speed of 2.0 cm / s The lowest melt viscosity measured under the conditions of It is characterized in that the ratio b/a of the time a (seconds) until it reaches 800 dPa·s is 20 or more.

최저 용융 점도는 300dPa·s 이하이지만, 200dPa·s 이하가 바람직하다. 300dPa·s를 초과하면, 성형 시의 제품에의 충전 불량이 되는 경향이 있다. 하한은 특별히 한정되지 않지만, 30dPa·s 이상이 바람직하고, 50dPa·s 이상이 보다 바람직하고, 80dPa·s 이상이 더욱 바람직하다.Although the minimum melt viscosity is 300 dPa*s or less, 200 dPa*s or less is preferable. When it exceeds 300 dPa*s, there exists a tendency for the filling to the product at the time of shaping|molding to become defective. Although a minimum is not specifically limited, 30 dPa*s or more is preferable, 50 dPa*s or more is more preferable, 80 dPa*s or more is still more preferable.

지표 점도 800dPa·s로부터 최저 용융 점도를 뺀 값 b(dPa·s)는, 특별히 한정되지 않지만, 500 내지 770dPa·s가 바람직하고, 500 내지 750dPa·s가 보다 바람직하고, 500 내지 720dPa·s가 더욱 바람직하다. 또한, 지표 점도 800dPa·s로부터, 최저 용융 점도를 거쳐 경화 과정에서 다시 800dPa·s에 도달할 때까지의 시간 a(초)는, 특별히 한정되지 않지만, 5 내지 32초가 바람직하고, 10 내지 30초가 보다 바람직하다.The value b (dPa·s) obtained by subtracting the lowest melt viscosity from the index viscosity of 800 dPa·s is not particularly limited, but is preferably 500 to 770 dPa·s, more preferably 500 to 750 dPa·s, and 500 to 720 dPa·s more preferably. In addition, the time a (sec) from the index viscosity of 800 dPa·s to reaching 800 dPa·s again in the curing process through the lowest melt viscosity is not particularly limited, but is preferably 5 to 32 seconds, and 10 to 30 seconds is more preferably.

지표 점도 800dPa·s로부터 최저 용융 점도를 뺀 값 b(dPa·s)와, 지표 점도 800dPa·s로부터 최저 용융 점도를 거쳐 경화 과정에서 다시 800dPa·s에 도달할 때까지의 시간 a(초)의 비 b/a는 20 이상이지만, 22 이상이 바람직하고, 25 이상이 보다 바람직하다. 20 미만이면, 경화될 때까지의 시간이 걸리게 되어, 성형 사이클이 길어져, 하이 사이클을 달성할 수 없게 된다.The value b (dPa·s) obtained by subtracting the lowest melt viscosity from the index viscosity of 800 dPa·s and the time a (seconds) from the index viscosity of 800 dPa·s to the lowest melt viscosity and again reaching 800 dPa·s during the curing process Although ratio b/a is 20 or more, 22 or more are preferable and 25 or more are more preferable. If it is less than 20, it will take time until hardening, and the molding cycle will be long, making it impossible to achieve a high cycle.

여기서, 용융 점도의 측정에 사용하는 측정 장치는, 시료가 충전되는 배럴, 스파이럴 형상의 캐비티를 갖는 금형, 시료를 압입하는 금형으로 이루어진다. 장치 전체를 측정 온도로 가열하고, 배럴에 수지 조성물을 투입하고 일정 시간 경과 후에 플런저를 압입하여 프레스한다. 이 장치에 의해 용융 점도 등을 측정할 수 있다. 당해 측정 장치는, EMMI(Epoxy Molding Materials Institute) 규격 1-66에 준하는 것이다.Here, the measuring apparatus used for the measurement of melt viscosity consists of a barrel in which a sample is filled, the metal mold|die which has a spiral-shaped cavity, and the metal mold|die which press-fits a sample. The entire apparatus is heated to the measurement temperature, the resin composition is put into the barrel, and after a certain period of time has elapsed, a plunger is press-fitted to press. Melt viscosity etc. can be measured with this apparatus. The measuring device conforms to EMMI (Epoxy Molding Materials Institute) standard 1-66.

분자량 분포 Mw/Mn, 최저 용융 점도, 지표 점도 800dPa·s로부터 최저 용융 점도를 뺀 값 b(dPa·s)와, 지표 점도 800dPa·s로부터 최저 용융 점도를 거쳐 경화 과정에서 다시 800dPa·s에 도달할 때까지의 시간 a(초)의 비 b/a는, 경화 성분과 경화제의 혼련 시의 반응을 제어함으로써 조정할 수 있다. 반응의 제어는, 예를 들어 열경화성 수지의 종류와 양, 경화제의 종류와 양, 경화 촉진제의 종류와 양, 반응 온도, 반응 시간, 수지 형상 등을 적절하게 조정함으로써 행할 수 있다.Molecular weight distribution Mw/Mn, lowest melt viscosity, index viscosity 800 dPa s minus minimum melt viscosity b (dPa s), and index viscosity 800 dPa s through minimum melt viscosity to reach 800 dPa s again during curing The ratio b/a of the time a (seconds) until it can be adjusted by controlling the reaction at the time of kneading|mixing a hardening component and a hardening|curing agent. The reaction can be controlled, for example, by appropriately adjusting the type and amount of the thermosetting resin, the type and amount of the curing agent, the type and amount of the curing accelerator, the reaction temperature, the reaction time, the shape of the resin, and the like.

본 발명의 광 반도체 밀봉용 수지 성형물은, 열경화성 수지, 경화제, 경화 촉진제 이외에, 열경화성 수지와 경화제의 반응물을 함유하는 것이 바람직하다. 또한, 실리카 분말 등의 충전제는 광의 투과를 손상시키지 않는 정도이면 배합할 수 있다.It is preferable that the resin molding for optical semiconductor sealing of this invention contains the reaction material of a thermosetting resin and a hardening|curing agent other than a thermosetting resin, a hardening|curing agent, and a hardening accelerator. In addition, fillers, such as a silica powder, can be mix|blended as long as it is a grade which does not impair transmission of light.

열경화성 수지로서는, 에폭시 수지, 실리콘 수지, 에폭시 수지/실리콘 수지의 하이브리드 수지 등을 들 수 있다. 그 중에서도 에폭시 수지가 바람직하다.As a thermosetting resin, an epoxy resin, a silicone resin, hybrid resin of an epoxy resin/silicone resin, etc. are mentioned. Especially, an epoxy resin is preferable.

에폭시 수지로서는, 착색이 적은 것이 바람직하고, 예를 들어 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 페놀노볼락형 에폭시 수지, 지환식 에폭시 수지, 트리글리시딜이소시아네이트, 히단토인에폭시 등의 복소환 함유 에폭시 수지, 수소 첨가 비스페놀 A형 에폭시 수지, 지방족계 에폭시 수지, 글리시딜에테르형 에폭시 수지 등을 들 수 있다. 이들은, 단독으로 혹은 2종 이상을 함께 사용할 수 있다.As an epoxy resin, a thing with little coloring is preferable, For example, heterocyclic rings, such as a bisphenol A epoxy resin, a bisphenol F type epoxy resin, a phenol novolak-type epoxy resin, an alicyclic epoxy resin, triglycidyl isocyanate, hydantoin epoxy. Containing epoxy resin, hydrogenated bisphenol A epoxy resin, aliphatic epoxy resin, glycidyl ether type epoxy resin, etc. are mentioned. These can be used individually or in combination of 2 or more types.

경화제로서는, 경화 시 또는 경화 후에 수지 조성물의 경화체에 착색이 적은 산무수물이 적합하다. 예를 들어, 무수프탈산, 무수말레산, 무수트리멜리트산, 무수피로멜리트산, 헥사히드로무수프탈산, 테트라히드로무수프탈산, 무수메틸나드산, 무수나드산, 무수글루타르산 등을 들 수 있다. 또한, 다른 경화제로서는, 아민계 경화제인 메타페닐렌디아민, 디메틸디페닐메탄, 디아미노디페닐술폰, m-크실렌디아민, 테트라에틸렌펜타민, 디에틸아민, 프로필아민 등이나, 페놀 수지계 경화제 등을 들 수 있다. 이들도, 단독으로 사용해도 되고 2종 이상을 병용해도 된다.As the curing agent, an acid anhydride having little coloration in the cured resin composition at the time of curing or after curing is suitable. For example, phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, glutaric anhydride, etc. are mentioned. In addition, as other curing agents, metaphenylenediamine, dimethyldiphenylmethane, diaminodiphenylsulfone, m-xylenediamine, tetraethylenepentamine, diethylamine, propylamine, etc., which are amine curing agents, and phenol resin curing agents, etc. can be heard These may also be used independently and may use 2 or more types together.

경화제의 배합량은, 특별히 한정되지 않지만, 에폭시 수지 100질량부에 대해 20 내지 80질량부가 바람직하고, 40 내지 60질량부가 보다 바람직하다. 20질량부 미만이면 경화의 속도가 느려지고, 80질량부를 초과하면 경화 반응에 대해 과잉량이 존재하기 때문에, 여러 물성의 저하를 야기할 우려가 있다.Although the compounding quantity of a hardening|curing agent is not specifically limited, 20-80 mass parts is preferable with respect to 100 mass parts of epoxy resins, and 40-60 mass parts is more preferable. When it is less than 20 parts by mass, the rate of curing becomes slow, and when it exceeds 80 parts by mass, there is an excess amount for the curing reaction, so there is a risk of causing deterioration of various physical properties.

경화 촉진제로서는, 트리에탄올아민 등의 3급 아민이나, 2-메틸이미다졸 등의 이미다졸류, 테트라페닐포스포늄·테트라페닐보레이트나, 트리페닐포스핀 등의 유기 인 화합물, 1,8-디아자비시클로〔5, 4, 0〕운데센-7이나 1,5-디아자비시클로〔4, 3, 0〕노넨-5 등의 디아자비시클로알켄계 화합물 등을 들 수 있다. 이들도, 단독으로 사용해도 되고 2종 이상을 병용해도 된다.Examples of the curing accelerator include tertiary amines such as triethanolamine, imidazoles such as 2-methylimidazole, tetraphenylphosphonium/tetraphenylborate, organophosphorus compounds such as triphenylphosphine, 1,8-dia and diazabicycloalkene-based compounds such as zabicyclo[5,4,0]undecene-7 and 1,5-diazabicyclo[4,3,0]nonene-5. These may also be used independently and may use 2 or more types together.

경화 촉진제의 배합량은, 특별히 한정되지 않지만, 에폭시 수지 100질량부에 대해 예를 들어 0.1 내지 5질량부의 범위로부터 적절하게 선택할 수 있으며, 0.5 내지 3질량부가 바람직하고, 1 내지 2질량부가 보다 바람직하다. 경화 촉진제의 배합량이 지나치게 적으면, 경화의 속도가 느려져 생산성이 저하되고, 한편 경화 촉진제의 배합량이 지나치게 많으면 경화 반응의 속도가 빨라 반응 상태의 제어가 곤란해져, 반응의 변동을 발생시킬 우려가 있다Although the compounding quantity of a hardening accelerator is not specifically limited, For example, it can select suitably from the range of 0.1-5 mass parts with respect to 100 mass parts of epoxy resins, 0.5-3 mass parts is preferable, and 1-2 mass parts is more preferable. . If the blending amount of the curing accelerator is too small, the curing rate becomes slow and productivity is lowered. On the other hand, if the blending amount of the curing accelerator is too large, the curing reaction speed is high, making it difficult to control the reaction state, and there is a possibility that the reaction may fluctuate.

본 발명의 광 반도체 밀봉용 수지 조성물에는, 상기 각 성분 이외에 필요에 따라서 착색 방지제, 활택제, 변성제, 열화 방지제, 이형제 등의 첨가제가 사용된다.Additives, such as a coloring inhibitor, a lubricant, a modifier, a deterioration inhibitor, and a mold release agent, are used for the resin composition for optical semiconductor sealing of this invention as needed other than each said component.

착색 방지제로서는, 페놀계 화합물, 아민계 화합물, 유기 황계 화합물, 포스핀계 화합물 등을 들 수 있다.As a coloring inhibitor, a phenol type compound, an amine type compound, an organic sulfur type compound, a phosphine type compound, etc. are mentioned.

활택제로서는, 스테아르산, 스테아르산마그네슘, 스테아르산칼슘 등의 왁스나 탈크 등을 들 수 있다. 또한, 상기 활택제를 배합하는 경우, 그 배합량은, 타정 성형 조건에 따라서 적절하게 설정되지만, 예를 들어 수지 조성물 전체의 0.1 내지 0.4질량%로 설정하는 것이 적합하다.Examples of the lubricant include waxes and talc such as stearic acid, magnesium stearate, and calcium stearate. In addition, when mix|blending the said lubricating agent, although the compounding quantity is set suitably according to tableting molding conditions, it is suitable to set to 0.1-0.4 mass % of the whole resin composition, for example.

본 발명의 광 반도체 밀봉용 수지 성형물의 제조 방법은, 열경화성 수지, 경화제 및 경화 촉진을 혼련하여, 경화성 수지 조성물을 얻는 공정과,The manufacturing method of the resin molding for optical semiconductor encapsulation of this invention knead|mixes a thermosetting resin, a hardening|curing agent, and hardening acceleration|stimulation, The process of obtaining a curable resin composition;

당해 경화성 수지 조성물을 열처리하는 공정과,a step of heat-treating the curable resin composition;

당해 경화성 수지 조성물을 조립하여, 입상 경화성 수지 조성물을 얻는 공정과,A step of granulating the curable resin composition to obtain a granular curable resin composition;

당해 입상 경화성 수지 조성물을 성형하는 공정The process of shape|molding the said granular curable resin composition

을 포함하는 것을 특징으로 한다.It is characterized in that it includes.

혼련하는 방법은 특별히 한정되지 않지만, 예를 들어 압출기를 사용하는 방법 등을 들 수 있다. 혼련 온도도 특별히 한정되지 않고, 열경화성 수지의 특성에 따라 적절하게 변경할 수 있고, 혼련 시에 반응을 진행시키도록 온도를 높게 설정하는 것도 가능하다. 구체적으로는, 80 내지 150℃가 바람직하고, 110 내지 130℃가 보다 바람직하다.Although the method of kneading is not specifically limited, For example, the method of using an extruder, etc. are mentioned. The kneading temperature is not particularly limited, either, it can be appropriately changed according to the characteristics of the thermosetting resin, and it is also possible to set the temperature high so as to advance the reaction at the time of kneading. Specifically, 80-150 degreeC is preferable and 110-130 degreeC is more preferable.

혼련하여 얻어진 경화성 수지 조성물의 형상은 특별히 한정되지 않고, 필름상, 시트상, 입상, 괴상 등을 들 수 있다.The shape of the curable resin composition obtained by kneading|mixing is not specifically limited, A film form, a sheet form, a granular form, a block form, etc. are mentioned.

혼련하여 얻어진 경화성 수지 조성물의 두께는 특별히 한정되지 않지만, 1 내지 30㎜가 바람직하고, 2 내지 20㎜가 보다 바람직하고, 2 내지 10㎜가 더욱 바람직하다. 1㎜ 미만이면 두께가 얇아 흡습의 영향을 받기 쉽고, 30㎜를 초과하면 냉각까지 시간을 요하여, 내부 축열로부터 반응이 변동되는 경향이 있다.Although the thickness of curable resin composition obtained by kneading is not specifically limited, 1-30 mm is preferable, 2-20 mm is more preferable, 2-10 mm is still more preferable. If it is less than 1 mm, the thickness is thin and easily affected by moisture absorption. If it exceeds 30 mm, it takes time to cool, and the reaction tends to fluctuate from internal heat storage.

혼련하여 얻어진 경화성 수지 조성물은, 열처리하여 B 스테이지상(반경화상)의 광 반도체 밀봉용 수지 조성물을 얻는다. 열처리 온도는 특별히 한정되지 않지만, 25 내지 100℃가 바람직하고, 60 내지 80℃가 보다 바람직하다. 25℃ 미만이면, 경화 반응이 느려 생산성이 저하되는 경향이 있고, 100℃를 초과하면, 경화 반응이 빨라 소정의 반응 상태에서 종료시키는 것이 곤란해지는 경향이 있다. 열처리 시간은 특별히 한정되지 않고, 열경화성 수지의 특성에 따라 적절하게 변경할 수 있다.The curable resin composition obtained by kneading|mixing is heat-processed, and the resin composition for optical-semiconductor sealing of B-stage shape (semi-hardened image) is obtained. Although the heat processing temperature is not specifically limited, 25-100 degreeC is preferable and 60-80 degreeC is more preferable. If it is less than 25 degreeC, the hardening reaction tends to be slow and productivity falls, and if it exceeds 100 degreeC, the hardening reaction tends to be quick and it tends to become difficult to complete|finish in a predetermined reaction state. The heat treatment time is not particularly limited, and can be appropriately changed according to the properties of the thermosetting resin.

열처리한 수지 조성물은, 조립하여, 입상 수지 조성물을 얻는다. 조립 전에, 볼 밀, 터보 밀 등을 사용하여 분쇄할 수도 있다. 조립 방법은 특별히 한정되지 않지만, 건식 압축 조립기를 사용하는 방법 등을 들 수 있다. 조립하여 얻어진 입상물의 평균 입경은 특별히 한정되지 않지만, 1 내지 5000㎛가 바람직하고, 100 내지 2000㎛가 보다 바람직하다. 5000㎛를 초과하면, 압축률이 저하되는 경향이 있다.The heat-treated resin composition is granulated to obtain a granular resin composition. Prior to granulation, it may be pulverized using a ball mill, turbo mill, or the like. Although the granulation method is not specifically limited, The method of using a dry compression granulator, etc. are mentioned. Although the average particle diameter of the granular material obtained by granulation is not specifically limited, 1-5000 micrometers is preferable, and 100-2000 micrometers is more preferable. When it exceeds 5000 micrometers, there exists a tendency for a compression rate to fall.

얻어진 입상 수지 조성물은, 성형하여 성형물을 얻는다. 성형물로서는 태블릿이나 시트를 들 수 있고, 성형 방법으로서는 태블릿을 얻는 타정 성형이나, 시트를 얻는 압출 성형 등을 들 수 있다. 얻어진 성형물은, 치핑이나 균열, 중량 변동뿐만 아니라, 전술한 바와 같이 분자량 분포 Mw/Mn, 최저 용융 점도가 작고, 지표 점도 800dPa·s로부터 최저 용융 점도를 뺀 값 b(dPa·s)와, 지표 점도 800dPa·s로부터 최저 용융 점도를 거쳐 경화 과정에서 다시 800dPa·s에 도달할 때까지의 시간 a(초)의 비 b/a가 20 이상으로 크기 때문에, 안정적으로 트랜스퍼 성형 가능한 고품질의 성형물이 된다.The obtained granular resin composition is shape|molded, and a molded object is obtained. A tablet and a sheet|seat are mentioned as a molded object, and tablet molding which obtains a tablet, extrusion molding, etc. which obtain a sheet are mentioned as a shaping|molding method. The obtained molded product has not only chipping, cracking, and weight fluctuations, but also has a small molecular weight distribution Mw/Mn and minimum melt viscosity as described above, and a value b (dPa·s) obtained by subtracting the minimum melt viscosity from the index viscosity 800 dPa·s; Since the ratio b/a of the time a (seconds) from the viscosity of 800 dPa·s to reaching the lowest melt viscosity of 800 dPa·s in the curing process is 20 or more, it is a high-quality molding that can be transferred stably .

성형물이 태블릿인 경우, 태블릿을 타정 성형할 때의 조건은, 입상 경화성 수지 조성물의 조성이나 평균 입경, 입도 분포 등에 따라서 적절하게 조정되지만, 일반적으로 그 타정 성형 시의 압축률은, 90 내지 96%로 설정하는 것이 적합하다. 즉, 압축률의 값이 90%보다 작으면, 태블릿의 밀도가 낮아져 균열되기 쉬워질 우려가 있고, 반대로, 압축률의 값이 96%보다 크면, 타정 시에 크랙이 발생하여 이형 시에 치핑이나 꺾임이 발생할 우려가 있기 때문이다.When the molded product is a tablet, the conditions for tableting the tablet are appropriately adjusted according to the composition of the granular curable resin composition, average particle size, particle size distribution, etc., but generally the compression ratio at the time of tablet molding is 90 to 96%. It is appropriate to set That is, when the value of the compressibility is less than 90%, the density of the tablet is low and there is a risk of cracking easily. Conversely, when the value of the compressibility is larger than 96%, cracks occur during tableting, and chipping or bending during release is caused. because there is a risk of it happening.

상기 성형물은, 트랜스퍼 몰드 성형에 의해 광 반도체 소자를 밀봉하여, 광 반도체 장치를 제작한다. 성형물에 포함되는 수지의 분자량 분포가 좁아, 광 반도체 생산 시에 최저 용융 점도의 도달 후, 경화될 때까지의 시간이 짧기 때문에, 광학 불균일 등이 없고, 신뢰성이 높은, 고품질의 광 반도체 소자가 된다. 따라서, 이 광 반도체 장치를 작동시켜 화상을 얻은 경우에는, 광학 불균일에 의한 줄무늬 모양이 발생하는 일이 없어, 선명한 화상이 얻어진다고 하는 이점을 갖는다.The said molding seals an optical-semiconductor element by transfer mold molding, and produces an optical-semiconductor device. Since the molecular weight distribution of the resin contained in the molding is narrow, and the time from reaching the lowest melt viscosity to curing is short during optical semiconductor production, there is no optical irregularity, etc., and it becomes a reliable, high-quality optical semiconductor device. . Therefore, when an image is obtained by operating this optical semiconductor device, there is an advantage that a clear image is obtained without the occurrence of stripes due to optical non-uniformity.

또한, 본 발명의 광 반도체 밀봉용 수지 성형물은, 수광 소자 등의 광 반도체 소자의 수지 밀봉에 사용되기 때문에, 광학적 관점에서 투명한 것이 바람직하다. 이 경우의 「투명」이란, 상기 태블릿을 구성하는 경화성 수지 조성물의 경화물이 400㎚에 있어서의 투과율이 98% 이상인 것을 말한다.Moreover, since the resin molding for optical semiconductor sealing of this invention is used for resin sealing of optical semiconductor elements, such as a light receiving element, it is preferable from an optical viewpoint that it is transparent. "Transparency" in this case means that the transmittance|permeability in 400 nm of the hardened|cured material of curable resin composition which comprises the said tablet is 98 % or more.

[실시예][Example]

다음으로, 실시예에 대해 비교예와 함께 설명한다. 단, 본 발명은, 이하의 실시예에 한정되는 것은 아니다.Next, an Example is demonstrated together with a comparative example. However, the present invention is not limited to the following examples.

사용한 재료를 이하에 나타낸다.The materials used are shown below.

에폭시 수지 1: 비스페놀형 에폭시 수지 A(에폭시 당량 650)Epoxy resin 1: Bisphenol type epoxy resin A (epoxy equivalent 650)

에폭시 수지 2: 트리글리시딜이소시아누레이트(에폭시 당량 100)Epoxy resin 2: triglycidyl isocyanurate (epoxy equivalent 100)

경화제: 테트라히드로무수프탈산(산무수 당량 152)Hardener: tetrahydrophthalic anhydride (acid anhydride equivalent 152)

경화 촉진제: 2-에틸-4-메틸이미다졸Curing accelerator: 2-ethyl-4-methylimidazole

실시예 1 내지 3 및 비교예 1Examples 1 to 3 and Comparative Example 1

각 원료를 표 1에 나타내는 배합량으로, 표 1에 기재한 온도로 설정한 압출기로 가열 용해하여 혼합한 후, 압출기의 토출구로부터 나온 수지를 2 내지 10㎜ 두께로 성형하고, 60℃에서 60분간 열처리하였다. 압출기 중에서의 체류 시간은 약 2분이었다. 얻어진 에폭시 수지 조성물을, 롤 그래뉼레이터(니혼 그래뉼레이터 가부시키가이샤 제조, 테스트기: 1531형)로, 조립과 정립을 행함으로써, 광 반도체 밀봉용 에폭시 수지 조성물을 얻었다. 얻어진 광 반도체 밀봉용 수지 조성물을, 20호 로터리 타정기를 사용하여 타정 성형함으로써, 표 1에 나타내는 광 반도체 밀봉용 수지 태블릿을 제작하였다. 압축률은, 90 내지 93%였다.Each raw material is mixed with the mixing amount shown in Table 1 by heating with an extruder set at the temperature shown in Table 1, and then the resin coming out of the outlet of the extruder is molded to a thickness of 2 to 10 mm, and heat treated at 60° C. for 60 minutes. did. The residence time in the extruder was about 2 minutes. The epoxy resin composition for optical-semiconductor sealing was obtained by granulating and sizing the obtained epoxy resin composition with a roll granulator (The Nippon Granulator Co., Ltd. make, a tester: 1531 type). The resin tablet for optical semiconductor sealing shown in Table 1 was produced by tablet-molding the obtained resin composition for optical semiconductor sealing using the No. 20 rotary tableting machine. The compression ratio was 90 to 93%.

각 실시예에서 제작한 태블릿을 사용하여, 분자량과 점도 특성을, 이하에 나타내는 방법으로 평가하였다. 평가 결과를 표 1에 나타낸다.Using the tablet produced in each Example, molecular weight and viscosity characteristics were evaluated by the method shown below. An evaluation result is shown in Table 1.

<분자량><Molecular Weight>

얻어진 태블릿의 일부를 테트라히드로푸란에 용해시켜, GPC 장치(도소 가부시키가이샤 제조, HLC-8320GPC)를 사용하여 이하의 조건에서 측정하고, 폴리스티렌 환산에 의해 수 평균 분자량 Mn, 중량 평균 분자량 Mw 구하였다.A part of the obtained tablet was dissolved in tetrahydrofuran, and measured under the following conditions using a GPC apparatus (manufactured by Tosoh Corporation, HLC-8320GPC) to determine the number average molecular weight Mn and the weight average molecular weight Mw in terms of polystyrene. .

칼럼: TSKgel Super HZMH/HZ4000/HZ3000/HZ2000Column: TSKgel Super HZMH/HZ4000/HZ3000/HZ2000

칼럼 사이즈: 6.0㎜ I.D.×150㎜Column size: 6.0 mm I.D. x 150 mm

용리액: THFEluent: THF

유량: 0.6mL/minFlow rate: 0.6 mL/min

검출기: RIDetector: RI

칼럼 온도: 40℃Column temperature: 40°C

주입량: 20μLInjection volume: 20 μL

<점도 특성><Viscosity Characteristics>

EMMI(Epoxy Molding Materials Institute) 규격 1-66에 준하여, 금형 온도 150℃, 성형 압력 970㎏f/㎠, 경화 시간 120s, 사출 속도 2.0㎝/s의 조건에서 측정하였다. 구체적으로는, 유동성 측정 장치를 사용하여, 얻어진 태블릿을 조분쇄하여 개구 직경 5㎜의 체를 통과한 파우더를, 150℃로 유지한 포트에 투입하고, 플런저를 일정 속도로 압입하여 프레스하였다. 측정한 토크로부터 산출한 용융 점도를 시간에 대해 플롯하여, 지표 점도 800dPa·s로부터 최저 용융 점도를 뺀 값 b와, 지표 점도 800dPa·s로부터 최저 용융 점도를 거쳐 경화 과정에서 다시 800dPa·s에 도달할 때까지의 시간 a(초)를 구하였다.In accordance with EMMI (Epoxy Molding Materials Institute) standard 1-66, it was measured under the conditions of a mold temperature of 150° C., a molding pressure of 970 kgf/cm 2 , a curing time of 120 s, and an injection speed of 2.0 cm/s. Specifically, using a fluidity measuring device, the obtained tablet was coarsely pulverized and powder passed through a sieve having an opening diameter of 5 mm was put into a pot maintained at 150°C, and the plunger was press-fitted at a constant speed to press. The melt viscosity calculated from the measured torque is plotted against time, and the value b obtained by subtracting the lowest melt viscosity from the index viscosity of 800 dPa·s, and the index viscosity of 800 dPa·s through the lowest melt viscosity to reach 800 dPa·s again in the curing process The time a (seconds) until

Figure pat00001
Figure pat00001

표 1에 나타내는 실험 결과로부터, 실시예 1 내지 3의 성형체에서는, 수지의 분자량 분포 Mw/Mn이 작고, 최저 용융 점도가 300dPa·s 이하이고, 지표 점도 800dPa·s로부터 최저 용융 점도를 뺀 값 b와, 지표 점도 800dPa·s로부터 최저 용융 점도를 거쳐 경화 과정에서 다시 800dPa·s에 도달할 때까지의 시간 a(초)의 비 b/a가 20 이상인 태블릿이 얻어졌다. 따라서, 광 반도체 생산에 있어서의 생산 마진이 넓어, 안정적으로 트랜스퍼 성형이 가능하다.From the experimental results shown in Table 1, in the molded articles of Examples 1 to 3, the molecular weight distribution Mw/Mn of the resin is small, the minimum melt viscosity is 300 dPa·s or less, and the index viscosity is 800 dPa·s minus the minimum melt viscosity b A tablet having a ratio b/a of 20 or more of the time a (sec) from the index viscosity of 800 dPa·s to reaching 800 dPa·s again in the curing process through the lowest melt viscosity was obtained. Therefore, the production margin in optical semiconductor production is wide, and transfer molding is stably possible.

한편, 비교예 1에서는, 수지의 분자량 분포 Mw/Mn이 2.9나 되고, b/a가 18.8로 작은 태블릿밖에 얻어지지 않았다. 따라서, 광 반도체 생산에 있어서의 생산 마진이 좁아, 안정적으로 트랜스퍼 성형하는 것이 어렵다.On the other hand, in Comparative Example 1, only a tablet having a molecular weight distribution Mw/Mn of the resin of 2.9 and a small b/a of 18.8 was obtained. Therefore, the production margin in optical semiconductor production is narrow, and it is difficult to carry out transfer molding stably.

본 발명은, 광 반도체 소자의 밀봉에 사용되는 광 반도체 밀봉용 수지 성형물과, 그 제조 방법에 관한 것이며, 광 반도체 장치의 제조에 이용할 수 있다.TECHNICAL FIELD This invention relates to the resin molded object for optical semiconductor sealing used for sealing of an optical semiconductor element, and its manufacturing method, It can be used for manufacture of an optical semiconductor device.

Claims (7)

중량 평균 분자량 Mw와 수 평균 분자량 Mn의 비인 분자량 분포 Mw/Mn이 2.7 이하인 수지를 포함하는, 광 반도체 밀봉용 수지 성형물.The resin molding for optical semiconductor sealing in which molecular weight distribution Mw/Mn which is ratio of weight average molecular weight Mw and number average molecular weight Mn contains resin whose molecular weight distribution Mw/Mn is 2.7 or less. 제1항에 있어서,
상기 수지의 중량 평균 분자량 Mw가 3000 내지 7000이고, 수 평균 분자량 Mn이 1500 내지 2600인, 광 반도체 밀봉용 수지 성형물.
According to claim 1,
The resin molding for optical semiconductor sealing whose weight average molecular weights Mw of the said resin are 3000-7000, and number average molecular weights Mn are 1500-2600.
EMMI(Epoxy Molding Materials Institute) 규격 1-66에 준하여, 금형 온도 150℃, 성형 압력 970㎏f/㎠, 경화 시간 120s, 사출 속도 2.0㎝/s의 조건에서 측정한 최저 용융 점도가 300dPa·s 이하이고,
지표 점도 800dPa·s로부터 최저 용융 점도를 뺀 값 b(dPa·s)와, 지표 점도 800dPa·s로부터 최저 용융 점도를 거쳐 경화 과정에서 다시 800dPa·s에 도달할 때까지의 시간 a(초)의 비 b/a가 20 이상인, 광 반도체 밀봉용 수지 성형물.
In accordance with EMMI (Epoxy Molding Materials Institute) standard 1-66, the lowest melt viscosity measured under the conditions of a mold temperature of 150°C, a molding pressure of 970kgf/cm2, a curing time of 120s, and an injection speed of 2.0cm/s, is 300dPa·s or less ego,
The value b (dPa·s) obtained by subtracting the lowest melt viscosity from the index viscosity of 800 dPa·s and the time a (seconds) from the index viscosity of 800 dPa·s to the lowest melt viscosity and again reaching 800 dPa·s during the curing process The resin molding for optical semiconductor sealing whose ratio b/a is 20 or more.
제1항 내지 제3항 중 어느 한 항에 있어서,
열경화성 수지와 경화제의 반응물, 및 경화 촉진제를 포함하는, 광 반도체 밀봉용 수지 성형물.
4. The method according to any one of claims 1 to 3,
A resin molding for optical semiconductor encapsulation comprising a reaction product of a thermosetting resin and a curing agent, and a curing accelerator.
제1항 내지 제4항 중 어느 한 항에 기재된 광 반도체 밀봉용 수지 성형물을 성형하여 얻어지는, 광 반도체 밀봉재.The optical-semiconductor sealing material obtained by shape|molding the resin molding for optical-semiconductor sealing in any one of Claims 1-4. 광 반도체 소자와, 당해 광 반도체 소자를 밀봉하는 제5항에 기재된 광 반도체 밀봉재를 구비하는, 광 반도체 장치.An optical-semiconductor device provided with the optical-semiconductor element and the optical-semiconductor sealing material of Claim 5 which seals the said optical-semiconductor element. 열경화성 수지, 경화제 및 경화 촉진을 혼련하여, 경화성 수지 조성물을 얻는 공정과,
당해 경화성 수지 조성물을 열처리하는 공정과,
당해 경화성 수지 조성물을 조립하여, 입상 경화성 수지 조성물을 얻는 공정과,
당해 입상 경화성 수지 조성물을 성형하는 공정
을 포함하는 것을 특징으로 하는, 제1항 내지 제4항 중 어느 한 항에 기재된 광 반도체 밀봉용 수지 성형물의 제조 방법.
A step of kneading a thermosetting resin, a curing agent, and a curing accelerator to obtain a curable resin composition;
a step of heat-treating the curable resin composition;
A step of granulating the curable resin composition to obtain a granular curable resin composition;
The process of shape|molding the said granular curable resin composition
The manufacturing method of the resin molding for optical semiconductor sealing in any one of Claims 1-4 characterized by including it.
KR1020210007851A 2020-03-30 2021-01-20 Resin molded article for optical semiconductor encapsulation and manufacturing method thereof KR20210122055A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020060951A JP7465703B2 (en) 2020-03-30 2020-03-30 Resin molding for sealing optical semiconductors and method for producing same
JPJP-P-2020-060951 2020-03-30

Publications (1)

Publication Number Publication Date
KR20210122055A true KR20210122055A (en) 2021-10-08

Family

ID=77868510

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210007851A KR20210122055A (en) 2020-03-30 2021-01-20 Resin molded article for optical semiconductor encapsulation and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP7465703B2 (en)
KR (1) KR20210122055A (en)
CN (1) CN113462121A (en)
TW (1) TW202142665A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009394A (en) 2009-06-25 2011-01-13 Nitto Denko Corp Method of manufacturing resin tablet for sealing optical semiconductor, resin tablet for sealing optical semiconductor provided by the same, and optical semiconductor device using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305452B2 (en) 2009-06-12 2013-10-02 信越化学工業株式会社 Resin composition for optical semiconductor element sealing
JP5343939B2 (en) 2010-07-08 2013-11-13 富士電機株式会社 Manufacturing method of semiconductor device
US8957136B2 (en) 2010-08-11 2015-02-17 Showa Denko K.K. Epoxysilicone condensate, curable composition comprising condensate, and cured product thereof
JP2013145839A (en) 2012-01-16 2013-07-25 Nitto Denko Corp Hollow sealing resin sheet, manufacturing method of hollow sealing resin sheet, manufacturing method of hollow type electronic component apparatus, and hollow type electronic component apparatus
JP6125775B2 (en) 2012-08-23 2017-05-10 旭化成株式会社 Liquid sealing epoxy resin composition, cured product and electronic member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009394A (en) 2009-06-25 2011-01-13 Nitto Denko Corp Method of manufacturing resin tablet for sealing optical semiconductor, resin tablet for sealing optical semiconductor provided by the same, and optical semiconductor device using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
일본 특허 공개 평3-3258호 공보

Also Published As

Publication number Publication date
TW202142665A (en) 2021-11-16
JP7465703B2 (en) 2024-04-11
CN113462121A (en) 2021-10-01
JP2021163782A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
JP3037552B2 (en) Semiconductor sealing resin tablet, semiconductor sealing device and method of manufacturing the same
CN105038218A (en) PA66 composite material and preparation method thereof
JPH05156121A (en) Molding material of phenol resin
KR102097798B1 (en) Granule type epoxy resin composition for semiconductor encapsulation and semiconductor device encapsulated by using the same
JPS58198525A (en) Epoxy resin composition
KR20210122055A (en) Resin molded article for optical semiconductor encapsulation and manufacturing method thereof
CN111253743A (en) High flow polyetherimide resins and products thereof
KR19990021907A (en) Halogen Free Flame Retardant Epoxy Resin Molding Material
JP7434025B2 (en) Resin molded product for optical semiconductor encapsulation and its manufacturing method
US5645787A (en) Process for producing semiconductor devices using resin tablets
CN112592460A (en) Resin molded article for sealing optical semiconductor and method for producing same
KR101882564B1 (en) Method for producing epoxy resin, epoxy resin, epoxy resin composition for encapsulating semiconductor device comprising the same and moled article using the same
JPH11111741A (en) Epoxy resin tablet for sealing optical semiconductor and optical semiconductor sealed with same tablet
MXPA04006905A (en) Method for producing and treating epoxide resin moulding materials.
JP2018111750A (en) Thermosetting epoxy resin composition for optical semiconductor element encapsulation and optical semiconductor deice using the same
JP2005179582A (en) Resin composition for optical semiconductor encapsulation, preform for optical semiconductor encapsulation and optical semiconductor device
KR20210109448A (en) Resin molded article for optical semiconductor encapsulation, optical semiconductor encapsulating material, and optical semiconductor device
JP2002201288A (en) Process for preparing semiconductor-sealing epoxy resin composition
JPH08340014A (en) Resin tablet for semiconductor sealing, its manufacture, and semiconductor sealing method
JP2024519118A (en) Manufacturing method of pellet-type polypropylene resin, pellet-type polypropylene resin and molded product containing the same
CN115703920A (en) Resin composition for optical semiconductor encapsulation, resin molded article, optical semiconductor encapsulating material, and optical semiconductor device
KR20220033034A (en) Resin molded product for opto-semiconductor sealing
JP2001189333A (en) Semiconductor device and manufacturing method therefor
KR20210150294A (en) Resin molded article for optical semiconductor encapsulation
CN110938293A (en) High-impact-resistance high-temperature-resistant PC material and product thereof

Legal Events

Date Code Title Description
A201 Request for examination