KR20210066130A - Manufacturng method of carbon nanofiber support - Google Patents

Manufacturng method of carbon nanofiber support Download PDF

Info

Publication number
KR20210066130A
KR20210066130A KR1020190155002A KR20190155002A KR20210066130A KR 20210066130 A KR20210066130 A KR 20210066130A KR 1020190155002 A KR1020190155002 A KR 1020190155002A KR 20190155002 A KR20190155002 A KR 20190155002A KR 20210066130 A KR20210066130 A KR 20210066130A
Authority
KR
South Korea
Prior art keywords
carbon nanofiber
carbon
acid
metal oxide
carbon nanofibers
Prior art date
Application number
KR1020190155002A
Other languages
Korean (ko)
Other versions
KR102336788B1 (en
Inventor
노광철
신태호
이영욱
장수진
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020190155002A priority Critical patent/KR102336788B1/en
Publication of KR20210066130A publication Critical patent/KR20210066130A/en
Application granted granted Critical
Publication of KR102336788B1 publication Critical patent/KR102336788B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention relates to a method for producing a carbon nanofiber carrier. The method comprises the steps of: increasing an oxygen functional group on the surface of a carbon nanofiber by acid-treating the carbon nanofiber; dispersing the acid-treated carbon nanofibers in an aqueous solution to form a carbon nanofiber dispersion; mixing a metal nitrate with the carbon nanofiber dispersion; microwave-treating the carbon nanofiber dispersion in which the metal nitrate is mixed, so that the metal particles of the metal nitrate are combined with the oxygen functional group to obtain carbon nanofibers having a metal oxide formed thereon; and mixing the carbon nanofibers formed on the surface of the metal oxide and the catalyst precursor in a solvent, and heating in a bath; and washing and drying the heated result of the bath. According to the present invention, since the metal oxide and the catalyst are uniformly coated on the surface of the carbon nanofiber, the surface functionalization of the carbon nanofiber can be achieved. A catalyst carrier made of a composite of metal oxide-carbon nanofibers is formed, so that durability can be improved.

Description

탄소나노섬유 담지체의 제조방법{Manufacturng method of carbon nanofiber support}Manufacturing method of carbon nanofiber support {Manufacturng method of carbon nanofiber support}

본 발명은 탄소나노섬유 담지체의 제조방법에 관한 것으로, 더욱 상세하게는 금속산화물과 촉매가 탄소나노섬유 표면에 균일하게 코팅되어 있어 탄소나노섬유의 표면 기능화가 이루어질 수 있고, 금속산화물-탄소나노섬유의 복합체로 이루어진 촉매 담지체가 형성되어 내구성이 향상될 수 있는 탄소나노섬유 담지체의 제조방법에 관한 것이다. The present invention relates to a method for manufacturing a carbon nanofiber support, and more particularly, a metal oxide and a catalyst are uniformly coated on the surface of the carbon nanofiber, so that the surface functionalization of the carbon nanofiber can be achieved, and the metal oxide-carbon nanofiber The present invention relates to a method for manufacturing a carbon nanofiber support capable of improving durability by forming a catalyst support made of a composite of fibers.

PEMFC(Polymer Electoryte Membrane Fuel Cells)의 경우 내구성을 향상시키며 투자비를 저감하는 기술의 개발이 필요하다. PEMFC의 촉매는 높은 가격 등으로 인하여 상업적 활용이 여전히 어려움에 있다. In the case of PEMFC (Polymer Electrolyte Membrane Fuel Cells), it is necessary to develop a technology that improves durability and reduces investment cost. The PEMFC catalyst is still difficult to commercialize due to its high price.

카본블랙을 담지체로 사용한 경우에는 연료전지의 운전 중 탄소의 부식으로 인한 내구성이 저하되고, 이로 인하여 연료전지의 수명이 감소되는 문제점이 있다. When carbon black is used as a carrier, durability is deteriorated due to corrosion of carbon during operation of the fuel cell, thereby reducing the lifespan of the fuel cell.

본 발명의 발명자들은 부식저항이 큰 재료인 메탈 담지체에 의해서 내부식성을 향상시키기 위한 연구를 하고 있으며, 또한 촉매 담체를 카본계가 아닌 금속산화물 조성으로 담체를 대체하려는 연구를 하고 있으며, 촉매 소재의 내구성 확보를 위하여 탄소계 촉매 담체 표면 개질이나 그래핀 혼합 등의 방식과 달리 세라믹 담체 혼합을 통해 일부 기능을 증강시키고자 본 발명에 이르게 되었다. The inventors of the present invention are conducting research to improve corrosion resistance by means of a metal support, which is a material with high corrosion resistance, and are also studying to replace the catalyst carrier with a non-carbon-based metal oxide composition. Unlike methods such as carbon-based catalyst carrier surface modification or graphene mixing in order to secure durability, the present invention was reached to enhance some functions through ceramic carrier mixing.

대한민국 공개특허공보 제10-2014-0128329호Republic of Korea Patent Publication No. 10-2014-0128329

본 발명이 해결하고자 하는 과제는 금속산화물과 촉매가 탄소나노섬유 표면에 균일하게 코팅되어 있어 탄소나노섬유의 표면 기능화가 이루어질 수 있고, 금속산화물-탄소나노섬유의 복합체로 이루어진 촉매 담지체가 형성되어 내구성이 향상될 수 있는 탄소나노섬유 담지체의 제조방법을 제공함에 있다. The problem to be solved by the present invention is that the metal oxide and the catalyst are uniformly coated on the surface of the carbon nanofibers, so that the surface functionalization of the carbon nanofibers can be achieved, and a catalyst carrier made of a metal oxide-carbon nanofiber composite is formed for durability. An object of the present invention is to provide a method for manufacturing a carbon nanofiber support that can be improved.

본 발명은, (a) 탄소나노섬유를 산(acid) 처리하여 상기 탄소나노섬유의 표면에 산소 관능기를 증가시키는 단계와, (b) 산(acid) 처리된 탄소나노섬유를 수용액에 분산시켜 탄소나노섬유 분산액을 형성하는 단계와, (c) 상기 탄소나노섬유 분산액에 금속질산염을 혼합하는 단계와, (d) 상기 금속질산염이 혼합된 탄소나노섬유 분산액을 마이크로웨이브(microwave) 처리하여 상기 금속질산염의 금속 입자가 상기 산소 관능기와 결합하여 금속산화물이 표면에 형성된 탄소나노섬유를 수득하는 단계와, (e) 금속산화물이 표면에 형성된 탄소나노섬유와 촉매전구체를 용매에 혼합하고, 중탕 가열하는 단계 및 (f) 중탕 가열된 결과물을 세척하고 건조하는 단계를 포함하는 탄소나노섬유 담지체의 제조방법을 제공한다. The present invention comprises the steps of (a) treating carbon nanofibers with acid to increase an oxygen functional group on the surface of the carbon nanofibers, and (b) dispersing the acid-treated carbon nanofibers in an aqueous solution to obtain carbon Forming a nanofiber dispersion, (c) mixing a metal nitrate to the carbon nanofiber dispersion, and (d) microwave-treating the carbon nanofiber dispersion in which the metal nitrate is mixed to the metal nitrate of metal particles are combined with the oxygen functional group to obtain carbon nanofibers having a metal oxide formed on the surface, and (e) mixing the carbon nanofibers formed on the surface of the metal oxide with a catalyst precursor in a solvent, and heating in a bath And (f) provides a method for producing a carbon nanofiber carrier comprising the step of washing and drying the heated resultant bath.

상기 금속질산염은 Ti(NO3)4, Ti(NO2)2, Ni(NO3)2, Cu(NO3)2, Mg(NO3)2, Fe(NO3)3, Cd(NO3)2, Al(NO3)3, Ga(NO3)3, Zn(NO3)2, Sc(NO3)3, Cr(NO3)3, Pd(NO3)2, Ag(NO3), Er(NO3)3, Pb(NO3)2, Sr(NO3)2, Zr(NO3)4, La(NO3)3, Ba(NO3)2, Yb(NO3)3, Mn(NO3)2, Ba(NO2)2, Tm(NO3)3, Tl(NO3), Cs(NO3), Li(NO3), Hg(NO3), In(NO3)3, Bi(NO3)3, Gd(NO3)3, Rb(NO3), Be(NO3)2, Ca(NO3)2, Co(NO3)2 및 Ni(NO2)2로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.The metal nitrate is Ti(NO 3 ) 4 , Ti(NO 2 ) 2 , Ni(NO 3 ) 2 , Cu(NO 3 ) 2 , Mg(NO 3 ) 2 , Fe(NO 3 ) 3 , Cd(NO 3 ) ) 2 , Al(NO 3 ) 3 , Ga(NO 3 ) 3 , Zn(NO 3 ) 2 , Sc(NO 3 ) 3 , Cr(NO 3 ) 3 , Pd(NO 3 ) 2 , Ag(NO 3 ) , Er(NO 3 ) 3 , Pb(NO 3 ) 2 , Sr(NO 3 ) 2 , Zr(NO 3 ) 4 , La(NO 3 ) 3 , Ba(NO 3 ) 2 , Yb(NO 3 ) 3 , Mn(NO 3 ) 2 , Ba(NO 2 ) 2 , Tm(NO 3 ) 3 , Tl(NO 3 ), Cs(NO 3 ), Li(NO 3 ), Hg(NO 3 ), In(NO 3 ) 3 , Bi(NO 3 ) 3 , Gd(NO 3 ) 3 , Rb(NO 3 ), Be(NO 3 ) 2 , Ca(NO 3 ) 2 , Co(NO 3 ) 2 and Ni(NO 2 ) 2 as It may include one or more substances selected from the group consisting of.

상기 마이크로웨이브 처리는 60∼90℃로 가열되게 하면서 10∼40분 동안 유지하는 것이 바람직하다.The microwave treatment is preferably maintained for 10 to 40 minutes while being heated to 60 to 90 °C.

상기 용매는 에틸렌글리콜(ethylene glycol)을 포함할 수 있다.The solvent may include ethylene glycol.

상기 촉매전구체는 H2PtCl6 수화물을 포함할 수 있다.The catalyst precursor may comprise a H 2 PtCl 6 hydrate.

상기 산(acid) 처리는 질산, 염산 및 황산으로 이루어진 군으로부서 선택된 1종 이상의 산(acid)을 이용하는 것이 바람직하다.Preferably, the acid treatment uses at least one acid selected from the group consisting of nitric acid, hydrochloric acid and sulfuric acid.

상기 (d) 단계 후 상기 (e) 단계 전에, 금속산화물이 표면에 형성된 탄소나노섬유를 감압여과한 후, 세척하고 건조하는 단계를 더 포함할 수 있다.After step (d) and before step (e), the method may further include washing and drying the carbon nanofibers formed on the surface of the metal oxide under reduced pressure.

상기 금속산화물은 상기 탄소나노섬유 담지체에 5∼15중량% 함유되는 것이 바람직하다.The metal oxide is preferably contained in an amount of 5 to 15% by weight in the carbon nanofiber support.

본 발명에 의하면, 탄소나노섬유를 산(acid) 처리한 후 금속질산염을 혼합하고 마이크로웨이브 처리를 함으로써 입자 크기가 작은 금속 이온이 탄소나노섬유 표면의 산소 관능기와 결합되어 금속산화물이 탄소나노섬유 표면에 균일하게 코팅될 수 있다. According to the present invention, after the carbon nanofiber is acid-treated, metal nitrate is mixed and microwaved, whereby metal ions having a small particle size are combined with an oxygen functional group on the surface of the carbon nanofiber, and the metal oxide is formed on the surface of the carbon nanofiber. can be uniformly coated.

또한, 탄소나노섬유의 표면에 금속산화물과 촉매가 함께 코팅되어 탄소나노섬유의 표면 기능화가 이루어질 수 있다. In addition, a metal oxide and a catalyst are coated on the surface of the carbon nanofibers to make the surface functionalization of the carbon nanofibers.

또한, 세라믹-탄소나노섬유의 복합체로 이루어진 촉매 담지체가 형성되어 담지체의 내구성이 향상될 수 있다. In addition, since the catalyst carrier made of a composite of ceramic-carbon nanofibers is formed, durability of the carrier may be improved.

도 1은 실시예 1에 따라 제조된 탄소나노섬유 담지체의 주사전자현미경(SEM; scanning electron microscope) 사진이다.
도 2는 비교예 1에 따라 제조된 탄소나노섬유 담지체의 주사전자현미경(SEM) 사진이다.
도 3은 비교예 2에 따라 제조된 탄소나노섬유 담지체의 주사전자현미경(SEM) 사진이다.
1 is a scanning electron microscope (SEM) photograph of a carbon nanofiber support prepared according to Example 1. FIG.
2 is a scanning electron microscope (SEM) photograph of the carbon nanofiber carrier prepared according to Comparative Example 1.
3 is a scanning electron microscope (SEM) photograph of the carbon nanofiber carrier prepared according to Comparative Example 2.

이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명한다. 그러나, 이하의 실시예는 이 기술분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings. However, the following examples are provided so that those of ordinary skill in the art can fully understand the present invention, and may be modified in various other forms, and the scope of the present invention is limited to the examples described below it's not going to be

발명의 상세한 설명 또는 청구범위에서 어느 하나의 구성요소가 다른 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 당해 구성요소만으로 이루어지는 것으로 한정되어 해석되지 아니하며, 다른 구성요소를 더 포함할 수 있는 것으로 이해되어야 한다.When it is said that any one component "includes" another component in the detailed description or claims of the invention, it is not construed as being limited to only the component unless otherwise stated, and other components are further added. It should be understood as being able to include

본 발명의 바람직한 실시예에 따른 탄소나노섬유 담지체의 제조방법은, (a) 탄소나노섬유를 산(acid) 처리하여 상기 탄소나노섬유의 표면에 산소 관능기를 증가시키는 단계와, (b) 산(acid) 처리된 탄소나노섬유를 수용액에 분산시켜 탄소나노섬유 분산액을 형성하는 단계와, (c) 상기 탄소나노섬유 분산액에 금속질산염을 혼합하는 단계와, (d) 상기 금속질산염이 혼합된 탄소나노섬유 분산액을 마이크로웨이브(microwave) 처리하여 상기 금속질산염의 금속 입자가 상기 산소 관능기와 결합하여 금속산화물이 표면에 형성된 탄소나노섬유를 수득하는 단계와, (e) 금속산화물이 표면에 형성된 탄소나노섬유와 촉매전구체를 용매에 혼합하고, 중탕 가열하는 단계 및 (f) 중탕 가열된 결과물을 세척하고 건조하는 단계를 포함한다. The method of manufacturing a carbon nanofiber carrier according to a preferred embodiment of the present invention comprises the steps of (a) treating the carbon nanofibers with acid to increase an oxygen functional group on the surface of the carbon nanofibers, (b) acid (acid) dispersing the treated carbon nanofibers in an aqueous solution to form a carbon nanofiber dispersion; (c) mixing a metal nitrate in the carbon nanofiber dispersion; (d) the carbon in which the metal nitrate is mixed A step of microwave-treating the nanofiber dispersion so that the metal particles of the metal nitrate are combined with the oxygen functional group to obtain carbon nanofibers having a metal oxide formed on the surface, and (e) carbon nanofibers formed on the surface of the metal oxide. Mixing the fiber and the catalyst precursor in a solvent, heating in a bath, and (f) washing and drying the resultant heated in a bath.

상기 금속질산염은 Ti(NO3)4, Ti(NO2)2, Ni(NO3)2, Cu(NO3)2, Mg(NO3)2, Fe(NO3)3, Cd(NO3)2, Al(NO3)3, Ga(NO3)3, Zn(NO3)2, Sc(NO3)3, Cr(NO3)3, Pd(NO3)2, Ag(NO3), Er(NO3)3, Pb(NO3)2, Sr(NO3)2, Zr(NO3)4, La(NO3)3, Ba(NO3)2, Yb(NO3)3, Mn(NO3)2, Ba(NO2)2, Tm(NO3)3, Tl(NO3), Cs(NO3), Li(NO3), Hg(NO3), In(NO3)3, Bi(NO3)3, Gd(NO3)3, Rb(NO3), Be(NO3)2, Ca(NO3)2, Co(NO3)2 및 Ni(NO2)2로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.The metal nitrate is Ti(NO 3 ) 4 , Ti(NO 2 ) 2 , Ni(NO 3 ) 2 , Cu(NO 3 ) 2 , Mg(NO 3 ) 2 , Fe(NO 3 ) 3 , Cd(NO 3 ) ) 2 , Al(NO 3 ) 3 , Ga(NO 3 ) 3 , Zn(NO 3 ) 2 , Sc(NO 3 ) 3 , Cr(NO 3 ) 3 , Pd(NO 3 ) 2 , Ag(NO 3 ) , Er(NO 3 ) 3 , Pb(NO 3 ) 2 , Sr(NO 3 ) 2 , Zr(NO 3 ) 4 , La(NO 3 ) 3 , Ba(NO 3 ) 2 , Yb(NO 3 ) 3 , Mn(NO 3 ) 2 , Ba(NO 2 ) 2 , Tm(NO 3 ) 3 , Tl(NO 3 ), Cs(NO 3 ), Li(NO 3 ), Hg(NO 3 ), In(NO 3 ) 3 , Bi(NO 3 ) 3 , Gd(NO 3 ) 3 , Rb(NO 3 ), Be(NO 3 ) 2 , Ca(NO 3 ) 2 , Co(NO 3 ) 2 and Ni(NO 2 ) 2 as It may include one or more substances selected from the group consisting of.

상기 마이크로웨이브 처리는 60∼90℃로 가열되게 하면서 10∼40분 동안 유지하는 것이 바람직하다.The microwave treatment is preferably maintained for 10 to 40 minutes while being heated to 60 to 90 °C.

상기 용매는 에틸렌글리콜(ethylene glycol)을 포함할 수 있다.The solvent may include ethylene glycol.

상기 촉매전구체는 H2PtCl6 수화물을 포함할 수 있다.The catalyst precursor may comprise a H 2 PtCl 6 hydrate.

상기 산(acid) 처리는 질산, 염산 및 황산으로 이루어진 군으로부서 선택된 1종 이상의 산(acid)을 이용하는 것이 바람직하다.Preferably, the acid treatment uses at least one acid selected from the group consisting of nitric acid, hydrochloric acid and sulfuric acid.

상기 (d) 단계 후 상기 (e) 단계 전에, 금속산화물이 표면에 형성된 탄소나노섬유를 감압여과한 후, 세척하고 건조하는 단계를 더 포함할 수 있다.After step (d) and before step (e), the method may further include washing and drying the carbon nanofibers formed on the surface of the metal oxide under reduced pressure.

상기 금속산화물은 상기 탄소나노섬유 담지체에 5∼15중량% 함유되는 것이 바람직하다.The metal oxide is preferably contained in an amount of 5 to 15% by weight in the carbon nanofiber support.

이하에서, 본 발명의 바람직한 실시예에 따른 탄소나노섬유 담지체의 제조방법을 더욱 구체적으로 설명한다. Hereinafter, a method of manufacturing a carbon nanofiber carrier according to a preferred embodiment of the present invention will be described in more detail.

탄소나노섬유를 준비한다. 상기 탄소나노섬유는 지름이 10∼100㎚ 이고, 종횡비가 10보다 큰(예컨대, 종횡비가 10.1∼300) 것이 바람직하다.Prepare carbon nanofibers. The carbon nanofibers preferably have a diameter of 10 to 100 nm and an aspect ratio greater than 10 (eg, an aspect ratio of 10.1 to 300).

탄소나노섬유를 산(acid) 처리한다. 상기 산(acid)에 의해 탄소나노섬유의 표면에 산소 관능기를 증가되게 된다. 상기 산(acid) 처리는 질산, 염산 및 황산으로 이루어진 군으로부서 선택된 1종 이상의 산(acid)을 이용하는 것이 바람직하다. 산(acid) 용액에 탄소나노섬유를 넣고 산(acid) 처리를 수행하고, 상기 산(acid) 처리 후에는 증류수 등의 희석액에 넣어 희석시킨 후, 산(acid) 처리된 결과물을 선택적으로 분리해내고 건조하는 것이 바람직하다. 선택적 분리는 감암여과장치 등을 이용하여 필터링하는 방법 등을 이용할 수 있다. Carbon nanofibers are acid-treated. Oxygen functional groups are increased on the surface of the carbon nanofibers by the acid. Preferably, the acid treatment uses at least one acid selected from the group consisting of nitric acid, hydrochloric acid and sulfuric acid. After putting carbon nanofibers in an acid solution and performing an acid treatment, after the acid treatment, it is diluted by putting it in a diluent such as distilled water, and then the acid-treated product is selectively separated It is preferable to put it out and dry it. For selective separation, a method of filtering using a dark filtration device or the like may be used.

산(acid) 처리된 탄소나노섬유를 수용액에 분산시켜 탄소나노섬유 분산액을 형성한다. The acid-treated carbon nanofibers are dispersed in an aqueous solution to form a carbon nanofiber dispersion.

상기 탄소나노섬유 분산액에 금속질산염을 혼합한다. 상기 금속질산염은 Ti(NO3)4, Ti(NO2)2, Ni(NO3)2, Cu(NO3)2, Mg(NO3)2, Fe(NO3)3, Cd(NO3)2, Al(NO3)3, Ga(NO3)3, Zn(NO3)2, Sc(NO3)3, Cr(NO3)3, Pd(NO3)2, Ag(NO3), Er(NO3)3, Pb(NO3)2, Sr(NO3)2, Zr(NO3)4, La(NO3)3, Ba(NO3)2, Yb(NO3)3, Mn(NO3)2, Ba(NO2)2, Tm(NO3)3, Tl(NO3), Cs(NO3), Li(NO3), Hg(NO3), In(NO3)3, Bi(NO3)3, Gd(NO3)3, Rb(NO3), Be(NO3)2, Ca(NO3)2, Co(NO3)2 및 Ni(NO2)2로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다. 상기 금속질산염은 상기 탄소나노섬유 100중량부에 대하여 5∼25중량부, 바람직하게는 5∼15중량부 혼합하는 것이 바람직하다. A metal nitrate is mixed with the carbon nanofiber dispersion. The metal nitrate is Ti(NO 3 ) 4 , Ti(NO 2 ) 2 , Ni(NO 3 ) 2 , Cu(NO 3 ) 2 , Mg(NO 3 ) 2 , Fe(NO 3 ) 3 , Cd(NO 3 ) ) 2 , Al(NO 3 ) 3 , Ga(NO 3 ) 3 , Zn(NO 3 ) 2 , Sc(NO 3 ) 3 , Cr(NO 3 ) 3 , Pd(NO 3 ) 2 , Ag(NO 3 ) , Er(NO 3 ) 3 , Pb(NO 3 ) 2 , Sr(NO 3 ) 2 , Zr(NO 3 ) 4 , La(NO 3 ) 3 , Ba(NO 3 ) 2 , Yb(NO 3 ) 3 , Mn(NO 3 ) 2 , Ba(NO 2 ) 2 , Tm(NO 3 ) 3 , Tl(NO 3 ), Cs(NO 3 ), Li(NO 3 ), Hg(NO 3 ), In(NO 3 ) 3 , Bi(NO 3 ) 3 , Gd(NO 3 ) 3 , Rb(NO 3 ), Be(NO 3 ) 2 , Ca(NO 3 ) 2 , Co(NO 3 ) 2 and Ni(NO 2 ) 2 as It may include one or more substances selected from the group consisting of. The metal nitrate is preferably mixed with 5 to 25 parts by weight, preferably 5 to 15 parts by weight, based on 100 parts by weight of the carbon nanofibers.

상기 금속질산염이 혼합된 탄소나노섬유 분산액을 마이크로웨이브(microwave) 처리하여 상기 금속질산염의 금속 입자가 상기 산소 관능기와 결합하여 금속산화물이 표면에 형성된 탄소나노섬유를 수득한다. The carbon nanofiber dispersion in which the metal nitrate is mixed is subjected to microwave treatment so that the metal particles of the metal nitrate are combined with the oxygen functional group to obtain carbon nanofibers having a metal oxide formed thereon.

마이크로웨이브는 주파수 0.3GHZ∼300GHZ의 교류의 범위에 붙여진 통칭이다. 마이크로웨이브(microwave)는 주파수가 0.3∼300GHz이고, 파장이 1㎜∼100㎝로서 정합적(coherent)이고 분극화(polarized)되어 있는 전자기파(electromagnetic wave)이다. 마이크로웨이브에서는 1초간에 3억∼300억회 정도 전류의 방향이 변한다. 마이크로웨이브는 그 파장이 1㎜∼100cm에 이르며, 전파로서 이용하고 있는 파 중에서는 파장이 짧은 부류에 속하고 있다. Microwave is a generic name given to the range of alternating current with a frequency of 0.3 GHZ to 300 GHZ. A microwave is a coherent and polarized electromagnetic wave with a frequency of 0.3 to 300 GHz and a wavelength of 1 mm to 100 cm. In microwave, the direction of current changes about 300 to 30 billion times per second. Microwaves have a wavelength ranging from 1 mm to 100 cm, and among the waves used as radio waves, they belong to a class with a short wavelength.

마이크로웨이브 발생장치(microwave generator)는 마이크로웨이브를 발생시키는 마그네트론(mganetron)과, 마이크로웨이브를 일측으로 이동시키는 가이드관과, 가이드관을 통한 마이크로웨이브의 파장을 깊게 골고루 분산시키도록 하는 슬롯을 갖는 도파관(transmission)을 포함하여 구성되어 있다.A microwave generator is a magnetron that generates a microwave, a guide tube that moves the microwave to one side, and a waveguide having a slot to evenly distribute the wavelength of the microwave through the guide tube. (transmission) is included.

마이크로웨이브에 의해 발생하는 열은 진동수에 비례하게 된다. 즉 진동수가 높을수록 많은 열이 발생한다.The heat generated by microwaves is proportional to the frequency. That is, the higher the frequency, the more heat is generated.

마이크로웨이브 가열은 피가열물 자체가 발열체가 되어 물질의 내부에서 가열이 이루어지기 때문에 내부 가열이라고 한다. 이러한 내부가열의 경우 물체의 외부에서 산란하는 여분의 열이 거의 없으므로 원리적으로 아주 효율이 좋은 가열을 할 수 있다.Microwave heating is called internal heating because the object to be heated itself becomes a heating element and heating takes place inside the material. In the case of such internal heating, since there is almost no extra heat scattered from the outside of the object, in principle, very efficient heating can be performed.

상기 마이크로웨이브 처리는 55∼100℃, 더욱 바람직하게는 60∼90℃로 가열되게 하면서 10∼40분 동안 유지하는 것이 바람직하다.The microwave treatment is preferably maintained for 10 to 40 minutes while heating to 55 to 100 °C, more preferably 60 to 90 °C.

마이크로웨이브(microwave) 처리에 의해 금속질산염의 금속 입자는 탄소나노섬유 표면의 산소 관능기와 결합하게 되고 최종적으로 금속산화물이 탄소나노섬유의 표면에 형성되게 된다. By microwave treatment, the metal particles of the metal nitrate are combined with an oxygen functional group on the surface of the carbon nanofiber, and finally a metal oxide is formed on the surface of the carbon nanofiber.

금속산화물이 표면에 형성된 탄소나노섬유를 선택적으로 분리해낸 후, 세척하고 건조한다. 선택적 분리는 감암여과장치 등을 이용할 수 있다. 상기 세척은 에탄올, 증류수 등을 이용할 수 있다. 상기 건조는 진공오븐에서 수행하는 것이 바람직하다. After selectively separating the carbon nanofibers formed on the surface of the metal oxide, it is washed and dried. For selective separation, a dark filtration device or the like may be used. The washing may be performed using ethanol, distilled water, or the like. The drying is preferably performed in a vacuum oven.

금속산화물이 표면에 형성된 탄소나노섬유와 촉매전구체를 용매에 혼합하고, 중탕 가열한다. 상기 용매는 에틸렌글리콜(ethylene glycol)을 포함할 수 있다. 상기 촉매전구체는 H2PtCl6 수화물을 포함할 수 있다. 상기 중탕 가열은 80∼150℃, 더욱 바람직하게는 95∼120℃ 정도의 온도에서 10분∼12시간 동안 수행하는 것이 바람직하다. The carbon nanofibers formed on the surface of the metal oxide and the catalyst precursor are mixed in a solvent and heated in a hot water bath. The solvent may include ethylene glycol. The catalyst precursor may comprise a H 2 PtCl 6 hydrate. The bath heating is preferably performed for 10 minutes to 12 hours at a temperature of about 80 to 150 ℃, more preferably about 95 to 120 ℃.

중탕 가열된 결과물을 세척하고 건조하여 탄소나노섬유 담지체를 수득한다. 상기 세척은 에탄올, 증류수 등을 이용할 수 있다. 상기 건조는 진공오븐에서 수행하는 것이 바람직하다. The resultant heated in the bath was washed and dried to obtain a carbon nanofiber carrier. The washing may be performed using ethanol, distilled water, or the like. The drying is preferably performed in a vacuum oven.

이렇게 제조된 탄소나노섬유 담지체는 탄소나노섬유 표면에 금속산화물과 촉매가 도포되어 있는 구조를 갖게 된다. 상기 금속산화물은 상기 탄소나노섬유 담지체에 5∼15중량% 함유되는 것이 바람직하다. 상기 촉매는 상기 탄소나노섬유 담지체에 20∼50중량% 함유되는 것이 바람직하다. The carbon nanofiber support prepared in this way has a structure in which a metal oxide and a catalyst are coated on the surface of the carbon nanofiber. The metal oxide is preferably contained in an amount of 5 to 15% by weight in the carbon nanofiber support. The catalyst is preferably contained in an amount of 20 to 50% by weight in the carbon nanofiber support.

이하에서, 본 발명에 따른 실시예를 구체적으로 제시하며, 다음에 제시하는 실시예에 본 발명이 한정되는 것은 아니다. Hereinafter, examples according to the present invention are specifically presented, and the present invention is not limited to the examples presented below.

<실시예 1><Example 1>

60%의 질산 용액 10㎖에 탄소나노섬유(CNF; carbon nanofiber)를 0.9g을 첨가하고 교반하면서 반응시켰다. 상기 교반은 24시간 동안 상온에서 수행하였다. 0.9 g of carbon nanofiber (CNF) was added to 10 ml of a 60% nitric acid solution and reacted with stirring. The stirring was performed at room temperature for 24 hours.

상기 반응이 완료된 용액을 탈이온수 100㎖에 넣어 혼합하여 희석시켜 주었다. The solution in which the reaction was completed was added to 100 ml of deionized water, mixed and diluted.

희석된 용액에 대하여 감압여과장치를 이용하여 필터링 후 상온에서 건조시켰다. 이렇게 얻은 파우더(powder)를 산처리된 CNF 라고 한다. The diluted solution was filtered using a vacuum filtration device and dried at room temperature. The powder thus obtained is called acid-treated CNF.

산처리된 CNF를 탈이온수 60㎖ 에 분산시킨 후, 금속질산염인 0.1M Ti(NO3)4 2㎖를 첨가하여 분산시켰다. After the acid-treated CNF was dispersed in 60 ml of deionized water, 2 ml of 0.1M Ti(NO 3 ) 4 as a metal nitrate was added and dispersed.

상기 Ti(NO3)4가 첨가된 분산액을 400W, 80℃의 조건에서 30분 동안 마이크로웨이브(microwave) 처리를 수행하였다. The Ti(NO 3 ) 4 added dispersion was subjected to microwave treatment at 400W and 80° C. for 30 minutes.

상기 마이크로웨이브 처리가 끝난 후, 감압여과장치를 이용하여 감압여과하여 시료를 얻은 후, 에탄올과 증류수를 이용하여 세척하고, 상온 진공오븐에서 건조하여 파우더를 수득하였다. After the microwave treatment was completed, the sample was obtained by filtration under reduced pressure using a vacuum filtration device, washed with ethanol and distilled water, and dried in a vacuum oven at room temperature to obtain a powder.

상기 파우더 0.1g을 에틸렌글리콜(ethylene glycol) 100㎖에 분산시킨 후, 0.05M H2PtCl6·6H2O 5㎖를 첨가하였다. After dispersing 0.1 g of the powder in 100 ml of ethylene glycol, 0.05MH 2 PtCl 6 ·6H 2 O 5 ml was added.

H2PtCl6·6H2O가 첨가된 결과물을 110℃로 중탕 가열하면서 2시간 동안 유지하였다. H 2 PtCl 6 ·6H 2 O was added to the resultant was maintained for 2 hours while heating the bath to 110 ℃.

중탕 가열된 결과물을 상온으로 식힌 후, 얻어진 촉매 슬러리를 여과하고, 다량의 탈이온수 및 에탄올로 세척하였다. After the resultant heated in the bath was cooled to room temperature, the resulting catalyst slurry was filtered and washed with a large amount of deionized water and ethanol.

상기 세척 후 상온 진공오븐에서 건조하여 탄소나노섬유 담지체를 수득하였다.After the washing, it was dried in a vacuum oven at room temperature to obtain a carbon nanofiber carrier.

상기 실시예의 특성을 보다 용이하게 파악할 수 있도록 비교예들을 제시하며, 아래의 비교예들은 단순히 이해를 돕기 위하여 제시하는 것으로 본 발명의 선행기술이 아니다.Comparative examples are presented so that the characteristics of the embodiment can be more easily understood, and the comparative examples below are merely presented to aid understanding and are not prior art of the present invention.

<비교예 1><Comparative Example 1>

60%의 질산 용액 10㎖에 탄소나노섬유(CNF)를 0.9g을 첨가하고 교반하면서 반응시켰다. 상기 교반은 24시간 동안 상온에서 수행하였다. 0.9 g of carbon nanofibers (CNF) was added to 10 ml of a 60% nitric acid solution and reacted with stirring. The stirring was performed at room temperature for 24 hours.

상기 반응이 완료된 용액을 탈이온수 100㎖에 넣어 혼합하여 희석시켜 주었다. The solution in which the reaction was completed was added to 100 ml of deionized water, mixed and diluted.

희석된 용액에 대하여 감압여과장치를 이용하여 필터링 후 상온에서 건조시켰다. 이렇게 얻은 파우더(powder)를 산처리된 CNF 라고 한다. The diluted solution was filtered using a vacuum filtration device and dried at room temperature. The powder thus obtained is called acid-treated CNF.

산처리된 CNF를 탈이온수 60㎖ 에 분산시킨 후, TiO2 0.1g을 첨가하여 분산시켰다. After dispersing the acid-treated CNF in 60 ml of deionized water, 0.1 g of TiO 2 was added and dispersed.

상기 TiO2가 첨가된 분산액을 400W, 80℃의 조건에서 30분 동안 마이크로웨이브(microwave) 처리를 수행하였다. The TiO 2 added dispersion was subjected to microwave treatment for 30 minutes at 400W and 80°C.

상기 마이크로웨이브 처리가 끝난 후, 감압여과장치를 이용하여 감압여과하여 시료를 얻은 후, 에탄올과 증류수를 이용하여 세척하고, 상온 진공오븐에서 건조하여 파우더를 수득하였다. After the microwave treatment was completed, the sample was obtained by filtration under reduced pressure using a vacuum filtration device, washed with ethanol and distilled water, and dried in a vacuum oven at room temperature to obtain a powder.

상기 파우더 0.1g을 에틸렌글리콜(ethylene glycol) 100㎖에 분산시킨 후, 0.05M H2PtCl6·6H2O 5㎖를 첨가하였다. After dispersing 0.1 g of the powder in 100 ml of ethylene glycol, 0.05MH 2 PtCl 6 ·6H 2 O 5 ml was added.

H2PtCl6·6H2O가 첨가된 결과물을 110℃로 중탕 가열하면서 2시간 동안 유지하였다. H 2 PtCl 6 ·6H 2 O was added to the resultant was maintained for 2 hours while heating the bath to 110 ℃.

중탕 가열된 결과물을 상온으로 식힌 후, 얻어진 촉매 슬러리를 여과하고, 다량의 탈이온수 및 에탄올로 세척하였다. After the resultant heated in the bath was cooled to room temperature, the resulting catalyst slurry was filtered and washed with a large amount of deionized water and ethanol.

상기 세척 후 상온 진공오븐에서 건조하여 탄소나노섬유 담지체를 수득하였다.After the washing, it was dried in a vacuum oven at room temperature to obtain a carbon nanofiber carrier.

<비교예 2><Comparative Example 2>

60%의 질산 용액 10㎖에 탄소나노섬유(CNF)를 0.9g을 첨가하고 교반하면서 반응시켰다. 상기 교반은 24시간 동안 상온에서 수행하였다. 0.9 g of carbon nanofibers (CNF) was added to 10 ml of a 60% nitric acid solution and reacted with stirring. The stirring was performed at room temperature for 24 hours.

상기 반응이 완료된 용액을 탈이온수 100㎖에 넣어 혼합하여 희석시켜 주었다. The solution in which the reaction was completed was added to 100 ml of deionized water, mixed and diluted.

희석된 용액에 대하여 감압여과장치를 이용하여 필터링 후 상온에서 건조시켰다. 이렇게 얻은 파우더(powder)를 산처리된 CNF 라고 한다. The diluted solution was filtered using a vacuum filtration device and dried at room temperature. The powder thus obtained is called acid-treated CNF.

산처리된 CNF를 탈이온수 60㎖ 에 분산시킨 후, TiO2 0.1g을 첨가하여 분산시켰다. After dispersing the acid-treated CNF in 60 ml of deionized water, 0.1 g of TiO 2 was added and dispersed.

상기 TiO2가 첨가된 분산액을 80℃에서 중탕 가열처리하였다. The dispersion to which TiO 2 was added was heat-treated at 80°C.

상기 중탕 가열처리가 끝난 후, 감압여과장치를 이용하여 감암여과하여 시료를 얻은 후, 에탄올과 증류수를 이용하여 세척하고, 상온 진공오븐에서 건조하여 파우더를 수득하였다. After the bath heat treatment was completed, the sample was obtained by dark filtration using a vacuum filtration device, washed with ethanol and distilled water, and dried in a vacuum oven at room temperature to obtain a powder.

상기 파우더를 0.1g을 에틸렌글리콜(ethylene glycol) 100㎖에 분산시킨 후, 0.05M H2PtCl6·6H2O 5㎖를 첨가하였다. After dispersing 0.1 g of the powder in 100 ml of ethylene glycol, 0.05MH 2 PtCl 6 .6H 2 O 5 ml was added.

H2PtCl6·6H2O가 첨가된 결과물을 110℃로 중탕 가열하면서 2시간 동안 유지하였다. H 2 PtCl 6 ·6H 2 O was added to the resultant was maintained for 2 hours while heating the bath to 110 ℃.

중탕 가열된 결과물을 상온으로 식힌 후, 얻어진 촉매 슬러리를 여과하고, 다량의 탈이온수 및 에탄올로 세척하였다. After the resultant heated in the bath was cooled to room temperature, the resulting catalyst slurry was filtered and washed with a large amount of deionized water and ethanol.

상기 세척 후 상온 진공오븐에서 건조하여 탄소나노섬유 담지체를 수득하였다.After the washing, it was dried in a vacuum oven at room temperature to obtain a carbon nanofiber carrier.

도 1은 실시예 1에 따라 제조된 탄소나노섬유 담지체의 주사전자현미경(SEM; scanning electron microscope) 사진이다.1 is a scanning electron microscope (SEM) photograph of a carbon nanofiber support prepared according to Example 1. FIG.

도 1을 참조하면, 실시예 1에 따라 제조된 탄소나노섬유 담지체는 균일하게 TiO2와 Pt가 도포되어 있는 것을 확인할 수 있었다.Referring to FIG. 1 , it was confirmed that the carbon nanofiber support prepared according to Example 1 was uniformly coated with TiO 2 and Pt.

도 2는 비교예 1에 따라 제조된 탄소나노섬유 담지체의 주사전자현미경(SEM) 사진이다. 2 is a scanning electron microscope (SEM) photograph of the carbon nanofiber carrier prepared according to Comparative Example 1.

도 2를 참조하면, 비교예 1에 따라 제조된 탄소나노섬유 담지체는 TiO2를 사용함으로써 탄소나노섬유 표면에 TiO2가 도포는 되었으나, TiO2가 뭉쳐진 입자가 생성되어 있었다. Referring to FIG. 2 , in the carbon nanofiber carrier prepared according to Comparative Example 1, TiO 2 was applied to the surface of the carbon nanofiber by using TiO 2 , but TiO 2 aggregated particles were generated.

도 3은 비교예 2에 따라 제조된 탄소나노섬유 담지체의 주사전자현미경(SEM) 사진이다. 3 is a scanning electron microscope (SEM) photograph of the carbon nanofiber carrier prepared according to Comparative Example 2.

도 3을 참조하면, 비교예에 따라 제조된 탄소나노섬유 담지체는 TiO2 입자를 분산하여 중탕 열처리를 하였는데, TiO2 입자가 탄소나노섬유 표면과 주위에서 뭉쳐져 있는 것을 확인할 수 있었다.3, the comparison example in which the carbon nanofibers are dispersed in the carrier prepared in accordance with the TiO 2 particles were the bath heat treatment, it was confirmed that the TiO 2 particles in mungchyeojyeo around the carbon nanofiber surface.

이상, 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되는 것은 아니며, 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.As mentioned above, although preferred embodiments of the present invention have been described in detail, the present invention is not limited to the above embodiments, and various modifications are possible by those skilled in the art.

Claims (8)

(a) 탄소나노섬유를 산(acid) 처리하여 상기 탄소나노섬유의 표면에 산소 관능기를 증가시키는 단계;
(b) 산(acid) 처리된 탄소나노섬유를 수용액에 분산시켜 탄소나노섬유 분산액을 형성하는 단계;
(c) 상기 탄소나노섬유 분산액에 금속질산염을 혼합하는 단계;
(d) 상기 금속질산염이 혼합된 탄소나노섬유 분산액을 마이크로웨이브(microwave) 처리하여 상기 금속질산염의 금속 입자가 상기 산소 관능기와 결합하여 금속산화물이 표면에 형성된 탄소나노섬유를 수득하는 단계;
(e) 금속산화물이 표면에 형성된 탄소나노섬유와 촉매전구체를 용매에 혼합하고, 중탕 가열하는 단계; 및
(f) 중탕 가열된 결과물을 세척하고 건조하는 단계를 포함하는 것을 특징으로 하는 탄소나노섬유 담지체의 제조방법.
(a) increasing the oxygen functional group on the surface of the carbon nanofibers by acid (acid) treatment of the carbon nanofibers;
(b) dispersing the acid-treated carbon nanofibers in an aqueous solution to form a carbon nanofiber dispersion;
(c) mixing a metal nitrate with the carbon nanofiber dispersion;
(d) microwave-treating the carbon nanofiber dispersion in which the metal nitrate is mixed, so that the metal particles of the metal nitrate combine with the oxygen functional group to obtain carbon nanofibers having a metal oxide formed thereon;
(e) mixing the carbon nanofibers formed on the surface of the metal oxide and the catalyst precursor in a solvent, and heating in a bath; and
(f) a method of manufacturing a carbon nanofiber carrier, characterized in that it comprises the step of washing and drying the resultant heated in the bath.
제1항에 있어서, 상기 금속질산염은 Ti(NO3)4, Ti(NO2)2, Ni(NO3)2, Cu(NO3)2, Mg(NO3)2, Fe(NO3)3, Cd(NO3)2, Al(NO3)3, Ga(NO3)3, Zn(NO3)2, Sc(NO3)3, Cr(NO3)3, Pd(NO3)2, Ag(NO3), Er(NO3)3, Pb(NO3)2, Sr(NO3)2, Zr(NO3)4, La(NO3)3, Ba(NO3)2, Yb(NO3)3, Mn(NO3)2, Ba(NO2)2, Tm(NO3)3, Tl(NO3), Cs(NO3), Li(NO3), Hg(NO3), In(NO3)3, Bi(NO3)3, Gd(NO3)3, Rb(NO3), Be(NO3)2, Ca(NO3)2, Co(NO3)2 및 Ni(NO2)2로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함하는 것을 특징으로 하는 탄소나노섬유 담지체의 제조방법.
According to claim 1, wherein the metal nitrate is Ti(NO 3 ) 4 , Ti(NO 2 ) 2 , Ni(NO 3 ) 2 , Cu(NO 3 ) 2 , Mg(NO 3 ) 2 , Fe(NO 3 ) 3 , Cd(NO 3 ) 2 , Al(NO 3 ) 3 , Ga(NO 3 ) 3 , Zn(NO 3 ) 2 , Sc(NO 3 ) 3 , Cr(NO 3 ) 3 , Pd(NO 3 ) 2 , Ag(NO 3 ), Er(NO 3 ) 3 , Pb(NO 3 ) 2 , Sr(NO 3 ) 2 , Zr(NO 3 ) 4 , La(NO 3 ) 3 , Ba(NO 3 ) 2 , Yb (NO 3 ) 3 , Mn(NO 3 ) 2 , Ba(NO 2 ) 2 , Tm(NO 3 ) 3 , Tl(NO 3 ), Cs(NO 3 ), Li(NO 3 ), Hg(NO 3 ) , In(NO 3 ) 3 , Bi(NO 3 ) 3 , Gd(NO 3 ) 3 , Rb(NO 3 ), Be(NO 3 ) 2 , Ca(NO 3 ) 2 , Co(NO 3 ) 2 and Ni (NO 2 ) 2 A method for producing a carbon nanofiber support, comprising at least one material selected from the group consisting of.
제1항에 있어서, 상기 마이크로웨이브 처리는 60∼90℃로 가열되게 하면서 10∼40분 동안 유지하는 것을 특징으로 하는 탄소나노섬유 담지체의 제조방법.
The method of claim 1, wherein the microwave treatment is maintained for 10 to 40 minutes while being heated to 60 to 90°C.
제1항에 있어서, 상기 용매는 에틸렌글리콜(ethylene glycol)을 포함하는 것을 특징으로 하는 탄소나노섬유 담지체의 제조방법.
The method of claim 1, wherein the solvent comprises ethylene glycol.
제1항에 있어서, 상기 촉매전구체는 H2PtCl6 수화물을 포함하는 것을 특징으로 하는 탄소나노섬유 담지체의 제조방법.
The method of claim 1, wherein the catalyst precursor comprises H 2 PtCl 6 hydrate.
제1항에 있어서, 상기 산(acid) 처리는 질산, 염산 및 황산으로 이루어진 군으로부서 선택된 1종 이상의 산(acid)을 이용하는 것을 특징으로 하는 탄소나노섬유 담지체의 제조방법.
The method of claim 1, wherein the acid treatment uses at least one acid selected from the group consisting of nitric acid, hydrochloric acid and sulfuric acid.
제1항에 있어서, 상기 (d) 단계 후 상기 (e) 단계 전에,
금속산화물이 표면에 형성된 탄소나노섬유를 감압여과한 후, 세척하고 건조하는 단계를 더 포함하는 것을 특징으로 하는 탄소나노섬유 담지체의 제조방법.
The method of claim 1, wherein after step (d) and before step (e),
Method for producing a carbon nanofiber support, characterized in that it further comprises the step of filtering the carbon nanofibers formed on the surface of the metal oxide under reduced pressure, followed by washing and drying.
제1항에 있어서, 상기 금속산화물은 상기 탄소나노섬유 담지체에 5∼15중량% 함유되는 것을 특징으로 하는 탄소나노섬유 담지체의 제조방법.The method of claim 1, wherein the metal oxide is contained in an amount of 5 to 15 wt% in the carbon nanofiber support.
KR1020190155002A 2019-11-28 2019-11-28 Manufacturng method of carbon nanofiber support KR102336788B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190155002A KR102336788B1 (en) 2019-11-28 2019-11-28 Manufacturng method of carbon nanofiber support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190155002A KR102336788B1 (en) 2019-11-28 2019-11-28 Manufacturng method of carbon nanofiber support

Publications (2)

Publication Number Publication Date
KR20210066130A true KR20210066130A (en) 2021-06-07
KR102336788B1 KR102336788B1 (en) 2021-12-07

Family

ID=76374202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190155002A KR102336788B1 (en) 2019-11-28 2019-11-28 Manufacturng method of carbon nanofiber support

Country Status (1)

Country Link
KR (1) KR102336788B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090014554A (en) * 2007-08-06 2009-02-11 연세대학교 산학협력단 Nanocomposite, synthesis method thereof and capacitor comprising the same
KR20120089916A (en) * 2010-12-21 2012-08-16 한국화학연구원 Method for preparing titanium dioxide-added electrocatalysts for fuel cells
KR20140128329A (en) 2012-02-15 2014-11-05 도판 인사츠 가부시키가이샤 Carbon fiber composite, process for producing same, catalyst-carrying body and polymer electrolyte fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090014554A (en) * 2007-08-06 2009-02-11 연세대학교 산학협력단 Nanocomposite, synthesis method thereof and capacitor comprising the same
KR20120089916A (en) * 2010-12-21 2012-08-16 한국화학연구원 Method for preparing titanium dioxide-added electrocatalysts for fuel cells
KR20140128329A (en) 2012-02-15 2014-11-05 도판 인사츠 가부시키가이샤 Carbon fiber composite, process for producing same, catalyst-carrying body and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
KR102336788B1 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
Halim et al. Synthesis and characterization of 2D molybdenum carbide (MXene)
JP5266907B2 (en) Carbon nanotube aggregate, dispersion and conductive film
Liu et al. Tuning the surface chemistry of MXene to improve energy storage: example of nitrification by salt melt
JP2009149832A (en) Carbon nanotube assembly and electrically conductive film
Yao et al. Synthesis, characterization, and electrochemical performance of spherical nanostructure of Magnéli phase Ti 4 O 7
KR101725836B1 (en) Manufacturing method of carbonized fiber/graphene composite and carbonized fiber/graphene composite prepared by the same and organic fiber/graphene oxide composite
El-Shamy Polyvinyl alcohol and silver decorated carbon quantum-dots for new nano-composites with application electromagnetic interface (EMI) shielding
KR101927643B1 (en) Graphene-composite fiber and fabrication method of the same
Jia et al. SnO2-embedded worm-like carbon nanofibers supported Pt nanoparticles for oxygen reduction reaction
Tan et al. A palladium-doped ceria@ carbon core–sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions
CN111154258A (en) Ternary nano composite material capable of adjusting wave absorption performance and preparation method thereof
KR102336788B1 (en) Manufacturng method of carbon nanofiber support
Liu et al. Temperature-controlled and shape-dependent ZnO/TiO2 heterojunction for photocathodic protection of nickel-coated magnesium alloys
WO2018143123A1 (en) Carbonaceous material, electrode material using same, and battery
Atmane et al. Defective graphite and its decoration with copper oxide nanoparticles synthesized with olive leaf extract for electrochemical water splitting
KR101495045B1 (en) Amorphous silicon oxide coated carbon-based composite, preparation method thereof and electrocatalyst for fuel cell manufactured by using the same
CN115074086B (en) Zn-MOFs derived ZnO/C/Ti 3 C 2 Composite wave-absorbing material and preparation method thereof
Shiroma et al. Interlayer modification and single-layer exfoliation of the Ruddlesden–Popper perovskite oxynitride K 2 LaTa 2 O 6 N to improve photocatalytic H 2 evolution activity
JP2008230950A (en) N- and/or s-doped tubular titanium oxide particle and method for producing the same
Quirino et al. CuO and Ce-doped CuO Prepared by Microwave Hidrotermal Method in Photodegradation of Remazol Golden Yellow Dye
KR20180078460A (en) Synthesis methods porous Pt-Cu catalyst on a carbon support and porous Pt-Cu catalyst on a carbon support using the same
US20080025898A1 (en) Method of treating a material to achieve sufficient hydrophilicity for making hydrophilic articles
KR101519947B1 (en) Multi layered silicon compound coated carbon-based composite, preparation method thereof and electrocatalyst for fuel cell manufactured by using the same
CN114188729A (en) Fe3O4Preparation and application of @ CGFA composite material
Maqbool et al. Photocatalytic response of plasma functionalized and sonochemically TiO2/BiOBr coated fabrics for self-cleaning application

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant