KR20210066156A - A method for measuring cutting load on individual spindle in multi-spindle drilling machine, which is driven by both a spindle motor and a feedrate motor - Google Patents

A method for measuring cutting load on individual spindle in multi-spindle drilling machine, which is driven by both a spindle motor and a feedrate motor Download PDF

Info

Publication number
KR20210066156A
KR20210066156A KR1020190155051A KR20190155051A KR20210066156A KR 20210066156 A KR20210066156 A KR 20210066156A KR 1020190155051 A KR1020190155051 A KR 1020190155051A KR 20190155051 A KR20190155051 A KR 20190155051A KR 20210066156 A KR20210066156 A KR 20210066156A
Authority
KR
South Korea
Prior art keywords
spindle
sub
machining
measuring
motor
Prior art date
Application number
KR1020190155051A
Other languages
Korean (ko)
Other versions
KR102305644B1 (en
Inventor
박봉국
서윤식
이희관
허은영
최광훈
임철순
Original Assignee
(주)안전정밀
사단법인 캠틱종합기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)안전정밀, 사단법인 캠틱종합기술원 filed Critical (주)안전정밀
Priority to KR1020190155051A priority Critical patent/KR102305644B1/en
Publication of KR20210066156A publication Critical patent/KR20210066156A/en
Application granted granted Critical
Publication of KR102305644B1 publication Critical patent/KR102305644B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0961Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring power, current or torque of a motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/007Arrangements for observing, indicating or measuring on machine tools for managing machine functions not concerning the tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

The present invention relates to a method for measuring a processing load applied to each spindle shaft when a drill equipment with a spindle and a multi-axes spindle driven as one body for transfer, comprising: a step (S10) of measuring a current volume (SM_c) of a main spindle motor; a step (S20) of measuring a vibration size (ACC_ss) of each sub-spindle; a step (S30) of imposing weights (w1, w2) to the measured current volume (SM_c) of the main spindle motor and the size of vibration of the sub-spindle (ACC_ss); and a step (S40) of using the weights and calculating the processing load (SS_load) of an individual shaft spindle by the below Equation 1. SS_load=SM_c×w1+ACC_ss×w2 (Equation 1). Here, SS_load is the processing load value of the individual shaft spindle generated when processing is conducted. SM_c is the current volume of the main spindle motor. ACC_ss is the size of vibration generated in each sub-spindle. In addition, w1 and w2 are, respectively, the weight of the main spindle motor and the weight of the sub-spindle vibration. The present invention aims to provide a method for measuring a processing load applied to each spindle shaft, which is able to reduce the costs for tools.

Description

스핀들의 회전과 이송이 일체로 구동되는 다축 스핀들의 드릴 장비에서 개별축 스핀들의 가공부하를 측정하는 방법 {A METHOD FOR MEASURING CUTTING LOAD ON INDIVIDUAL SPINDLE IN MULTI-SPINDLE DRILLING MACHINE, WHICH IS DRIVEN BY BOTH A SPINDLE MOTOR AND A FEEDRATE MOTOR}Method of measuring the machining load of an individual axis spindle on a multi-axis spindle drilling machine in which the rotation and feed of the spindle are driven integrally {A METHOD FOR MEASURING CUTTING LOAD ON INDIVIDUAL SPINDLE IN MULTI-SPINDLE DRILLING MACHINE, WHICH IS DRIVEN BY BOTH A SPINDLE MOTOR AND A FEEDRATE MOTOR}

본 발명은 스핀들과 이송이 일체로 구동되는 다축 스핀들(multi-axis spindle)을 가진 드릴장비를 활용할때 각 스핀들 축에 가해지는 가공부하를 측정하는 방법에 관한 것이다. The present invention relates to a method of measuring a machining load applied to each spindle axis when using a drilling machine having a multi-axis spindle in which the spindle and feed are integrally driven.

다축 스핀들 드릴링 장비는 다 수의 동일한 부품을 동시에 가공함으로써 생산성을 높이는 목적으로 사용하는 전용장비로 대량 생산에 자주 활용되고 있다. Multi-axis spindle drilling equipment is a dedicated equipment used for the purpose of increasing productivity by processing many identical parts at the same time, and is often used in mass production.

여기서 스핀들과 이송이 일체로 구동되는 다축 스핀들 드릴 장비는 하나의 메인 스핀들 모터로 드릴장비의 주축을 회전시키고 풀리 또는 기어로 복수의 서브 스핀들을 회전구동시키며, 또한 각 이송축은 하나의 램에 체결되어 있어서 램을 이송하는 이송모터에 의해서 각 이송축의 이송속도를 제어하는 구조이다. 이와 같이, 다축 스핀들 드릴 장비는 다축 스핀들에 일률적으로 회전력과 이송력을 전달하기 때문에 동일부품의 대량생산을 위해서는 바람직하지만 특정부품의 양산작업 외에 활용할 수 없는 점, 개별 스핀들에 작용하는 가공부하를 정확하게 알 수 없는 등의 단점이 있었다. Here, the multi-axis spindle drilling machine in which the spindle and feed are driven integrally rotates the main shaft of the drilling machine with one main spindle motor and drives a plurality of sub spindles with pulleys or gears, and each feed shaft is fastened to one ram. It has a structure in which the feed speed of each feed shaft is controlled by the feed motor that feeds the ram. As such, the multi-axis spindle drilling equipment uniformly transmits rotational force and feed force to the multi-axis spindle, which is desirable for mass production of the same part, but cannot be utilized other than mass production of specific parts. There were disadvantages such as unknown.

이로 인해서 개별축 스핀들에 가해지는 각각의 가공부하를 알지 못하기 때문에 공구수명관리를 동시에 진행한다. 일례로, 5축 스핀들 중에서 1개 스핀들의 가공공구가 마모되어 가공부하가 커지고 불량품이 발생하게 되는 경우에 기존 방식으로는 5축 스핀들에 장착된 5개의 공구를 일괄적으로 교환해야 되고, 공구의 일괄적 교환에 의한 가공비용의 상승이 발생하게 된다. Because of this, the tool life management is carried out at the same time because it does not know each machining load applied to the individual axis spindle. For example, if the machining load of one spindle among the five-axis spindles is worn and the machining load increases and defective products occur, in the conventional method, five tools mounted on the five-axis spindle must be exchanged at once, and the The increase in processing cost occurs due to the batch exchange.

그러나 최근에는 특정한 대량생산에 있어서 매우 뛰어난 작업효율을 보이는 전용장비에 IoT기술과 지능적 기능을 부가함으로써 작업의 유연성을 높이고 작업의 최적화를 수행하면서 대량 양산 제조라인을 운용하는 기업들에게에게 새로운 관점에서 주목받고 있다. However, in recent years, by adding IoT technology and intelligent functions to dedicated equipment that shows very good work efficiency in specific mass production, it increases work flexibility and optimizes work, giving companies that operate mass-production manufacturing lines from a new perspective. is attracting attention.

특히 드릴 절삭가공 제조공정에서는 생산성을 향상시키면서 동시에, 공구수명관리 및 절삭공구의 교환시점 결정 등을 지능적으로 수행할 수 있도록 하여 품질을 향상시키는데 관심을 기울이고 있다. In particular, in the drill cutting manufacturing process, attention is paid to improving the quality by improving productivity while at the same time managing tool life and intelligently determining when to change cutting tools.

이에 제안기술은 스핀들과 이송이 일체로 구동되는 다축 스핀들 드릴 장비에서 개별축에 가해지는 가공부하를 측정하는 방법을 효율적인 방법을 고안함으로써 다축 스핀들 드릴 장비의 유연성을 높이고, 다축 스핀들 장비에서의 가공품의 품질을 효율적으로 관리할 수 있도록 하였다. Therefore, the proposed technology increases the flexibility of multi-axis spindle drilling equipment by devising an efficient method for measuring the machining load applied to individual axes in multi-axis spindle drilling equipment in which the spindle and feed are driven integrally, and improves the flexibility of multi-axis spindle drilling equipment. to manage quality efficiently.

0001. 등록특허 제10-0952619호(2010.04.06. 등록)0001. Registered Patent No. 10-0952619 (Registered on 04.06.2010)

본 발명은 스핀들과 이송이 일체로 구동되는 다축 스핀들의 드릴 전용장비에서 개별축 스핀들에 가해지는 가공부하를 측정하고 이를 통해서 개별축 스핀들에 장착된 절삭공구의 마모를 진단하며, 개별축 스핀들의 절삭공구에 대한 교환 시점을 결정하는 방법을 제공하는 것을 목적으로 한다. The present invention measures the machining load applied to the individual axis spindle in a drill-only equipment of a multi-axis spindle in which the spindle and feed are driven integrally, and through this, diagnoses the wear of the cutting tool mounted on the individual axis spindle, and cuts the individual axis spindle. An object of the present invention is to provide a method for determining when to replace a tool.

상기와 같은 과제를 해결하기 위한 본 발명은,The present invention for solving the above problems,

하나의 메인스핀들 모터로 복수의 서브스핀들을 회전 구동하고, 하나의 이송모터로 복수의 서브스핀들의 이송을 구동하는 다축 스핀들 드릴 장치의 각 서브스핀들에 가해지는 가공부하를 측정하는 방법은 하기 수학식에 의해서 이루어지는 것을 특징으로 하는 다축 스핀들 드릴 장치의 각 서브스핀들에 가해지는 가공부하를 측정하는 방법이다. A method of measuring the machining load applied to each sub-spindle of a multi-axis spindle drilling apparatus that rotates and drives a plurality of sub-spindles with one main spindle motor and drives the feed of a plurality of sub-spindles with a single feed motor is expressed by the following equation It is a method of measuring the machining load applied to each sub-spindle of the multi-axis spindle drilling apparatus, characterized in that made by

SS_load=SM_c×w1+ACC_ss×w2 SS_load=SM_c×w1+ACC_ss×w2

여기서 SS_load는 가공진행시 발생하는 개별축 스핀들의 가공부하값이고, SM_C는 메인스핀들 모터의 전류량, ACC_ss는 각 서브스핀들에서 발생하는 진동크기를 말한다. 또한 w1, w2는 각각 메인스핀들 모터의 가중치와 서브스핀들 진동의 가중치이다. Here, SS_load is the machining load value of the individual shaft spindle generated during machining, SM_C is the amount of current of the main spindle motor, and ACC_ss is the amount of vibration generated in each sub-spindle. Also, w1 and w2 are the weight of the main spindle motor and the weight of the sub-spindle vibration, respectively.

본 발명은 스핀들과 이송이 일체로 구동되는 다축 스핀들을 장착한 드릴 전용장비가 지능적으로 개별축 스핀들에 가해지는 가공부하를 측정하고 이를 통해서 개별축 스핀들에 장착된 절삭공구의 마모를 진단하며, 개별축 스핀들의 절삭공구에 대한 교환 시점을 결정하게 되므로, 부품가공의 품질관리가 가능하게 되며, 절삭공구를 최고 수명까지 사용함으로써 공구 비용을 절감할 수 있게 한다. The present invention is a drill-only equipment equipped with a multi-axis spindle, in which the spindle and feed are driven integrally, intelligently measures the machining load applied to the individual-axis spindle, and through this, diagnoses the wear of the cutting tool mounted on the individual-axis spindle. Since the replacement timing for the cutting tool of the shaft spindle is decided, quality control of parts processing is possible, and the tool cost can be reduced by using the cutting tool up to the maximum lifespan.

도 1은 본 발명에 따른 스핀들과 이송이 일체로 구동되는 다축 스핀들 드릴 장비의 구조도
도 2는 본 발명에 따른 스핀들과 이송이 일체로 구동되는 다축 스핀들 드릴 장비에서 개별축 스핀들의 가공부하 검출 개념도
도 3은 본 발명에 따른 스핀들과 이송이 일체로 구동되는 다축 스핀들 드릴 장비에서 개별축 스핀들의 가공부하를 검출 및 공구마모량 진단 및 공구교환 지시에 관한 흐름도
1 is a structural diagram of a multi-axis spindle drilling equipment in which the spindle and feed are integrally driven according to the present invention;
2 is a conceptual diagram of a machining load detection of an individual axis spindle in a multi-axis spindle drilling equipment in which the spindle and feed are integrally driven according to the present invention
3 is a flowchart for detecting the machining load of the individual axis spindle, diagnosing the amount of tool wear and instructing the tool replacement in the multi-axis spindle drilling equipment in which the spindle and feed are integrally driven according to the present invention;

이하, 상기 목적 외에 본 발명의 다른 목적 및 특징들은 첨부 도면을 참조한 실시예에 대한 설명을 통하여 명백히 드러나게 될 것이다. 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Hereinafter, in addition to the above objects, other objects and features of the present invention will become apparent through the description of the embodiments with reference to the accompanying drawings. Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not

이하에서는 본 발명에 따른 스핀들과 이송이 일체로 구동되는 다축 스핀들 드릴 장비에서 스핀들 모터의 전류량을 측정하는 전류센서와 각 개별축의 진동크기를 센싱하는 진동센서가 설치된 드릴장비에 적용된 실시예를 통해서 설명한다.Hereinafter, in the multi-axis spindle drill equipment in which the spindle and the feed are driven integrally according to the present invention, a current sensor for measuring the amount of current of the spindle motor and a vibration sensor for sensing the magnitude of vibration of each individual axis are installed. do.

본 발명은 메인스핀들 모터의 전류량(SM_c)를 측정하는 단계(S 10);The present invention comprises the steps of measuring the amount of current (SM_c) of the main spindle motor (S10);

각 서브스핀들 진동크기(ACC_ss)를 측정하는 단계(S 20);measuring each sub-spindle vibration magnitude (ACC_ss) (S 20);

각 서브스핀들에 작용하는 진동의 크기는 진동센서에 의해서 측정된다. 진동센서는 서브스핀들의 진동을 측정하여 진동의 특성인 고유진동수 Hz와 진동폭의 값으로 진동크기를 센싱값으로 출력한다. 진동을 정밀하게 측정하기 위해서는 피에조 압전소자를 이용한 진동센서를 사용한다. 피에조 진동센서는 출력치로 진동크기 즉, 가속도 크기를 제공해주는데 가속도를 두번 적분하면 힘을 얻을 수 있게 된다. The magnitude of vibration acting on each sub-spindle is measured by a vibration sensor. The vibration sensor measures the vibration of the sub-spindle and outputs the vibration magnitude as a sensing value as the value of the natural frequency Hz and vibration width, which are characteristics of vibration. In order to precisely measure the vibration, a vibration sensor using a piezoelectric element is used. The piezo vibration sensor provides the magnitude of the vibration, that is, the magnitude of acceleration as an output value. If the acceleration is integrated twice, a force can be obtained.

그래서 진동의 특성 중에서 진동크기는 절삭할때 발생하는 힘인 절삭력과 가공부하를 측정할 수 있게 된다. Therefore, the magnitude of vibration among the characteristics of vibration can measure the cutting force and machining load, which are the forces generated during cutting.

측정된 상기 메인스핀들 모터의 전류량(SM_c)과 서브스핀들 진동크기(ACC_ss)에 대해서 가중치(w1, w2)를 부과하는 단계(S 30); applying weights w1 and w2 to the measured current amount SM_c and sub spindle vibration magnitude ACC_ss of the main spindle motor (S30);

상기 가중치는 메인스핀들 모터의 용량과 서브스핀들의 직경을 고려하여 결정한다. 예로 메인스핀들 모터의 토크가 크고, 서브스핀들의 직경이 작으면 메인스핀들 모터의 가중치는 낮고 서브스핀들 이송모터의 가중치는 높게 하는 방식으로 한다. The weight is determined in consideration of the capacity of the main spindle motor and the diameter of the sub-spindle. For example, if the torque of the main spindle motor is large and the diameter of the sub-spindle is small, the weight of the main spindle motor is low and the weight of the sub-spindle transfer motor is high.

상기 가중치를 활용하여 개별축 스핀들의 가공부하값(SS_load)를 계산하는 단계(S 40);calculating a machining load value (SS_load) of an individual axis spindle by using the weight (S 40);

상기 개별축 스핀들의 가공부하값(SS_load)를 계산하는 연산식은 하기의 수학식 1을 활용한다. Equation 1 below is used for the calculation formula for calculating the machining load value (SS_load) of the individual shaft spindle.

SS_load=SM_c×w1+ACC_ss×w2 (수학식 1) SS_load=SM_c×w1+ACC_ss×w2 (Equation 1)

여기서 SS_load는 가공진행시 발생하는 개별축 스핀들의 가공부하값이고, SM_C는 메인스핀들 모터의 전류량, ACC_ss는 각 서브스핀들에서 발생하는 진동크기를 말한다. 또한 w1, w2는 각각 메인스핀들 모터의 가중치와 서브스핀들 진동의 가중치를 말한다. Here, SS_load is the machining load value of the individual shaft spindle generated during machining, SM_C is the amount of current of the main spindle motor, and ACC_ss is the amount of vibration generated in each sub-spindle. In addition, w1 and w2 refer to the weight of the main spindle motor and the weight of the sub-spindle vibration, respectively.

상기 개별축 스핀들의 가공부하값을 기준부하값과 비교하는 단계(S 50);comparing the machining load value of the individual shaft spindle with a reference load value (S50);

상기 기준부하값은 개별축에 새로운 인선(刃線)을 가진 새 드릴공구를 장착한 후 테스트가공을 수행하여 개별축 스핀들에 가해지는 평균 가공부하값으로 설정되는 단계(S 50-1);setting the reference load value as an average machining load value applied to the individual axis spindle by performing test machining after mounting a new drill tool having a new cutting edge on each axis (S50-1);

상기 기준부하값의 설정을 위한 테스트 가공을 5차례이상 수행한다.Test processing for setting the reference load value is performed 5 times or more.

상기 S 50 단계에 의해서 가공부하값과 기준부하값을 상대적으로 비교하여 가공진행시의 공구마모량을 진단하는 단계(S 60);diagnosing the amount of tool wear during machining by relatively comparing the machining load value and the reference load value by the step S50 (S60);

상기 공구마모량의 진단을 통해서 공구마모량이 허용범위를 초과한 것으로 진단되면 공구교환을 지시하는 단계(S 70);를 포함하는 것을 특징으로 하는 개별 스핀들에 작용하는 가공부하는 측정하는 방법이다. When it is diagnosed that the amount of tool wear exceeds the allowable range through the diagnosis of the amount of tool wear, instructing tool replacement (S70) is a method of measuring the machining load acting on the individual spindle, characterized in that it includes.

또한 스핀들과 이송이 일체로 구동되는 다축 스핀들을 장착한 드릴 장비에 있어서, 지능적으로 개별축 스핀들에 가해지는 가공부하를 측정하고 이를 통해서 개별축 스핀들에 장착된 절삭공구의 마모를 진단하며, 개별축 스핀들의 절삭공구에 대한 교환 시점을 결정하게 된다.In addition, in drilling equipment equipped with a multi-axis spindle in which the spindle and feed are driven integrally, the machining load applied to the individual axis spindle is intelligently measured, and through this, the wear of the cutting tool mounted on the individual axis spindle is diagnosed. It determines the replacement time for the cutting tool of the spindle.

SM: 절삭공구의 선속도를 구동하는 스핀들모터
SM_c: 상기 스핀들모터의 전류량
ACC_ss: 개별축 스핀들에서 발생하는 진동크기
SS_load: 개별축 스핀들의 가공부하
SM: Spindle motor driving the linear speed of the cutting tool
SM_c: amount of current of the spindle motor
ACC_ss: Vibration magnitude generated by the individual axis spindle
SS_load: Machining load of individual axis spindle

Claims (4)

메인스핀들 모터의 전류량(SM_c)를 측정하는 단계(S 10);
각 서브스핀들 진동크기(ACC_ss)를 측정하는 단계(S 20);
측정된 상기 메인스핀들 모터의 전류량(SM_c)과 서브스핀들 진동크기(ACC_ss)에 대해서 가중치(w1, w2)를 부과하는 단계(S 30);
상기 가중치를 활용하여 개별축 스핀들의 가공부하값(SS_load)를 계산하는 단계(S 40);를 포함하는 다축 스핀들 드릴 장치의 각 서브스핀들에 가해지는 가공부하를 측정하는 방법.
Measuring the amount of current (SM_c) of the main spindle motor (S10);
measuring each sub-spindle vibration magnitude (ACC_ss) (S 20);
applying weights w1 and w2 to the measured current amount SM_c and sub spindle vibration magnitude ACC_ss of the main spindle motor (S30);
A method of measuring a machining load applied to each sub-spindle of a multi-axis spindle drilling apparatus comprising; calculating a machining load value (SS_load) of an individual axis spindle using the weight (S 40).
제1항에 있어서,
개별축 스핀들의 가공부하값(SS_load)을 계산하는 S 40 단계는 하기의 수학식 1에 의해서 계산하는 다축 스핀들 드릴 장치의 각 서브스핀들에 가해지는 가공부하를 측정하는 방법.

SS_load=SM_c×w1+ACC_ss×w2 (수학식 1)

여기서 SS_load는 가공진행시 발생하는 개별축 스핀들의 가공부하값이고, SM_C는 메인스핀들 모터의 전류량, ACC_ss는 각 서브스핀들에서 발생하는 진동크기를 말한다. 또한 w1, w2는 각각 메인스핀들 모터의 가중치와 서브스핀들 진동의 가중치이다.
According to claim 1,
Step S 40 of calculating the machining load value (SS_load) of the individual shaft spindle is a method of measuring the machining load applied to each sub-spindle of the multi-axis spindle drilling device calculated by Equation 1 below.

SS_load=SM_c×w1+ACC_ss×w2 (Equation 1)

Here, SS_load is the machining load value of the individual shaft spindle generated during machining, SM_C is the amount of current of the main spindle motor, and ACC_ss is the amount of vibration generated in each sub-spindle. Also, w1 and w2 are the weight of the main spindle motor and the weight of the sub-spindle vibration, respectively.
제2항에 있어서,
상기 개별축 스핀들의 가공부하값을 기준부하값과 비교하는 단계(S 50);를 더 구비하되, 상기 기준부하값은 개별축에 새로운 인선(刃線)을 가진 새 드릴공구를 장착한 후 테스트가공을 수행하여 개별축 스핀들에 가해지는 평균 가공부하값으로 설정되는 단계(S 50-1);에 의해서 획득되는 다축 스핀들 드릴 장치의 각 서브스핀들에 가해지는 가공부하를 측정하는 방법.
3. The method of claim 2,
Comparing the machining load value of the individual shaft spindle with a reference load value (S50); but, the reference load value is tested after mounting a new drill tool with a new cutting edge on the individual shaft A method of measuring the machining load applied to each sub-spindle of the multi-axis spindle drilling apparatus obtained by performing machining and setting the average machining load value applied to the individual axis spindle (S 50-1).
제3항에 있어서,
상기 S 50 단계에 의해서 가공부하값과 기준부하값을 상대적으로 비교하여 가공진행시의 공구마모량을 진단하는 단계(S 60); 및
상기 공구마모량의 진단을 통해서 공구마모량이 허용범위를 초과한 것으로 진단되면 공구교환을 지시하는 단계(S 70);를 더 포함하는 다축 스핀들 드릴 장치의 각 서브스핀들에 가해지는 가공부하를 측정하는 방법.
4. The method of claim 3,
diagnosing the amount of tool wear during machining by relatively comparing the machining load value and the reference load value by the step S50 (S60); and
Method of measuring the machining load applied to each sub-spindle of the multi-axis spindle drilling apparatus further comprising; when it is diagnosed that the amount of tool wear exceeds the allowable range through the diagnosis of the amount of tool wear, instructing tool replacement (S70) .
KR1020190155051A 2019-11-28 2019-11-28 A method for measuring cutting load on individual spindle in multi-spindle drilling machine, which is driven by both a spindle motor and a feedrate motor KR102305644B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190155051A KR102305644B1 (en) 2019-11-28 2019-11-28 A method for measuring cutting load on individual spindle in multi-spindle drilling machine, which is driven by both a spindle motor and a feedrate motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190155051A KR102305644B1 (en) 2019-11-28 2019-11-28 A method for measuring cutting load on individual spindle in multi-spindle drilling machine, which is driven by both a spindle motor and a feedrate motor

Publications (2)

Publication Number Publication Date
KR20210066156A true KR20210066156A (en) 2021-06-07
KR102305644B1 KR102305644B1 (en) 2021-09-28

Family

ID=76374697

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190155051A KR102305644B1 (en) 2019-11-28 2019-11-28 A method for measuring cutting load on individual spindle in multi-spindle drilling machine, which is driven by both a spindle motor and a feedrate motor

Country Status (1)

Country Link
KR (1) KR102305644B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023061850A1 (en) * 2021-10-11 2023-04-20 Reishauer Ag Method for monitoring the state of a machine tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416349A (en) * 1987-07-10 1989-01-19 Nissan Motor Tool damage detecting device for spindle head
JPH068111A (en) * 1992-06-25 1994-01-18 Isuzu Motors Ltd Drill life judgment method
KR100952619B1 (en) 2007-11-30 2010-04-15 (주)한국툴모니터링 The method of defecting badness for dealing a machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416349A (en) * 1987-07-10 1989-01-19 Nissan Motor Tool damage detecting device for spindle head
JPH068111A (en) * 1992-06-25 1994-01-18 Isuzu Motors Ltd Drill life judgment method
KR100952619B1 (en) 2007-11-30 2010-04-15 (주)한국툴모니터링 The method of defecting badness for dealing a machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023061850A1 (en) * 2021-10-11 2023-04-20 Reishauer Ag Method for monitoring the state of a machine tool

Also Published As

Publication number Publication date
KR102305644B1 (en) 2021-09-28

Similar Documents

Publication Publication Date Title
TWI650625B (en) Tool wear detecting device, detecting method thereof and tool wear compensation method
KR101957711B1 (en) An Intelligent CNC machine control system for smart monitering, smart diagnosis and smart control by using the physical cutting characteristic map in which the cutting characteristics are mapped in accordance to cutting location in terms of cutting time on working coordinate
CN106094730B (en) Cutting Force Coefficient discrimination method based on main shaft of numerical control machine tool and servo shaft power
CN105676778A (en) Intelligent manufacturing method and system based on sensor monitoring and processing machine tool
CN112192319A (en) Tool wear monitoring method and system of unsupervised model
JP2011138463A (en) Numerical control device
CN105573250B (en) It is machined online quality management-control method and system and machining tool
CN105988417B (en) Carry out the numerical control device of threaded hole inspection
CN1166496C (en) Predicting and compensating control method and device for boring size error
KR102305644B1 (en) A method for measuring cutting load on individual spindle in multi-spindle drilling machine, which is driven by both a spindle motor and a feedrate motor
CN111123103A (en) Comprehensive testing method and device for complex working conditions of industrial robot servo system
KR102157312B1 (en) A measuring method of cutting load on individual spindle in multi-axis spindle drilling machine
CN108673240A (en) A kind of net material removal of numerical control milling based on tool abrasion is than energy computational methods
CN112733298B (en) Machining performance evaluation method of series-parallel robot at different poses based on spiral hole milling
US12017286B2 (en) Automatic hole-processing method with self-adapting adjustment of processing parameters
Liu et al. A new approach to identify the ball screw wear based on feed motor current
US20040093191A1 (en) System and method for performing modal analysis of at least one remote structure
Omelchak et al. Dynamic Processes in a Мachine-Tool at High-Speed Machining
JPS59232749A (en) Drill work monitor
Zapciu et al. Dynamic characterization of machining systems
CN116852171A (en) Tool state monitoring method and tool state monitoring device
CN117949041B (en) Quality detection method and device for servo driver
Jayaswal et al. An investigation of tool condition monitoring
Dunwoody Automated identification of cutting force coefficients and tool dynamics on CNC machines
KR102655188B1 (en) An inspection method of spindle systems in cnc machine by using cnc interface and accelerometers

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant