KR20210026449A - Deep Water Based Hydrogen Production System - Google Patents

Deep Water Based Hydrogen Production System Download PDF

Info

Publication number
KR20210026449A
KR20210026449A KR1020190107237A KR20190107237A KR20210026449A KR 20210026449 A KR20210026449 A KR 20210026449A KR 1020190107237 A KR1020190107237 A KR 1020190107237A KR 20190107237 A KR20190107237 A KR 20190107237A KR 20210026449 A KR20210026449 A KR 20210026449A
Authority
KR
South Korea
Prior art keywords
seawater
deep
water
hydrogen production
platform body
Prior art date
Application number
KR1020190107237A
Other languages
Korean (ko)
Other versions
KR102259360B1 (en
Inventor
최천기
Original Assignee
최천기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최천기 filed Critical 최천기
Priority to KR1020190107237A priority Critical patent/KR102259360B1/en
Publication of KR20210026449A publication Critical patent/KR20210026449A/en
Application granted granted Critical
Publication of KR102259360B1 publication Critical patent/KR102259360B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G4/00Devices for producing mechanical power from geothermal energy
    • F03G4/069Devices for producing mechanical power from geothermal energy characterised by the brine or scale treatment, e.g. brine desalination, scale deposit prevention or corrosion-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4486Floating storage vessels, other than vessels for hydrocarbon production and storage, e.g. for liquid cargo
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/031Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Sustainable Energy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a deep water-based hydrogen production system for power generation and, more specifically, to a deep water-based hydrogen production system for power generation, capable of efficient and mass production of hydrogen using renewable energy in the sea-based on a seawater temperature difference power generator, a desalination device, a hydrogen production device, and an air compression device in a deep-sea platform body. According to the feature of the present invention for achieving the above object, the present invention provides the deep water-based hydrogen production system for power generation, comprising: a deep-sea platform body disposed in the deep sea below the set depth to introduce low-temperature deep seawater and connected to the sea level part to introduce high-temperature surface seawater; a seawater temperature difference power generator provided in the deep-sea platform body and receiving the deep seawater and the surface seawater to generate power while implementing a thermal cycle; a desalination device for receiving the heat-exchanged deep seawater from the seawater temperature difference power generator and producing high-salinity seawater and freshwater through a reverse osmosis filter; a hydrogen production device for producing hydrogen through electrolysis of the freshwater supplied from the desalination device; and an offshore platform body connected to the deep-sea platform body through a pipe and receiving and storing hydrogen generated from the hydrogen production device.

Description

심층수 기반 발전용 수소생산시스템{Deep Water Based Hydrogen Production System}Deep Water Based Hydrogen Production System

본 발명은 심층수 기반 발전용 수소생산시스템에 관한 것으로, 좀 더 구체적으로는 심해 플랫폼 본체 내에 구비되는 해수온도차 발전장치, 담수화장치, 수소생산장치 및 공기압축장치를 기반으로 바다에서 신재생에너지를 이용해 수소를 효율적이고 대량으로 생산할 수 있도록 하는 심층수 기반 발전용 수소생산시스템에 관한 것이다.The present invention relates to a hydrogen production system for power generation based on deep water, and more specifically, using a renewable energy in the sea based on a seawater temperature difference power generation device, a desalination device, a hydrogen production device, and an air compression device provided in a deep sea platform body. It relates to a hydrogen production system for deep water-based power generation that enables efficient and mass production of hydrogen.

세계 각국은 온실가스 배출 저감을 위해 에너지 효율과 재생에너지 비중을 높이는 '에너지 전환' 정책을 펼치고 있다. 국내에서도 신규원전 건설계획 백지화등 원전의 단계적 감축과 재생에너지 확대 등을 내용으로 하는 '에너지 전환 로드맵'을 수립했고, 재생에너지 발전 비중 달성을 위한 '재생 에너지 이행계획'을 발표하였다.Countries around the world are implementing'energy conversion' policies to increase energy efficiency and the proportion of renewable energy to reduce greenhouse gas emissions. In Korea, the'Energy Conversion Roadmap' was established, covering phased reductions of nuclear power plants, such as abolition of new nuclear power plant construction plans, and expansion of renewable energy, and a'renewable energy implementation plan' was announced to achieve the share of renewable energy generation.

재생에너지는 재생 가능한 자원, 즉 태양력, 풍력, 조력, 지열과 같이 시간이 지남에 따라 자연적으로 보충되는 재생 가능한 자원으로부터 수집된 에너지로써, 이 외에도 수력, 바이오매스, 핵융합 등이 있다. 재생에너지의 대부분은 태양에너지의 변형이기 때문에 에너지를 얻을 수 있는 양이 한정되어 있어 무한한 에너지를 얻을 수 없는 문제점이 있었다.Renewable energy is energy collected from renewable resources, that is, renewable resources that are naturally replenished over time, such as solar power, wind power, tidal power, and geothermal power, as well as hydropower, biomass, and nuclear fusion. Since most of the renewable energy is a transformation of solar energy, there is a problem in that the amount of energy that can be obtained is limited, so that infinite energy cannot be obtained.

이와 달리 수소에너지는 대체 에너지원으로써 공해물질이 배출되지 않는 가장 이상적인 청정에너지원으로, 태양광과 달리 언제 어느 때나 생산할 수 있으며, 장기간 에너지 저장 및 변환 가능하여 미래 화석 연료를 대체할 유일한 에너지로 알려져 있다.In contrast, hydrogen energy is the most ideal clean energy source that does not emit pollutants as an alternative energy source, and unlike sunlight, it can be produced anytime and anytime, and is known as the only energy to replace fossil fuels in the future because it can store and convert energy for a long time have.

또한, 재생에너지 생산을 위한 시설 설치로 인해 발생하는 민원 분쟁과 환경파괴, 대면적 확보 등의 문제를 해결하기 위해 먼바다를 선택하여 수소 에너지를 생산할 수 있는 기술이 각광받고 있다.In addition, in order to solve problems such as civil complaint disputes, environmental destruction, and securing a large area arising from the installation of facilities for renewable energy production, a technology capable of producing hydrogen energy by selecting a distant sea is in the spotlight.

이와 같은 수소에너지의 생산 방식은 원자로의 전기분해 방식이 가장 많이 쓰이며, 물을 원료로 수소를 제조하기 위하여 담수화 장비가 필요로 하게 된다.As for the production of hydrogen energy, the electrolysis method of a nuclear reactor is most commonly used, and desalination equipment is required to produce hydrogen from water as a raw material.

이때, 수소 생산을 위해 액화수소 운송 선박으로 육지의 담수를 밸러스트에 실어 담수를 공급할 수 있으나, 원거리 이동으로 인한 물의 오염 및 담수 필터링 문제와 기상악화시 담수 공급 지연 문제가 발생하였다.At this time, for hydrogen production, fresh water from the land can be supplied by loading fresh water on the ballast by a liquefied hydrogen transport vessel, but there are problems of water pollution and fresh water filtering due to long-distance movement, and a problem of delaying the supply of fresh water when the weather worsens.

또한, 담수화 플랜트를 이용하여 해수를 담수화할 수 있으나, 전력 소모가 심하여 수소 생산에 한계가 발생하였다.In addition, seawater can be desalized using a desalination plant, but the power consumption is severe, and thus, there is a limit to hydrogen production.

대한민국 등록특허공보 제10-1199840호 "하이브리드형 저에너지 및 고효율 해수 담수화 방법"Korean Patent Publication No. 10-1199840 "Hybrid type low energy and high efficiency seawater desalination method" 대한민국 등록특허공보 제10-1845674호 "해수 담수화 설비"Korean Patent Publication No. 10-1845674 "Seawater desalination facility"

따라서 본 발명은 이와 같은 종래 기술의 문제점을 개선하여, 심해 플랫폼 본체를 해상 플랫폼 본체와 연결하여 수중에 배치하고, 심해 플랫폼 본체 내에 해수온도차 발전장치, 담수화장치, 수소생산장치 및 공기압축장치를 설치하여 바다에서 신재생에너지를 이용해 수소를 효율적이고 대량으로 생산할 수 있도록 하는 심층수 기반 발전용 수소생산시스템을 제공하는 것을 목적으로 한다.Accordingly, the present invention improves the problems of the prior art such that the deep sea platform body is connected to the offshore platform body and placed in the water, and the seawater temperature difference power generation device, desalination device, hydrogen production device, and air compression device are installed in the deep sea platform body. The purpose of this is to provide a hydrogen production system for power generation based on deep water that enables efficient and mass production of hydrogen in the sea using renewable energy.

또한, 본 발명은 심해 플랫폼 본체 내에 해수온도차 발전장치, 담수화장치, 수소생산장치 및 공기압축장치가 순차적으로 상하 배치되어, 심층해수와 표층해수가 중력에 의해 이동되면서 수소생산프로세스가 진행되도록 함으로써 에너지 소비를 줄이고, 시스템 효율을 증대시킬 수 있도록 하는 심층수 기반 발전용 수소생산시스템을 제공하는 것을 목적으로 한다.In addition, in the present invention, a seawater temperature difference power generation device, a desalination device, a hydrogen production device, and an air compression device are sequentially arranged up and down in the deep sea platform body, so that the hydrogen production process proceeds while the deep seawater and the surface seawater are moved by gravity. It aims to provide a hydrogen production system for deep-water power generation that can reduce consumption and increase system efficiency.

또한, 본 발명은 심해 플랫폼 본체가 심해에 배치되어, 심층해수를 공급받는데 필요한 전력소모량을 최소화함으로써 해수온도차 발전장치의 효율성을 향상시키는 심층수 기반 발전용 수소생산시스템을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a hydrogen production system for power generation based on deep water that improves the efficiency of a seawater temperature difference power generation device by minimizing the amount of power required to receive the deep seawater by minimizing the power consumption required to receive the deep seawater.

또한, 본 발명은 담수화장치가 역삼투압 방식으로 심층해수의 수압차를 발생시켜 담수 생산이 가능하며, 발생하는 부산물로 고염도 해수를 염분차 발전원리를 이용하여 수소생산장치에서 발생하는 산소와 공기를 압축해 배출압을 상쇄시킬 수 있어 배출 시 전력소모를 최소화할 수 있는 심층수 기반 발전용 수소생산시스템을 제공하는 것을 목적으로 한다.In addition, in the present invention, the desalination apparatus can produce fresh water by generating a water pressure difference of deep seawater in a reverse osmosis method, and oxygen and air generated in the hydrogen production apparatus using the salinity difference power generation principle as a by-product generated. The purpose is to provide a hydrogen production system for deep water-based power generation that can minimize power consumption during discharge by compressing and offsetting the discharge pressure.

상술한 목적을 달성하기 위한 본 발명의 특징에 의하면, 본 발명은 설정 수심 이하의 심해에 배치되어 저온의 심층해수를 유입시키고, 해수면 부위와 연결되어 고온의 표층해수를 유입시키는 심해 플랫폼 본체; 상기 심해 플랫폼 본체 내에 구비되며, 심층해수와 표층해수를 전달받아 열사이클을 구현하면서 발전을 수행하는 해수온도차 발전장치; 상기 해수온도차 발전장치로부터 열교환 된 심층해수를 공급받아 역삼투압 필터기를 거쳐 고염도 해수와 담수를 생산하는 담수화장치; 상기 담수화장치로부터 공급받은 담수에 대한 전기분해를 통해 수소를 생산하게 되는 수소생산장치; 및 상기 심해 플랫폼 본체와 배관으로 연결되고, 상기 수소생산장치로부터 생성된 수소를 전달받아 저장하는 해상 플랫폼 본체;를 포함하는 것을 특징으로 하는 심층수 기반 발전용 수소생산시스템을 제공한다.According to a feature of the present invention for achieving the above object, the present invention is a deep sea platform body that is disposed in the deep sea below a set depth to introduce low-temperature deep seawater, and is connected to the sea level to introduce high-temperature surface seawater; A seawater temperature difference power generation device provided in the deep sea platform body and receiving deep seawater and surface seawater to perform power generation while implementing a thermal cycle; A desalination device for receiving deep seawater heat-exchanged from the seawater temperature difference generator and producing high-salt seawater and freshwater through a reverse osmosis filter; A hydrogen production device that produces hydrogen through electrolysis of fresh water supplied from the desalination device; And an offshore platform body connected to the deep sea platform body through a pipe and receiving and storing hydrogen generated from the hydrogen production device.

이와 같은 본 발명에 따른 심층수 기반 발전용 수소생산시스템은 상기 해수온도차 발전장치에 연결되고, 상기 해수온도차 발전장치를 통과한 심층해수와 표층해수가 배출수로 합류되어 이동하게 되는 배출수 배출배관; 상기 배출배관 끝단부에 배치되고, 상기 배출배관 내 이동하는 배출수가 심해로 배출될 수 있도록 갖추어지는 배출펌프;를 더 포함할 수 있다.The deep-sea water-based power generation hydrogen production system according to the present invention is connected to the seawater temperature difference power generation device, and the deep seawater passing through the seawater temperature difference power generation device and the surface seawater are merged into the discharged water, and the discharged water discharge pipe is moved; It may further include a discharge pump disposed at the end of the discharge pipe and equipped to discharge the discharged water moving in the discharge pipe to the deep sea.

이와 같은 본 발명에 따른 심층수 기반 발전용 수소생산시스템에서 상기 담수화장치로부터 공급된 고염도 해수가 수용되는 고염수실린더와, 상기 배출수 일부가 수용되는 저염수실린더가 연결되는 삼투압관에 의해 고염수실린더측 공기가 압축되어 압축공기를 생성시키는 공기압축장치; 상기 공기압축장치로부터 압축공기를 전달받아 상기 배출펌프로부터 토출되는 배출수에 압축공기를 공급하여 배출시 압력을 가하는 압축압축공기 배출배관;을 더 포함할 수 있다.In the deep-sea water-based power generation hydrogen production system according to the present invention, a high-salt water cylinder is connected to a high-salt water cylinder for receiving high-salt seawater supplied from the desalination device, and a low-salt-water cylinder for receiving part of the discharged water. An air compression device for generating compressed air by compressing the side air; It may further include a compressed compressed air discharge pipe for receiving compressed air from the air compression device and supplying compressed air to the discharged water discharged from the discharge pump to apply pressure when discharged.

이와 같은 본 발명에 따른 심층수 기반 발전용 수소생산시스템에서 상기 수소생산장치와 공기압축장치의 저염수실린더를 연결하는 저염수 공급배관을 더 포함하되, 상기 수소생산장치는 상기 담수화장치로부터 공급받은 담수를 알카라인 용액을 이용해 전기분해하여 물과 산소를 생산하며, 상기 수소생산장치로부터 생산된 산소와 물이 상기 저염수실린더의 피스톤 상부와 하부로 각각 공급되게 할 수 있다.In the deep-sea water-based power generation hydrogen production system according to the present invention, a low-salt water supply pipe connecting the hydrogen production device and the low-salt water cylinder of the air compression device is further included, wherein the hydrogen production device includes fresh water supplied from the desalination device. Water and oxygen are produced by electrolysis using an alkaline solution, and oxygen and water produced from the hydrogen production device may be supplied to the upper and lower pistons of the low-salt water cylinder, respectively.

이와 같은 본 발명에 따른 심층수 기반 발전용 수소생산시스템에서 상기 심해 플랫폼 본체 내에 해수온도차 발전장치, 담수화장치, 수소생산장치 및 공기압축장치가 순차적으로 상하 배치되어, 상기 심해 플랫폼 본체 내 유입되는 심층해수와 표층해수가 중력에 의해 이동될 수 있다.In the deep water-based power generation hydrogen production system according to the present invention, a seawater temperature difference power generation device, a desalination device, a hydrogen production device, and an air compression device are sequentially arranged up and down in the deep sea platform body, and deep seawater flowing into the deep sea platform body And surface seawater can be moved by gravity.

본 발명에 의한 심층수 기반 발전용 수소생산시스템에 의하면, 심해 플랫폼 본체를 해상 플랫폼 본체와 연결하여 수중에 배치하고, 심해 플랫폼 본체 내에 해수온도차 발전장치, 담수화장치, 수소생산장치 및 공기압축장치를 설치하여 바다에서 신재생에너지를 이용해 수소를 효율적이고 대량으로 생산할 수 있다.According to the hydrogen production system for power generation based on deep water according to the present invention, the deep sea platform body is connected to the offshore platform body and placed in the water, and the seawater temperature difference power generation device, desalination device, hydrogen production device, and air compression device are installed in the deep sea platform body. Thus, hydrogen can be efficiently and mass produced using renewable energy in the sea.

또한, 바다에서 다양한 신재생에너지를 이용하여 수소를 생산해 선박으로 이송하여 육지에서 공급받을 수 있으며, 심층수 기반 발전용 수소생산시스템에서 생산된 잉여의 물을 해상 플랫폼 본체로 끌어올려 액화수소 운송 선박으로 운송하여 판매할 수 있다.In addition, hydrogen can be produced by using various renewable energies in the sea and transported to ships to be supplied from land. The excess water produced by the deep water-based power generation hydrogen production system is pulled up to the offshore platform body and transferred to a liquid hydrogen transport vessel It can be transported and sold.

또한, 심해 플랫폼 본체 내에 설치된 장치들이 순차적으로 상하 배치되어, 심층해수와 표층해수가 중력에 의해 이동되도록 하여 전력소모를 최소화하며, 수소생산장치에서 생산된 수소가 수심 깊은 곳에서 배관을 통해 상승하면서 비중에 의해 분리되어 순도 높은 수소 생산에 유리하다.In addition, the devices installed in the deep sea platform body are sequentially arranged up and down, so that the deep sea water and the surface sea water are moved by gravity to minimize power consumption, and the hydrogen produced in the hydrogen production device rises through the pipe at the depth of the water. It is separated by specific gravity and is advantageous for high purity hydrogen production.

또한, 심해 플랫폼 본체가 잠수함의 원리를 이용한 구조로 형성되어 해상 플랫폼 본체에서 적정 수심까지 내려져 위치가 유지되고 이상 발생시 정비를 위하여 상시로 끌어올려 정비할 수 있어 유지관리가 용이하다.In addition, since the deep sea platform body is formed in a structure using the principle of a submarine, the position is maintained by being lowered from the sea platform body to an appropriate depth, and when an abnormality occurs, it can be lifted and maintained at all times for maintenance, so maintenance is easy.

도 1은 본 발명의 실시예에 따른 심층수 기반 발전용 수소생산시스템의 개념도이다.
도 2는 본 발명의 실시예에 따른 심층수 기반 발전용 수소생산시스템의 상부를 나타내는 상세도이다.
도 3은 본 발명의 실시예에 따른 심층수 기반 발전용 수소생산시스템의 중간부를 나타내는 상세도이다.
도 4는 본 발명의 실시예에 따른 심층수 기반 발전용 수소생산시스템의 하부를 나타내는 상세도이다.
1 is a conceptual diagram of a hydrogen production system for deep water-based power generation according to an embodiment of the present invention.
2 is a detailed view showing the upper part of a hydrogen production system for deep water-based power generation according to an embodiment of the present invention.
3 is a detailed view showing an intermediate part of a hydrogen production system for deep water-based power generation according to an embodiment of the present invention.
4 is a detailed view showing a lower part of a hydrogen production system for deep water-based power generation according to an embodiment of the present invention.

이하, 본 발명의 실시예를 첨부된 도면 도 1 내지 4에 의거하여 상세히 설명한다. 한편, 도면과 상세한 설명에서 이 분야의 종사자들이 용이하게 알 수 있는 구성 및 작용에 대한 도시 및 언급은 간략히 하거나 생략하였다. 특히, 도면의 도시 및 상세한 설명에 있어서 본 발명의 기술적 특징과 직접적으로 연관되지 않은 요소의 구체적인 기술적 구성 및 작용에 대한 상세한 설명 및 도시는 생략하고, 본 발명과 관련되는 기술적 구성만을 간략하게 도시하거나 설명하였다. Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 4 of the accompanying drawings. On the other hand, in the drawings and detailed description, illustrations and references to configurations and actions that can be easily understood by those in this field have been simplified or omitted. In particular, in the illustration and detailed description of the drawings, a detailed description and illustration of a specific technical configuration and operation of elements not directly related to the technical features of the present invention are omitted, and only the technical configuration related to the present invention is briefly shown or Explained.

도 1은 본 발명의 실시예에 따른 심층수 기반 발전용 수소생산시스템의 개념도이고, 도 2는 본 발명의 실시예에 따른 심층수 기반 발전용 수소생산시스템의 상부를 나타내는 상세도이고, 도 3은 본 발명의 실시예에 따른 심층수 기반 발전용 수소생산시스템의 중간부를 나타내는 상세도이고, 도 4는 본 발명의 실시예에 따른 심층수 기반 발전용 수소생산시스템의 하부를 나타내는 상세도이다.1 is a conceptual diagram of a hydrogen production system for deep water-based power generation according to an embodiment of the present invention, Figure 2 is a detailed view showing the upper portion of the hydrogen production system for deep water-based power generation according to an embodiment of the present invention, and FIG. It is a detailed view showing the middle of the deep water-based power generation hydrogen production system according to an embodiment of the present invention, Figure 4 is a detailed view showing the lower part of the deep water-based power generation hydrogen production system according to an embodiment of the present invention.

도 1 내지 4를 참조하면, 본 발명의 실시예에 따른 심층수 기반 발전용 수소생산시스템은 해상 플랫폼 본체(100), 심해 플랫폼 본체(200), 해수온도차 발전장치(300), 담수화장치(400), 수소생산장치(500), 공기압축장치(600), 배출펌프(700)를 포함하는 구성으로 이루어질 수 있다.1 to 4, the hydrogen production system for power generation based on deep water according to an embodiment of the present invention includes an offshore platform body 100, a deep sea platform body 200, a seawater temperature difference power generation device 300, and a desalination device 400. , Hydrogen production device 500, air compression device 600, may be made of a configuration including a discharge pump (700).

해상 플랫폼 본체(100)는 해수면보다 높은 해상에 배치되며, 상부는 넓은 덕트로 이루어지고, 하부는 해상의 어느 한 지점에 고정될 수 있도록 가장자리에 기둥이 갖추어질 수 있다. The offshore platform body 100 is disposed on the sea higher than the sea level, the upper part is made of a wide duct, and the lower part may be equipped with a column at the edge so that it can be fixed at any one point on the sea.

이러한 해상 플랫폼 본체(100)는 상공의 비행선으로부터 풍력과 태양광을 이용하여 전력을 공급받는 구조로 이루어질 수 있다. 또한, 해상 플랫폼 본체(100)는 해수면 상에 부유식 파력 발전기가 연결되어 전력을 추가적으로 공급받을 수 있다. The offshore platform body 100 may be configured to receive power from an airship in the sky using wind power and sunlight. In addition, the offshore platform body 100 may additionally receive power by connecting a floating wave generator on the sea surface.

게다가 해상 플랫폼 본체(100)는 광물 채취용 기반 시설로도 사용 가능할 뿐만 아니라 다양한 용도로 활용될 수 있다. In addition, the offshore platform body 100 can be used not only as an infrastructure for mineral extraction, but also for various purposes.

심해 플랫폼 본체(200)는 외벽이 두꺼운 철판으로 이루어질 수 있으며, 내부 압력이 대기압 상태인 잠수함이 수직형으로 형성되어, 내부에 해수온도차 발전장치(300), 담수화장치(400), 수소생산장치(500), 공기압축장치(600) 및 배출펌프(700)가 순차적으로 상하 배치된다. 그리고 심해 플랫폼 본체(200)의 상단에 연결배관이 형성되어 해상 플랫폼 본체(100)와 연결될 수 있다. The deep sea platform main body 200 may be made of a steel plate having a thick outer wall, and a submarine having an internal pressure of atmospheric pressure is formed in a vertical type, so that a seawater temperature difference power generation device 300, a desalination device 400, and a hydrogen production device ( 500), the air compression device 600 and the discharge pump 700 are sequentially arranged up and down. In addition, a connection pipe is formed on the upper end of the deep sea platform body 200 to be connected to the offshore platform body 100.

이와 같은 연결배관 내에 표층해수 공급배관(3), 수소 공급배관(7), 공기 조절배관(10) 및 전력라인(11)이 배치되어 심해 플랫폼 본체(200) 내부에 설치된 장치와 해상 플랫폼 본체(100)가 연결될 수 있게 된다. In such a connection pipe, a surface seawater supply pipe (3), a hydrogen supply pipe (7), an air conditioning pipe (10), and a power line (11) are arranged to be installed inside the deep sea platform body 200 and the offshore platform body ( 100) can be connected.

심해 플랫폼 본체(200)는 도 2 내지 4에 도시된 바와 같이 3개의 층으로 분리되어, 각층에 해수온도차 발전장치(300), 담수화장치(400) 및 수소생산장치(500), 공기압축장치(600) 및 배출펌프(700)가 설치될 수 있다. The deep sea platform body 200 is divided into three layers as shown in FIGS. 2 to 4, and each layer has a seawater temperature difference power generation device 300, a desalination device 400 and a hydrogen production device 500, an air compression device ( 600) and a discharge pump 700 may be installed.

이와 같은 심해 플랫폼 본체(200)는 설정 수심 이하의 심해에 배치될 수 있도록 30기압 이상의 압력을 견디는 강철로 이루어지는 것이 바람직하다. 그리고 심해 플랫폼 본체(200)는 해상 플랫폼 본체(100)와 연결될 수 있도록 상부 양단에 러그와 같은 연결브라켓이 갖추어질 수 있다. 또한, 심해 플랫폼 본체(200)가 해상에서 적정 수심의 심해로 내려갈 수 있도록 고정식 엘리베이터가 갖추어질 수 있으며, 심해 플랫폼 본체(200) 내 이상 발생시 정비를 위해 해상 플랫폼 본체(100)로 끌어올릴 수 있어 유지 및 관리가 용이하다. Such a deep sea platform body 200 is preferably made of steel that withstands a pressure of 30 atmospheres or more so that it can be placed in a deep sea below a set depth. In addition, the deep sea platform body 200 may be provided with connection brackets such as lugs at both ends of the top so as to be connected to the offshore platform body 100. In addition, a fixed elevator may be provided so that the deep sea platform body 200 can descend from the sea to the deep sea of an appropriate depth, and when an abnormality in the deep sea platform body 200 occurs, it can be pulled up to the offshore platform body 100 for maintenance. Easy to maintain and manage.

한편, 심해 플랫폼 본체(200)는 내부로 저온의 심층해수(A)를 유입시키고, 해수면 부위와 연결되어 고온의 표층해수(B)를 유입시킨다. 이때, 심층해수(A)와 표층해수(B)는 심해 플랫폼 본체(200) 내 순차적으로 상하 배치된 해수온도차 발전장치(300), 담수화장치(400), 수소생산장치(500) 및 공기압축장치(600)로 중력에 의해 이동된다.Meanwhile, the deep sea platform body 200 introduces low-temperature deep seawater (A) into the interior, and is connected to the sea level to introduce the high-temperature surface seawater (B). At this time, the deep seawater (A) and the surface seawater (B) are the seawater temperature difference generator 300, desalination device 400, hydrogen production device 500, and air compression device sequentially arranged up and down in the deep sea platform body 200. It is moved by gravity to 600.

해수온도차 발전장치(300)는 심해 플랫폼 본체(200) 내에 구비되며, 심해 플랫폼 본체(200)의 외부로부터 심층해수(A)와 표층해수(B)를 전달받아 열사이클을 구현하면서 발전을 수행한다. The seawater temperature difference power generation device 300 is provided in the deep sea platform body 200 and receives deep seawater (A) and surface seawater (B) from the outside of the deep sea platform body 200 to perform power generation while implementing a thermal cycle. .

이러한 해수온도차 발전장치(300)는 증발기(210), 터빈(220), 발전기(230), 응축기(240)로 구성될 수 있다. The seawater temperature difference power generation device 300 may include an evaporator 210, a turbine 220, a generator 230, and a condenser 240.

먼저, 증발기(210)는 열을 흡수하여 저온저압의 액체를 증발시키는 설비로, 해수면 부위에서 공급받은 고온의 표층해수(B)를 이용하여 응축기(240)로부터 전달받은 응축된 액체를 증발시킨다. 이때, 심해 플랫폼 본체(200)의 상단에 형성된 연결관(201)과 증발기(210)가 표층해수 공급배관(3)으로 연결되어 표층해수(B)를 공급받을 수 있게 된다. 특히, 표층해수(B)는 해수면 부위에서 높이 차이에 의해 공급되어 별도의 전력을 사용하지 않고 증발기(210)로 유입될 수 있다. 여기서 증발기(210)에 사용되는 액체는 끓는 점이 낮은 암모니아나 프레온과 같은 저온 비등 냉매를 사용하는 것이 바람직하며, 본발명의 일실시예로 암모니아를 사용하기로 한다. First, the evaporator 210 is a facility that absorbs heat to evaporate a low-temperature, low-pressure liquid, and evaporates the condensed liquid delivered from the condenser 240 using the high-temperature surface seawater (B) supplied from the sea level. At this time, the connection pipe 201 and the evaporator 210 formed on the upper end of the deep sea platform body 200 are connected to the surface seawater supply pipe 3 so that the surface seawater B can be supplied. In particular, the surface seawater (B) may be supplied to the evaporator 210 without using separate power because it is supplied by a height difference at the sea level. Here, the liquid used in the evaporator 210 is preferably a low-temperature boiling refrigerant such as ammonia or freon having a low boiling point, and ammonia is used as an embodiment of the present invention.

이와 같은 암모니아는 증발기(210)에서 기화되면서 발생하는 증기압으로 터빈(220)을 돌려 발전기(230)를 통해 전력을 생산할 수 있게 된다. 이때, 생산된 전력은 배출펌프(700)를 가동시키거나 수소생산장치(500)에 사용될 수 있다. 여기서 배출펌프(700)는 심해 플랫폼 본체(200) 내 하단에 설치되는 것으로, 높이 차로 인해 발생하는 위치에너지와 수압이 동일하여 적은 전력의 펌프로도 배출 가능하나, 담수화장치(400)에서 생산되는 고염도 해수(D)와 수소생산장치(500)에서 수소 생산 후 남는 담수(E)의 배출로 인해 추가적인 전력이 필요할 수 있게 된다.Such ammonia can generate electric power through the generator 230 by rotating the turbine 220 with the vapor pressure generated while evaporating in the evaporator 210. At this time, the generated power may operate the discharge pump 700 or may be used for the hydrogen production device 500. Here, the discharge pump 700 is installed at the bottom of the deep sea platform body 200, and the potential energy and water pressure generated due to the height difference are the same, so that it is possible to discharge even with a low power pump, but is produced by the desalination device 400. Additional power may be required due to the discharge of high salt seawater (D) and fresh water (E) remaining after hydrogen production in the hydrogen production device (500).

다음으로 응축기(240)는 고온고압의 기체를 응축하여 액화시키는 설비로, 심해에서 공급받은 저온의 심층해수(A)를 이용하여 증발기(210)로부터 공급받은 암모니아 기체를 다시 응축시켜 증발기(210)로 공급한다. 이때, 심해에 배치된 심해 플랫폼 본체(200) 외부와 응축기(240)가 심층해수 공급배관(1)으로 연결되어 심층해수(A)를 공급받을 수 있게 된다. 여기서 심해 플랫폼 본체(200)는 심해에 배치되므로 심층해수(A)를 끌어올릴 필요가 없어 심층해수(A)를 공급받는데 에너지가 필요하지 않아 해수온도차 발전장치(300)의 효율성을 증가시킨다.Next, the condenser 240 is a facility that condenses and liquefies the high-temperature and high-pressure gas, and condenses the ammonia gas supplied from the evaporator 210 again using the low-temperature deep seawater (A) supplied from the deep sea. To be supplied. At this time, the outside of the deep sea platform body 200 and the condenser 240 disposed in the deep sea are connected to the deep sea water supply pipe 1 to receive the deep sea water A. Here, since the deep sea platform body 200 is disposed in the deep sea, there is no need to raise the deep sea water A, so that energy is not required to receive the deep sea water A, thereby increasing the efficiency of the seawater temperature difference power generation device 300.

한편, 증발기(210)와 응축기(240)에서 열교환된 표층해수(B)와 심층해수(A)가 배출수 배출배관(9)을 통해 배출수(C)로 합류되어 해상으로 배출된다. 여기서 배출수(C)는 해상으로 원활하게 배출될 수 있도록 배출수 배출배관(9)에 배출펌프(700)가 설치되어 배출된다.On the other hand, the surface seawater (B) and deep seawater (A) heat-exchanged in the evaporator 210 and the condenser 240 merge into the discharge water C through the discharge water discharge pipe 9 and are discharged to the sea. Here, the discharged water C is discharged by installing a discharge pump 700 in the discharged water discharge pipe 9 so that it can be discharged smoothly into the sea.

이와 같은 해수온도차 발전장치(300)는 표층해수(B)와 심층해수(A)의 수심 온도차이를 이용한 발전방식으로 에너지 공급원이 무한하고, 이산화탄소를 발생시키지 않는 자연에너지로써, 지속적으로 전력생산이 가능한 안정적인 발전장치이다.Such a seawater temperature difference power generation device 300 is a power generation method using the temperature difference between the surface seawater (B) and the deep seawater (A), and has an infinite energy supply source and is a natural energy that does not generate carbon dioxide. It is a stable power generation device as possible.

담수화장치(400)는 해수를 담수화하는 작업으로 식수, 공업용수 등을 공급하는 장치로서, 해수온도차 발전장치(300)로부터 열교환 된 심층해수(A)를 공급받아 역삼투압 필터기를 거쳐 고염도 해수(D)와 담수(E)를 생산한다. 여기서 응축기(240)와 담수화장치(400)가 심층해수 연결배관(2)으로 연결되어 해수온도차 발전장치(300)를 통과한 심층해수(A)를 공급받을 수 있게 된다. 담수화장치(400)로 공급되는 심층해수(A)는 응축기(240)를 통과한 후 수압에 의해 역삼투압 필터기로 자연적으로 공급되므로 고압 펌프가 필요하지 않으며 전력소모가 없다.The desalination device 400 is a device that supplies drinking water, industrial water, etc. by desalination of seawater, and receives deep seawater (A) heat-exchanged from the seawater temperature difference power generation device 300 and passes through a reverse osmosis filter. It produces D) and fresh water (E). Here, the condenser 240 and the desalination device 400 are connected by a deep seawater connection pipe 2 to receive the deep seawater A that has passed through the seawater temperature difference power generation device 300. Deep seawater (A) supplied to the desalination device 400 passes through the condenser 240 and is naturally supplied to the reverse osmosis filter by water pressure, so a high-pressure pump is not required and there is no power consumption.

이러한 담수화장치(400)는 역삼투압법(RO, Reverse Osmosis)을 이용하여 해수에 압력을 가한 후 반투막을 이용하여 물과 염분 등을 분리하여 담수를 생산한다. 이러한 역삼투압법은 담수 생산을 위한 에너지 소비량이 낮아 담수화 설비의 용량에 관계없이 사용 가능하여 활용성이 매우 높다. 따라서, 담수화장치(400)는 고염도 해수(D)와 담수탱크(420)가 분리될 수 있도록 역삼투압을 이용해 높은 압력을 가해야 하므로 고압의 펌프가 필요로 하게 된다. The desalination device 400 applies pressure to seawater using a reverse osmosis (RO) method, and then separates water and salt using a semipermeable membrane to produce fresh water. This reverse osmosis method has a low energy consumption for freshwater production and can be used regardless of the capacity of the desalination facility, and thus its utility is very high. Therefore, the desalination device 400 needs a high pressure pump because it is necessary to apply a high pressure using reverse osmosis so that the high salt seawater D and the freshwater tank 420 can be separated.

도 3을 참조하면, 담수화장치(400)는 고염도 해수 탱크(410)와 담수탱크(420)가 더 갖추어질 수 있다. 고염도 해수 탱크(410)와 담수탱크(420)는 담수화장치(400)의 역삼투압 필터기를 통해 분리된 고염도 해수(D)와 담수(E)가 각 탱크에 저장된다. 여기서 생성된 고염도 해수(D)는 담수화장치(400)에서 공기압축장치(600)로 연결된 고염도 해수 공급배관(4)을 통해 공기압축장치(600)로 공급되어 사용된다. 그리고 담수(E)는 담수화장치(400)에서 수소생산장치(500)로 연결된 담수 공급배관(5)을 통해 수소생산장치(500)로 공급되어 사용된다. Referring to FIG. 3, the desalination apparatus 400 may further include a high salt seawater tank 410 and a freshwater tank 420. In the high-salt seawater tank 410 and the freshwater tank 420, the high-salt seawater (D) and freshwater (E) separated through the reverse osmosis filter of the desalination device 400 are stored in each tank. The high-salt seawater (D) generated here is supplied to the air compression device 600 through the high-salt seawater supply pipe 4 connected from the desalination device 400 to the air compression device 600 and is used. And fresh water (E) is used by being supplied to the hydrogen production device 500 through a fresh water supply pipe 5 connected from the desalination device 400 to the hydrogen production device 500.

특히, 담수탱크(420)는 내부 압력이 대기압력인 1기압이며, 심층해수는 약 30기압 이상으로 압력차이에 의해 특별한 에너지 소비 없이 담수(E)가 담수탱크(420) 내부로 공급되어 저장된다. In particular, the freshwater tank 420 has an internal pressure of 1 atm, which is atmospheric pressure, and the deep seawater is about 30 atm or more, so that fresh water E is supplied and stored inside the freshwater tank 420 without special energy consumption due to a pressure difference. .

여기서 담수탱크(420)는 내부에 레벨센서(421)와 압력센서(422)가 갖추어질 수 있다. Here, the freshwater tank 420 may be equipped with a level sensor 421 and a pressure sensor 422 therein.

압력센서(422)는 담수탱크(420) 내부의 압력을 감지하여 담수탱크(420)의 내부 압력을 항상 대기압으로 유지시킨다. 담수탱크(420) 내부에 대기압 이상의 가압이나 대기압 이하의 저압이 걸릴 경우, 심해 플랫폼 본체(200) 상단에 설치된 연결관(201)과 담수탱크(420)를 연결하는 공기 조절배관(10)의 압력밸브를 열어 담수탱크(420)의 압력을 대기압으로 유지시킨다. The pressure sensor 422 detects the pressure inside the freshwater tank 420 and always maintains the pressure inside the freshwater tank 420 at atmospheric pressure. When pressure above atmospheric pressure or low pressure below atmospheric pressure is applied inside the freshwater tank 420, the pressure of the air conditioning pipe 10 connecting the connection pipe 201 installed on the top of the deep sea platform body 200 and the freshwater tank 420 By opening the valve, the pressure of the freshwater tank 420 is maintained at atmospheric pressure.

그리고 레벨센서(421)는 담수탱크(420) 내에 저장되는 담수(E)의 높이가 레벨센서(421)의 밑으로 내려가면 담수유입밸브를 열어 담수(E)를 유입시켜 담수탱크(420) 내 저장되는 담수(E)의 양을 일정하게 유지시킨다. 담수탱크(420) 내부가 담수로 채워지게 되면 담수유입밸브를 폐쇄시키고, 담수탱크(420) 내에 있는 담수(E)를 수소생산장치(500)로 공급하여 생산된 수소(F)는 별도로 해상 플랫폼 본체(100)로 배출시킨다.And the level sensor 421 opens the freshwater inlet valve when the height of the freshwater E stored in the freshwater tank 420 falls below the level sensor 421 to introduce the freshwater E into the freshwater tank 420. It keeps the amount of fresh water (E) stored constant. When the inside of the freshwater tank 420 is filled with fresh water, the freshwater inlet valve is closed, and the hydrogen (F) produced by supplying the freshwater (E) in the freshwater tank 420 to the hydrogen production device 500 is separate from the offshore platform. It is discharged to the main body 100.

수소생산장치(500)는 담수화장치(400)로부터 공급받은 담수(E)에 대한 전기분해를 통해 수소(F)를 생산하게 된다. 이때, 수소생산장치(500)는 해수온도차 발전장치(300)와 전력라인(11)으로 연결되어 해수온도차 발전장치(300)에서 생산된 전력을 공급받아 수소(F)를 생산할 수 있게 된다. 그리고 수소생산장치(500)에서 생산된 수소(F)는 심해 플랫폼 본체(200)의 연결관(201)과 수소생산장치(500)를 연결하는 수소 공급배관(7)을 통해 해상 플랫폼 본체(100)로 공급된다. The hydrogen production device 500 produces hydrogen (F) through electrolysis of fresh water (E) supplied from the desalination device (400). At this time, the hydrogen production device 500 is connected to the seawater temperature difference power generation device 300 and the power line 11 to receive power produced by the seawater temperature difference power generation device 300 to produce hydrogen (F). And hydrogen (F) produced in the hydrogen production device 500 is the offshore platform body 100 through the hydrogen supply pipe 7 connecting the connection pipe 201 of the deep sea platform body 200 and the hydrogen production device 500. ).

특히, 심층수 기반 발전용 수소생산시스템의 상하 배치 구조에 의해 공기가 함유된 수소(F) 또는 순도가 낮은 수소(F)가 수심 깊은 곳에서 수소 공급배관(7)을 타고 상승하면서 비중에 의해 분리되어 순도 높은 수소(F)를 생산할 수 있게 된다.In particular, hydrogen (F) containing air or hydrogen (F) of low purity is separated by specific gravity as it rises through the hydrogen supply pipe (7) in the depth of the water due to the vertical arrangement structure of the hydrogen production system for power generation based on deep water. As a result, high purity hydrogen (F) can be produced.

이처럼 수소(F)를 생산하기 위한 물 전기 분해법의 방법으로는 HTE(High Temperature Electrolysis)법, PEM(Polymer Electrolyte Membrane)수전해, Alkaline 수전해 법이 있다. As such, methods of water electrolysis to produce hydrogen (F) include HTE (High Temperature Electrolysis), PEM (Polymer Electrolyte Membrane) water electrolysis, and Alkaline water electrolysis.

본 발명에 따른 일실시예로 Alkaline 수전해법을 이용하여 양극과 음극사이에 이온격막을 삽입하고 알칼리 용액(KOH, NaOH)을 주입하여 양극에서 일정한 전압과 전류를 흐르게 해 양극에서는 물(H2O)과 산소(O2)를 발생시키고, 음극에서는 수소(H2)를 발생시킨다. In one embodiment according to the present invention, an ion diaphragm is inserted between the anode and the cathode using the Alkaline water electrolysis method, and an alkali solution (KOH, NaOH) is injected to allow a constant voltage and current to flow through the anode. Oxygen (O2) is generated, and hydrogen (H2) is generated at the cathode.

수소생산장치(500)에서 생성된 물(G)과 산소(H)는 저염수 공급배관(6)을 통해 공기압축장치(600)의 저염수실린더(620)로 공급된다. 여기서 저염수 공급배관(6)은 물(G)과 산소(H)가 각각 분리되어 공급될 수 있도록 수직방향으로 배관이 갖추어지는 것이 바람직하다. 또한, 저염수 공급배관(6)은 수소생산장치(500)로부터 생산된 산소(H)와 물(G)이 저염수실린더(620)의 피스톤 상부와 하부로 각각 공급되도록 갖추어질 수 있다. 이때, 수소생산장치(500)에서 남은 잉여의 물(G)을 워터펌프를 이용하여 해상 플랫폼 본체(100)로 끌어올려 액화수소 운송 선박으로 운송해 판매할 수 있다.The water (G) and oxygen (H) generated in the hydrogen production device 500 are supplied to the low salt water cylinder 620 of the air compression device 600 through the low salt water supply pipe 6. Here, it is preferable that the low-salt water supply pipe 6 is provided with a pipe in a vertical direction so that water (G) and oxygen (H) can be supplied separately. In addition, the low salt water supply pipe 6 may be provided so that oxygen (H) and water (G) produced from the hydrogen production device 500 are supplied to the upper and lower pistons of the low salt water cylinder 620, respectively. At this time, the excess water (G) remaining from the hydrogen production device 500 can be pulled up to the offshore platform body 100 using a water pump, and transported to a liquefied hydrogen transport vessel for sale.

그리고 수소생산장치(500)는 생산된 수소(F)를 해상 플랫폼 본체(100)로 공급할 수 있도록 수소 공급배관(7)으로 연결되어 지속적으로 수소생산장치(500)에서 발생된 수소(F)를 공급할 수 있게 된다. 해상 플랫폼 본체(100)로 공급된 수소(F)는 압축되어 고압가스 상태로 육상으로 운반되거나, 액화가스 상태로 운반되어 가정용, 발전용 연료전지와 수소 발전에 사용된다. And the hydrogen production device 500 is connected to the hydrogen supply pipe 7 so that the produced hydrogen (F) can be supplied to the offshore platform main body 100 to continuously generate the hydrogen (F) generated in the hydrogen production device 500. It will be able to supply. Hydrogen (F) supplied to the offshore platform main body 100 is compressed and transported to land in a state of high pressure gas, or transported in a state of liquefied gas, and is used for household, power generation fuel cells and hydrogen power generation.

공기압축장치(600)는 고염수실린더(610)와 저염수실린더(620)가 삼투압관(630)으로 서로 연결되도록 갖추어진다. 여기서 고염수실린더(610)와 저염수실린더(620) 내에 각각 수용되는 고염도 해수(D)와 물(G)이 삼투압 현상에 의해 고염수실린더(610) 내 피스톤이 왕복 운동하면서 내부의 공기가 압축되어 압축공기(I)를 생성하게 된다. The air compression device 600 is equipped so that the high salt water cylinder 610 and the low salt water cylinder 620 are connected to each other by an osmotic pressure pipe 630. Here, the high salt water (D) and water (G) accommodated in the high salt water cylinder 610 and the low salt water cylinder 620, respectively, are reciprocated due to the osmotic pressure phenomenon, and the internal air is reciprocated. It is compressed to generate compressed air (I).

또한, 공기압축장치(600)의 상부는 해상 플랫폼 본체(100)와 공기 조절배관(10)으로 연결되어 고염수실린더(610)와 저염수실린더(620) 내부의 압력을 조절할 수 있도록 공기 조절배관(10)의 단부에 각각의 압력 조절용 밸브가 설치되는 것이 바람직하다. 그리고 고염수실린더(610)와 저염수실린더(620)의 내측 상단에 각각의 리미트 스위치가 설치되어 압력 조절용 밸브의 개폐시 사용될 수 있다.In addition, the upper portion of the air compression device 600 is connected to the offshore platform body 100 and the air conditioning pipe 10 to control the pressure inside the high salt water cylinder 610 and the low salt water cylinder 620 It is preferable that each pressure regulating valve is installed at the end of (10). In addition, each limit switch is installed on the inner upper end of the high salt water cylinder 610 and the low salt water cylinder 620 to be used when opening and closing the pressure control valve.

이때, 공기압축장치(600)는 공기탱크(640)가 더 갖추어져, 고염수실린더(610)와 저염수실린더(620)가 공기탱크(640)와 각각 연결되며, 고염수실린더(610)와 저염수실린더(620)에서 생성되는 압축공기(I)가 공기탱크(640)로 저장된다. 여기서 저장된 압축공기(I)는 공기탱크(640)와 압축공기 배출배관(8)으로 연결된 배출펌프(700) 후단으로 공급되어 배출수(C)의 배출에 이용된다.At this time, the air compression device 600 is further equipped with an air tank 640, and the high salt water cylinder 610 and the low salt water cylinder 620 are respectively connected to the air tank 640, and the high salt water cylinder 610 and the low salt water Compressed air (I) generated by the water cylinder 620 is stored in the air tank 640. The compressed air (I) stored here is supplied to the rear end of the discharge pump 700 connected to the air tank 640 and the compressed air discharge pipe 8 and is used to discharge the discharge water (C).

고염수실린더(610)는 고염도 해수 탱크(410)와 고염도 해수 공급배관(4)으로 연결되어, 담수화장치(400)에서 부산물로 생산된 고염도 해수(D)를 공급받는다.The high salt water cylinder 610 is connected to the high salt water tank 410 and the high salt water supply pipe 4 to receive the high salt water D produced as a by-product in the desalination device 400.

저염수실린더(620)는 수소생산장치(500)와 저염수 공급배관(6)으로 연결되어 수소생산장치(500)에서 생산된 물(G)과 산소(H)를 각각 저염수실린더(620) 내부의 피스톤 상부와 하부로 공급받는다.The low-salt water cylinder 620 is connected to the hydrogen production device 500 and the low-salt water supply pipe 6 to each of the water (G) and oxygen (H) produced in the hydrogen production device 500 to the low-salt water cylinder 620 It is supplied to the upper and lower parts of the internal piston.

또한, 공기압축장치(600)의 고염수실린더(610)와 저염수실린더(620)의 하부에 배출수 배출배관(9)으로 연결될 수 있다. 이때, 고염수실린더(610)와 저염수실린더(620)가 배출수 배출배관(9)과 각각 연결된 관에 밸브가 설치되는 것이 바람직하다. 그리고 고염수실린더(610)와 저염수실린더(620)의 내부 압력을 선택적으로 조절할 수 있도록 설치된 밸브를 개폐하여 고염수실린더(610)와 저염수실린더(620)에 저장된 고염도 해수(D)와 물(G)을 배출수 배출배관(9)을 통해 해상으로 배출할 수 있게 된다. In addition, the high salt water cylinder 610 of the air compression device 600 and the lower portion of the low salt water cylinder 620 may be connected to a discharge water discharge pipe 9. At this time, it is preferable that a valve is installed in a pipe in which the high salt water cylinder 610 and the low salt water cylinder 620 are respectively connected to the discharge water discharge pipe 9. And by opening and closing a valve installed to selectively control the internal pressure of the high salt water cylinder 610 and the low salt water cylinder 620, the high salt water (D) stored in the high salt water cylinder 610 and the low salt water cylinder 620 Water (G) can be discharged to the sea through the discharge water discharge pipe (9).

배출펌프(700)는 배출수 배출배관(9)의 단부에 설치되어 해상으로 배출수(C)의 배출을 원활하게 할 수 있다. 여기서 배출펌프(700)는 해수온도차 발전장치(300)에서 생산된 전력을 공급받을 수 있도록 전력라인(11)이 연결되어 가동시킬 수 있게 된다. The discharge pump 700 may be installed at the end of the discharge water discharge pipe 9 to facilitate discharge of the discharge water C by sea. Here, the discharge pump 700 may be operated by connecting the power line 11 so as to receive the electric power produced by the seawater temperature difference generator 300.

그리고 배출펌프(700)는 높이 차로 인해 발생하는 위치에너지와 수압이 동일하여 적은 전력의 펌프로도 배출수(C)의 배출 가능하나, 담수화장치(400)에서 생산되는 고염도 해수(D)와 수소생산장치(500)에서 수소 생산 후 남는 담수(E)의 배출로 인해 추가적인 전력이 필요할 수 있게 된다. 따라서 공기압축장치(600)의 공기탱크(640)와 배출펌프(700)의 단부를 압축공기 배출배관(8)으로 연결하여 압축공기(I)를 전달받아 배출펌프(700)로부터 토출되는 배출수(C)에 압축공기(I)를 공급하여 배출시 압력을 가하도록 한다. 이와 같은 공기압축장치(600)로부터 공급받은 압축공기(I)의 압력으로 배출수(C) 배출시 부족한 전력을 대체할 수 있게 되어 별도의 추가 전력 공급이 필요로 하지 않게 된다.In addition, the discharge pump 700 has the same potential energy and water pressure generated by the height difference, so that the discharged water (C) can be discharged even with a low-power pump, but the high-salt seawater (D) and hydrogen produced by the desalination device 400 Additional power may be required due to the discharge of fresh water (E) remaining after hydrogen production in the production device 500. Therefore, the air tank 640 of the air compression device 600 and the end of the discharge pump 700 are connected to the compressed air discharge pipe 8 to receive compressed air (I) and discharged water discharged from the discharge pump 700 ( Supply compressed air (I) to C) to apply pressure during discharge. The pressure of the compressed air (I) supplied from the air compression device 600 can replace insufficient power when discharging the discharged water (C), so that a separate additional power supply is not required.

이상과 같이 본 발명의 기본적인 기술적 사상은 심해 플랫폼 본체 내에 해수온도차 발전장치, 담수화장치, 수소생산장치를 기반으로 바다에서 신재생에너지를 이용해 수소를 효율적이고 대량으로 생산할 수 있도록 하는 심층수 기반 발전용 수소생산시스템을 제공하는 것임을 알 수 있다.As described above, the basic technical idea of the present invention is a deep water-based power generation device that enables efficient and mass production of hydrogen using renewable energy in the sea based on a seawater temperature difference power generation device, a desalination device, and a hydrogen production device in the deep sea platform body. It can be seen that it is to provide a production system.

이러한 본 발명의 기본적인 기술적 사상 범주내에서 당업계의 통상적인 지식을 가진 자에 의해 다양한 변형이 가능함은 물론이며, 따라서 본 발명의 범주는 다양한 변형 예들을 포함하도록 작성된 특허청구범위 내에서 해석되어야 할 것이다.Various modifications can be made by those of ordinary skill in the art within the scope of the basic technical idea of the present invention, and therefore, the scope of the present invention should be interpreted within the scope of the claims written to include various modified examples. will be.

A : 심층해수
B : 표층해수
C : 배출수
D : 고염도 해수
E : 담수
F : 수소
G : 물
H : 산소
I : 압축공기
1 : 심층해수 공급배관
2 : 심층해수 연결배관
3 : 표층해수 공급배관
4 : 고염도 해수 공급배관
5 : 담수 공급배관
6 : 저염수 공급배관
7 : 수소 공급배관
8 : 압축공기 배출배관
9 : 배출수 배출배관
10 : 공기 조절배관
11 : 전력라인
100 : 해상 플랫폼 본체
200 : 심해 플랫폼 본체
201 : 연결관
210 : 증발기
220 : 터빈
230 : 발전기
240 : 응축기
300 : 해수온도차 발전장치
400 : 담수화장치
410 : 고염도 해수 탱크
420 : 담수탱크
421 : 레벨센서
422 : 압력센서
500 : 수소생산장치
600 : 공기압축장치
610 : 고염수실린더
620 : 저염수실린더
630 : 삼투압관
640 : 공기탱크
700 : 배출펌프
A: Deep seawater
B: surface seawater
C: drained water
D: High salinity seawater
E: fresh water
F: hydrogen
G: water
H: oxygen
I: compressed air
1: Deep seawater supply pipe
2: Deep seawater connection piping
3: Surface seawater supply pipe
4: High salinity seawater supply pipe
5: fresh water supply pipe
6: Low salt water supply pipe
7: Hydrogen supply pipe
8: Compressed air discharge pipe
9: Drained water discharge pipe
10: air conditioning piping
11: power line
100: offshore platform body
200: deep sea platform body
201: connector
210: evaporator
220: turbine
230: generator
240: condenser
300: Seawater temperature difference power generation device
400: desalination device
410: high salt seawater tank
420: fresh water tank
421: level sensor
422: pressure sensor
500: hydrogen production device
600: air compression device
610: high salt water cylinder
620: low salt water cylinder
630: osmotic pressure tube
640: air tank
700: discharge pump

Claims (5)

설정 수심 이하의 심해에 배치되어 저온의 심층해수를 유입시키고, 해수면 부위와 연결되어 고온의 표층해수를 유입시키는 심해 플랫폼 본체;
상기 심해 플랫폼 본체 내에 구비되며, 심층해수와 표층해수를 전달받아 열사이클을 구현하면서 발전을 수행하는 해수온도차 발전장치;
상기 해수온도차 발전장치로부터 열교환 된 심층해수를 공급받아 역삼투압 필터기를 거쳐 고염도 해수와 담수를 생산하는 담수화장치;
상기 담수화장치로부터 공급받은 담수에 대한 전기분해를 통해 수소를 생산하게 되는 수소생산장치; 및
상기 심해 플랫폼 본체와 배관으로 연결되고, 상기 수소생산장치로부터 생성된 수소를 전달받아 저장하는 해상 플랫폼 본체;를 포함하는 것을 특징으로 하는 심층수 기반 발전용 수소생산시스템.
A deep sea platform body disposed in the deep sea below the set depth to introduce low-temperature deep seawater, and connected to the sea level to introduce high-temperature surface seawater;
A seawater temperature difference power generation device provided in the deep sea platform body and receiving deep seawater and surface seawater to perform power generation while implementing a thermal cycle;
A desalination device for receiving deep seawater heat-exchanged from the seawater temperature difference generator and producing high-salt seawater and freshwater through a reverse osmosis filter;
A hydrogen production device that produces hydrogen through electrolysis of fresh water supplied from the desalination device; And
And an offshore platform body connected to the deep sea platform body through a pipe and receiving and storing hydrogen generated from the hydrogen production device.
제1항에 있어서,
상기 해수온도차 발전장치에 연결되고, 상기 해수온도차 발전장치를 통과한 심층해수와 표층해수가 배출수로 합류되어 이동하게 되는 배출수 배출배관;
상기 배출배관 끝단부에 배치되고, 상기 배출배관 내 이동하는 배출수가 심해로 배출될 수 있도록 갖추어지는 배출펌프;를 더 포함하는 것을 특징으로 하는 심층수 기반 발전용 수소생산시스템.
The method of claim 1,
A discharged water discharge pipe connected to the seawater temperature difference power generation device, through which the deep seawater and surface seawater passing through the seawater temperature difference power generation device merge into discharge water and move;
A discharge pump disposed at the end of the discharge pipe and equipped to discharge the discharged water moving in the discharge pipe into the deep sea.
제2항에 있어서,
상기 담수화장치로부터 공급된 고염도 해수가 수용되는 고염수실린더와, 상기 배출수 일부가 수용되는 저염수실린더가 연결되는 삼투압관에 의해 고염수실린더측 공기가 압축되어 압축공기를 생성시키는 공기압축장치;
상기 공기압축장치로부터 압축공기를 전달받아 상기 배출펌프로부터 토출되는 배출수에 압축공기를 공급하여 배출시 압력을 가하는 압축공기 배출배관;을 더 포함하는 것을 특징으로 하는 심층수 기반 발전용 수소생산시스템.
The method of claim 2,
An air compression device for generating compressed air by compressing the air on the side of the high salt water cylinder by an osmotic pressure pipe connecting a high salt water cylinder for receiving high salt seawater supplied from the desalination device and a low salt water cylinder for receiving part of the discharged water;
A hydrogen production system for deep-sea water-based power generation, further comprising: a compressed air discharge pipe receiving compressed air from the air compression device and supplying compressed air to the discharged water discharged from the discharge pump to apply pressure when discharged.
제3항에 있어서,
상기 수소생산장치와 공기압축장치의 저염수실린더를 연결하는 저염수 공급배관을 더 포함하되,
상기 수소생산장치는 상기 담수화장치로부터 공급받은 담수를 알카라인 용액을 이용해 전기분해하여 물과 산소를 생산하며, 상기 수소생산장치로부터 생산된 산소와 물이 상기 저염수실린더의 피스톤 상부와 하부로 각각 공급되게 하는 것을 특징으로 하는 심층수 기반 발전용 수소생산시스템.
The method of claim 3,
Further comprising a low salt water supply pipe connecting the low salt water cylinder of the hydrogen production device and the air compression device,
The hydrogen production device electrolyzes fresh water supplied from the desalination device using an alkaline solution to produce water and oxygen, and oxygen and water produced from the hydrogen production device are supplied to the upper and lower pistons of the low-salt water cylinder, respectively. Hydrogen production system for power generation based on deep water, characterized in that to be.
제3항에 있어서,
상기 심해 플랫폼 본체 내에 해수온도차 발전장치, 담수화장치, 수소생산장치 및 공기압축장치가 순차적으로 상하 배치되어, 상기 심해 플랫폼 본체 내 유입되는 심층해수와 표층해수가 중력에 의해 이동되도록 하는 것을 특징으로 하는 심층수 기반 발전용 수소생산시스템.
The method of claim 3,
In the deep sea platform body, a seawater temperature difference generator, a desalination device, a hydrogen production device, and an air compression device are sequentially arranged up and down, so that the deep seawater and the surface seawater introduced into the deep sea platform body are moved by gravity. Hydrogen production system for power generation based on deep water.
KR1020190107237A 2019-08-30 2019-08-30 Deep Water Based Hydrogen Production System KR102259360B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190107237A KR102259360B1 (en) 2019-08-30 2019-08-30 Deep Water Based Hydrogen Production System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190107237A KR102259360B1 (en) 2019-08-30 2019-08-30 Deep Water Based Hydrogen Production System

Publications (2)

Publication Number Publication Date
KR20210026449A true KR20210026449A (en) 2021-03-10
KR102259360B1 KR102259360B1 (en) 2021-06-01

Family

ID=75148351

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190107237A KR102259360B1 (en) 2019-08-30 2019-08-30 Deep Water Based Hydrogen Production System

Country Status (1)

Country Link
KR (1) KR102259360B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102429234B1 (en) * 2021-04-21 2022-08-05 한국해양과학기술원 Offshore wind power generation-desalination-water electrolysis complex system
WO2024030542A3 (en) * 2022-08-04 2024-04-11 Astron Aerospace Llc Systems and methods for production of hydrogen and oxygen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102490218B1 (en) 2021-07-15 2023-01-19 최천기 Electricity production system for hydrogen production using composite renewable energy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030059106A (en) * 2000-08-18 2003-07-07 헤이브 블루 엘엘씨 System and method for the production and use of hydrogen on board a marine vessel
JP2006218385A (en) * 2005-02-10 2006-08-24 Shiga Pref Gov Hydrogen recovering electrolysis type water quality improving device and method
KR20090127951A (en) * 2007-05-11 2009-12-14 엠 히카리 앤 에너지 레보레토리 컴퍼니 리미티드 On-site integrated production plant
KR101199840B1 (en) 2010-01-18 2012-11-09 한국생산기술연구원 Method of desalination using low energy consumption and high efficiency hybrid technologies
KR101845674B1 (en) 2017-09-27 2018-05-18 홍재의 Seawater desalination equipment
KR20190062802A (en) * 2017-11-29 2019-06-07 한국해양과학기술원 A Seawater Desalination Load Bank System and Its Control Method for Ocean Thermal Energy Conversion System Test and Surplus Power Utilization for Grid Stabilization

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030059106A (en) * 2000-08-18 2003-07-07 헤이브 블루 엘엘씨 System and method for the production and use of hydrogen on board a marine vessel
JP2006218385A (en) * 2005-02-10 2006-08-24 Shiga Pref Gov Hydrogen recovering electrolysis type water quality improving device and method
KR20090127951A (en) * 2007-05-11 2009-12-14 엠 히카리 앤 에너지 레보레토리 컴퍼니 리미티드 On-site integrated production plant
KR101199840B1 (en) 2010-01-18 2012-11-09 한국생산기술연구원 Method of desalination using low energy consumption and high efficiency hybrid technologies
KR101845674B1 (en) 2017-09-27 2018-05-18 홍재의 Seawater desalination equipment
KR20190062802A (en) * 2017-11-29 2019-06-07 한국해양과학기술원 A Seawater Desalination Load Bank System and Its Control Method for Ocean Thermal Energy Conversion System Test and Surplus Power Utilization for Grid Stabilization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102429234B1 (en) * 2021-04-21 2022-08-05 한국해양과학기술원 Offshore wind power generation-desalination-water electrolysis complex system
WO2022225338A1 (en) * 2021-04-21 2022-10-27 한국해양과학기술원 Offshore wind power generation-seawater desalination-water electrolysis complex system
WO2024030542A3 (en) * 2022-08-04 2024-04-11 Astron Aerospace Llc Systems and methods for production of hydrogen and oxygen

Also Published As

Publication number Publication date
KR102259360B1 (en) 2021-06-01

Similar Documents

Publication Publication Date Title
Morgan Techno-economic feasibility study of ammonia plants powered by offshore wind
KR102259360B1 (en) Deep Water Based Hydrogen Production System
US9231267B2 (en) Systems and methods for sustainable economic development through integrated full spectrum production of renewable energy
US20100116684A1 (en) Wind to hydrogen energy conversion
CN110904464A (en) Seawater electrolysis hydrogen production system based on offshore wind power
EP2470786A1 (en) Systems and methods for sustainable economic development through integrated full spectrum production of renewable energy
US20130240369A1 (en) Systems and methods for sustainable economic development through integrated full spectrum production of renewable energy
CA2944428C (en) Hydrogen gas generating system
CN211848150U (en) Seawater electrolysis hydrogen production system based on offshore wind power
US9315397B2 (en) Blue power generation system
JP2001130901A (en) Hydrogen energy supplying unit
JP2005145218A (en) Hydrogen manufacturing facility and hydrogen manufacturing transportation system on ocean
WO2017169204A1 (en) Hydrogen production system
US20190063316A1 (en) Hybrid Compressed Air/Water Energy Storage System And Method
CN114142791A (en) All-weather light-heat-electricity combined supply system for ship with multiple complementary functions
CN112593249A (en) New energy hydrogen production platform
CN216215922U (en) Marine hydrogen production ammonia production storage tank platform based on wind power
CN215904702U (en) Marine hydrogen manufacturing system methyl alcohol storage tank platform based on wind power
JP2018193573A (en) Electrolytic liquid tank, electrolytic device, and hydrogen production system
JP2005041253A (en) Clean cogeneration device using megafloat
JP7439368B2 (en) Green energy transportation system and energy transportation method
CN114893156B (en) Offshore wind power hydrogen production coupled combustible ice exploitation, storage and transportation system and method
WO2018105166A1 (en) System for producing renewable energy using deep water (deep sea water), and hydrogen and water obtained by system
KR102517199B1 (en) Maritime floating platform for production, storage and offloading of marine green hydrogen
WO2012169902A1 (en) System for supplying electricity

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant