KR20210015762A - Silicon wafer cleaning method - Google Patents

Silicon wafer cleaning method Download PDF

Info

Publication number
KR20210015762A
KR20210015762A KR1020207030653A KR20207030653A KR20210015762A KR 20210015762 A KR20210015762 A KR 20210015762A KR 1020207030653 A KR1020207030653 A KR 1020207030653A KR 20207030653 A KR20207030653 A KR 20207030653A KR 20210015762 A KR20210015762 A KR 20210015762A
Authority
KR
South Korea
Prior art keywords
cleaning
silicon wafer
oxide film
chemical oxide
evaluation
Prior art date
Application number
KR1020207030653A
Other languages
Korean (ko)
Inventor
타츠오 아베
켄사쿠 이가라시
마사아키 오세키
Original Assignee
신에쯔 한도타이 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신에쯔 한도타이 가부시키가이샤 filed Critical 신에쯔 한도타이 가부시키가이샤
Publication of KR20210015762A publication Critical patent/KR20210015762A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Detergent Compositions (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

본 발명은, 실리콘 웨이퍼를 SC1세정한 후, 산화력을 갖는 세정액으로 세정하는 실리콘 웨이퍼의 세정방법으로서, 상기 SC1세정에 의해 상기 실리콘 웨이퍼의 표면에 형성된 케미칼산화막을, 상기 산화력을 갖는 세정액으로 세정함으로써, 추가로 상기 케미칼산화막의 두께가 1.0nm 이상이 되도록 성장시키는 것을 특징으로 하는 실리콘 웨이퍼의 세정방법이다. 이에 따라, 양호한 파티클 품질과 안정된 케미칼산화막을 형성하는 것이 가능한 실리콘 웨이퍼의 세정방법이 제공된다.The present invention is a cleaning method for a silicon wafer in which a silicon wafer is cleaned with a cleaning solution having an oxidizing power after SC1 cleaning, wherein a chemical oxide film formed on the surface of the silicon wafer by the SC1 cleaning is cleaned with the cleaning solution having the oxidizing power. It is a method of cleaning a silicon wafer, further comprising growing the chemical oxide film to have a thickness of 1.0 nm or more. Accordingly, there is provided a method for cleaning a silicon wafer capable of forming a chemical oxide film with good particle quality and stable chemical oxide.

Description

실리콘 웨이퍼의 세정방법Silicon wafer cleaning method

본 발명은, 실리콘 웨이퍼의 세정방법에 관한 것이다.The present invention relates to a method for cleaning a silicon wafer.

단결정 실리콘 웨이퍼의 제조공정에 있어서, 그 주표면은 연마공정에 있어서 마무리된다. 나아가, 실리콘 웨이퍼 표면에 연마공정에서 부착된 연마제와 금속불순물을 제거하기 위해 세정공정이 있다. 이 세정공정에서는 RCA세정이라 불리는 세정방법이 이용되고 있다. 이 RCA세정법이란, SC1(Standard Cleaning 1)세정, SC2(Standard Cleaning 2)세정, DHF(Diluted Hydrofluoric Acid)세정을, 목적에 따라 조합하여 행하는 세정법이다. 이 SC1세정이란, 암모니아수와 과산화수소수를 임의의 비율로 혼합하고, 알칼리성의 세정액에 의한 실리콘 웨이퍼 표면의 에칭에 의해 부착파티클을 리프트오프시키고, 다시 실리콘 웨이퍼와 파티클의 정전기적인 반발을 이용하여, 실리콘 웨이퍼에의 재부착을 억제하면서 파티클을 제거하는 세정방법이다. 또한, SC2세정이란, 염산과 과산화수소수를 임의의 비율로 혼합한 세정액으로, 실리콘 웨이퍼 표면의 금속불순물을 용해제거하는 세정방법이다. 또한, DHF세정이란, 희불산에 의해 실리콘 웨이퍼 표면의 케미칼산화막을 제거하는 세정방법이다. 나아가, 강한 산화력을 갖는 오존수세정도 사용되는 경우가 있으며, 실리콘 웨이퍼 표면에 부착되어 있는 유기물의 제거나 DHF세정 후의 실리콘 웨이퍼 표면의 케미칼산화막 형성을 행하고 있다. 실리콘 웨이퍼의 세정은, 목적에 따라 이들의 세정을 조합하여 행해지고 있다(특허문헌 1~3).In the manufacturing process of a single crystal silicon wafer, the main surface is finished in the polishing process. Furthermore, there is a cleaning process to remove the abrasive and metallic impurities attached to the surface of the silicon wafer during the polishing process. In this cleaning process, a cleaning method called RCA cleaning is used. This RCA cleaning method is a cleaning method performed by combining SC1 (Standard Cleaning 1) cleaning, SC2 (Standard Cleaning 2) cleaning, and DHF (Diluted Hydrofluoric Acid) cleaning according to the purpose. This SC1 cleaning means mixing ammonia water and hydrogen peroxide at an arbitrary ratio, lifting off adhered particles by etching the surface of the silicon wafer with an alkaline cleaning solution, and again using electrostatic repulsion between the silicon wafer and the particles, This is a cleaning method that removes particles while suppressing reattachment to the wafer. In addition, SC2 cleaning is a cleaning solution obtained by mixing hydrochloric acid and hydrogen peroxide in an arbitrary ratio, and is a cleaning method in which metallic impurities on the surface of a silicon wafer are dissolved and removed. In addition, DHF cleaning is a cleaning method in which a chemical oxide film on the surface of a silicon wafer is removed with dilute hydrofluoric acid. Furthermore, ozone water washing with strong oxidizing power is sometimes used, and organic matter adhering to the surface of a silicon wafer is removed, and a chemical oxide film is formed on the surface of a silicon wafer after DHF washing. The cleaning of the silicon wafer is performed by combining these cleanings according to the purpose (Patent Documents 1 to 3).

일본특허공개공보 특개2002-329691호Japanese Patent Laid-Open Publication No. 2002-329691 일본특허공개공보 특개평9-017765호Japanese Patent Laid-Open Publication No. Hei 9-017765 일본특허공개공보 특개평9-260328호Japanese Patent Laid-Open Publication No. Hei 9-260328 일본특허공개공보 특개2006-208314호Japanese Patent Laid-Open Publication No. 2006-208314

세정 후의 중요한 실리콘 웨이퍼 품질로서, 파티클 품질이 있다. 파티클은 세정액의 종류에 따라 실리콘 웨이퍼에 대한 부착용이성이 변화된다. SC1세정에 이용하는 세정액은 알칼리성이므로, 정전기적으로 파티클이 부착되기 어려운 특성이 있다. 한편, SC2세정에 이용하는 세정액은 산성이므로, 정전기적으로 부착되기 쉬운 특성이 된다. 나아가, DHF세정에서는 실리콘 웨이퍼 표면의 케미칼산화막을 박리시키므로, 산성임과 동시에 베어면이 노출되고, 파티클이 무척 부착되기 쉬운 상황이 된다. 이 때문에, 일반적으로, 양호한 파티클 품질을 얻기 위해, 세정 후에 실리콘 웨이퍼 표면이 케미칼산화막으로 덮여 있는 상태로 한다. 즉, SC1세정, SC2세정의 조합이 된다.As an important silicon wafer quality after cleaning, there is particle quality. Particles are easily attached to a silicon wafer depending on the type of cleaning liquid. Since the cleaning solution used for SC1 cleaning is alkaline, it is difficult to attach particles electrostatically. On the other hand, since the cleaning liquid used for cleaning the SC2 is acidic, it has a characteristic that is easily adhered electrostatically. Further, in DHF cleaning, since the chemical oxide film on the surface of the silicon wafer is peeled off, it is acidic and the bare surface is exposed, and particles are easily adhered. For this reason, in general, in order to obtain good particle quality, the silicon wafer surface is covered with a chemical oxide film after cleaning. In other words, it is a combination of SC1 cleaning and SC2 cleaning.

한편, 세정 후의 실리콘 웨이퍼의 품질을 평가하는 방법은 여러 가지가 있는데, 그 중에서 표면품질을 평가하는 수단으로서 DSOD(Direct Surface Oxide Defect)평가가 있다. 이 DSOD평가로 평가되는 품질은, 실리콘 웨이퍼 표면결함, 결정결함, 금속오염, 세정공정으로 형성되는 케미칼산화막 품질 등의 영향을 받는다. 이 때문에, 명확한 원인이 불명한 상황하에서도 DSOD품질이 악화되는 경우나, 변동되는 경우가 있다. 따라서, DSOD품질을 좋게 하기 위해서는, 표면결함이나 결정결함을 개선함과 동시에, 세정공정에서 형성되는 케미칼산화막 품질을 안정화시키는 것이 필요해진다.On the other hand, there are various methods of evaluating the quality of a silicon wafer after cleaning, and among them, DSOD (Direct Surface Oxide Defect) evaluation is a means of evaluating the surface quality. The quality evaluated by this DSOD evaluation is affected by surface defects of silicon wafers, crystal defects, metal contamination, and the quality of a chemical oxide film formed by a cleaning process. For this reason, the DSOD quality may deteriorate or fluctuate even under a situation where a clear cause is unknown. Therefore, in order to improve the DSOD quality, it is necessary to improve the surface defects and crystal defects and at the same time stabilize the quality of the chemical oxide film formed in the cleaning process.

RCA세정에 있어서, SC1세정공정에서 형성되는 케미칼산화막은 매우 얇다. SC1세정 후의 케미칼산화막두께는, XPS(X선 광전자분광(X-ray photoelectron spectroscopy))에 의해, 0.7nm 정도로 측정된다. 이 SC1세정으로 형성되는 케미칼산화막두께는, 실리콘 웨이퍼의 제조에 있어서의 현실적인 시간 내에서는, 세정시간이나 세정액온도를 바꾸어도 바뀌지 않고, SC1세정조건에서는 케미칼산화막두께를 제어할 수는 없는 것을 알 수 있었다. 이와 같이 매우 얇은 케미칼산화막에서는, 케미칼산화막 품질을 안정화시키는 것은 곤란하여, DSOD품질의 향상이 방해받고 있었다.In RCA cleaning, the chemical oxide film formed in the SC1 cleaning process is very thin. The thickness of the chemical oxide film after SC1 cleaning is measured by XPS (X-ray photoelectron spectroscopy) to about 0.7 nm. It was found that the chemical oxide film thickness formed by this SC1 cleaning does not change even if the cleaning time or the cleaning liquid temperature is changed within a realistic time in the manufacture of a silicon wafer, and the chemical oxide film thickness cannot be controlled under the SC1 cleaning conditions. . In such a very thin chemical oxide film, it is difficult to stabilize the quality of the chemical oxide film, and the improvement of the DSOD quality has been hindered.

이 때문에, 실리콘 웨이퍼의 세정에 있어서, 양호한 파티클 품질과 안정된 케미칼산화막을 형성하는 것이 웨이퍼 품질향상을 위한 과제가 되고 있다.For this reason, in cleaning a silicon wafer, formation of a chemical oxide film having good particle quality and stable chemical oxide has become a problem for improving wafer quality.

상기 목적을 달성하기 위해, 본 발명은, 실리콘 웨이퍼를 SC1세정한 후, 산화력을 갖는 세정액으로 세정하는 실리콘 웨이퍼의 세정방법으로서, 상기 SC1세정에 의해 상기 실리콘 웨이퍼의 표면에 형성된 케미칼산화막을, 상기 산화력을 갖는 세정액으로 세정함으로써, 상기 케미칼산화막의 두께가 1.0nm 이상이 되도록 더욱 성장시키는 것을 특징으로 하는 실리콘 웨이퍼의 세정방법을 제공한다.In order to achieve the above object, the present invention provides a cleaning method for a silicon wafer in which a silicon wafer is cleaned with a cleaning solution having an oxidizing power after SC1 cleaning, comprising: a chemical oxide film formed on the surface of the silicon wafer by the SC1 cleaning. There is provided a method for cleaning a silicon wafer, wherein the chemical oxide film is further grown so that the thickness of the chemical oxide film is 1.0 nm or more by cleaning with a cleaning solution having oxidizing power.

이러한 실리콘 웨이퍼의 세정방법이면, 실리콘 웨이퍼의 표면에 형성된 케미칼산화막을, 1.0nm 이상으로 종래보다도 두껍게 형성할 수 있어, 실리콘 웨이퍼 표면품질을 향상시키는 것이 가능해진다.With such a silicon wafer cleaning method, the chemical oxide film formed on the surface of the silicon wafer can be formed to be 1.0 nm or more thicker than before, and the surface quality of the silicon wafer can be improved.

또한 이때, 상기 산화력을 갖는 세정액으로서, 오존수 및/또는 과산화수소수를 이용하는 것이 바람직하다.In this case, it is preferable to use ozone water and/or hydrogen peroxide water as the cleaning liquid having the oxidizing power.

본 발명의 실리콘 웨이퍼의 세정방법은, 이러한 경우에 특히 유효하다.The silicon wafer cleaning method of the present invention is particularly effective in such a case.

또한, 상기 SC1세정한 후, 상기 산화력을 갖는 세정액으로 세정하기 전에, SC2세정하는 것이 바람직하다.In addition, after the SC1 cleaning, before cleaning with the cleaning solution having the oxidizing power, it is preferable to wash the SC2.

이러한 실리콘 웨이퍼의 세정방법이면, 실리콘 웨이퍼 표면의 금속불순물을 용해제거함으로써, 실리콘 웨이퍼 표면품질을 더욱 향상시키는 것이 가능해진다.With such a silicon wafer cleaning method, it becomes possible to further improve the surface quality of the silicon wafer by dissolving and removing metal impurities on the surface of the silicon wafer.

또한, 상기 SC1세정하는 실리콘 웨이퍼를 DHF세정하지 않은 실리콘 웨이퍼로 하는 것이 바람직하다.Further, it is preferable that the silicon wafer to be cleaned with the SC1 is a silicon wafer that is not cleaned by DHF.

이러한 실리콘 웨이퍼의 세정방법이면, 미리 케미칼산화막을 제거할 일이 없으므로, 충분한 케미칼산화막두께를 얻을 수 있어, 보다 확실히 실리콘 웨이퍼 표면품질을 향상시키는 것이 가능해진다.With such a silicon wafer cleaning method, since the chemical oxide film is not removed in advance, a sufficient chemical oxide film thickness can be obtained, and the silicon wafer surface quality can be improved more reliably.

본 발명의 실리콘 웨이퍼의 세정방법이면, 실리콘 웨이퍼의 표면에 형성된 케미칼산화막을 1.0nm 이상으로, 종래보다 두껍게 형성할 수 있어, 안정적으로 실리콘 웨이퍼 표면품질을 향상시키는 것이 가능해진다.According to the method for cleaning a silicon wafer of the present invention, the chemical oxide film formed on the surface of the silicon wafer can be formed to be 1.0 nm or more thicker than before, and it becomes possible to stably improve the surface quality of the silicon wafer.

이하, 본 발명에 대하여 구체적으로 설명하나, 본 발명은 이것으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.

상술한 바와 같이, DSOD품질을 좋게 하기 위해서는, 표면결함이나 결정결함을 개선함과 동시에, 세정공정에서 형성되는 케미칼산화막 품질을 안정화시키는 것이 필요해진다. 그러나, RCA세정에 있어서, SC1세정으로 형성되는 케미칼산화막두께는 매우 얇고, 이러한 케미칼산화막에서는, 케미칼산화막 품질을 안정화시키는 것은 곤란하여, DSOD품질의 향상이 방해되고 있었다. 이 때문에, 실리콘 웨이퍼의 세정에 있어서, 양호한 파티클 품질과 안정된 케미칼산화막을 형성하는 것이 실리콘 웨이퍼 품질향상을 위한 과제가 되어 있었다.As described above, in order to improve the DSOD quality, it is necessary to improve the surface defects and crystal defects, and to stabilize the quality of the chemical oxide film formed in the cleaning process. However, in RCA cleaning, the thickness of the chemical oxide film formed by the SC1 cleaning is very thin, and in such a chemical oxide film, it is difficult to stabilize the quality of the chemical oxide film, and the improvement of the DSOD quality has been hindered. For this reason, in the cleaning of a silicon wafer, formation of a chemical oxide film having good particle quality and stable chemical oxide has been a problem for improving the quality of a silicon wafer.

그리고, 본 발명자들은 상기의 과제를 해결하기 위해 예의 검토를 거듭한 결과, SC1세정 후 또는 SC1세정 후에 SC2세정을 행하는 세정플로우 후에 산화력을 갖는 세정액으로 케미칼산화를 행하고, 이 케미칼산화에 의해, 케미칼산화막두께를 1.0nm로 성장시키는 것이 가능해지고, 실리콘 웨이퍼 표면품질을 안정시켜 향상시킬 수 있는 것을 발견하여, 본 발명에 도달하였다.In addition, the inventors of the present invention repeated intensive studies to solve the above problems. As a result, after the SC1 cleaning or after the SC1 cleaning, after the cleaning flow of performing the SC2 cleaning, chemical oxidation was performed with a cleaning liquid having an oxidizing power, and by this chemical oxidation, the chemical It has been found that it is possible to grow the oxide film thickness to 1.0 nm, and that the surface quality of a silicon wafer can be stabilized and improved, and the present invention has been reached.

즉, 본 발명은, 실리콘 웨이퍼를 SC1세정한 후, 산화력을 갖는 세정액으로 세정하는 실리콘 웨이퍼의 세정방법으로서, 상기 SC1세정에 의해 상기 실리콘 웨이퍼의 표면에 형성된 케미칼산화막을, 상기 산화력을 갖는 세정액으로 세정함으로써, 상기 케미칼산화막의 두께가 1.0nm 이상이 되도록 더욱 성장시키는 것을 특징으로 하는 실리콘 웨이퍼의 세정방법을 제공한다.That is, the present invention is a cleaning method for a silicon wafer in which the silicon wafer is cleaned with a cleaning solution having an oxidizing power after SC1 cleaning, wherein a chemical oxide film formed on the surface of the silicon wafer by the SC1 cleaning is used as the cleaning solution having an oxidizing power. By cleaning, there is provided a method for cleaning a silicon wafer, wherein the chemical oxide film is further grown to have a thickness of 1.0 nm or more.

이러한 실리콘 웨이퍼의 세정방법이면, 실리콘 웨이퍼의 표면에 형성된 케미칼산화막을 1.0nm 이상으로, 종래보다 두껍게 형성하고 안정시킬 수 있어, 실리콘 웨이퍼 표면품질을 향상시키는 것이 가능해진다.With such a silicon wafer cleaning method, the chemical oxide film formed on the surface of the silicon wafer can be formed to be 1.0 nm or more thicker than the conventional one and stabilized, thereby improving the surface quality of the silicon wafer.

이하, 본 발명의 실리콘 웨이퍼의 세정방법을 설명한다.Hereinafter, a method for cleaning a silicon wafer according to the present invention will be described.

본 발명에 있어서의 실리콘 웨이퍼의 세정에서는, 우선 실리콘 웨이퍼를 SC1세정한다. 이에 따라, 알칼리성의 세정액에 의한 실리콘 웨이퍼 표면의 에칭에 의해 부착파티클을 리프트오프시키고, 게다가 실리콘 웨이퍼와 파티클의 정전기적인 반발을 이용하여, 실리콘 웨이퍼에의 재부착을 억제하면서 파티클을 제거한다. 또한, SC1세정에 의해 실리콘 웨이퍼의 표면에 얇은 케미칼산화막을 형성시킨다.In the cleaning of the silicon wafer in the present invention, the silicon wafer is first cleaned by SC1. Accordingly, adhered particles are lifted off by etching the surface of the silicon wafer with an alkaline cleaning solution, and particles are removed while suppressing re-adhesion to the silicon wafer by using electrostatic repulsion between the silicon wafer and the particles. Further, a thin chemical oxide film is formed on the surface of the silicon wafer by SC1 cleaning.

그 후, SC1세정한 실리콘 웨이퍼를, 산화력을 갖는 세정액으로 세정하고, 케미칼산화를 행한다. 이와 같이, SC1세정의 후에, 산화력을 갖는 세정액으로 세정함으로써, 케미칼산화막의 두께를 1.0nm 이상(바람직하게는 1.2nm 이하)으로, 종래보다 두껍게 형성시킨다.After that, the SC1 cleaned silicon wafer is cleaned with a cleaning liquid having an oxidizing power, and chemical oxidation is performed. As described above, after the SC1 cleaning, the chemical oxide film is formed to have a thickness of 1.0 nm or more (preferably 1.2 nm or less), thicker than that of the prior art by cleaning with a cleaning solution having an oxidizing power.

또한, 이때, 상기 산화력을 갖는 세정액으로서, 오존수 및/또는 과산화수소수를 이용하는 것이 바람직하다. 이러한 세정액을 이용하는 경우, 본 발명은 특히 유효하다.Further, at this time, it is preferable to use ozone water and/or hydrogen peroxide water as the cleaning liquid having the oxidizing power. In the case of using such a cleaning liquid, the present invention is particularly effective.

또한, 산화력을 갖는 세정액으로서, 오존수를 이용하는 경우, 오존의 농도는 10ppm 이상인 것이 바람직하다. 오존수농도가 10ppm보다 크면, 실리콘 웨이퍼면 내의 산화가 균일해지므로 바람직하다.In addition, when ozone water is used as the cleaning liquid having oxidizing power, the concentration of ozone is preferably 10 ppm or more. When the ozone water concentration is greater than 10 ppm, oxidation in the silicon wafer surface becomes uniform, which is preferable.

또한, 산화력을 갖는 세정액으로서, 과산화수소수를 이용하는 경우, 과산화수소수(30wt%) 및 물의 혼합비가 H2O2:H2O=1:20~1:5, 온도가 60℃ 이상인 것이 바람직하다. 이러한 세정액을 이용함으로써, 실리콘 웨이퍼의 산화가 충분해져, 케미칼산화막을 보다 확실히 종래보다 두껍게 형성시킬 수 있다.In addition, when hydrogen peroxide solution is used as the cleaning liquid having oxidizing power, the mixing ratio of the hydrogen peroxide solution (30 wt%) and water is preferably H 2 O 2 :H 2 O=1:20 to 1:5, and the temperature is 60°C or higher. By using such a cleaning liquid, oxidation of the silicon wafer becomes sufficient, and the chemical oxide film can be formed more reliably thicker than the conventional one.

또한, 상기 SC1세정한 후, 상기 산화력을 갖는 세정액으로 세정하기 전에, SC2세정할 수 있다. 이러한 실리콘 웨이퍼의 세정방법이면, 실리콘 웨이퍼 표면의 금속불순물을 용해제거함으로써, 실리콘 웨이퍼 표면품질을 더욱 향상시키는 것이 가능해진다.Further, after the SC1 cleaning, before cleaning with the cleaning solution having the oxidizing power, the SC2 can be cleaned. With such a silicon wafer cleaning method, it becomes possible to further improve the surface quality of the silicon wafer by dissolving and removing metal impurities on the surface of the silicon wafer.

또한, 상기 SC1세정하는 실리콘 웨이퍼를 DHF세정하지 않은 실리콘 웨이퍼로 하는 것이 바람직하다. 이러한 실리콘 웨이퍼의 세정방법이면, 미리 실리콘 웨이퍼의 표면에 형성된 케미칼산화막을 제거하는 일 없이, 충분한 두께의 케미칼산화막을 얻을 수 있으므로, 보다 확실히 실리콘 웨이퍼 표면품질을 향상시키는 것이 가능해진다.Further, it is preferable that the silicon wafer to be cleaned with the SC1 is a silicon wafer that is not cleaned by DHF. With such a silicon wafer cleaning method, a chemical oxide film having a sufficient thickness can be obtained without removing the chemical oxide film formed on the surface of the silicon wafer in advance, and thus the surface quality of the silicon wafer can be more reliably improved.

이하, 실시예 및 비교예를 나타내어 본 발명을 보다 구체적으로 설명하나, 본 발명은 이들 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by showing examples and comparative examples, but the present invention is not limited to these examples.

(비교예 1)(Comparative Example 1)

우선, 평가용 실리콘 웨이퍼의 준비를 하였다. 경면연마 후의, 청정하고, COP나 DSOD라 불리는 결정결함을 갖지 않는 300mm 실리콘 웨이퍼를 준비하였다. COP는, 경면연마 후의 실리콘 웨이퍼를 SC1세정이라 불리는 암모니아수와 과산화수소수의 혼합액에 의해 세정한 후에 실리콘 웨이퍼 표면에서 검출되는 결정기인의 피트상의 결함이다. 이 피트상의 결함은, 파티클카운터에 의한 실리콘 웨이퍼 표면의 측정으로 파티클과 함께 검출된다. 또한, COP는 산화막의 신뢰성 평가로서 행해지는 GOI(Gate Oxide Integrity)평가의 TDDB(Time Dependent Dielectric Breakdown)나 TZDB(Time Zero Dielectric Breakdown)를 열화시키는 원인이 된다. 또한, Cu디포지션법에 의한 DSOD평가로도 DSOD결함으로서 검출된다. 평가용 실리콘 웨이퍼는 3매로 하고, 그 중 2매를 DSOD평가, 나머지 1매를 XPS에 의한 케미칼산화막두께 평가에 사용하였다.First, a silicon wafer for evaluation was prepared. After mirror polishing, a 300 mm silicon wafer was prepared that was clean and did not have crystal defects called COP or DSOD. COP is a pit-like defect of a crystalline group detected on the surface of a silicon wafer after cleaning a silicon wafer after mirror polishing with a mixed solution of ammonia water and hydrogen peroxide solution called SC1 cleaning. The defect on the pit is detected along with the particles by measuring the surface of the silicon wafer by a particle counter. In addition, COP causes deterioration of TDDB (Time Dependent Dielectric Breakdown) and TZDB (Time Zero Dielectric Breakdown) of GOI (Gate Oxide Integrity) evaluation performed as a reliability evaluation of the oxide film. In addition, DSOD defects are detected even by DSOD evaluation by the Cu deposition method. Three silicon wafers for evaluation were used, two of which were used for DSOD evaluation, and the remaining one was used for chemical oxide film thickness evaluation by XPS.

<실리콘 웨이퍼의 세정><Silicon Wafer Cleaning>

준비한 실리콘 웨이퍼를 DHF세정하고, 그 후, 오존수에 의한 세정을 행하고, 추가로, SC1세정하였다. 오존수에 의한 세정은, 오존(O3)=10ppm으로 하고, 25℃에서 10min 실시하였다. SC1세정은, 세정액을 암모니아수(NH4OH):과산화수소수(H2O2):H2O=1:1:10의 혼합액으로 하고, 80℃에서 10min 실시하였다. DHF세정에는, HF가 3.0wt%인 세정액을 이용하였다. 혼합액의 조정에 사용한 약품의 농도는, NH4OH가 28wt%, H2O2가 30wt%였다.The prepared silicon wafer was washed with DHF, then washed with ozone water, and further washed with SC1. Washing with ozonated water was performed at 25°C for 10 minutes with ozone (O 3 ) = 10 ppm. In the SC1 washing, the washing solution was a mixture of aqueous ammonia (NH 4 OH): aqueous hydrogen peroxide (H 2 O 2 ): H 2 O = 1:1:10, and was carried out at 80°C for 10 minutes. For DHF cleaning, a cleaning solution having HF of 3.0 wt% was used. The concentration of the drug used for the adjustment of the mixture was 28 wt% for NH 4 OH and 30 wt% for H 2 O 2 .

<케미칼산화막평가방법(DSOD평가)><Chemical oxide film evaluation method (DSOD evaluation)>

세정 후의 실리콘 웨이퍼의 케미칼산화막평가를 Cu디포지션법에 의한 DSOD평가로 행하였다. Cu디포지션법에 따른 DSOD평가에 관해서는, 특허문헌 4에 기재되어 있고, 다음과 같이 행해진다. 실리콘 웨이퍼 표면에 상기 실리콘 웨이퍼의 세정에 의해 케미칼산화막(산화절연막)을 형성시키고, 실리콘 웨이퍼 표층에 형성되나 결함부위 상의 산화절연막을 파괴한다. 그리고, 파괴된 산화막부위에 Cu를 석출(디포지션)시켜 결함을 특정한다. Cu이온이 존재하는 용액 중에서, 실리콘 웨이퍼 표면에 형성한 산화막에 전압을 가하면, 산화막이 열화되어 있는 부분에 전류가 흘러, Cu이온이 Cu가 되어 석출된다. 이 석출된 Cu를 관찰하여 DSOD로서 판단한다. 이 DSOD는 결정결함의 검출에 더하여, 연마나 세정 등의 실리콘 웨이퍼 표면품질에 영향을 주는 스크래치나 금속오염 등의 프로세스 이상도 검출할 수 있다.The chemical oxide film evaluation of the silicon wafer after cleaning was performed by DSOD evaluation by the Cu deposition method. The DSOD evaluation according to the Cu deposition method is described in Patent Document 4, and is performed as follows. A chemical oxide film (an oxide insulating film) is formed on the surface of the silicon wafer by cleaning the silicon wafer, and the oxide insulating film formed on the surface layer of the silicon wafer but on the defective portion is destroyed. Then, Cu is deposited (depositioned) on the broken oxide film portion to identify the defect. In a solution containing Cu ions, when a voltage is applied to the oxide film formed on the surface of the silicon wafer, current flows to the portion where the oxide film is deteriorated, and Cu ions become Cu and precipitate. This precipitated Cu is observed and judged as DSOD. In addition to the detection of crystal defects, this DSOD can also detect process anomalies such as scratches and metal contamination that affect the surface quality of a silicon wafer such as polishing and cleaning.

<케미칼산화막평가방법(케미칼산화막두께 평가)><Chemical oxide film evaluation method (chemical oxide film thickness evaluation)>

또한, 실리콘 웨이퍼의 케미칼산화막두께는 XPS로 측정을 행하였다. XPS는, 시료 표면에 X선을 조사하고, 시료 표면으로부터 방출되는 광전자의 운동에너지를 계측함으로써, 시료 표면을 구성하는 원소의 조성, 화학결합상태를 분석하는 수법이다.In addition, the chemical oxide film thickness of the silicon wafer was measured by XPS. XPS is a method of analyzing the composition of elements constituting the sample surface and the state of chemical bonding by irradiating X-rays onto the sample surface and measuring the kinetic energy of photoelectrons emitted from the sample surface.

케미칼산화막평가의 결과, 비교예 1에 있어서의 케미칼산화막두께는 0.7nm이며, DSOD개수는 DSOD평가한 2매에 대하여, 각각 31, 36개였다.As a result of the chemical oxide film evaluation, the chemical oxide film thickness in Comparative Example 1 was 0.7 nm, and the number of DSODs was 31 and 36 for the two sheets evaluated by DSOD.

(비교예 2)(Comparative Example 2)

실리콘 웨이퍼의 세정에 있어서, SC1세정의 세정액을 NH4OH:H2O2:H2O=1:1:20의 혼합액으로 한 것 이외는, 비교예 1과 마찬가지로 실시하였다.The cleaning of the silicon wafer was carried out in the same manner as in Comparative Example 1, except that the cleaning solution of the SC1 cleaning was used as a mixed solution of NH 4 OH:H 2 O 2 :H 2 O=1:1:20.

케미칼산화막평가의 결과, 비교예 2에 있어서의 케미칼산화막두께는 0.7nm이며, DSOD개수는 DSOD평가한 2매에 대하여, 각각 34, 39개였다.As a result of the chemical oxide film evaluation, the chemical oxide film thickness in Comparative Example 2 was 0.7 nm, and the number of DSODs was 34 and 39, respectively, for the two sheets subjected to DSOD evaluation.

(비교예 3)(Comparative Example 3)

실리콘 웨이퍼의 세정에 있어서, SC1세정 후에 SC2세정을 행한 것 이외는, 비교예 1과 동일하게 실시하였다. SC2세정은, 세정액을 염산(HCl):H2O2:H2O=1:1:100의 혼합액으로 하고, 80℃에서 10min 실시하였다.In the cleaning of the silicon wafer, it was carried out in the same manner as in Comparative Example 1 except that the SC2 cleaning was performed after the SC1 cleaning. In the SC2 washing, the washing solution was a mixed solution of hydrochloric acid (HCl):H 2 O 2 :H 2 O=1:1:100, and was carried out at 80°C for 10 minutes.

케미칼산화막평가의 결과, 비교예 3에 있어서의 케미칼산화막두께는 0.7nm이며, DSOD개수는 DSOD평가한 2매에 대하여, 각각 29, 35개였다.As a result of the chemical oxide film evaluation, the chemical oxide film thickness in Comparative Example 3 was 0.7 nm, and the number of DSODs was 29 and 35, respectively, for the two sheets subjected to DSOD evaluation.

(비교예 4)(Comparative Example 4)

실리콘 웨이퍼의 세정에 있어서, SC2세정의 세정액을 HCl:H2O2:H2O=1:1:50의 혼합액으로 한 것 이외는, 비교예 3과 동일하게 실시하였다.The cleaning of the silicon wafer was carried out in the same manner as in Comparative Example 3, except that the cleaning solution of the SC2 cleaning was used as a mixed solution of HCl:H 2 O 2 :H 2 O=1:1:50.

케미칼산화막평가의 결과, 비교예 4에 있어서의 케미칼산화막두께는 0.7nm이며, DSOD개수는 DSOD평가한 2매에 대하여, 각각 31, 33개였다.As a result of the chemical oxide film evaluation, the chemical oxide film thickness in Comparative Example 4 was 0.7 nm, and the number of DSODs was 31 and 33, respectively, for the two sheets subjected to DSOD evaluation.

(비교예 5)(Comparative Example 5)

실리콘 웨이퍼의 세정에 있어서, DHF세정에 있어서, HF가 1.0wt%인 세정액을 이용한 것 이외는, 비교예 1과 동일하게 실시하였다.In the cleaning of the silicon wafer, DHF cleaning was carried out in the same manner as in Comparative Example 1, except that a cleaning solution having an HF of 1.0 wt% was used.

케미칼산화막평가의 결과, 비교예 5에 있어서의 케미칼산화막두께는 0.7nm이며, DSOD개수는 DSOD평가한 2매에 대하여, 각각 35, 40개였다.As a result of the chemical oxide film evaluation, the chemical oxide film thickness in Comparative Example 5 was 0.7 nm, and the number of DSODs was 35 and 40, respectively, for the two sheets evaluated by DSOD.

(실시예 1)(Example 1)

실리콘 웨이퍼의 세정을, SC1세정 후에 오존수에 의한 세정을 행하기로 한 것 이외는, 비교예 1과 동일하게 실시하였다.The cleaning of the silicon wafer was carried out in the same manner as in Comparative Example 1 except that cleaning with ozone water was performed after the SC1 cleaning.

케미칼산화막평가의 결과, 실시예 1에 있어서의 케미칼산화막두께는 1.0nm이며, DSOD개수는 DSOD평가한 2매에 대하여, 각각 13, 16개였다.As a result of the chemical oxide film evaluation, the chemical oxide film thickness in Example 1 was 1.0 nm, and the number of DSODs was 13 and 16, respectively, for two sheets subjected to DSOD evaluation.

(실시예 2)(Example 2)

실리콘 웨이퍼의 세정에 있어서, 오존수로서 오존(O3)=30ppm의 세정액을 이용한 것 이외는, 실시예 1과 동일하게 실시하였다.The cleaning of the silicon wafer was carried out in the same manner as in Example 1, except that a cleaning solution having ozone (O 3 ) = 30 ppm was used as ozone water.

케미칼산화막평가의 결과, 실시예 2에 있어서의 케미칼산화막두께는 1.0nm이며, DSOD개수는 DSOD평가한 2매에 대하여, 각각 11, 17개였다.As a result of the chemical oxide film evaluation, the chemical oxide film thickness in Example 2 was 1.0 nm, and the number of DSODs was 11 and 17, respectively, for the two sheets subjected to DSOD evaluation.

(실시예 3)(Example 3)

실리콘 웨이퍼의 세정에 있어서, 오존수에 의한 세정의 시간을 1min로 한 것 이외는, 실시예 2와 동일하게 실시하였다.The cleaning of the silicon wafer was carried out in the same manner as in Example 2 except that the cleaning time with ozone water was set to 1 min.

케미칼산화막평가의 결과, 실시예 3에 있어서의 케미칼산화막두께는 1.0nm이며, DSOD개수는 DSOD평가한 2매에 대하여, 각각 15, 17개였다.As a result of the chemical oxide film evaluation, the chemical oxide film thickness in Example 3 was 1.0 nm, and the number of DSODs was 15 and 17, respectively, for the two sheets evaluated by DSOD.

(실시예 4)(Example 4)

실리콘 웨이퍼의 세정에 있어서, SC1세정 후, 오존수에 의한 세정 전에, SC2세정을 행한 것 이외는, 실시예 1과 동일하게 실시하였다. SC2세정은, 비교예 3과 동일하게 실시하였다.In the cleaning of the silicon wafer, it was carried out in the same manner as in Example 1 except that the SC2 cleaning was performed after the SC1 cleaning and before the cleaning with ozone water. SC2 washing was performed in the same manner as in Comparative Example 3.

케미칼산화막평가의 결과, 실시예 4에 있어서의 케미칼산화막두께는 1.0nm이며, DSOD개수는 DSOD평가한 2매에 대하여, 각각 16, 18개였다.As a result of the chemical oxide film evaluation, the chemical oxide film thickness in Example 4 was 1.0 nm, and the number of DSODs was 16 and 18 for the two sheets evaluated by DSOD.

(실시예 5)(Example 5)

실리콘 웨이퍼의 세정에 있어서, 오존수에 의한 세정 대신에 과산화수소수에 의한 세정을 행한 것 이외는, 실시예 1과 동일하게 실시하였다. 과산화수소수에 의한 세정은, 세정액을 H2O2:H2O=1:10의 혼합액으로 하고, 80℃에서 10min 실시하였다.The cleaning of the silicon wafer was carried out in the same manner as in Example 1 except that cleaning with hydrogen peroxide solution was performed instead of cleaning with ozone water. Washing with hydrogen peroxide solution was performed at 80°C for 10 minutes with the washing liquid as a mixture of H 2 O 2 :H 2 O = 1:10.

케미칼산화막평가의 결과, 실시예 5에 있어서의 케미칼산화막두께는 1.0nm이며, DSOD개수는 DSOD평가한 2매에 대하여, 각각 17, 19개였다.As a result of the chemical oxide film evaluation, the chemical oxide film thickness in Example 5 was 1.0 nm, and the number of DSODs was 17 and 19 for the two sheets evaluated by DSOD.

(실시예 6)(Example 6)

실리콘 웨이퍼의 세정에 있어서, 과산화수소수에 의한 세정의 세정액을 H2O2:H2O=1:20의 혼합액으로 한 것 이외는, 실시예 5와 동일하게 실시하였다.The cleaning of the silicon wafer was carried out in the same manner as in Example 5, except that the cleaning solution for cleaning with hydrogen peroxide solution was a mixed solution of H 2 O 2 :H 2 O=1:20.

케미칼산화막평가의 결과, 실시예 6에 있어서의 케미칼산화막두께는 1.0nm이며, DSOD개수는 DSOD평가한 2매에 대하여, 각각 13, 15개였다.As a result of the evaluation of the chemical oxide film, the thickness of the chemical oxide film in Example 6 was 1.0 nm, and the number of DSODs was 13 and 15, respectively, for the two sheets evaluated for DSOD.

(실시예 7)(Example 7)

실리콘 웨이퍼의 세정에 있어서, SC1세정 후, 과산화수소수에 의한 세정 전에, SC2세정을 행하고, 과산화수소수에 의한 세정을 60℃에서 실시한 것 이외는, 실시예 5와 동일하게 실시하였다. SC2세정은, 비교예 3과 동일하게 실시하였다.In the cleaning of the silicon wafer, it was carried out in the same manner as in Example 5 except that after the SC1 cleaning and before the cleaning with hydrogen peroxide water, the SC2 cleaning was performed, and the cleaning with a hydrogen peroxide solution was performed at 60°C. SC2 washing was performed in the same manner as in Comparative Example 3.

케미칼산화막평가의 결과, 실시예 7에 있어서의 케미칼산화막두께는 1.0nm이며, DSOD개수는 DSOD평가한 2매에 대하여, 각각 12, 16개였다.As a result of the chemical oxide film evaluation, the chemical oxide film thickness in Example 7 was 1.0 nm, and the number of DSODs was 12 and 16, respectively, for the two sheets subjected to DSOD evaluation.

Figure pct00001
Figure pct00001

비교예 1~5의 케미칼산화막두께는 0.7nm이며, 실시예 1~7의 케미칼산화막두께는 1.0nm였다. 비교예의 케미칼산화막두께가 0.7nm인 것에 반해, 실시예의 케미칼산화막두께가 1.0nm로 비교예보다 두꺼운 것은, 비교예의 케미칼산화막은 SC1세정으로 형성되어 있고, SC1세정은 산화와 에칭의 평형반응이므로, 케미칼산화막이 포화되기 전에 평형상태에 도달했기 때문으로 추측된다. 한편, 실시예에서는 SC1세정으로 형성된 케미칼산화막을, 산화력을 갖는 세정액(오존수, 과산화수소수)으로 더욱 산화를 행하므로, 케미칼산화막두께를 1.0nm로 두껍게 형성시킬 수 있었다고 추측된다.The chemical oxide film thickness of Comparative Examples 1 to 5 was 0.7 nm, and the chemical oxide film thickness of Examples 1 to 7 was 1.0 nm. The chemical oxide film thickness of the comparative example is 0.7 nm, whereas the chemical oxide film thickness of the example is 1.0 nm, which is thicker than the comparative example.The chemical oxide film of the comparative example is formed by SC1 cleaning, and the SC1 cleaning is an equilibrium reaction between oxidation and etching. This is presumed to be because the chemical oxide film reached equilibrium before saturation. On the other hand, in Examples, since the chemical oxide film formed by the SC1 cleaning was further oxidized with a cleaning solution having oxidizing power (ozone water, hydrogen peroxide water), it is assumed that the chemical oxide film thickness could be formed as thick as 1.0 nm.

한편, 케미칼산화막두께를 이 이상 두껍게 하는 것은, 실리콘 웨이퍼의 제조에 있어서의 현실적인 시간 내에서는 곤란하였다.On the other hand, it has been difficult to increase the thickness of the chemical oxide film more than this within a practical time period in manufacturing a silicon wafer.

나아가, 본 발명과 같은 실리콘 웨이퍼의 세정방법을 이용함으로써, 실시예에 있어서 DSOD평가에 의해 측정되는 DSOD의 개수는, 비교예에 있어서 DSOD평가에 의해 측정되는 DSOD의 개수의 절반 정도에서 절반 이하로 대폭 감소시킬 수 있고, 세정에 의한 실리콘 웨이퍼 품질의 악화를 억제하는 것도 가능해졌다.Furthermore, by using the silicon wafer cleaning method as in the present invention, the number of DSODs measured by DSOD evaluation in Examples is from about half to less than half of the number of DSODs measured by DSOD evaluation in Comparative Examples. It has become possible to significantly reduce, and to suppress deterioration of the quality of the silicon wafer due to cleaning.

한편, 본 발명은, 상기 실시형태로 한정되는 것은 아니다. 상기 실시형태는, 예시이며, 본 발명의 특허청구의 범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 갖고, 동일한 작용효과를 나타내는 것은, 어떠한 것이어도 본 발명의 기술적 범위에 포함된다.In addition, this invention is not limited to the said embodiment. The above-described embodiment is an example, and anything that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same operation and effect is included in the technical scope of the present invention.

Claims (4)

실리콘 웨이퍼를 SC1세정한 후, 산화력을 갖는 세정액으로 세정하는 실리콘 웨이퍼의 세정방법으로서,
상기 SC1세정에 의해 상기 실리콘 웨이퍼의 표면에 형성된 케미칼산화막을, 상기 산화력을 갖는 세정액으로 세정함으로써, 상기 케미칼산화막의 두께가 1.0nm 이상이 되도록 추가로 성장시키는 것을 특징으로 하는 실리콘 웨이퍼의 세정방법.
A cleaning method for a silicon wafer in which a silicon wafer is cleaned with a cleaning solution having an oxidizing power after SC1 cleaning,
A method for cleaning a silicon wafer, characterized in that the chemical oxide film formed on the surface of the silicon wafer by the SC1 cleaning is washed with a cleaning solution having the oxidizing power to further grow the chemical oxide film to have a thickness of 1.0 nm or more.
제1항에 있어서,
상기 산화력을 갖는 세정액으로서, 오존수 및/또는 과산화수소수를 이용하는 것을 특징으로 하는 실리콘 웨이퍼의 세정방법.
The method of claim 1,
As the cleaning liquid having oxidizing power, ozone water and/or hydrogen peroxide water is used.
제1항 또는 제2항에 있어서,
상기 SC1세정한 후, 상기 산화력을 갖는 세정액으로 세정하기 전에, SC2세정하는 것을 특징으로 하는 실리콘 웨이퍼의 세정방법.
The method according to claim 1 or 2,
After the SC1 cleaning, before cleaning with the cleaning solution having an oxidizing power, SC2 cleaning is performed.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 SC1세정하는 실리콘 웨이퍼를 DHF세정하지 않은 실리콘 웨이퍼로 하는 것을 특징으로 하는 실리콘 웨이퍼의 세정방법.
The method according to any one of claims 1 to 3,
A silicon wafer cleaning method, wherein the silicon wafer to be cleaned with the SC1 is a silicon wafer not cleaned by DHF.
KR1020207030653A 2018-05-29 2019-03-27 Silicon wafer cleaning method KR20210015762A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018101949A JP6729632B2 (en) 2018-05-29 2018-05-29 Silicon wafer cleaning method
JPJP-P-2018-101949 2018-05-29
PCT/JP2019/013054 WO2019230164A1 (en) 2018-05-29 2019-03-27 Silicon wafer washing method

Publications (1)

Publication Number Publication Date
KR20210015762A true KR20210015762A (en) 2021-02-10

Family

ID=68698054

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207030653A KR20210015762A (en) 2018-05-29 2019-03-27 Silicon wafer cleaning method

Country Status (5)

Country Link
JP (1) JP6729632B2 (en)
KR (1) KR20210015762A (en)
CN (1) CN112204712A (en)
TW (1) TWI795547B (en)
WO (1) WO2019230164A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202137529A (en) 2019-11-18 2021-10-01 日商索尼半導體解決方案公司 Solid-state imaging device and electronic device
JP7480738B2 (en) * 2021-04-13 2024-05-10 信越半導体株式会社 Method for cleaning silicon wafers and method for manufacturing silicon wafers with native oxide film
JP2023048696A (en) * 2021-09-28 2023-04-07 芝浦メカトロニクス株式会社 Substrate processing apparatus and substrate processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917765A (en) 1995-04-28 1997-01-17 Shin Etsu Handotai Co Ltd Apparatus and method for cleaning of semiconductor substrate
JPH09260328A (en) 1996-03-19 1997-10-03 Shin Etsu Handotai Co Ltd Silicon wafer surface treating method
JP2002329691A (en) 2001-04-27 2002-11-15 Shin Etsu Handotai Co Ltd Method of cleaning silicon wafer
JP2006208314A (en) 2005-01-31 2006-08-10 Shin Etsu Handotai Co Ltd Method for evaluating crystal defect of silicon single-crystal wafer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436723B1 (en) * 1998-10-16 2002-08-20 Kabushiki Kaisha Toshiba Etching method and etching apparatus method for manufacturing semiconductor device and semiconductor device
JP3538114B2 (en) * 1999-09-30 2004-06-14 野村マイクロ・サイエンス株式会社 Method and apparatus for removing contaminants adhering to a surface
JP4292872B2 (en) * 2003-05-29 2009-07-08 信越半導体株式会社 Manufacturing method of silicon epitaxial wafer
JP4933071B2 (en) * 2005-09-08 2012-05-16 コバレントマテリアル株式会社 Cleaning method of silicon wafer
KR100841994B1 (en) * 2006-12-20 2008-06-27 주식회사 실트론 Method for manufacturing oxide film of silicon wafer
KR100931196B1 (en) * 2007-10-10 2009-12-10 주식회사 실트론 Silicon wafer cleaning method
KR20110036990A (en) * 2009-10-05 2011-04-13 주식회사 엘지실트론 Method of growing uniform oxide layer and method of cleaning substrate
JP2013251461A (en) * 2012-06-01 2013-12-12 Shin Etsu Handotai Co Ltd Method of cleaning semiconductor wafer
JP2015041753A (en) * 2013-08-23 2015-03-02 株式会社東芝 Wafer cleaning method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917765A (en) 1995-04-28 1997-01-17 Shin Etsu Handotai Co Ltd Apparatus and method for cleaning of semiconductor substrate
JPH09260328A (en) 1996-03-19 1997-10-03 Shin Etsu Handotai Co Ltd Silicon wafer surface treating method
JP2002329691A (en) 2001-04-27 2002-11-15 Shin Etsu Handotai Co Ltd Method of cleaning silicon wafer
JP2006208314A (en) 2005-01-31 2006-08-10 Shin Etsu Handotai Co Ltd Method for evaluating crystal defect of silicon single-crystal wafer

Also Published As

Publication number Publication date
JP6729632B2 (en) 2020-07-22
CN112204712A (en) 2021-01-08
TWI795547B (en) 2023-03-11
WO2019230164A1 (en) 2019-12-05
JP2019207923A (en) 2019-12-05
TW202004885A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
KR20210015762A (en) Silicon wafer cleaning method
WO2012048534A1 (en) Process for cleaning compound semiconductor wafer
KR101774843B1 (en) Method for cleaning semiconductor wafer
TWI520197B (en) Method of cleaning semiconductor wafers
KR101378519B1 (en) Improved process for preparing cleaned surfaces of strained silicon
US6884721B2 (en) Silicon wafer storage water and silicon wafer storage method
JP6418357B1 (en) GaAs substrate and manufacturing method thereof
JP4817887B2 (en) Semiconductor substrate cleaning method
JPH03219000A (en) Etching method and washing method for silicon wafer
WO2013179569A1 (en) Method for cleaning semiconductor wafer
JP4857738B2 (en) Semiconductor wafer cleaning method and manufacturing method
JP7193026B1 (en) Cleaning liquid and wafer cleaning method
JPH1187281A (en) Cleaning of silicon wafer
KR20230005174A (en) Semiconductor wafer cleaning method
US11222780B2 (en) Method for evaluating silicon wafer and method for manufacturing silicon wafer
JP3040067B2 (en) Method for cleaning substrate having semiconductor layer
EP4307347A1 (en) Method for cleaning silicon wafer, method for producing silicon wafer, and silicon wafer
JP2001284309A (en) Treatment method of container
JP4103310B2 (en) Silicon wafer storage water and storage method
KR20100049856A (en) Method for cleaning a substrate
JP2009182233A (en) Washing method of annealed wafer
CN116918041A (en) Method for cleaning silicon wafer, method for manufacturing silicon wafer, and silicon wafer
JP2001213696A (en) Manufacturing method of epitaxyial wafer and its semiconductor manufacturing equipment
JP5994687B2 (en) Cleaning tank treatment method
CN117897798A (en) Method for cleaning silicon wafer, method for manufacturing silicon wafer, method for evaluating hydrogen peroxide concentration in cleaning liquid, and method for managing hydrogen peroxide concentration in cleaning liquid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application