KR20210077228A - Flooding Prediction System - Google Patents

Flooding Prediction System Download PDF

Info

Publication number
KR20210077228A
KR20210077228A KR1020190168629A KR20190168629A KR20210077228A KR 20210077228 A KR20210077228 A KR 20210077228A KR 1020190168629 A KR1020190168629 A KR 1020190168629A KR 20190168629 A KR20190168629 A KR 20190168629A KR 20210077228 A KR20210077228 A KR 20210077228A
Authority
KR
South Korea
Prior art keywords
flooding
model
prediction information
seawater
wave
Prior art date
Application number
KR1020190168629A
Other languages
Korean (ko)
Inventor
엄호식
최흥배
박종집
남수용
Original Assignee
(주)지오시스템리서치
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)지오시스템리서치 filed Critical (주)지오시스템리서치
Priority to KR1020190168629A priority Critical patent/KR20210077228A/en
Publication of KR20210077228A publication Critical patent/KR20210077228A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B31/00Predictive alarm systems characterised by extrapolation or other computation using updated historic data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • General Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Computing Systems (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Alarm Systems (AREA)

Abstract

The present invention relates to a flooding predicting system comprising: a compound disaster setting unit, which loads compound disaster scenario data and space data; a seawater disaster analyzing unit, which calculates a tide and a storm surge height using an ADCIRC model, and calculates a spectrum of a wave height and a wave period using an unSWAN model to generate seawater prediction information converted to a histogram; a land/marine disaster analyzing unit, which calculates flooding levels depending on tide, tidal wave, and wave overtopping using a FLOW3D model to generate marine inundation prediction information, and calculates flooding levels with respect to tide, tidal wave, wave overtopping, and river and inland flooding using an XP-SWMM model to generate land inundation prediction information; and a flooding prediction unit, which collects the seawater prediction information, the marine inundation prediction information, and the land inundation prediction information to generate real-time flooding prediction information of each typhoon intensity or target sea area. According to the present invention as above, a dynamic flooding simulation is performed by calculating information about the storm surge height and wave due to a typhoon through two-way coupling of the ADCIRC model and the UnSWAN model, a seawater level and a wave overtopping rate are calculated by estimating overflow and wave overtopping depending on a structure shape using the FLOW3D model, and a rainfall runoff and inland inundation simulation is performed depending on a water level and a wave overtopping rate using the XP-SWMM model, thereby having an effect that compound flooding occurrence, which caused by the storm surge height and wave overtopping due to storm, and river flooding and inland inundation due to rainfall, may be predicted.

Description

침수 범람 예측 시스템{Flooding Prediction System}Flooding Flooding Prediction System

본 발명은 침수범람 예측 시스템에 관한 것으로 더욱 상세하게는, 해역에서의 발생한 폭풍해일, 월파 침수와 육역에서의 발생한 강우 및 하천범람에 의해 발생하는 내수 침수가 복합적(동시다발)으로 발생하였을 경우 침수범람 발생을 예측하는 기술에 관한 것이다.The present invention relates to a flooding flood prediction system, and more particularly, in the case of a complex (simultaneous) inundation of inland water caused by storm surge and over-wave inundation in the sea area and rainfall and river overflow in the land area. It relates to techniques for predicting the occurrence of flooding.

기후변화, 이상기후라는 단어가 어색하지 않을 만큼 세계 곳곳에서 예측할 수 없는 현상이 출현하고 있다. 남아시아 지역의 폭우, 미국 동부지역의 폭염, 폭풍 및 홍수와 더불어 작년 우리나라에 발생한 8월 집중호우를 대표적인 예로 들 수 있다. 이와 같은 기상현상은 20세기와는 상당한 차이가 있으며 특히, 과거에는 관측된 적이 없고 일반적으로 일정한 주기나 패턴에 따라 발생하지 않아 이에 대한 예측과 적절한 대응방안 미흡으로 큰 피해를 유발하는 주요 원인이 되고 있다. Unpredictable phenomena are emerging all over the world to the extent that the words climate change and abnormal climate are not awkward. In addition to heavy rains in South Asia and heat waves, storms and floods in the eastern United States, the torrential rains that occurred in Korea in August last year are representative examples. Such a meteorological phenomenon is quite different from that of the 20th century, and in particular, it has not been observed in the past and generally does not occur according to a certain period or pattern. have.

최근에는 지구온난화와 급격한 도시화 및 산업화에 따라 해수면 상승, 태풍 또는 집중강우 등 두 가지 이상의 복합적인 원인으로 해안가에서 발생하는 재난을 해안가 복합재난이 빈번하게 발생하고 있다.Recently, along with global warming and rapid urbanization and industrialization, disasters occurring on the coast due to two or more complex causes, such as sea level rise, typhoons, or concentrated rainfall, frequently occur.

IPCC AR5에 따르면 해수면은 2100년까지 40cm 내지 63cm 상승할 것으로 연구되었고, 특히 백중사리에 의한 해안가 저지대 상습침수피해가 발생(밀물 최대)할 것으로 예측하고 있다.According to IPCC AR5, it has been studied that the sea level will rise by 40cm to 63cm by 2100, and it is predicted that habitual inundation damage caused by Baekjungsaari in low-lying areas along the coast will occur (maximum of high tide).

또한, 기후 온난화로 인해 태풍강도가 증가되는 추세로 슈퍼태풍의 한반도 내습 빈도가 증가하고 있으며, 이로 인해 해일고 및 파랑이 증가하며 복합재난 발생 가능성 역시 증가하고 있다. 또한, 강우패턴 역시 집중호우 및 극한강우 발생 가능성이 증가하고 있으며, 한반도 강우량은 단기적으로는 3% 장기적으로는 10% 증가할 것으로 예측되고 있다. In addition, as the intensity of typhoons increases due to climate warming, the frequency of super typhoons invading the Korean Peninsula is increasing. As a result, the tsunami and waves increase, and the possibility of complex disasters is also increasing. In addition, the rainfall pattern also increases the likelihood of localized and extreme rainfall, and the rainfall on the Korean Peninsula is expected to increase by 3% in the short term and 10% in the long term.

그러나, 각 부처별 개별법에 근거한 시설별 관리주체가 분산되어 단일 원인이 아닌 복합재난에 대한 체계적인 관리가 미흡한 실정으로, 태풍, 집중호우 및 극한강우에 의한 해일고 및 파랑이 동반되는 복합재난 발생을 예측하여 대비토록 하는 기술이 요구되고 있다.However, the systematic management of complex disasters rather than a single cause is insufficient due to the fact that the management subject for each facility is dispersed based on the individual laws of each department, and the occurrence of complex disasters accompanied by tidal waves and waves due to typhoons, concentrated heavy rains and extreme rainfall is predicted. There is a need for technology to prepare for this.

이에 본 출원인은 해역에서의 발생한 폭풍해일, 월파 침수와 육역에서의 발생한 강우 및 하천범람에 의해 발생하는 내수 침수가 복합적(동시다발)으로 발생하였을 경우 침수범람 발생을 예측하는 시스템을 제안하고자 한다.Accordingly, the present applicant intends to propose a system for predicting the occurrence of flooding in case of a complex (simultaneous) inundation caused by storm surge and overwater inundation in the sea area and inland water inundation caused by rainfall and river overflow in the land area.

한국공개특허 제10-2012-0000716호(2012.01.04)Korea Patent Publication No. 10-2012-0000716 (2012.01.04)

본 발명의 목적은, 폭풍해일(ADCIRC: ADvanced CIRCulation) 모형 및 파랑(UnSWAN: Un Simulation WAves Nearshore) 모형의 2way coupling을 통해 태풍에 의한 해일고 및 파랑정보를 산출하여 동적침수범람모의(FLOW3D)를 수행하고, FLOW3D 모델을 통해 구조물 형상에 따른 월류 및 월파를 산정을 통해 해수위 및 월파량을 산출하며, XP-SWMM(Stormwater&Wastewater Managemement Model)을 통해 수위 및 월파량에 따른 강우유출 및 내수침수모의를 수행함으로써, 폭풍에 의한 해일고 및 월파, 강우에 의한 하천범람 및 내수침수에 의한 복합적인 침수범람 발생을 예측하는데 있다.The purpose of the present invention is to calculate the tsunami height and wave information caused by a typhoon through 2-way coupling of a storm surge (ADCIRC: ADvanced CIRCulation) model and a wave (UnSWAN: Un Simulation WAves Nearshore) model to perform dynamic flooding simulation (FLOW3D). It calculates the sea level and the amount of overburden by calculating the overflow and overflow according to the shape of the structure through the FLOW3D model. By doing so, it is intended to predict the occurrence of combined flooding due to surge and overburst due to storms, river overflow due to rainfall, and inland water inundation.

이러한 기술적 과제를 달성하기 위한 본 발명의 침수범람 예측 시스템은, 복합재난 시나리오 데이터 및 공간 데이터를 로딩하는 복합재난 설정부; ADCIRC모델을 통해 조석 및 푹풍해일고를 산출하고, unSWAN 모델을 통해 파고 및 파랑 주기에 대한 스펙트럼을 산출하여 히스토그램으로 변환한 해수 예측정보를 생성하는 해수재난 분석부; FLOW3D 모델을 통해 조석, 해일 및 월파에 따른 침수범람 정도를 산출하여 해상침수 예측정보를 생성하고, XP-SWMM 모델을 통해 조석, 해일, 월파, 외수 및 내수에 대한 침수범람 정도를 산출하여 육상침수 예측정보를 생성하는 육해상재난 분석부; 및 해수 예측정보, 해상침수 예측정보 및 육상침수 예측정보를 취합하여 태풍강도 또는 대상해역별로 실시간 침수범람 예측정보를 생성하는 침수범람 예측부를 포함하는 것을 특징으로 한다.The flooding prediction system of the present invention for achieving this technical problem, a composite disaster setting unit for loading composite disaster scenario data and spatial data; a seawater disaster analysis unit that calculates tidal and storm surge heights through the ADCIRC model, calculates the spectrum for wave heights and wave cycles through the unSWAN model, and generates seawater forecast information converted into a histogram; Through the FLOW3D model, the degree of flooding according to the tide, tsunami, and overburst is calculated to generate forecast information of sea inundation, and through the XP-SWMM model, the degree of flooding for tidal, tsunami, overwater, external and inland water is calculated and inundated on land Land and maritime disaster analysis unit for generating forecast information; and a flooding prediction unit that collects seawater prediction information, marine inundation prediction information, and land inundation prediction information to generate real-time flooding prediction information for each typhoon intensity or target sea area.

바람직하게는, 해수재난 분석부 및 육해상재난 분석부는 2way coupling되도록 구성되어 해수재난 분석부가 FLOW3D 모델을 통해 해상침수 예측정보를 생성하고, 육해상재난 분석부가 ADCIRC모델 및 unSWAN 모델을 통해 해수 예측정보를 생성하는 것을 특징으로 한다.Preferably, the seawater disaster analysis unit and the land and sea disaster analysis unit are configured to be two-way coupling, so that the seawater disaster analysis unit generates marine flood prediction information through the FLOW3D model, and the land and sea disaster analysis unit generates seawater prediction information through the ADCIRC model and the unSWAN model characterized by creating

해수재난 분석부는, 공간 데이터 상에 시나리오 데이터와 부합하는 태풍의 이동에 따라 발생하는 조석을 ADCIRC모델을 통해 수치화된 조석 데이터로 산출하는 조석 산출모듈; 공간 데이터 상에 시나리오 데이터와 부합하는 태풍의 이동에 따라 발생하는 폭풍해일고를 ADCIRC모델을 통해 수치화된 해일고 데이터로 산출하는 해일고 산출모듈; 및 unSWAN 모델을 통해 조석 데이터 및 해일고 데이터에 포함된 값으로부터 파고 및 파랑 주기 각각에 대한 스펙트럼을 히스토그램으로 변환하여 해수 예측정보를 생성하는 스펙트럼 생성모듈을 포함하는 것을 특징으로 한다.The seawater disaster analysis unit includes: a tide calculation module for calculating tides generated according to the movement of a typhoon corresponding to the scenario data on spatial data as quantified tide data through the ADCIRC model; a tidal height calculation module for calculating the storm surge height generated according to the movement of a typhoon corresponding to the scenario data on spatial data as numerical tidal height data through the ADCIRC model; and a spectrum generation module for generating seawater prediction information by converting the spectrum for each wave height and wave period into a histogram from the values included in the tide data and the tidal height data through the unSWAN model.

육해상재난 분석부는, 조석, 해일 및 월파에 따른 침수범람 정도를 FLOW3D 모델을 통해 수치화된 데이터로 산출하여 해상침수 예측정보를 생성하는 침수범람 예측모듈; 및 조석, 해일, 월파, 외수 및 내수에 대한 침수범람 정도를 XP-SWMM 모델을 통해 수치화된 데이터로 산출하여 육상침수 예측정보를 생성하는 육상침수 예측모듈을 포함하는 것을 특징으로 한다.The land and maritime disaster analysis unit includes: a flooding prediction module that calculates the degree of flooding according to tides, tidal waves, and overbursts as digitized data through the FLOW3D model to generate marine flooding prediction information; and a land inundation prediction module for generating land inundation prediction information by calculating the degree of flooding of tides, tidal waves, overwater waves, external and internal waters as numerical data through the XP-SWMM model.

상기와 같은 본 발명에 따르면, ADCIRC 모형 및 UnSWAN 모형의 2way coupling을 통해 태풍에 의한 해일고 및 파랑정보를 산출하여 동적침수범람모의를 수행하고, FLOW3D 모델을 통해 구조물 형상에 따른 월류 및 월파를 산정을 통해 해수위 및 월파량을 산출하며, XP-SWMM 모델을 통해 수위 및 월파량에 따른 강우유출 및 내수침수모의를 수행함으로써, 폭풍에 의한 해일고 및 월파, 강우에 의한 하천범람 및 내수침수에 의한 복합적인 침수범람 발생을 예측이 가능한 효과가 있다.According to the present invention as described above, dynamic flooding simulation is performed by calculating tsunami height and wave information due to typhoon through 2-way coupling of the ADCIRC model and the UnSWAN model, and overflow and overshoot according to the structure shape are calculated through the FLOW3D model. Calculates sea level and overburst through the , and simulates rainfall runoff and inland water inundation according to water level and overburden through the XP-SWMM model. It has the effect of predicting the occurrence of complex flooding.

도 1은 본 발명의 일 실시예에 따른 침수범람 예측 시스템을 도시한 구성도.
도 2는 본 발명의 일 실시예에 따른 침수범람 예측 시스템의 세부구성을 도시한 도면.
도 3은 본 발명의 일 실시예에 따른 침수범람 예측 시스템의 스펙트럼 생성모듈에 의해 생성된 전체 태풍에 대한 해일고에 대한 히스토그램과, 선별된 태풍에 대한 해일고에 대한 히스토그램, 및 선별된 태풍에 대한 이동 경로를 나타낸 도면.
도 4는 본 발명의 침수범람 예측 시스템에 의해 생성된 침수범람 예측정보를 도시한 예시도.
도 5는 본 발명의 일 실시예에 따른 침수범람 예측 방법을 도시한 순서도.
도 6은 본 발명의 일 실시예에 따른 침수범람 예측 방법의 제S504단계의 세부과정을 도시한 순서도.
1 is a block diagram showing a flooding flood prediction system according to an embodiment of the present invention.
2 is a view showing a detailed configuration of a flooding flood prediction system according to an embodiment of the present invention.
3 is a histogram of the tsunami height for all typhoons generated by the spectrum generation module of the flooding flood prediction system according to an embodiment of the present invention, a histogram of the tsunami height for the selected typhoon, and the selected typhoon. A drawing showing the route of movement.
4 is an exemplary view showing flooding prediction information generated by the flooding flood prediction system of the present invention.
5 is a flowchart illustrating a method for predicting flooding according to an embodiment of the present invention.
6 is a flowchart illustrating a detailed process of step S504 of the method for predicting flooding according to an embodiment of the present invention.

본 발명의 구체적인 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 할 것이다. 또한, 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.The specific features and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings. Prior to this, the terms or words used in the present specification and claims are based on the principle that the inventor can appropriately define the concept of the term in order to best describe his or her invention in the technical spirit of the present invention. It should be interpreted with the corresponding meaning and concept. In addition, it should be noted that, when it is determined that the detailed description of the well-known functions related to the present invention and its configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof is omitted.

도 1을 참조하면, 본 발명의 일 실시예에 따른 침수범람 예측 시스템(S)은, 복합재난 시나리오 데이터 및 공간 데이터를 로딩하는 복합재난 설정부(100)와, ADCIRC모델을 통해 조석 및 푹풍해일고를 산출하고, unSWAN 모델을 통해 파고 및 파랑 주기에 대한 스펙트럼을 산출하여 히스토그램으로 변환한 해수 예측정보를 생성하는 해수재난 분석부(200)와, FLOW3D 모델을 통해 조석, 해일 및 월파에 따른 침수범람 정도를 산출하여 해상침수 예측정보를 생성하고, XP-SWMM 모델을 통해 조석, 해일, 월파, 외수 및 내수에 대한 침수범람 정도를 산출하여 육상침수 예측정보를 생성하는 육해상재난 분석부(300), 및 상기 해수 예측정보, 해상침수 예측정보 및 육상침수 예측정보를 취합하여 태풍강도 또는 대상해역별로 실시간 침수범람 예측정보를 생성하는 침수범람 예측부(400)를 포함하여 구성된다.Referring to Figure 1, the flooding flood prediction system (S) according to an embodiment of the present invention, the composite disaster setting unit 100 for loading composite disaster scenario data and spatial data, and tides and strong winds through the ADCIRC model The seawater disaster analysis unit 200 that calculates the solar height, calculates the spectrum for wave height and wave cycle through the unSWAN model, and generates the seawater forecast information converted into a histogram, and flooding according to the tide, tsunami and moonwave through the FLOW3D model An onshore and offshore disaster analysis unit (300) that calculates the degree of flooding to generate forecast information on inundation, and calculates the degree of flooding for tidal, tsunami, overwater, external and inland water through the XP-SWMM model (300). ), and a flooding prediction unit 400 that generates real-time flooding prediction information for each typhoon intensity or target sea area by collecting the seawater prediction information, sea inundation prediction information, and land inundation prediction information.

구체적으로, 도 2를 참조하면 복합재난 설정부(100)는 가상의 태풍정보(이동경로, 강도, 풍반경 등)에 따른 시계열적인 복합재난 시나리오 데이터를 로딩하고, 태풍정보를 적용할 대상해역(서해안, 남해안, 동해안 등)을 포함하는 공간 데이터를 로딩한다.Specifically, referring to FIG. 2 , the composite disaster setting unit 100 loads time-series composite disaster scenario data according to the virtual typhoon information (movement path, intensity, wind radius, etc.), and the target sea area to which the typhoon information is applied ( The spatial data including the west coast, south coast, east coast, etc.) is loaded.

이때, 시나리오 데이터는 시나리오DB에 기 설정된 기간 동안 발생한 태풍의 이동경로, 강도 및 풍반경 각각의 카테고리별로 저장 및 관리되고, 공간 데이터는 공간DB에 위도, 경도, 대륙 또는 국가별로 저장 및 관리된다.At this time, the scenario data is stored and managed for each category of the movement path, intensity, and wind radius of the typhoon generated during a preset period in the scenario DB, and the spatial data is stored and managed in the spatial DB by latitude, longitude, continent or country.

또한, 해수재난 분석부(200)는 공간 데이터 상에 시나리오 데이터와 부합하는 태풍의 이동에 따라 발생하는 조석을 ADCIRC모델을 통해 수치화된 조석 데이터로 산출하는 조석 산출모듈(202), 공간 데이터 상에 시나리오 데이터와 부합하는 태풍의 이동에 따라 발생하는 폭풍해일고를 ADCIRC모델을 통해 수치화된 해일고 데이터로 산출하는 해일고 산출모듈(204), 및 unSWAN 모델을 통해 조석 데이터 및 해일고 데이터에 포함된 값으로부터 파고 및 파랑 주기 각각에 대한 스펙트럼을 히스토그램으로 변환하여 해수 예측정보를 생성하는 스펙트럼 생성모듈(206)을 포함하여 구성된다.In addition, the seawater disaster analysis unit 200 includes a tide calculation module 202 that calculates tides generated according to the movement of a typhoon matching the scenario data on the spatial data as tidal data digitized through the ADCIRC model, and on the spatial data. The tidal height calculation module 204 that calculates the storm surge height caused by the movement of the typhoon that matches the scenario data as digitized tidal height data through the ADCIRC model, and the tide data and the tidal height data included in the unSWAN model and a spectrum generation module 206 that converts the spectrum for each wave height and wave period from the value into a histogram to generate seawater prediction information.

여기서, 도 3은 스펙트럼 생성모듈(206)에 의해 생성된 전체 태풍에 대한 해일고에 대한 히스토그램과, 선별된 태풍에 대한 해일고에 대한 히스토그램, 및 선별된 태풍에 대한 이동 경로를 나타낸 도면이다.Here, FIG. 3 is a view showing a histogram of the tsunami height for all typhoons generated by the spectrum generating module 206, a histogram of the tidal height for the selected typhoon, and a movement path for the selected typhoon.

한편, 육해상재난 분석부(300)는 조석, 해일 및 월파에 따른 침수범람 정도를 FLOW3D 모델을 통해 수치화된 데이터로 산출하여 해상침수 예측정보를 생성하는 침수범람 예측모듈(302), 및 조석, 해일, 월파, 외수 및 내수에 대한 침수범람 정도를 XP-SWMM 모델을 통해 수치화된 데이터로 산출하여 육상침수 예측정보를 생성하는 육상침수 예측모듈(304)을 포함하여 구성된다.On the other hand, the land and maritime disaster analysis unit 300 calculates the degree of flooding according to tides, tsunamis, and overbursts as digitized data through the FLOW3D model to generate marine flooding prediction information 302, and tides, It is configured to include a land inundation prediction module 304 that generates land inundation prediction information by calculating the degree of flooding for tsunami, overwater wave, external water and inland water as digitized data through the XP-SWMM model.

이때, 본 발명의 일 실시예에 따른 해수재난 분석부(200) 및 육해상재난 분석부(300)는 2way coupling되도록 구성됨에 따라, 해수재난 분석부(200)가 FLOW3D 모델을 통해 해상침수 예측정보를 생성할 수 있고, 육해상재난 분석부(300)가 ADCIRC모델 및 unSWAN 모델을 통해 해수 예측정보를 생성할 수 있다.At this time, as the seawater disaster analysis unit 200 and the land and sea disaster analysis unit 300 according to an embodiment of the present invention are configured to be two-way coupling, the seawater disaster analysis unit 200 provides information on the prediction of flooding through the FLOW3D model. can be generated, and the land and sea disaster analysis unit 300 can generate seawater prediction information through the ADCIRC model and the unSWAN model.

이처럼, 본 발명의 일 실시예는 해수재난 분석부(200) 및 육해상재난 분석부(300)의 2way coupling 구조에 의해 해수 및 해상침수 예측의 정확도를 향상시킬 수 있다.As such, an embodiment of the present invention can improve the accuracy of seawater and sea inundation prediction by the two-way coupling structure of the seawater disaster analysis unit 200 and the land and sea disaster analysis unit 300 .

그리고, 침수범람 예측부(400)는 해수재난 분석부(200)로부터 인가받은 해수 예측정보와, 육해상재난 분석부(300)로부터 인가받은 해상침수 예측정보 및 육상침수 예측정보를 취합하여 태풍강도 또는 대상해역별로 분류한 실시간 침수범람 예측정보를 생성한다.In addition, the flooding overflow prediction unit 400 collects the seawater prediction information authorized from the seawater disaster analysis unit 200, the marine inundation prediction information and the land inundation prediction information authorized from the land and sea disaster analysis unit 300 to collect the typhoon intensity. Alternatively, real-time flooding prediction information classified by target sea area is generated.

도 4는 본 발명의 침수범람 예측 시스템에 의해 생성된 침수범람 예측정보를 도시한 예시로, 기존 해상만 고려한 단일침수와 본 예측 시스템의 육ㅇ해상을 고려한 침수범람 예측결과를 확인할 수 있다. 이처럼, 본 발명의 실시예에 의하면 폭풍에 의한 해일고 및 월파, 강우에 의한 하천범람 및 내수침수에 의한 복합적인 침수범람 발생을 예측이 가능하다.4 is an example showing flooding prediction information generated by the flooding prediction system of the present invention, and it is possible to confirm the single flooding considering only the existing sea and the flooding prediction result considering the land and sea of the present prediction system. As such, according to the embodiment of the present invention, it is possible to predict the occurrence of a complex flooding due to a tidal wave and an overwave due to a storm, a river overflow due to a rainfall, and an inland water inundation.

이하, 도 5를 참조하여 본 발명의 일 실시예에 따른 침수범람 예측 방법에 대해 살피면 아래와 같다.Hereinafter, referring to FIG. 5 , a method for predicting flooding according to an embodiment of the present invention will be described as follows.

먼저, 복합재난 설정부(100)가 복합재난 시나리오 데이터 및 공간 데이터를 로딩한다(S502).First, the composite disaster setting unit 100 loads the composite disaster scenario data and spatial data (S502).

이어서, 해수재난 분석부(200)가 조석, 푹풍해일고, 파고 및 파랑 주기에 대한 스펙트럼을 산출하여 해수 예측정보를 생성한다(S504).Then, the seawater disaster analysis unit 200 generates the seawater prediction information by calculating the spectrum for tides, strong winds, wave heights, and wave cycles (S504).

뒤이어, 육해상재난 분석부(300)가 조석, 해일 및 월파에 따른 침수범람 정도를 산출하여 해상침수 예측정보를 생성한다(S506).Subsequently, the land and sea disaster analysis unit 300 calculates the degree of flooding according to the tide, tsunami, and overpass to generate marine flooding prediction information (S506).

이어서, 육해상재난 분석부(300)가 조석, 해일, 월파, 외수 및 내수에 대한 침수범람 정도를 산출하여 육상침수 예측정보를 생성한다(S508).Next, the land and sea disaster analysis unit 300 calculates the degree of flooding of tides, tsunamis, overpasses, external water and inland water to generate land flood prediction information (S508).

그리고, 침수범람 예측부(400)가 상기 해수 예측정보, 해상침수 예측정보 및 육상침수 예측정보를 취합하여 태풍강도 또는 대상해역별로 실시간 침수범람 예측정보를 생성한다(S510).Then, the flooding prediction unit 400 generates real-time flooding prediction information for each typhoon intensity or target sea area by collecting the seawater prediction information, the sea inundation prediction information, and the land inundation prediction information (S510).

이하, 도 6을 참조하여 본 발명의 일 실시예에 따른 침수범람 예측 방법의 제S504단계의 세부과정에 대해 살피면 아래와 같다.Hereinafter, the detailed process of step S504 of the method for predicting flooding according to an embodiment of the present invention will be described with reference to FIG. 6 .

제S502단계 이후, 해수재난 분석부(200)의 조석 산출모듈(202)가 공간 데이터 상에 시나리오 데이터와 부합하는 태풍의 이동에 따라 발생하는 조석을 ADCIRC모델을 통해 수치화된 조석 데이터로 산출한다(S602).After step S502, the tide calculation module 202 of the seawater disaster analysis unit 200 calculates the tide generated according to the movement of the typhoon matching the scenario data on the spatial data as quantified tide data through the ADCIRC model ( S602).

이어서, 해수재난 분석부(200)의 해일고 산출모듈(204)이 공간 데이터 상에 시나리오 데이터와 부합하는 태풍의 이동에 따라 발생하는 폭풍해일고를 ADCIRC모델을 통해 수치화된 해일고 데이터로 산출한다(S604).Then, the tidal height calculation module 204 of the seawater disaster analysis unit 200 calculates the storm surge height generated according to the movement of the typhoon matching the scenario data on the spatial data as numerical tidal height data through the ADCIRC model. (S604).

그리고, 해수재난 분석부(200)의 스펙트럼 생성모듈(206)이 unSWAN 모델을 통해 조석 데이터 및 해일고 데이터에 포함된 값으로부터 파고 및 파랑 주기 각각에 대한 스펙트럼 입력값을 통해 계산된 해수위 예측정보를 생성한다(S606).Then, the spectrum generation module 206 of the seawater disaster analysis unit 200 receives the sea level prediction information calculated through the spectrum input value for each wave height and wave period from the values included in the tide data and the tidal height data through the unSWAN model. generated (S606).

이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변경 및 수정과 균등 물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.Although described and illustrated in relation to a preferred embodiment for illustrating the technical idea of the present invention above, the present invention is not limited to the configuration and operation as shown and described as such, and deviates from the scope of the technical idea. It will be apparent to those skilled in the art that many changes and modifications may be made to the present invention without reference. Accordingly, all such suitable alterations and modifications and equivalents are to be regarded as being within the scope of the present invention.

S: 침수범람 예측 시스템
100: 복합재난 설정부
200: 해수재난 분석부
202: 조석 산출모듈
204: 해일고 산출모듈
206: 스펙트럼 생성모듈
300: 육해상재난 분석부
400: 침수범람 예측부
S: Flood Flood Prediction System
100: compound disaster setting unit
200: Seawater disaster analysis department
202: tide calculation module
204: tsunami calculation module
206: spectrum generation module
300: Land and Maritime Disaster Analysis Department
400: flood flood prediction unit

Claims (4)

복합재난 시나리오 데이터 및 공간 데이터를 로딩하는 복합재난 설정부;
ADCIRC모델을 통해 조석 및 푹풍해일고를 산출하고, unSWAN 모델을 통해 파고 및 파랑 주기에 대한 스펙트럼을 산출하여 히스토그램으로 변환한 해수 예측정보를 생성하는 해수재난 분석부;
FLOW3D 모델을 통해 조석, 해일 및 월파에 따른 침수범람 정도를 산출하여 해상침수 예측정보를 생성하고, XP-SWMM 모델을 통해 조석, 해일, 월파, 외수 및 내수에 대한 침수범람 정도를 산출하여 육상침수 예측정보를 생성하는 육해상재난 분석부; 및
상기 해수 예측정보, 해상침수 예측정보 및 육상침수 예측정보를 취합하여 태풍강도 또는 대상해역별로 실시간 침수범람 예측정보를 생성하는 침수범람 예측부를
포함하는 것을 특징으로 하는 침수범람 예측 시스템.
Composite disaster setting unit for loading composite disaster scenario data and spatial data;
a seawater disaster analysis unit that calculates tidal and storm surge heights through the ADCIRC model, calculates the spectrum for wave heights and wave cycles through the unSWAN model, and generates seawater forecast information converted into a histogram;
Through the FLOW3D model, the degree of flooding according to the tide, tsunami, and overburst is calculated to generate forecast information of sea inundation, and through the XP-SWMM model, the degree of flooding for tidal, tsunami, overwater, external and inland water is calculated and inundated by land. Land and maritime disaster analysis unit for generating forecast information; and
A flooding prediction unit that generates real-time flooding prediction information for each typhoon intensity or target sea area by collecting the seawater prediction information, sea inundation prediction information, and land inundation prediction information.
Flooding flood prediction system, characterized in that it comprises.
제1항에 있어서,
상기 해수재난 분석부 및 육해상재난 분석부는,
2way coupling되도록 구성되어 상기 해수재난 분석부가 FLOW3D 모델을 통해 해상침수 예측정보를 생성하고, 상기 육해상재난 분석부가 ADCIRC모델 및 unSWAN 모델을 통해 해수 예측정보를 생성
하는 것을 특징으로 하는 침수범람 예측 시스템.
According to claim 1,
The seawater disaster analysis unit and the land and sea disaster analysis unit,
It is configured to be a two-way coupling, and the seawater disaster analysis unit generates marine flood prediction information through the FLOW3D model, and the land and sea disaster analysis unit generates seawater prediction information through the ADCIRC model and unSWAN model
Flooding flood prediction system, characterized in that.
제1항에 있어서,
상기 해수재난 분석부는,
상기 공간 데이터 상에 시나리오 데이터와 부합하는 태풍의 이동에 따라 발생하는 조석을 ADCIRC모델을 통해 수치화된 조석 데이터로 산출하는 조석 산출모듈;
상기 공간 데이터 상에 시나리오 데이터와 부합하는 태풍의 이동에 따라 발생하는 폭풍해일고를 ADCIRC모델을 통해 수치화된 해일고 데이터로 산출하는 해일고 산출모듈; 및
unSWAN 모델을 통해 조석 데이터 및 해일고 데이터에 포함된 값으로부터 파고 및 파랑 주기 각각에 대한 스펙트럼을 히스토그램으로 변환하여 해수 예측정보를 생성하는 스펙트럼 생성모듈을
포함하는 것을 특징으로 하는 침수범람 예측 시스템.
According to claim 1,
The seawater disaster analysis unit,
a tide calculation module for calculating tides generated according to the movement of a typhoon corresponding to the scenario data on the spatial data as quantified tide data through an ADCIRC model;
a tidal height calculation module for calculating the storm surge height generated according to the movement of the typhoon corresponding to the scenario data on the spatial data as numerical tidal height data through the ADCIRC model; and
A spectrum generation module that generates seawater prediction information by converting the spectrum for each wave height and wave period into a histogram from the values included in the tide data and tidal height data through the unSWAN model.
Flooding flood prediction system, characterized in that it comprises.
제1항에 있어서,
상기 육해상재난 분석부는,
조석, 해일 및 월파에 따른 침수범람 정도를 FLOW3D 모델을 통해 수치화된 데이터로 산출하여 해상침수 예측정보를 생성하는 침수범람 예측모듈; 및
조석, 해일, 월파, 외수 및 내수에 대한 침수범람 정도를 XP-SWMM 모델을 통해 수치화된 데이터로 산출하여 육상침수 예측정보를 생성하는 육상침수 예측모듈을
포함하는 것을 특징으로 하는 침수범람 예측 시스템.
According to claim 1,
The land and sea disaster analysis unit,
a flooding prediction module for generating marine flood prediction information by calculating the degree of flooding according to tides, tsunamis, and moon waves as numerical data through a FLOW3D model; and
The onshore inundation prediction module that generates land inundation prediction information by calculating the degree of flooding of tides, tidal waves, overwater waves, external and internal waters with numerical data through the XP-SWMM model
Flooding flood prediction system, characterized in that it comprises.
KR1020190168629A 2019-12-17 2019-12-17 Flooding Prediction System KR20210077228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190168629A KR20210077228A (en) 2019-12-17 2019-12-17 Flooding Prediction System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190168629A KR20210077228A (en) 2019-12-17 2019-12-17 Flooding Prediction System

Publications (1)

Publication Number Publication Date
KR20210077228A true KR20210077228A (en) 2021-06-25

Family

ID=76629046

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190168629A KR20210077228A (en) 2019-12-17 2019-12-17 Flooding Prediction System

Country Status (1)

Country Link
KR (1) KR20210077228A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113589404A (en) * 2021-07-30 2021-11-02 郑州大学 Method for predicting runoff of storm of field
CN113657659A (en) * 2021-08-12 2021-11-16 水利部信息中心 Parameter global optimization method of modular flood forecasting model
CN113919806A (en) * 2021-10-11 2022-01-11 昆仑(重庆)河湖生态研究院(有限合伙) Flood control and disaster relief management system
CN116522604A (en) * 2023-04-07 2023-08-01 中国水利水电科学研究院 Historical scene heavy rain flood disaster scene transplanting method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120000716A (en) 2010-06-28 2012-01-04 노아솔루션주식회사 Flood prevention system based on gis and method of the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120000716A (en) 2010-06-28 2012-01-04 노아솔루션주식회사 Flood prevention system based on gis and method of the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113589404A (en) * 2021-07-30 2021-11-02 郑州大学 Method for predicting runoff of storm of field
CN113589404B (en) * 2021-07-30 2023-02-03 郑州大学 Method for predicting runoff volume of storm at scene
CN113657659A (en) * 2021-08-12 2021-11-16 水利部信息中心 Parameter global optimization method of modular flood forecasting model
CN113919806A (en) * 2021-10-11 2022-01-11 昆仑(重庆)河湖生态研究院(有限合伙) Flood control and disaster relief management system
CN113919806B (en) * 2021-10-11 2022-07-19 昆仑(重庆)河湖生态研究院(有限合伙) Flood control and disaster relief management system
CN116522604A (en) * 2023-04-07 2023-08-01 中国水利水电科学研究院 Historical scene heavy rain flood disaster scene transplanting method
CN116522604B (en) * 2023-04-07 2023-12-26 中国水利水电科学研究院 Historical scene heavy rain flood disaster scene transplanting method

Similar Documents

Publication Publication Date Title
KR20210077228A (en) Flooding Prediction System
Orton et al. A validated tropical‐extratropical flood hazard assessment for N ew Y ork H arbor
Kumar et al. Coastal vulnerability assessment for Orissa State, east coast of India
Timbadiya et al. A 1D–2D coupled hydrodynamic model for river flood prediction in a coastal urban floodplain
Boucher et al. A comparison between ensemble and deterministic hydrological forecasts in an operational context
Angulo-Martínez et al. Do atmospheric teleconnection patterns influence rainfall erosivity? A study of NAO, MO and WeMO in NE Spain, 1955–2006
KR101668073B1 (en) Method and system for analyzing wave data in coastal areas
Battjes et al. Coastal modelling for flood defence
Bae et al. Utilization of the Bayesian method to improve hydrological drought prediction accuracy
Morucci et al. Extreme events in Venice and in the North Adriatic Sea: 28–29 October 2018
Aktaş Impacts of climate change on water resources in Turkey.
Panagoulia et al. Recurrence quantification analysis of extremes of maximum and minimum temperature patterns for different climate scenarios in the Mesochora catchment in Central-Western Greece
Vieira et al. Extreme wave value analysis under uncertainty of climate change scenarios off Iberian Peninsula coast
Nam et al. Future fluvial flood risks in C entral V ietnam assessed using global super‐high‐resolution climate model output
Tran et al. Operational methodology for the assessment of typhoon waves characteristics. Application to ninh thuan Province, vietnam
Moran-Tejeda et al. The contrasted evolution of high and low flows and precipitation indices in the Duero basin (Spain)
González et al. A statistical study of seasonal winter rainfall prediction in the Comahue region (Argentina)
Rangel-Buitrago et al. Wave climate, storminess, and northern hemisphere teleconnection patterns influences: the outer Bristol Channel, South Wales, UK
Yoon Analysis of long-period sea-level variation around the Korean Peninsula
He et al. Damage of extreme water levels and the adaptation cost of dikes in the Pearl River Delta
Etala Dynamic issues in the SE South America storm surge modeling
Jin et al. Quantitative analysis of coastal dune erosion based on geomorphology features and model simulation
Arab et al. Improvement of wind data quality for extreme wave generation over the Northern Gulf of Mexico
Hisamatsu et al. Storm Surge Estimation Along Tokyo Bay Based on a Simple Stochastic Approach
Tsegaw et al. Hydrological impacts of climate change on small ungauged catchments-results from a GCM-RCM-hydrologic model chain

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application