KR20210015168A - Solar cell power plant and control system, and its method of operating thereof - Google Patents

Solar cell power plant and control system, and its method of operating thereof Download PDF

Info

Publication number
KR20210015168A
KR20210015168A KR1020190093622A KR20190093622A KR20210015168A KR 20210015168 A KR20210015168 A KR 20210015168A KR 1020190093622 A KR1020190093622 A KR 1020190093622A KR 20190093622 A KR20190093622 A KR 20190093622A KR 20210015168 A KR20210015168 A KR 20210015168A
Authority
KR
South Korea
Prior art keywords
power generation
unit
storage battery
solar
solar power
Prior art date
Application number
KR1020190093622A
Other languages
Korean (ko)
Other versions
KR102292748B1 (en
KR102292748B9 (en
Inventor
장현수
Original Assignee
주식회사 현태
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 현태 filed Critical 주식회사 현태
Priority to KR1020190093622A priority Critical patent/KR102292748B1/en
Publication of KR20210015168A publication Critical patent/KR20210015168A/en
Application granted granted Critical
Publication of KR102292748B1 publication Critical patent/KR102292748B1/en
Publication of KR102292748B9 publication Critical patent/KR102292748B9/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2216/00Indexing scheme relating to additional aspects of information retrieval not explicitly covered by G06F16/00 and subgroups
    • G06F2216/03Data mining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Disclosed are a system including a solar power generation system and a control server, and a method of operating a solar power generation and control system performing power generation amount prediction and malfunction diagnosis on the solar power generation system by using the control server. The solar power generation system of the present invention provides a solar power generation and control system including at least one solar power generation part, a control server connected to perform wired or wireless communication with the at least one solar power generation part, and at least one manager terminal connected to perform wired or wireless communication with the control server, and a method of operating a solar power generation and control system, having a function for diagnosing malfunction and predicting a solar power generation amount by using the same.

Description

태양광 발전 및 제어 시스템, 그리고 태양광 발전 및 제어 시스템의 운영 방법{SOLAR CELL POWER PLANT AND CONTROL SYSTEM, AND ITS METHOD OF OPERATING THEREOF}Solar power plant and control system, and operation method of solar power plant and control system {SOLAR CELL POWER PLANT AND CONTROL SYSTEM, AND ITS METHOD OF OPERATING THEREOF}

본 발명은 태양광 발전 및 제어 시스템을 운영하는 방법에 관한 것으로, 보다 상세하게는 태양광 발전 시스템과 제어서버를 포함하는 시스템과, 상기 제어서버를 이용하여 태양광 발전 시스템의 고장진단 및 발전량 예측을 실시하는 태양광 발전 및 제어 시스템의 운영방법에 관한 것이다.The present invention relates to a method of operating a photovoltaic power generation and control system, and more particularly, a system including a photovoltaic power generation system and a control server, and a fault diagnosis and generation amount prediction of a photovoltaic power generation system using the control server. It relates to a method of operating a solar power generation and control system to implement.

세계적으로 환경 문제가 대두되면서 대체에너지에 관한 기술개발이 활발하게 진행되고 있는데, 가장 대표적인 것이 태양광 발전이다. 태양광 발전은 기본적으로 환경 친화적이며 무공해 에너지이고 에너지를 공급 받는 데 별다른 노력을 들이지 않기 때문이다.As environmental issues emerge around the world, technology development for alternative energy is actively progressing, and the most representative is solar power generation. This is because solar power generation is basically environmentally friendly, pollution-free energy, and does not take much effort to receive energy.

하지만 태양광 발전은 현재로써는 대세적인 에너지 공급원으로써 활용되기에는 어려운 실정인데, 왜냐하면 태양광 발전은 에너지원인 태양빛의 시간대별 가용성의 차이로 인한 전력 생산량의 변동과 날씨 및 계절, 풍속, 일조량 등 다양한 자연조건의 변화에 따른 전력 생산량의 불확실성을 태생적으로 가지고 있기 때문이다.However, photovoltaic power generation is currently difficult to be utilized as a major energy supply source. Because photovoltaic power generation has a variety of changes in power production, weather, season, wind speed, sunlight, etc. due to the difference in availability of sunlight as an energy source by time. This is because it inherently has uncertainty in the amount of electricity produced due to changes in natural conditions.

상기와 같은 전력 생산량의 불확실성을 타개하기 위하여, 상기 태양광 발전은 대규모의 통합적인 발전 및 관리 시스템으로 구성하여 다수의 태양광 발전시설과, 기후를 감지할 수 있는 다양한 센서들을 포함시켜서 발전량을 최대화하는 것이 일반적이다.In order to overcome the uncertainty in the amount of power production as described above, the solar power generation is configured as a large-scale integrated power generation and management system, and includes a number of solar power generation facilities and various sensors capable of detecting the climate to maximize the amount of power generation. It is common to do.

도 1은 일반적인 태양광 발전 시스템의 개략적인 구조도이다. 도 1에서 도시된 바와 같이, 태양광 발전을 실시하는 태양광 발전시설(PLANT)은 하나 이상의 센서(PS)를 포함하는데, 상기 센서(PS)는 발전시설 통신부(PT)와 유선 또는 무선으로 연결되어 있고, 또 상기 발전시설 통신부(PT)는 상기 태양광 발전 시스템을 통합적으로 제어하고 관리하는 발전시설 제어서버(PC)와 유선 또는 무선으로 연결되어, 상기 센서(PS)가 전송하는 센싱 신호가 상기 발전시설 통신부(PT)를 거쳐 상기 발전시설 제어서버(PC)에 전달된다.1 is a schematic structural diagram of a general solar power generation system. As shown in Fig. 1, a photovoltaic power generation facility (PLANT) for performing photovoltaic power generation includes one or more sensors (PS), the sensor (PS) is connected to the power generation facility communication unit (PT) by wire or wireless In addition, the power generation facility communication unit (PT) is connected to a power generation facility control server (PC) that integrally controls and manages the solar power generation system, and is connected by wire or wirelessly, and the sensing signal transmitted by the sensor (PS) is It is transmitted to the power generation facility control server (PC) through the power generation facility communication unit (PT).

이때, 상기 센서(PS)가 각종 기후 및 환경정보를 감지하여 샌성하는 센싱 신호는 아날로그 신호 형태인데, 종래에는 상기 아날로그 신호가 상기 발전시설 통신부(PT)를 거쳐 발전시설 제어서버(PC)로 전송되는 데 있어서 별도의 변환을 하지 않아 노이즈가 발생, 신호가 왜곡되어 명확한 신호가 전달되지 않는다는 단점이 발생하였다.At this time, the sensing signal generated by the sensor (PS) sensing various climate and environmental information is in the form of an analog signal, but conventionally, the analog signal is transmitted to the power plant control server (PC) through the power plant communication unit (PT). In this regard, there is a disadvantage in that no separate conversion is performed and noise is generated, the signal is distorted and a clear signal is not transmitted.

따라서 태양광 발전시설의 환경정보를 보다 민감하게 전송할 수 있는 센서 전달 시스템과, 이를 바탕으로 정밀하게 측정된 기후조건, 구름 조건 등의 센싱 정보와 발전 성능과의 상관관계를 머신러닝 등의 기술을 이용해 도출하고, 모듈 상태에 대한 모듈 열화 모델을 이용해 예측한 후, 태양광 발전량 예측에 활용할 수 있는 시스템의 개발이 필요하게 되었다.Therefore, a sensor delivery system that can more sensitively transmit environmental information of solar power generation facilities, and based on this, the correlation between sensing information such as weather conditions and cloud conditions, and power generation performance accurately measured, and technology such as machine learning, are used. It is necessary to develop a system that can be derived using and predicted using a module deterioration model for the state of the module, and then used to predict the amount of solar power generation.

KR공개특허 10-2018-0109101호KR Patent Publication No. 10-2018-0109101 KR등록특허 10-2002548호KR Registered Patent 10-2002548 KR등록특허 10-1761686호KR Registered Patent No. 10-1761686 KR등록특허 10-1864695호KR Registered Patent No. 10-1864695

본 발명은 상기와 같은 종래 기술의 문제점을 해결하여, 태양광 발전에 있어서 이를 제어할 수 있는 시스템과, 상기 태양광 발전 시스템을 이용하여 태양광 발전 시스템의 고장진단기능 및 태양광 발전량 예측기능을 포함하는 태양광 발전 및 제어시스템의 운영방법을 제공하는 데 그 목적이 있다. The present invention solves the problems of the prior art as described above, and provides a system capable of controlling it in solar power generation, and a fault diagnosis function and a solar power generation amount prediction function of the photovoltaic power generation system using the photovoltaic power generation system. Its purpose is to provide a method of operating a solar power generation and control system including.

본 발명은 상기와 같은 본 발명의 목적을 달성하기 위하여,The present invention in order to achieve the object of the present invention as described above,

하나 이상의 태양광 발전부와, 상기 하나 이상의 태양광 발전부와 유선 또는 무선으로 통신 가능하게 연결되는 제어서버, 그리고 상기 제어서버와 유선 또는 무선으로 통신 가능하게 연결되는 하나 이상의 관리자 단말기를 포함하는 태양광 발전 및 제어시스템으로서,An aspect comprising one or more photovoltaic power generation units, a control server that is communicatively connected to the at least one photovoltaic power generation unit by wire or wireless, and at least one manager terminal that is communicatively connected to the control server by wire or wirelessly As a photovoltaic power generation and control system,

상기 태양광 발전부는 하나 이상의 태양전지들을 포함하는 태양전지 발전부; 광량을 측정할 수 있는 광량센서; 그리고 상기 태양전지 발전부 내 태양전지들의 발전전압 및 전류를 측정할 수 있는 태양전지 측정부를 포함하는 태양전지부; 상기 태양전지부에서 발전을 실시하여 생산한 전기에너지를 저장하기 위하여, 하나 이상의 개별 축전지들을 포함하는 축전지 저장부; 그리고 상기 축전지 저장부 내 개별 축전지들의 축전지 전압 및 축전지에 충전되는 전류량을 측정할 수 있는 축전지 측정부를 포함하는 축전지부; 그리고 상기 제어서버와 유선 또는 무선으로 통신할 수 있는 통신수단 및 프로그램을 포함하는 통신부를 포함하고, The solar power generation unit solar cell power generation unit including one or more solar cells; A light amount sensor capable of measuring the amount of light; And a solar cell unit including a solar cell measuring unit capable of measuring the power generation voltage and current of the solar cells in the solar cell generating unit. A storage battery storage unit including one or more individual storage batteries to store electric energy produced by power generation by the solar cell unit; And a storage battery unit including a storage battery measuring unit capable of measuring a storage battery voltage of individual storage batteries in the storage battery storage unit and an amount of current charged in the storage battery. And a communication unit including a communication means and a program capable of communicating with the control server by wire or wirelessly,

상기 제어서버는 상기 하나 이상의 태양광 발전부를 개별적으로 제어하기 위하여, 상기 하나 이상의 태양광 발전부 각각의 고장을 개별적으로 진단하고 판단하기 위한 고장판단부; 상기 하나 이상의 태양광 발전부와 관련된 하나 이상의 데이터 및 수치에 대한 통계를 작성하는 통계작성부; 외부의 전기통신망을 참조하여 데이터를 갈무리하는 데이터수집부; 그리고 심층 신경망 방식을 이용하여 미래의 태양광 발전량을 예측할 수 있도록 하는 발전량학습부를 포함하는 제어부; 상기 하나 이상의 태양광 발전부 각각의 현황을 구분하여 갱신 저장하는 시스템 현황 DB; 상기 통계작성부가 생성하는 하나 이상의 통계 정보를 저장하는 시스템 통계 DB; 상기 데이터수집부가 외부의 전기통신망을 참조하여 갈무리한 데이터를 저장하는 외부환경 DB; 그리고 상기 발전량학습부(214)의 동작에 따라 생성되는 데이터를 저장하는 학습 DB를 포함하는 서버 DB; 그리고 상기 하나 이상의 태양광 발전부 및 상기 하나 이상의 관리자 단말기와 유선 또는 무선으로 통신 가능하게 연결되는 서버 통신부를 포함하는 태양광 발전 및 제어시스템을 제공한다.The control server may include a failure determination unit for individually diagnosing and determining a failure of each of the one or more solar power generation units to individually control the at least one solar power generation unit; A statistics creation unit for creating statistics on one or more data and values related to the one or more solar power generation units; A data collection unit storing data by referring to an external telecommunication network; And a control unit including a power generation amount learning unit capable of predicting a future solar power generation amount using a deep neural network method. A system status DB for updating and storing the status of each of the one or more solar power generation units; A system statistics DB for storing one or more statistical information generated by the statistics generating unit; An external environment DB in which the data collection unit stores data stored by referring to an external telecommunication network; And a server DB including a learning DB for storing data generated according to the operation of the power generation learning unit 214; And it provides a photovoltaic power generation and control system including the one or more photovoltaic power generation units and a server communication unit that is connected to the at least one manager terminal in a wired or wireless manner.

상기에서, 태양전지 측정부는 상기 하나 이상의 태양전지들의 발전전압을 개별적으로 측정할 수 있는 태양전지 발전전압 측정부; 그리고 상기 하나 이상의 태양전지들의 전류를 개별적으로 측정할 수 있는 태양전지 전류 측정부를 포함하고, 상기 축전지 측정부는 상기 하나 이상의 개별 축전지들의 전압을 측정할 수 있는 축전지 전압 측정부; 그리고 상기 하나 이상의 개별 축전지들의 충전 전류를 측정할 수 있는 축전지 충전전류 측정부를 포함한다.In the above, the solar cell measurement unit solar cell generation voltage measurement unit capable of individually measuring the generated voltage of the one or more solar cells; And a solar cell current measuring unit capable of individually measuring currents of the one or more solar cells, wherein the storage battery measuring unit includes a storage battery voltage measuring unit capable of measuring a voltage of the one or more individual storage cells; And it includes a storage battery charging current measuring unit capable of measuring the charging current of the one or more individual storage batteries.

상기에서, 센서부는 조도센서, 온도센서, 습도센서, 이산화탄소 센서를 포함함이 바람직하다.In the above, it is preferable that the sensor unit includes an illuminance sensor, a temperature sensor, a humidity sensor, and a carbon dioxide sensor.

상기에서, 통신부는 상기 센서부, 태양전지 측정부, 그리고 축전지 측정부에서 송신하는 아날로그 신호를 수신하고 이를 맨체스터 코드화하여 디지털 신호로 변환한 다음 상기 서버 통신부로 송신하는 것이 바람직하다.In the above, it is preferable that the communication unit receives the analog signal transmitted from the sensor unit, the solar cell measurement unit, and the storage battery measurement unit, converts it into a Manchester coded digital signal, and transmits it to the server communication unit.

상기에서, 제어서버는 둘 이상의 컴퓨터를 포함하고, 상기 제어서버에 포함되는 둘 이상의 컴퓨터에는 분산처리 프로그램이 설치되어, 상기 제어서버가 상기 분산처리 프로그램에 의해 구현되도록 하는 것이 바람직하다.In the above, it is preferable that the control server includes at least two computers, and a distributed processing program is installed in at least two computers included in the control server so that the control server is implemented by the distributed processing program.

상기에서의 분산처리 하둡 소프트웨어 프레임워크임을 사용하는 것이 바람직하다.It is preferable to use the distributed processing Hadoop software framework.

상기에서, 시스템 통계 DB는 발전량 DB, 이산화탄소 절감총량 DB, 발전비용 DB, 발전시간 DB, 인버터가동률 DB, 그리고 변환효율 DB를 포함하는 것이 바람직하다.In the above, it is preferable that the system statistics DB includes a power generation DB, a carbon dioxide reduction total DB, a power generation cost DB, a power generation time DB, an inverter operation rate DB, and a conversion efficiency DB.

상기에서, 외부환경 DB는 일사량 DB, 강수량 DB, 기온 DB, 전운량 DB, 습도 DB, 그리고 안개 DB를 포함하는 것이 바람직하다.In the above, it is preferable that the external environment DB includes solar radiation DB, precipitation DB, temperature DB, total cloud amount DB, humidity DB, and fog DB.

상기에서, 학습 DB는 형성모델 DB, 트레이닝셋 DB, 테스트셋 DB, 그리고 블라인드셋 DB를 포함하는 것이 바람직하다.In the above, it is preferable that the learning DB includes a formation model DB, a training set DB, a test set DB, and a blind set DB.

상기의 태양광 발전 및 제어시스템의 운영 방법으로서, 상기 태양광 발전부 중 어느 하나의 태양전지 발전전압(V)을 측정하고 판단하는 발전전압 측정단계(S100); 상기 단계(S100) 이후, 상기 단계(S100)에서 측정 대상이 된 태양광 발전부의 축전지 전류량(Bat_C)을 측정하고 판단하는 축전지 전류량 측정단계(S110) 그리고 상기 단계(S100) 이후, 상기 단계(S100)에서 측정 대상이 된 태양광 발전부의 광량(R)을 측정하고 판단하는 광량측정단계(S120)를 실시하여 고장을 진단하도록 한다.A method of operating the solar power generation and control system, comprising: a power generation voltage measurement step (S100) of measuring and determining the power generation voltage (V) of any one of the photovoltaic power generation units; After the step (S100), the storage battery current amount measuring step (S110) of measuring and determining the storage battery current amount (Bat_C) of the solar power generation unit to be measured in the step (S100), and after the step (S100), the step (S100) ), the light amount measurement step (S120) of measuring and determining the light amount (R) of the solar power generation unit to be measured is performed to diagnose the failure.

상기 단계(S100)에서 상기 발전전압(V)이 0V가 아니고 현재 축전지 전압값(Bat_V) 이하로 판단되면 측정 대상 태양광 발전부가 정상 동작임을 확인하는 정상동작 확인단계(S101)를 실시하고 상기 단계(S110, S120)를 실시하지 않은 채 고장진단을 종료한다.In the step (S100), if the power generation voltage (V) is determined to be less than the current storage battery voltage value (Bat_V) rather than 0V, a normal operation check step (S101) is performed to confirm that the solar power generation unit to be measured is in normal operation, and the step Failure diagnosis is terminated without performing (S110, S120).

상기 단계(S100)에서 상기 발전전압(V)이 0V가 아니고 현재 축전지 전압값(Bat_V) 초과이며, 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)이 0A 이하라면, 측정 대상 태양광 발전부 중 태양전지의 전류측정부가 고장난 것으로 판단하고 이를 관리자의 단말기에 통보하는 태양전지 전류측정부 문제확인단계(S111)를 실시하고 상기 단계(S120)를 실시하지 않은 채 고장진단을 종료한다.In the step (S100), if the power generation voltage (V) is not 0V but exceeds the current storage battery voltage value (Bat_V), and in the step (S110), the storage battery current amount (Bat_C) is 0A or less, among the solar power generation unit to be measured A solar cell current measuring unit problem checking step (S111) is performed in which it is determined that the current measuring unit of the solar cell is broken and notified to the administrator's terminal, and the fault diagnosis is terminated without performing the step (S120).

상기 단계(S100)에서 상기 발전전압(V)이 0V이고, 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)이 0A 초과이며, 상기 단계(S120)에서 상기 광량(R)이 20W/㎡ 초과이면 측정 대상 태양광 발전부 중 태양전지의 전류측정부가 고장난 것으로 판단하고 이를 관리자의 단말기에 통보하는 태양전지 전류측정부 문제확인단계(S121)를 실시하고 고장진단을 종료한다.If the power generation voltage (V) is 0V in the step (S100), the storage battery current amount (Bat_C) is more than 0A in the step (S110), and the light amount (R) in the step (S120) is more than 20W/m² Among the solar power generation units to be measured, the current measurement unit of the solar cell is determined to have failed, and the problem confirmation step (S121) of the solar cell current measurement unit informing the administrator's terminal is performed, and the failure diagnosis is terminated.

상기 단계(S100)에서 상기 발전전압(V)이 0V이고, 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)이 0A 초과이며, 상기 단계(S120)에서의 상기 광량(R)이 20W/㎡ 미만이거나, 또는 상기 단계(S100)에서 상기 발전전압(V)이 0V이고 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)이 0A 이하이며, 상기 단계(S120)에서의 상기 광량(R)이 20W/㎡ 초과이면 측정 대상 태양광 발전부 중 태양전지의 전압측정부 및 전류측정부가 고장난 것으로 판단하고 이를 관리자의 단말기에 통보하는 태양전지 전압, 전류측정부 문제확인단계(S122)를 실시하고 고장진단을 종료한다.The power generation voltage (V) is 0V in the step (S100), the storage battery current amount (Bat_C) is more than 0A in the step (S110), and the light amount (R) in the step (S120) is less than 20W/m2 Or, the power generation voltage (V) is 0V in the step (S100), the storage battery current amount (Bat_C) is 0A or less in the step (S110), and the light amount (R) in the step (S120) is 20W/ If it exceeds ㎡, it is determined that the voltage measurement unit and current measurement unit of the solar cell among the photovoltaic power generation units to be measured have failed, and conducts a problem check step (S122) of the solar cell voltage and current measurement unit notifying the manager's terminal and diagnoses the failure. It ends.

상기 단계(S100)에서 상기 발전전압(V)이 0V이고, 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)이 0A 이하이며, 상기 단계(S120)에서의 상기 광량(R)이 20W/㎡ 이하이거나, 또는 상기 단계(S100)에서 상기 발전전압(V)이 0V가 아니고 현재 축전지 전압값(Bat_V) 미만이며 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)이 0A 초과이고, 상기 단계(S120)에서의 상기 광량(R)이 20W/㎡ 이상이라면, 측정 대상 태양광 발전부가 정상 동작임을 확인하는 정상동작 확인단계(S123)를 실시하고 고장진단을 종료한다.The power generation voltage (V) is 0V in the step (S100), the storage battery current amount (Bat_C) is 0A or less in the step (S110), and the light amount (R) in the step (S120) is 20W/m² or less. Or, in the step (S100), the power generation voltage (V) is not 0V and is less than the current storage battery voltage value (Bat_V), and in the step (S110), the storage battery current amount (Bat_C) is greater than 0A, and the step (S120) If the amount of light (R) in is 20W/m2 or more, a normal operation confirmation step (S123) is performed to confirm that the solar power generation unit to be measured is in normal operation, and the fault diagnosis is terminated.

상기 단계(S100)에서 상기 발전전압(V)이 0V가 아니고 현재 축전지 전압값(Bat_V) 미만이고, 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)이 0A 초과이며, 상기 단계(S120)에서의 상기 광량(R)이 20W/㎡ 미만이라면, 측정 대상 태양광 발전부의 광량센서가 고장난 것으로 판단하고 이를 관리자의 단말기에 통보하는 광량센서 문제확인단계(S124)를 실시하고 고장진단을 종료한다.In the step (S100), the power generation voltage (V) is not 0V but less than the current storage battery voltage value (Bat_V), the storage battery current amount (Bat_C) in the step (S110) is greater than 0A, and in the step (S120) If the amount of light R is less than 20W/m 2, it is determined that the light amount sensor of the solar power generation unit to be measured has failed, and a light amount sensor problem checking step (S124) of notifying the administrator's terminal is performed, and the diagnosis of the problem is terminated.

상기의 태양광 발전 및 제어시스템의 운영 방법으로서, 상기 데이터수집부가 외부의 전기통신망으로부터 데이터를 수집하여 상기 외부환경 DB에 갱신 저장하는 데이터 조달단계(S210); 상기 외부환경 DB에 갱신된 데이터에 대하여 데이터마이닝을 실시하여 원시모델 데이터(PD)를 생산하는 데이터마이닝 단계(S220); 상기 단계(S220)를 실시하여 생성된 상기 원시모델 데이터(PD)에 대하여 적어도 1회 이상 실시되는 모델 트레이닝 단계(S230); 그리고 상기 단계(S230)를 적어도 1회 실행한 다음, 테스팅을 실시하여 예측모델 데이터(CD)를 생성하도록 하고, 상기 데이터마이닝 단계(S220)에서는 가공된 데이터인 또한 트레이닝셋, 테스트셋, 그리고 블라인드셋을 형성하는 데이터 정제단계(S221)를 실시하여 태양광 발전량을 예측하도록 한다.A method of operating the solar power generation and control system, comprising: a data procurement step (S210) in which the data collection unit collects data from an external telecommunication network and updates and stores it in the external environment DB; A data mining step (S220) of producing raw model data PD by performing data mining on the updated data in the external environment DB; A model training step (S230) performed at least once or more on the raw model data PD generated by performing the step (S220); Then, after executing the step (S230) at least once, testing is performed to generate the predictive model data (CD), and in the data mining step (S220), the processed data is also a training set, a test set, and a blind The data purification step (S221) of forming a set is performed to predict the amount of solar power generation.

상기에서, 모델 트레이닝 단계(S230)는 인입되는 원시모델 데이터(PD)에 대하여 관리자가 수치를 선정하고 선정된 수치 및 학습 패턴쌍을 입력하는 수치선정 및 입력단계(S231), 은닉층(HL) 및 출력층(OL)의 입력 가중합 및 최종 출력을 계산하는 출력계산 단계(S232), 오차신호값을 계산하는 오차계산단계(S233), 그리고 다음 회차의 학습단계에 사용될 연결강도를 구하는 연결강도 변화량 계산단계(S234)를 포함하고, 상기 단계(S234) 실시 이후 상기 모델 트레이닝 단계(S230)의 실시 횟수가 정해진 epoch수 미만이거나, 미리 입력된 최대 에러율 이상이라면 상기 단계(S231)를 다시 실시하도록 한다.In the above, the model training step (S230) is a numerical selection and input step (S231), a hidden layer (HL) and a manager selects a numerical value for the incoming raw model data (PD) and inputs the selected numerical value and learning pattern pair. The output calculation step (S232) for calculating the input weighted sum and the final output of the output layer (OL), the error calculation step (S233) for calculating the error signal value, and the connection strength variation calculation to obtain the connection strength to be used in the next learning step Step S234 is included, and if the number of times the model training step S230 is performed after the step S234 is performed is less than a predetermined number of epochs or more than a pre-input maximum error rate, the step S231 is performed again.

본 발명에서의 태양광 발전 및 제어시스템은 보다 정밀한 태양광 발전부의 환경 신호 측정이 가능하여 이를 바탕으로 태양광 발전부의 기능고장을 판단하고 발전량을 예측하여 태양광 발전부의 효과적인 운용을 보장한다.The photovoltaic power generation and control system in the present invention enables more precise environmental signal measurement of the photovoltaic power generation unit, and based on this, it determines the functional failure of the photovoltaic power generation unit and predicts the amount of power generation to ensure effective operation of the photovoltaic power generation unit.

도 1은 본 발명의 태양광 발전부의 구조도.
도 2는 본 발명의 제어서버의 구조도.
도 3은 본 발명의 태양광 발전 시스템에서의 고장진단 순서를 나타낸 순서도.
도 4는 본 발명의 태양광 발전량 예측 순서를 나타낸 개략 순서도.
도 5는 본 발명의 태양광 발전량 예측을 위한 신경망 구조도.
도 6은 본 발명의 태양광 발전량 예측 순서에서의 모델 트레이닝 구조도.
1 is a structural diagram of a solar power generation unit of the present invention.
Figure 2 is a structural diagram of the control server of the present invention.
Figure 3 is a flow chart showing a fault diagnosis sequence in the solar power generation system of the present invention.
Figure 4 is a schematic flow chart showing the solar power generation amount prediction procedure of the present invention.
5 is a structural diagram of a neural network for predicting solar power generation according to the present invention.
Figure 6 is a model training structure diagram in the solar power generation prediction sequence of the present invention.

이하에서는 본 발명을 첨부되는 도면을 참조하여 보다 상세히 설명한다. 하기의 설명은 본 발명의 실시와 이해를 돕기 위한 것이지 본 발명을 이에 한정하는 것은 아니다. 당업자들은 이하의 청구범위에 기재된 본 발명의 사상 내에서 다양한 변형 및 변경이 있을 수 있음을 이해할 것이다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. The following description is intended to aid in the practice and understanding of the present invention, but is not intended to limit the present invention. Those skilled in the art will understand that various modifications and changes can be made within the spirit of the invention as set forth in the following claims.

도 2는 본 발명의 태양광 발전 및 제어 시스템의 구조도이다. 이하에서는 도 2를 통하여 본 발명의 태양광 발전 시스템의 구성요소에 대하여 간략하게 설명한다.2 is a structural diagram of a solar power generation and control system of the present invention. Hereinafter, the components of the solar power generation system of the present invention will be briefly described with reference to FIG. 2.

도 2에 도시된 바와 같이, 본 발명의 태양광 발전 및 제어 시스템은 하나 이상의 태양광 발전부(100)와, 상기 하나 이상의 태양광 발전부(100)와 유선 또는 무선으로 통신 가능하게 연결되어 이를 제어하기 위한 제어서버(200), 그리고 상기 제어서버(200)에서 송신하는 상기 하나 이상의 태양광 발전부(100)의 제어 현황정보를 확인할 수 있도록 하기 위하여, 상기 제어서버(200)와 통신 가능하게 유선 또는 무선으로 연결되어 있는 하나 이상의 관리자의 단말기(300)를 포함한다.As shown in Figure 2, the solar power generation and control system of the present invention is connected to one or more photovoltaic power generation unit 100, the at least one photovoltaic power generation unit 100 and the wired or wireless communication is possible to this In order to be able to check the control status information of the control server 200 for controlling, and the one or more photovoltaic power generation units 100 transmitted from the control server 200, communication with the control server 200 is possible. It includes at least one manager's terminal 300 connected by wire or wirelessly.

상기 도 2에서, 점선으로 연결된 것은 상호간에 유선 또는 무선으로 통신 가능하게 연결되어 있는 것을 의미한다.In FIG. 2, a dotted line means that they are connected to each other in a wired or wireless manner.

설명에 앞서, 본 발명에서 상기 태양광 발전부(100)는 하나 이상 포함하나, 설명의 편의를 위하여 도 2에 개시된 바와 같이 상기 태양광 발전부(100)는 하나가 상기 제어서버(200)에 통신 가능하게 연결되어 있는 것을 일예시로 하여 설명하도록 한다. 만약 상기 태양광 발전부(100)를 둘 이상 포함시키게 되더라도, 각각의 구성요소는 동일하게 하면 된다.Prior to the description, in the present invention, the photovoltaic power generation unit 100 includes one or more, but as disclosed in FIG. 2 for convenience of description, one photovoltaic power generation unit 100 is included in the control server 200. It will be described with an example that is connected to enable communication. Even if two or more of the photovoltaic power generation units 100 are included, each component may be the same.

또한, 본 발명에서 상기 단말기(300)는 데스크탑 PC 또는 스마트폰, 태블릿 PC 등 프로그램의 설치가 가능하거나 웹 페이지에 접속할 수 있는 단말기는 모두 사용할 수 있다.In addition, in the present invention, the terminal 300 may use any terminal capable of installing programs such as a desktop PC, a smartphone, a tablet PC, or accessing a web page.

상기 태양광 발전부(100)는 도 1에서 도시된 바와 같이, 태양전지부(110), 축전지부(120), 그리고 통신부(130)를 포함한다.The solar power generation unit 100 includes a solar cell unit 110, a storage battery unit 120, and a communication unit 130, as shown in FIG. 1.

상기 태양전지부(110)는 실제로 태양광으로부터 발전을 실시하여 전기에너지를 생산하는 부분으로서, 하나 이상의 태양전지들(1111, 1112)을 포함하는 태양전지 발전부(111)를 포함한다.The solar cell unit 110 actually generates electric energy by generating electricity from sunlight, and includes a solar cell generator 111 including one or more solar cells 1111 and 1112.

그리고 하나 이상의 센서를 포함하는 센서부(112), 바람직하게는 상기 태양광 발전부(100)의 주변 광량(光量)을 측정할 수 있는 조도센서(1121), 온도를 측정할 수 있는 온도센서(1122), 습도를 측정할 수 있는 습도센서(1123), 이산화탄소 농도를 측정할 수 있는 이산화탄소 농도센서(1124)를 포함하는 센서부(112)를 포함한다.And a sensor unit 112 including one or more sensors, preferably an illuminance sensor 1121 capable of measuring the amount of ambient light of the solar power generation unit 100, a temperature sensor capable of measuring temperature ( 1122), a humidity sensor 1123 capable of measuring humidity, and a sensor unit 112 including a carbon dioxide concentration sensor 1124 capable of measuring a carbon dioxide concentration.

또한 상기 태양전지 발전부(111)에 속한 개별 태양전지들의 발전전압 및 전류를 측정할 수 있는 태양전지 측정부(113)를 포함한다.In addition, it includes a solar cell measuring unit 113 capable of measuring the power generation voltage and current of individual solar cells belonging to the solar cell power generating unit 111.

바람직하게는, 상기 태양전지 측정부(113)는 상기 개별 태양전지들의 발전전압을 측정할 수 있는 태양전지 발전전압 측정부(1131)와, 상기 개별 태양전지들의 전류를 측정할 수 있는 태양전지 전류 측정부(1132)를 포함한다.Preferably, the solar cell measurement unit 113 includes a solar cell generation voltage measurement unit 1131 capable of measuring the generated voltage of the individual solar cells, and a solar cell current capable of measuring the current of the individual solar cells. It includes a measurement unit 1132.

그리고 축전지부(120)는 상기 태양전지부(110)에서 발전을 실시하여 생산한 전기에너지를 저장하기 위한 것으로, 실제로 전기에너지의 저장을 실시하기 위하여 하나 이상의 개별 축전지들(1211, 1212)을 포함하는 축전지 저장부(121), 그리고 상기 축전지 저장부(121) 내 개별 축전지들의 축전지 전압 및 축전지에 충전되는 전류량을 측정할 수 있는 축전지 측정부(122)를 포함한다. In addition, the storage battery unit 120 is for storing electric energy produced by power generation by the solar battery unit 110, and includes one or more individual storage batteries 1211 and 1212 in order to actually store electric energy. It includes a storage battery storage unit 121, and a storage battery measuring unit 122 capable of measuring the storage battery voltage and the amount of current charged in the storage battery of the individual storage batteries in the storage battery storage unit 121.

바람직하게는, 상기 축전지 측정부(122)는 상기 개별 축전지들의 전압을 측정할 수 있는 축전지 전압 측정부(1221)와, 상기 개별 축전지들의 충전 전류를 측정할 수 있는 축전지 충전전류 측정부(1222)를 포함한다.Preferably, the storage battery measurement unit 122 includes a storage battery voltage measurement unit 1221 capable of measuring the voltage of the individual storage batteries, and a storage battery charging current measurement unit 1222 capable of measuring the charging current of the individual storage batteries. Includes.

그리고 통신부(130)는 상기 제어서버(200)와 유선 또는 무선으로 통신할 수 있는 통신수단 및 프로그램을 포함하며, 통신 방식은 통상의 방법을 사용하면 되므로 이에 대한 설명은 생략한다.Further, the communication unit 130 includes a communication means and a program capable of communicating with the control server 200 by wire or wirelessly, and a description thereof will be omitted since the communication method may be performed using a conventional method.

또한 상기 태양광 발전부(100)는 상기한 구성요소들 외에도, 인버터 및 분전반, 컨버터 등 일반적인 태양광 발전 및 ESS(Energy storage system)에서 공통적인 구성요소로서 사용하고 있는 것들을 모두 포함하며, 이러한 일반적인 구성요소들은 그 기능 및 동작 방법 등이 잘 알려져 있으므로 이에 대한 설명은 생략한다.In addition, the solar power generation unit 100 includes all of the components used as common components in general solar power generation and ESS (Energy storage system), such as inverters, distribution boards, and converters, in addition to the above components. Components are well known for their functions and operating methods, and thus a description thereof will be omitted.

상기 제어서버(200)는 자신과 유선 또는 무선으로 통신 가능하게 연결되어 있는, 하나 이상의 태양광 발전부(100) 각각을 제어할 수 있는 제어부(120), 상기 하나 이상의 태양광 발전부(100) 각각의 제어 데이터가 저장되어 있는 서버 DB(220), 그리고 상기 하나 이상의 태양광 발전부(100)들과 유선 또는 무선으로 통신할 수 있는 통신수단 및 프로그램들을 포함하는 서버 통신부(230)를 포함한다.The control server 200 is a control unit 120 capable of controlling each of the one or more solar power generation units 100, which are connected to each other through wired or wireless communication, and the at least one photovoltaic power generation unit 100 It includes a server DB 220 in which each control data is stored, and a server communication unit 230 including communication means and programs capable of communicating with the one or more solar power generation units 100 by wire or wirelessly. .

도 3은 상기 센서부(112) 및 각 측정부(113, 122)와 통신부(130), 서버 통신부(230) 간의 연결관계를 도시한 구조도이다. 이하에서는 도 3을 통하여 각 부분의 통신관계에 대하여 설명한다.3 is a structural diagram showing a connection relationship between the sensor unit 112 and each of the measurement units 113 and 122, the communication unit 130, and the server communication unit 230. Hereinafter, a communication relationship between each part will be described with reference to FIG. 3.

도 3에 도시된 점선은 유선 또는 무선으로 상호간에 연결되어 있는 것을 표시한 것이다. 따라서, 상기 센서부(112), 태양전지 측정부(113) 및 축전지 측정부(122)는 상기 통신부(130)와 유선 또는 무선으로 통신 가능하게 연결되고, 상기 통신부(130)는 상기 서버 통신부(230)와 유선 또는 무선으로 연결된다.The dotted lines shown in FIG. 3 indicate that they are connected to each other by wire or wireless. Accordingly, the sensor unit 112, the solar cell measurement unit 113, and the storage battery measurement unit 122 are connected to the communication unit 130 by wired or wireless communication, and the communication unit 130 is the server communication unit ( 230) and wired or wirelessly.

상기 센서부(112)에서 생성되는 센싱 신호와 상기 측정부(113, 122)에서 측정한 측정 신호는 모두 아날로그 신호 형태로 형성되는데, 상기 통신부(130)는 자신에게 송신되는 상기 아날로그 신호를 멘체스터 코드(Manchester code) 방식으로 디지털 인코딩하여 디지털 신호로 변환하여, 상기 서버 통신부(230)로 전송한다.The sensing signal generated by the sensor unit 112 and the measurement signal measured by the measurement units 113 and 122 are both formed in the form of an analog signal, and the communication unit 130 converts the analog signal transmitted to itself to a Manchester code. It is digitally encoded using a (Manchester code) method, converted into a digital signal, and transmitted to the server communication unit 230.

상기와 같이 상기 통신부(130)가 자신이 수신한 아날로그 신호를 디지털 신호로 변환함으로서, 종래의 태양광 발전 시스템 등에서 발생하였던 노이즈 발생으로 인한 신호 왜곡 등의 문제가 발생하지 않게 된다.As described above, since the communication unit 130 converts the analog signal received by itself into a digital signal, a problem such as signal distortion due to noise generated in a conventional solar power generation system does not occur.

도 4는 상기 제어서버(200)의 구체적인 구성을 표현한 구조도이다. 이하에서는 도 4를 통하여 상기 제어서버(200)의 구체적인 구성요소에 대하여 설명한다.4 is a structural diagram showing a specific configuration of the control server 200. Hereinafter, specific components of the control server 200 will be described with reference to FIG. 4.

설명에 앞서, 상술한 바와 같이 본 발명의 태양광 발전 및 제어 시스템은 하나 이상의 태양광 발전 시스템과 관리자 단말을 포함하는데, 이하에서는 설명의 편의를 위하여, 상기 제어서버(200)에 3개의 태양광 발전 시스템(100a~100c)이 연결되어 있는 것을 일예시로 하여 설명하기로 한다.Prior to the description, as described above, the photovoltaic power generation and control system of the present invention includes one or more photovoltaic power generation systems and a manager terminal. Hereinafter, for convenience of explanation, the control server 200 includes three photovoltaic devices. It will be described as an example that the power generation system (100a ~ 100c) is connected.

또한 본 발명의 제어서버(200)는 이하에서 설명할 상기 제어서버(200)의 구성요소들을 실제로 구현하기 위하여, 하나 이상의 연산장치와 하나 이상의 기억장치를 포함하는 컴퓨터를 한 대 이상 포함한다. 이때의 컴퓨터는 서버용 컴퓨터를 사용하는 것이 바람직하나, 일반적인 데스크탑 PC나 태블릿 등 다른 형태의 컴퓨터 또한 사용할 수 있다.In addition, the control server 200 of the present invention includes one or more computers including one or more computing devices and one or more storage devices in order to actually implement the components of the control server 200 to be described below. In this case, it is preferable to use a server computer, but other types of computers such as a general desktop PC or tablet may also be used.

그리고 본 발명의 제어서버(200)의 구현에 있어서, 한 대의 단일한 컴퓨터를 사용하여 상기 제어서버(200)를 구현할 수도 있지만, 보다 경제적인 구현 및 원활한 데이터 처리를 위하여 상기 컴퓨터를 둘 이상으로 여러 대 편성하여 본 발명의 제어서버(200)를 구현하는 것이 바람직하다.And in the implementation of the control server 200 of the present invention, the control server 200 may be implemented using one single computer, but for more economical implementation and smooth data processing, two or more computers may be used. It is preferable to implement the control server 200 of the present invention by organizing.

상기 제어서버(200)는 본 발명에 포함되는 하나 이상의 태양광 발전부(100a~100c)을 개별적으로 제어하기 위한 제어부(210), 상기 하나 이상의 태양광 발전부(100a~100c)의 제어를 위한 각종 데이터 및 수치가 저장되어 있는 서버 DB(220), 그리고 상기 하나 이상의 태양광 발전부(100a~100c) 및 관리자의 단말기(300)와 유선 또는 또는 무선으로 통신 가능하게 연결되어 통신하기 위한 서버 통신부(230)를 포함한다.The control server 200 is a control unit 210 for individually controlling one or more solar power generation units 100a to 100c included in the present invention, and a control unit for controlling the one or more solar power generation units 100a to 100c. Server DB 220 in which various data and values are stored, and a server communication unit for communicating by wired or wireless communication with the one or more photovoltaic power generation units 100a to 100c and the administrator's terminal 300 Includes 230.

상기의 구성요소들(210, 220, 230)는 상기한 기능들을 구현하기 위한 하나 이상의 연산장치 및 기억장치, 그리고 동작을 위한 하나 이상의 내장되어 설치되어 있거나, 또는 설치할 수 있는 프로그램들을 포함한다.The above components 210, 220, 230 include one or more computing devices and storage devices for implementing the above functions, and one or more built-in or installed programs for operation.

상기의 구성요소들(210, 220, 230)에 대해 더 구체적으로 설명하면, 상기 제어부(210)는 상기 하나 이상의 태양광 발전부(100a~100c) 각각의 고장을 개별적으로 진단하고 판단하기 위한 고장판단부(211), 상기 하나 이상의 태양광 발전부(100a~100c)와 관련된 각종 데이터 및 수치에 대한 통계를 작성하여 상기 서버 DB(220)에 갱신 저장하도록 하는 통계작성부(212), 상기 서버 통신부(230)로부터 유입될 수 있는, 외부의 전기통신망으로부터 전송되는 데이터 및 수치를 갈무리하여 상기 서버 DB(220)에 갱신 저장하도록 하는 데이터수집부(213), 그리고 상기 서버 DB(220)에 저장되어 있는 각종 데이터 및 수치들을 토대로 딥러닝 알고리즘 중 심층 신경망을 이용하여 미래의 태양광 발전량을 예측할 수 있도록 하는 발전량학습부(214)를 포함한다.When the above components 210, 220, 230 are described in more detail, the control unit 210 individually diagnoses and determines a failure of each of the one or more solar power generation units 100a to 100c. The determination unit 211, a statistics creation unit 212 for updating and storing in the server DB 220 by creating statistics on various data and values related to the one or more solar power generation units 100a to 100c, the server A data collection unit 213 for storing data and values transmitted from an external telecommunication network that may be introduced from the communication unit 230 and stored in the server DB 220 for updating and storing in the server DB 220 It includes a power generation learning unit 214 for predicting future solar power generation by using a deep neural network among deep learning algorithms based on various data and values.

그리고 상기 DB(220)는 시스템 현황 DB(221)을 포함한다. 상기 시스템 현황 DB(221)는 연결된 상기 하나 이상의 태양광 발전부(100a~100c)들의 현황을 각각 구분하여 갱신 저장하기 위하여, 상기 하나 이상의 태양광 발전 시스템(100a~100c) 각각에 대응되어 구분 가능한 저장공간인 개별 DB(2211, 2212....)들을 하나 이상 포함한다.And the DB 220 includes a system status DB (221). The system status DB 221 corresponds to each of the one or more photovoltaic power generation systems 100a to 100c, so that the status of the connected one or more photovoltaic power generation units 100a to 100c is separately updated and stored. It includes one or more individual DBs (2211, 2212....) that are storage spaces.

또한 상기 DB(220)는 시스템 통계 DB(222)를 포함한다. 상기 시스템 통계 DB(222)는 상기 하나 이상의 태양광 발전 시스템(100a~100c)의 운용에 따라 상기 통계작성부(212)가 생성하는 각종 통계 정보들과 데이터를 저장하기 위한 것으로, 바람직하게는 상기 하나 이상의 태양광 발전 시스템(100a~100c)의 발전량을 각각 구분하여 저장하는 발전량 DB(2221), 이산화탄소 절감총량을 갱신하여 저장하는 이산화탄소 절감총량 DB(2222), 발전비용을 각각 구분하여 저장하는 발전비용 DB(2223), 발전시간을 각각 구분하여 저장하는 발전시간 DB(2224), 상기 하나 이상의 태양광 발전 시스템(100a~100c)에 포함되어 있는 인버터의 가동률을 갱신 저장하는 인버터가동률 DB(2225), 그리고 각각의 전력 변환효율의 평균값을 갱신 저장하도록 하는 변환효율 DB(2226)를 포함한다.In addition, the DB 220 includes a system statistics DB (222). The system statistics DB 222 is for storing various statistical information and data generated by the statistics generating unit 212 according to the operation of the one or more photovoltaic power generation systems 100a to 100c. Power generation DB (2221) that separates and stores the power generation amount of one or more photovoltaic power generation systems (100a to 100c), carbon dioxide reduction total amount DB (2222) that updates and stores the total amount of carbon dioxide reduction, and power generation that separates and stores power generation costs Cost DB (2223), power generation time DB (2224) that separates and stores power generation time, and inverter operation rate DB (2225) that updates and stores operating rates of inverters included in the one or more photovoltaic power generation systems (100a to 100c) And a conversion efficiency DB 2226 for updating and storing the average value of each power conversion efficiency.

상기한 시스템 통계 DB(222)에 포함된 각각의 DB들(2221~2226)에 대하여 더 구체적으로 설명하자면, 상기 발전량 DB(2221)는 상기 하나 이상의 태양광 발전 시스템(100a~100c) 각각의 금일 발전량, 금월 발전량, 누적 발전량, 전일 발전량, 전월 발전량, 전년도 발전량을 포함하여 갱신 저장한다.To describe in more detail each of the DBs 2221 to 2226 included in the system statistics DB 222, the power generation DB 2221 is each of the one or more photovoltaic power generation systems 100a to 100c. The generation amount, this month's generation amount, cumulative generation amount, the previous day's generation amount, the previous month's generation amount, and the previous year's generation amount are updated and saved

그리고 이산화탄소 절감총량 DB(2222)는 아래의 수학식 1과 같은 식에 따라 나온 수치를 갱신 저장한다.In addition, the total amount of carbon dioxide reduction DB 2222 updates and stores the numerical value obtained according to the following equation (1).

Figure pat00001
Figure pat00001

상기 수학식 1에 대해 설명하면, 이산화탄소 절감총량은 금일 발전량의 합을 시간당 전력사용량으로 환산해야 하는데, 연간 발전량 1kW는 1.314MWh이므로, 상그 금일 발전량의 합에 1.314를 곱하여 전력사용량을 구하고, 그 수치에 전력배출계수 0.424를 곱한 것이다.(전력배출계수 1kwh=0.424kgCO₂)Explaining Equation 1 above, the total amount of carbon dioxide reduction should be converted to the sum of the current generation amount to the hourly power consumption. Since the annual generation amount of 1 kW is 1.314 MWh, the sum of the current generation amount is multiplied by 1.314 to obtain the power consumption. Is multiplied by the power emission factor of 0.424. (Power emission factor 1kwh=0.424kgCO₂)

그리고 상기 발전비용 DB(2223)는, 금일 발전금액, 금월 발전금액, 금년 발전금액, 누적 발전금액을 포함하여 갱신 저장한다.In addition, the generation cost DB 2223 is updated and stored, including the current generation amount, the current month generation amount, the current year generation amount, and the cumulative generation amount.

또한 상기 발전시간 DB(2224)는 금일 발전시간, 금월 발전시간, 금년 발전시간, 누적 발전시간을 포함하여 갱신 저장한다.In addition, the generation time DB 2224 is updated and stored, including the current generation time, the current month generation time, the current year generation time, and the cumulative generation time.

그리고 상기 인버터가동률 DB(2235)는 연결된 전체 발전시스템 중 인버터가 정상 가동된 발전부의 개수를 연결된 전체 발전부의 개수로 나눈 값에 100을 곱하여 백분률(%) 형태로 갱신 저장한다.In addition, the inverter operation rate DB 2235 is updated and stored in the form of a percentage (%) by multiplying a value obtained by dividing the number of power generation units in which the inverter is normally operated among the connected power generation systems by the total number of connected power generation units by 100.

또한 상기 변환효율 DB(2226)는 금일 측정한, 연결된 태양광 발전시스템의 최종 전력변환효율 합을 연결된 전체 발전시스템 개수로 나눈 값을 저장한다.In addition, the conversion efficiency DB 2226 stores a value obtained by dividing the sum of the final power conversion efficiency of the connected photovoltaic power generation system measured today by the total number of connected power generation systems.

그리고 상기 서버 DB(220)는 외부환경 DB(223)을 포함한다. 상기 외부환경 DB(223)은 상기 데이터수집부(213)가 외부의 전기통신망을 참조하여 갈무리한 데이터 또는 상기 센서부(112)를 통해 측정된 환경 데이터를 저장하기 위한 DB다.And the server DB 220 includes an external environment DB (223). The external environment DB 223 is a DB for storing data stored by the data collection unit 213 with reference to an external telecommunication network or environmental data measured through the sensor unit 112.

바람직하게는, 상기 외부환경 DB(223)는 외부로부터 제공되거나 또는 상기 센서부(112)에 포함된 센서 중 어느 하나를 이용하여 측정된 일사량을 시간 간격별로 구분하여 저장하는 일사량 DB(2231), 강수량을 시간 간격별로 구분하여 저장하는 강수량 DB(2232), 기온을 시간 간격별로 구분하여 저장하는 기온 DB(2233), 구름의 양을 시간 간격별로 구분하여 저장하는 전운량 DB(2234), 습도를 시간 간격별로 구분하여 저장하는 습도 DB(2235), 그리고 안개 유무 및 안개의 짙은 정도를 시간 간격별로 구분하여 저장하는 안개 DB(2236)를 포함한다.Preferably, the external environment DB 223 is an insolation DB 2231 that separates and stores the amount of insolation that is provided from the outside or measured using any one of the sensors included in the sensor unit 112 by time interval, Precipitation DB (2232) that separates and stores precipitation by time interval, temperature DB (2233) that separates and stores temperature by time interval, total cloud volume DB (2234) that separates and stores the amount of clouds by time interval, and humidity. It includes a humidity DB 2235 that is classified and stored for each time interval, and a fog DB 2236 that separates and stores the presence or absence of fog and the density of the fog by time interval.

여기서, 상기 외부환경 DB(223)에 포함되는 각각의 상기 날씨정보 DB들(2231~2236)은 현재의 정보 뿐 아니라 과거의 정보 또한 설정된 시간 간격별로 구분하여 저장된다.Here, each of the weather information DBs 2231 to 2236 included in the external environment DB 223 is stored not only in the current information, but also in the past information according to a set time interval.

또한 상기 외부환경 DB(223)에 포함되는 각각의 상기 날씨정보 DB들(2231~2236) 외에도, 발전량 예측에 필요한 추가적인 DB 및 정보가 더 포함될 수도 있다. 이는 관리자가 어떤 요소를 선택하느냐에 따라 변동이 있을 수 있으며, 이하에서는 설명의 편의를 위하여 관리자가 상기 날씨정보 DB(2231~2236)에 저장되는 각각의 요소, 즉 일사량(S), 강수량(R), 기온(T), 전운량(C), 습도(Wt), 안개(F) 정보를 선정하여 사용하는 것을 일예시로 하여 설명하기로 한다.In addition, in addition to each of the weather information DBs 2231 to 2236 included in the external environment DB 223, additional DBs and information necessary for predicting power generation may be further included. This may fluctuate depending on which element the manager selects. Hereinafter, for convenience of explanation, each element stored in the weather information DB 2231-2236 by the manager, that is, insolation (S) and precipitation (R). , Temperature (T), total cloud volume (C), humidity (Wt), and fog (F) information will be selected and used as an example.

또한 상기 서버DB(220)는 학습 DB(224)를 포함한다. 상기 학습 DB(224)는 상기 발전량학습부(214)의 동작에 따라 생성되는 데이터를 갱신 저장할 수 있는 공간으로서, 형성된 모델에 대하여 저장하는 형성모델 DB(2241) 및 상기 형성된 모델에 대하여 트레이닝 및 테스팅을 실시하는 DB(2242~2244)를 포함한다. 이러한 상기 학습 DB(224)의 구체적인 동작 및 구성에 대하여는 차후에 설명하기로 한다.In addition, the server DB 220 includes a learning DB (224). The learning DB 224 is a space in which data generated according to the operation of the power generation learning unit 214 can be updated and stored, and training and testing for the formed model DB 2241 and the formed model are stored. It includes DB (2242 ~ 2244) that implements. A detailed operation and configuration of the learning DB 224 will be described later.

도 5는 본 발명의 태양광 발전 및 제어 시스템에서, 상기 제어서버(200)가 상기 태양광 발전부(100)의 구성요소들의 고장을 진단하는 절차를 표현한 순서도이다. 이하에서는 도 5를 통하여 상기 제어서버(200)가 상기 각각의 태양광 발전부(100)의 고장을 진단하는 방법에 대하여 설명한다.5 is a flow chart showing a procedure for diagnosing a failure of the components of the solar power generation unit 100 by the control server 200 in the solar power generation and control system of the present invention. Hereinafter, a method of diagnosing a failure of each of the photovoltaic units 100 by the control server 200 will be described with reference to FIG. 5.

설명에 앞서, 도 5에서 개시하고 있는 상기 태양광 발전부(100)의 고장진단 절차는 상기 고장판단부(211)가 실시하며, 관리자가 상기 단말기(300)를 통하여 고장진단 절차의 실시를 요청할 때 수행되거나, 또는 일정 시간 간격에 따라 주기적으로 실시될 수 있다. Prior to the description, the failure diagnosis procedure of the photovoltaic power generation unit 100 disclosed in FIG. 5 is performed by the failure determination unit 211, and the administrator requests the implementation of the failure diagnosis procedure through the terminal 300. It may be performed at the time, or may be performed periodically according to a predetermined time interval.

도 5에서 도시된 바와 같이, 우선 상기 제어서버(200)는 태양전지의 발전전압(V)을 측정하고 이에 따라 판단하는 발전전압 측정단계(S100)를 실시한다.As shown in FIG. 5, first, the control server 200 measures the power generation voltage V of the solar cell and performs a power generation voltage measurement step S100 of determining accordingly.

상기 단계(S100)에서 태양전지의 발전전압(V)을 측정하고 이에 따라 판단하는데, 우선 상기 발전전압(V)이 0V인지를 판단하고, 상기 발전전압(V)이 0V가 아니라면, 상기 축전지 저장부(121) 내 개별 축전지들(1211, 1212)의 현재 축전지 전압(Bat_V)과 비교하여 상기 발전전압(V)이 축전지 전압(Bat_V)보다 큰지 판단한다.In the step (S100), the generated voltage (V) of the solar cell is measured and determined accordingly. First, it is determined whether the generated voltage (V) is 0V, and if the generated voltage (V) is not 0V, the storage battery is stored. It is determined whether the generated voltage V is greater than the battery voltage Bat_V by comparing the current storage battery voltage Bat_V of the individual storage batteries 1211 and 1212 in the unit 121.

이때 상기 축전지 전압(Bat_V)은 상기 축전지 전압 측정부(1221)에 의해 용이하게 측정될 수 있다.At this time, the storage battery voltage Bat_V may be easily measured by the storage battery voltage measurement unit 1221.

상기 단계(S100)에서, 상기 발전전압(V)이 0V가 아니고, 현재 축전지 전압(Bat_V)값 이하라면, 상기 태양광 발전부(100)은 정상 동작중이므로 정상 동작임을 확인하는 정상동작 확인단계(S101)를 실시하여 고장진단을 종료한다.In the step (S100), if the power generation voltage (V) is not 0V, but less than the current storage battery voltage (Bat_V) value, the solar power generation unit 100 is in normal operation and therefore a normal operation confirmation step ( S101) is executed to complete the fault diagnosis.

이때 상기 정상동작 확인단계(S101)는, 상기 태양광 발전부(100)이 정상 동작중임을 관리자의 단말기(300)에 통보하는 단계를 더 포함할 수 있다.In this case, the normal operation confirmation step (S101) may further include notifying the terminal 300 of the administrator that the solar power generation unit 100 is operating normally.

그리고 상기 단계(S100)에서, 발전전압(V)이 0V이거나, 상기 발전전압(V)이 0V가 아니더라도 현재 축전지 전압(Bat_V)값을 초과한다면, 상기 축전지 저장부(121) 내 개별 축전지들(1211, 1212)에 충전되어 있는 전류량(Bat_C)을 측정하고 이에 따라 판단하는 축전지 전류량 측정단계(S110)를 실시한다.And in the step (S100), if the generated voltage (V) is 0V, or even if the generated voltage (V) is not 0V exceeds the current storage battery voltage (Bat_V) value, the individual storage batteries in the storage battery storage unit 121 ( A storage battery current measurement step (S110) is performed to measure the amount of current (Bat_C) charged in 1211 and 1212 and determine accordingly.

이때 상기 축전지 전류량(Bat_C)은 상기 축전지 충전전류 측정부(1222)에 의해 용이하게 측정될 수 있다.At this time, the storage battery current amount Bat_C may be easily measured by the storage battery charging current measuring unit 1222.

상기 단계(S110)에서는 상기 축전지 전류량(Bat_C)을 측정하고, 상기 축전지 전류량(Bat_C)이 0A 초과인지를 확인하여 판단한다. 이때의 판단은, 이전 단계(S100)에서의 발전전압(V)과 이 단계(S110)에서의 상기 축전지 전류량(Bat_C)을 고려하여 판단한다.In the step S110, the current amount of the storage battery (Bat_C) is measured, and it is determined by checking whether the current amount of the storage battery (Bat_C) exceeds 0A. The determination at this time is determined in consideration of the power generation voltage V in the previous step (S100) and the current amount of the storage battery (Bat_C) in this step (S110).

이전 단계(S100)에서의 발전전압(V)이 0V가 아니고 축전지 전압(Bat_V)보다 높은 것으로 판단된 상태에서, 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)을 측정하였을 때 0A를 초과하지 않는 상태, 즉 0A 이하라면, 태양전지 측정부(113)의 전류측정부(1132)에 문제가 생긴 것으로 판단하고 이를 확인하여 관리자의 단말기(300)에 통보하는 태양전지 전류측정부 문제확인단계(S111)를 실시하여 고장을 진단한다.When it is determined that the power generation voltage (V) in the previous step (S100) is not 0V but is higher than the storage battery voltage (Bat_V), the battery current amount (Bat_C) is measured in the step (S110) and does not exceed 0A. If the state, that is, less than 0A, the solar cell current measuring unit problem checking step of determining that a problem has occurred in the current measuring unit 1132 of the solar cell measuring unit 113 and confirming the problem and notifying the terminal 300 of the administrator (S111 ) To diagnose the fault.

그리고 이전 단계(S100)에서의 발전전압(V)이 0V가 아니고 축전지 전압(Bat_V)보다 높은 것으로 판단된 상태에서, 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)을 측정하였을 때 0A를 초과한 상태이거나, 이전 단계(S100)에서의 발전전압(V)이 0V로 측정되었을 땐, 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)을 측정한 다음 그 결과에 상관없이 다음 단계로 넘어간다.And in the state that the generation voltage (V) in the previous step (S100) is not 0V but is determined to be higher than the storage battery voltage (Bat_V), when the battery current amount (Bat_C) is measured in the step (S110), it exceeds 0A. Or when the generated voltage (V) in the previous step (S100) is measured as 0V, the storage battery current amount (Bat_C) is measured in the step (S110) and then proceeds to the next step regardless of the result.

그리고 상기 단계(S110) 이후, 상기 조도센서(1121)을 이용하여 현재의 광량(R)을 측정하는 광량측정단계(S120)를 실시한다.And after the step (S110), a light amount measuring step (S120) of measuring the current amount of light (R) using the illuminance sensor 1121 is performed.

상기 단계(S120)에서는 광량(R)을 측정하고, 측정된 광량(R)값이 20W/㎡를 초과하는지를 판단한다.In the step S120, the amount of light R is measured, and it is determined whether the measured light amount R value exceeds 20W/m2.

상기 단계(S120) 이후에는, 측정한 광량(R), 그리고 이전 단계(S100, S110)에서 각각 판단한 발전전압(V) 및 축전지 전류량(Bat_C)값을 이용하여 고장 여부 판단 및 고장 위치를 판단한다.After the step (S120), using the measured amount of light (R), and the generated voltage (V) and storage battery current amount (Bat_C) values determined in the previous steps (S100, S110), respectively, to determine whether there is a failure and to determine the location of the failure. .

만약 상기 발전전압 측정단계(S100)에 측정한 발전전압(V) 값이 0V였고, 상기 축전지 전류량 측정단계(S110)에서 측정한 축전지 전류량(Bat_C)이 0A를 초과한 상태에서, 상기 광량측정단계(S120)에서 측정한 광량(R)값이 20W/㎡를 초과하였다면, 상기 태양전지 측정부(113) 중 태양전지 전류측정부(1132)가 고장난 것으로 판단하고 이를 관리자의 단말기(300)에게 통보하는 태양전지 전류측정부 문제확인단계(S121)를 실시하여 종료한다.If the power generation voltage (V) value measured in the power generation voltage measurement step (S100) is 0V, and the storage battery current amount (Bat_C) measured in the storage battery current amount measurement step (S110) exceeds 0A, the light amount measurement step If the light quantity (R) value measured in (S120) exceeds 20W/m², it is determined that the solar cell current measuring unit 1132 of the solar cell measuring unit 113 has failed and notified to the administrator's terminal 300 The solar cell current measuring unit problem check step (S121) is carried out to end.

그리고 상기 발전전압 측정단계(S100)에 측정한 발전전압(V) 값이 0V였고, 상기 축전지 전류량 측정단계(S110)에서 측정한 축전지 전류량(Bat_C)이 0A를 초과한 상태에서, 상기 광량측정단계(S120)에서 측정한 광량(R)값이 20W/㎡ 이하였다면, 상기 태양전지 측정부(113)의 전압측정부(1131) 및 전류측정부(1132)가 고장난 것으로 판단하고 이를 관리자의 단말기(300)에게 통보하는 태양전지 전압, 전류측정부 문제확인단계(S122)를 실시하여 종료한다.In the state in which the generated voltage (V) value measured in the generation voltage measurement step (S100) was 0V, and the storage battery current amount (Bat_C) measured in the storage battery current amount measurement step (S110) exceeds 0A, the light quantity measurement step If the light intensity (R) value measured in (S120) is less than 20W/m2, it is determined that the voltage measurement unit 1131 and the current measurement unit 1132 of the solar cell measurement unit 113 have failed, and this 300) is notified to the solar cell voltage and current measuring unit problem confirmation step (S122) is carried out to end.

그리고 상기 발전전압 측정단계(S100)에 측정한 발전전압(V) 값이 0V였고, 상기 축전지 전류량 측정단계(S110)에서 측정한 축전지 전류량(Bat_C)이 0A 이하인 상태에서, 상기 광량측정단계(S120)에서 측정한 광량(R)값이 20W/㎡를 초과하였다면, 상기 태양전지 전압, 전류측정부 문제확인단계(S122)를 실시하여 종료한다.And in the state that the generated voltage (V) value measured in the generation voltage measurement step (S100) is 0V, and the storage battery current amount (Bat_C) measured in the storage battery current amount measurement step (S110) is 0A or less, the light quantity measurement step (S120) If the light quantity (R) value measured in) exceeds 20W/m2, the solar cell voltage and current measuring unit problem checking step (S122) is performed to terminate.

또한 상기 발전전압 측정단계(S100)에 측정한 발전전압(V) 값이 0V였고, 상기 축전지 전류량 측정단계(S110)에서 측정한 축전지 전류량(Bat_C)이 0A 이하인 상태에서, 상기 광량측정단계(S120)에서 측정한 광량(R)값이 20W/㎡를 이하였다면, 측정 대상이 되는 태양광 발전부(100)은 정상 동작 중인 것으로 판단하는 정상동작 확인단계(S123)를 실시하여 종료한다.In addition, in a state in which the generated voltage (V) value measured in the generation voltage measurement step (S100) was 0V, and the storage battery current amount (Bat_C) measured in the storage battery current amount measurement step (S110) is 0A or less, the light quantity measurement step (S120) If the light amount (R) value measured in) is less than 20W/m2, the solar power generation unit 100 to be measured performs a normal operation check step (S123), which determines that it is in normal operation, and ends.

이때 상기 정상동작 확인단계(S123)는, 상기 태양광 발전부(100)이 정상 동작중임을 관리자의 단말기(300)에 통보하는 단계를 더 포함할 수 있다.In this case, the step of confirming the normal operation (S123) may further include notifying the terminal 300 of the administrator that the photovoltaic power generation unit 100 is operating normally.

그리고 상기 발전전압 측정단계(S100)에 측정한 발전전압(V) 값이 0V가 아니었지만 축전지 전압(Bat_V)값을 초과하였고, 상기 축전지 전류량 측정단계(S110)에서 측정한 축전지 전류량(Bat_C)이 0A를 초과한 상태에서, 상기 광량측정단계(S120)에서 측정한 광량(R)값이 20W/㎡ 이하였다면, 상기 정상동작 확인단계(S123)를 실시하여 종료한다.And although the generated voltage (V) value measured in the generation voltage measurement step (S100) was not 0V, the storage battery voltage (Bat_V) value was exceeded, and the storage battery current amount (Bat_C) measured in the storage battery current amount measurement step (S110) was In the state exceeding 0A, if the light amount R measured in the light amount measurement step S120 is less than or equal to 20 W/m 2, the normal operation check step S123 is performed to end.

또한 상기 발전전압 측정단계(S100)에 측정한 발전전압(V) 값이 0V가 아니었지만 축전지 전압(Bat_V)값을 초과하였고, 상기 축전지 전류량 측정단계(S110)에서 측정한 축전지 전류량(Bat_C)이 0A를 초과한 상태에서, 상기 광량측정단계(S120)에서 측정한 광량(R)값이 20W/㎡ 를 초과하였다면, 상기 조도센서(1121)에 문제가 있다고 판단하고 이를 관리자의 단말기(300)에 통보하는 광량센서 문제확인단계(S124)를 실시하여 종료한다.In addition, the generation voltage (V) value measured in the generation voltage measurement step (S100) was not 0V, but the storage battery voltage (Bat_V) value was exceeded, and the storage battery current amount (Bat_C) measured in the storage battery current amount measurement step (S110) is In the state of exceeding 0A, if the light amount (R) value measured in the light amount measuring step (S120) exceeds 20W/m², it is determined that there is a problem with the illuminance sensor 1121, and this is sent to the administrator's terminal 300. It is terminated by performing the step (S124) to check the problem of the light amount sensor to be notified.

도 6은 상기 데이터수집부(213) 및 발전량학습부(214)의 동작 순서 구조도이다. 이하에서는 도 4를 통하여 상기 발전량학습부(214)의 동작 절차에 대하여 설명한다.6 is a structural diagram of the operation sequence of the data collection unit 213 and the power generation learning unit 214. Hereinafter, the operation procedure of the power generation learning unit 214 will be described with reference to FIG. 4.

상술한 바와 같이, 상기 데이터수집부(213)는 일정 시간 간격에 따르거나 또는 실시간으로 외부의 전기통신망으로부터 데이터를 수집하여 상기 외부환경 DB(223)를 갱신하는데, 상기 외부환경 DB(223)의 갱신 저장까지가 데이터 조달단계(S210)이다.As described above, the data collection unit 213 updates the external environment DB 223 by collecting data from an external telecommunication network according to a predetermined time interval or in real time, and the external environment DB 223 Until the update and storage is the data procurement step (S210).

상기 단계(S210)에서의 데이터 조달 출처는 관리자가 지정하거나, 또는 웹 크로울러(Web crowler) 등의 자동화된 탐색 프로그램으로 데이터를 추출하여 갱신할 수도 있다. 하지만 바람직하게는 상기 단계(S210) 이하의 단계를 원활하게 진행하기 위하여, 대용량 데이터를 수집 및 저장하고 처리할 수 있는 아파치 하둡(Apache Hadoop, 이하 '하둡') 소프트웨어 프레임워크를 이용하는 것이 바람직하다. 상기 하둡은 대량의 자료를 처리할 수 있는 분산 응용 프로그램을 지원하는 프리웨어 자바 소프트웨어 프레임워크로서, 빅데이터 처리와 분석을 위한 플랫폼 중 사실상 표준으로 사용되고 있다.The source of data procurement in the step S210 may be designated by an administrator, or data may be extracted and updated by an automated search program such as a web crower. However, it is preferable to use an Apache Hadoop (hereinafter referred to as'Hadoop') software framework that can collect, store, and process large amounts of data in order to smoothly proceed with the steps below the step S210. Hadoop is a freeware Java software framework that supports distributed application programs capable of processing a large amount of data, and is used as a de facto standard among platforms for processing and analyzing big data.

상기와 같은 하둡 프레임워크는 기본적으로 다수의 컴퓨터를 사용하여 마치 하나인 것처럼 사용하는 분산 프로그래밍 시스템으로서, 상기 제어서버(200)를 상술한 바와 같이 둘 이상의 컴퓨터를 편성하여 구현할 때 상기 하둡 프레임워크를 사용할 수 있다.The Hadoop framework as described above is a distributed programming system that uses a plurality of computers as if it were one, and when implementing the control server 200 by organizing two or more computers as described above, the Hadoop framework is used. Can be used.

또한 상기 하둡 프레임워크를 사용하게 되면, 상기 하둡 프레임워크의 구성요소로서 사용할 수 있는 하둡 분산형 파일시스템(HDFS; Hadoop distributed file system), MapReduce, Hive, Spark 등을 모두 사용할 수 있다. 이러한 상기 하둡 프레임워크와 하둡 프레임워크의 구성요소들에 대한 설명 등은 종래에 이미 공개되어 있는 기술내용으로 더 이상의 설명은 생략한다.In addition, if the Hadoop framework is used, all of the Hadoop distributed file system (HDFS), MapReduce, Hive, Spark, etc. that can be used as components of the Hadoop framework can be used. The description of the Hadoop framework and the components of the Hadoop framework, etc., has been disclosed in the prior art, and a further description will be omitted.

상기 단계(S210)에서의 데이터 취합 출처는 외부의 전기통신망 중 공중이 접근 가능한 어느 곳에서든 가능할 수 있는데, 예를 들어 본 발명의 시스템이 설치되는 그 지역의 연간 또는 월간 기상 데이터 등을 참조할 수도 있을 것이고, PVOutput나 NSRDB, Meso West 등 전세계적으로 취합된 데이터가 저장되어 있는 데이터베이스를 참조할 수도 있을 것이며, 타국가의 다른 태양광 발전 시스템의 데이터 등을 참조할 수도 있을 것이다.The data collection source in the step (S210) may be any place accessible to the public among external telecommunication networks, for example, it may refer to annual or monthly weather data of the area where the system of the present invention is installed. There will be, and it will be possible to refer to a database that stores data collected around the world such as PVOutput, NSRDB, Meso West, etc., and data from other solar power systems in other countries.

상기 단계(S210)를 통해 취합된 데이터에 대하여, 상기 발전량학습부(240)는 데이터마이닝을 실시하는 데이터마이닝 단계(S220)를 실시한다.With respect to the data collected through the step (S210), the power generation learning unit 240 performs a data mining step (S220) of performing data mining.

상기 단계(S220)에서의 목표는 상기 외부환경 DB(223)에 저장되어 있는 원시 데이터에 대하여 다음 단계에서 사용할 수 있도록 가공하여 이를 바탕으로 발전량 예측에 대한 원시적이고 불확실한 예측모델 데이터인 원시모델 데이터(PD)를 생성하는 것이다. 상기 원시모델 데이터(PD)는 상기 형성모델 DB(2241)에 갱신되어 저장될 수 있다.The target in the step (S220) is to process the raw data stored in the external environment DB 223 so that it can be used in the next step, and based on this, raw model data, which is primitive and uncertain predictive model data for predicting power generation ( PD) is to be created. The original model data PD may be updated and stored in the formed model DB 2241.

상기 단계(S220)를 달성하기 위한 데이터마이닝 기법 및 이하에서 추가적으로 설명할 모델 트레이닝(S230), 모델 테스팅(S24) 단계를 달성하기 위하여, 인공 신경망(ANN; Artificial neural network) 구조 중에서도 둘 이상의 은닉층을 가지는 심층 신경망을 사용하여 상기 발전량학습부(214)의 목적을 달성하도록 한다.In order to achieve the data mining technique for achieving the above step (S220) and the model training (S230) and model testing (S24) steps that will be further described below, two or more hidden layers among the artificial neural network (ANN) structures are used. The branch uses a deep neural network to achieve the purpose of the power generation learning unit 214.

또한 상기 심층 신경망은 BP 알고리즘(Back Propagation) 알고리즘을 이용하여 동작하며, 따라서 상기 단계(S220) 이하의 각 단계들(S230, S240) 또한 상기 BP 알고리즘을 사용한 심층 신경망을 사용하여 구현하는 것이 바람직하다. In addition, the deep neural network operates using a BP algorithm (Back Propagation), so it is preferable to implement each of the steps (S230, S240) below the step (S220) using the deep neural network using the BP algorithm. .

이하에서는 도 7에서 도시된 바와 같이, 본 발명의 각 단계(S220, S230, S240)를 포함하여, 상기 발전량학습부(214)의 동작은 2개의 깊이(Depth)을 가지는 상기 심층 신경망과 BP 알고리즘을 사용하는 것을 일예시로 하여 설명한다. 이하에서의 심층 신경망에 적용되는 BP 알고리즘은 가장 일반적이고 정식적인 방법을 사용하므로, 이 분야의 당업자들은 이하에서 설명할 상기 심층 신경망과 BP 알고리즘에 대한 설명에 대하여 쉽게 이해할 수 있을 것이다.In the following, as shown in Fig. 7, including each step (S220, S230, S240) of the present invention, the operation of the power generation learning unit 214 is the deep neural network and the BP algorithm having two depths. It will be described using as an example. Since the BP algorithm applied to the deep neural network below uses the most general and formal method, those skilled in the art will be able to easily understand the description of the deep neural network and the BP algorithm to be described below.

상기 단계(S220)에서는 또한 추가적인 데이터 정제(S221) 단계를 통하여 발전량 예측모델에 사용될 트레이닝셋(D1), 테스트셋(D2), 그리고 블라인드셋(D3)를 형성한다. 상기 트레이닝셋(D1), 테스트셋(D2), 그리고 블라인드셋(D3)은 각각 상기 학습 DB(224) 내의 트레이닝셋 DB(2242), 테스트셋 DB(2243), 블라인드셋 DB(2244)에 각각 개별적으로 저장되며, 상기 셋 데이터(D1~D3)에 대한 설명은 차후에 한다.In the step (S220), a training set (D1), a test set (D2), and a blind set (D3) to be used in the power generation prediction model are formed through an additional data purification step (S221). The training set (D1), the test set (D2), and the blind set (D3) are respectively in the training set DB 2242, the test set DB 2243, and the blind set DB 2244 in the learning DB 224. It is stored individually, and the description of the set data D1 to D3 will be described later.

상기 단계(S220)를 통하여 형성된 상기 원시모델 데이터(PD)는 일반적인 순방향 심층 신경망의 입력층 부분에 대응될 수 있도록, 상기 외부환경 DB(223)에 저장되어 있는 일사량(S), 강수량(R), 기온(T), 전운량(C), 습도(Wt), 안개(F) 정보에 대하여 변형시킨, 0.0~1.0 사이의 값으로 정규화된 입력데이터(X1~X6)로 변환되어 상기 형성모델 DB(2241)에 갱신 저장한다.The primitive model data PD formed through the step S220 is stored in the external environment DB 223 so as to correspond to the input layer portion of a general forward deep neural network. , Temperature (T), total cloud volume (C), humidity (Wt), fog (F) information is transformed into input data (X1 to X6) normalized to a value between 0.0 and 1.0, and the formation model DB Save the update to (2241).

상기 단계(S220)를 통하여 형성된 상기 원시모델 데이터(PD)에 대하여 모델 트레이닝 단계(S230)를 실시한다. A model training step (S230) is performed on the raw model data (PD) formed through the step (S220).

상기 단계(S230)에서는 도 7에서 도시된 바와 같이, 깊이(Depth)가 2개, 즉 은닉층(HL)과 출력층(OL)을 포함하는 구조를 만들어 예측을 진행한다. epoch(반복학습의 횟수) 및 최대 에러율, 학습률을 선정하여 상기 단계(S230)를 진행하는데, 여기서 epoch값, 최대 에러율, 학습률은 관리자가 상기 단계(230)를 수행하기 위하여 임의로 선정하는 값이다. 예를 들어 epoch 1000회, 최대 에러율 0.0001, 0.001, 0.01로 하고, 학습률 0.0001, 0.001, 0.01, 0.1로 선정하여 진행 할 수 있다.In the step S230, as shown in FIG. 7, a structure including two depths, that is, a hidden layer HL and an output layer OL, is made to perform prediction. The step S230 is performed by selecting an epoch (the number of repetitive learning), a maximum error rate, and a learning rate, where the epoch value, the maximum error rate, and the learning rate are values arbitrarily selected by the administrator to perform the step 230. For example, 1000 epochs, maximum error rates of 0.0001, 0.001, and 0.01, and learning rates of 0.0001, 0.001, 0.01, and 0.1 can be selected to proceed.

상기와 같이 임의로 정하는 최대 에러율과 학습률로 진행된 결과로 평균 제곱근 오차(Root mean square error; RMSE)를 산출하여 가장 적은 값을 도출하여 사용할 수 있다.As a result of proceeding with the maximum error rate and the learning rate arbitrarily determined as described above, a root mean square error (RMSE) is calculated, and the smallest value can be derived and used.

상기 단계(S230)에서 학습에 사용하는 것이 상기 트레이닝셋(D1)이다. 상기 트레이닝셋(D1)은 상기 데이터 정제단계(S221)에서 형성되는데, 상기 단계(S221)에서는 정해진 기준에 따라 데이터, 즉 상기 외부환경 DB(223)에 저장되어 있는 일사량(S), 강수량(R), 기온(T), 전운량(C), 습도(Wt), 안개(F) 정보를 미리 입력된 기준에 따라 분류 및 분석, 세트화하여 형성된 데이터이다.The training set D1 is used for learning in step S230. The training set (D1) is formed in the data purification step (S221), and in the step (S221), data according to a predetermined standard, that is, the amount of insolation (S) and precipitation (R) stored in the external environment DB (223) ), temperature (T), total cloud volume (C), humidity (Wt), and fog (F) information are classified, analyzed, and set according to pre-input criteria.

상기 단계(S230)를 실시하는 구체적인 순서가 도 8에 도시되어 있다. 이에 대해 설명하면, 상기 단계(S230)에서 인입되는 원시모델 데이터(PD)에 대하여 관리자가 수치를 선정하고 선정된 수치 및 학습 패턴쌍을 입력하는 수치선정 및 입력단계(S231), 은닉층(HL) 및 출력층(OL)의 입력 가중합 및 최종 출력을 계산하는 출력계산 단계(S232), 오차신호값을 계산하는 오차계산단계(S233), 그리고 다음 회차의 학습단계에 사용될 연결강도를 구하는 연결강도 변화량 계산단계(S234)를 실시한다.A specific procedure for performing the step S230 is shown in FIG. 8. Explaining this, a numerical selection and input step (S231) in which an administrator selects a numerical value for the raw model data PD imported in the step (S230) and inputs the selected numerical value and learning pattern pair (S231), a hidden layer (HL) And the output calculation step (S232) of calculating the input weighted sum and final output of the output layer (OL), the error calculation step (S233) of calculating the error signal value, and the amount of change in connection strength to obtain the connection strength to be used in the next learning step. The calculation step (S234) is performed.

상기 수치선정 및 입력단계(S231)에서는, 우선 상기 발전량학습부(214)가 신경망 중 상기 원시모델 데이터(PD)와 상기 은닉층(HL) 간의 연결강도(Vk) 와, 상기 은닉층(HL)과 출력층(OL) 간의 연결강도(Wk)를 임의의 작은 값으로 초기화하고, 상기 원시모델 데이터(PD) 내에 포함된 정규화된 입력데이터(X1~X6)를 불러오며, 목표치(d)를 선정한다.In the numerical selection and input step (S231), first, the power generation learning unit 214 includes a connection strength (V k ) between the primitive model data (PD) and the hidden layer (HL) of the neural network, and the hidden layer (HL). The connection strength (W k ) between the output layers (OL) is initialized to a small arbitrary value, the normalized input data (X1 to X6) included in the original model data (PD) are loaded, and a target value (d) is selected. .

이때 만약 상기 단계(S231)가 이전부터 학습을 실시하여, 차후에 설명될 연결강도 변화량 계산단계(S234)를 실시하여 다음 회차에서 사용할 신경망 연결강도 Vk+1와 Wk+1값을 받은 상태로 재귀하여 상기 수치선정 및 입력단계(S231)를 다시 실시하고 있는 상태라면, 이전 회차 상기 연결강도 변화량 계산단계(S234)에서 결정된 신경망 연결강도 Vk+1와 Wk+1 값을 사용하도록 한다.At this time, if the step (S231) performs learning from the previous, and performs the step (S234) of calculating the amount of change in the connection strength to be described later, the neural network connection strengths V k+1 and W k+1 to be used in the next round are received. If the numerical selection and input step (S231) is recursively performed, the values of the neural network connection strengths V k+1 and W k+1 determined in the previous round of the connection strength change calculation step (S234) are used.

그리고 상기 단계(S231)에서는 또한, 관리자가 적절한 학습률(η)과 최대 에러율(Emax)를 결정하여 입력하고, 상기 발전량학습부(214)가 연결 강도 변경을 위해 학습 패턴쌍을 차례로 입력한다.Further, in the step S231, the administrator determines and inputs an appropriate learning rate (η) and a maximum error rate (E max ), and the power generation learning unit 214 sequentially inputs a pair of learning patterns to change the connection strength.

상기 단계(S231) 이후에는 출력계산단계(S232)를 실시한다. 상기 출력계산단계에서는 우선 아래 수학식 2를 통해 은닉층(HL)의 입력 가중합(NETz)을 구한다.After the step (S231), an output calculation step (S232) is performed. In the output calculation step, first, the input weighted sum (NET z ) of the hidden layer HL is obtained through Equation 2 below.

Figure pat00002
Figure pat00002

상기 수학식 2에서, Xn 은 상기 원시모델 데이터(PD)에 포함되어 있는, 일사량(S), 강수량(R), 기온(T), 전운량(C), 습도(Wt), 안개(F) 정보에 대하여 변형시킨, 0.0~1.0 사이의 값으로 정규화된 실험용 데이터(X1~X6) 중 어느 하나이고, 상기 T는 전치(Transpose)된 것임을 의미한다.In Equation 2, X n is included in the raw model data PD, insolation (S), precipitation (R), temperature (T), total cloud volume (C), humidity (Wt), and fog (F ) It is any one of experimental data (X1 to X6) normalized to a value between 0.0 to 1.0, modified with respect to the information, and T means that it has been transposed.

상기 수학식 2를 통해 상기 은닉층(HL)의 입력 가중합(NETz)을 구한 뒤, 시그모이드(Sigmoid) 함수 형태로 표현되는 아래 수학식 3을 통해 출력 Z를 구한다.After obtaining the input weighted sum NET z of the hidden layer HL through Equation 2, the output Z is obtained through Equation 3 below, expressed in the form of a sigmoid function.

Figure pat00003
Figure pat00003

그리고 아래 수학식 4를 통해 출력층(OL)의 입력 가중합(NETy)을 구한다.And the input weighted sum (NET y ) of the output layer OL is obtained through Equation 4 below.

Figure pat00004
Figure pat00004

그리고 아래 수학식 5를 통해 최종 출력(y)을 구한다.And the final output (y) is obtained through Equation 5 below.

Figure pat00005
Figure pat00005

상기와 같이 최종 출력(y)을 구함으로서 상기 출력계산 단계(S232)를 종료한다.The output calculation step (S232) is terminated by obtaining the final output (y) as described above.

상기 단계(S232)의 종료 후에는 오차계산 단계(S233)를 실시한다. 상기 오차계산 단계(S233)에서는, 우선 아래 수학식 6을 통하여 제곱오차 E를 갱신 저장한다. 최초의 제곱오차 E값은 0이 된다.After the end of the step (S232), an error calculation step (S233) is performed. In the error calculation step S233, the squared error E is first updated and stored through Equation 6 below. The initial squared error E is zero.

Figure pat00006
Figure pat00006

그리고 상기 출력층(OL)의 오차신호(δy)를 아래의 수학식 7을 통해 구한다. And the error signal δ y of the output layer OL is obtained through Equation 7 below.

Figure pat00007
Figure pat00007

또한 상기 은닉층(HL)의 오차신호(δz)를 아래의 수학식 8을 통해 구한다.In addition, the error signal δ z of the hidden layer HL is obtained through Equation 8 below.

Figure pat00008
Figure pat00008

상기와 같은 순서를 통하여 상기 은닉층 오차신호(δz)를 구함으로서 상기 오차계산 단계(233)를 종료한다.The error calculation step 233 is terminated by obtaining the hidden layer error signal δ z through the above procedure.

상기 단계(S233)의 종료 후에는 연결강도 변화량 계산단계(S234)를 실시한다. 상기 단계(S234)에서는 상기 은닉층 및 출력층(HL, OL) 간의 연결강도 변화량(ΔW)을 구하여 다음 회차 학습의 수치선정 및 입력단계(S231)에 사용될 연결강도(Wk+1)를 아래 수학식 9를 통하여 구한다. After the end of the step (S233), the connection strength change calculation step (S234) is performed. In the step (S234), the connection strength (W k+1 ) to be used in the numerical selection and input step (S231) of the next round of learning is calculated by obtaining the change in the connection strength (ΔW) between the hidden layer and the output layer (HL, OL). Find it through 9.

Figure pat00009
Figure pat00009

또한 상기 단계(S234)에서는 입력층의 역할을 하는 상기 원시모델 데이터(PD)와 상기 은닉층(HL) 간의 연결강도 변화량(ΔV)을 계산하여 다음 회차 학습의 수치선정 및 입력단계(S231)에 사용될 연결강도(Vk+1)를 아래 수학식 10을 통하여 구한다.In addition, in the step (S234), the change in connection strength (ΔV) between the raw model data PD serving as an input layer and the hidden layer HL is calculated to be used in the numerical selection and input step (S231) of the next round of learning. The connection strength (V k+1 ) is obtained through Equation 10 below.

Figure pat00010
Figure pat00010

상기와 같은 순서를 통하여 상기 다음 회차 학습 연결강도(Wk+1, Vk+1)를 구함으로서 상기 연결강도 변화량 계산단계(234)를 종료한다.The connection strength variation calculation step 234 is terminated by obtaining the next learning connection strength (W k+1 , V k+1 ) through the above procedure.

상기한 단계(S231~S234)를 통해 1회차의 학습을 실시하게 되며, 이러한 상기 단계(S231~S234)의 반복적인 실시를 통한 반복 학습을 통해 최적의 값을 찾아가도록 해야 하는데, 상기 단계(S234) 종료 후 미리 입력된 epoch값을 초과하였는지 검사하여 미만이라면 상기 단계(S231)로 돌아가 다시 계산하고, 만약 미리 입력된 epoch값을 초과하였다면 이때는 미리 입력된 최대 에러율(Emax)과 비교하여 만약 미리 입력된 최대 에러율(Emax) 이상이라면 다시 상기 단계(S231)로 돌아가고, 그렇지 않다면 다음 단계로 넘어간다.The first learning is performed through the above steps (S231 to S234), and the optimum value should be found through repetitive learning through repeated execution of the steps (S231 to S234). ) If less then checks whether more than a pre-the epoch, the end compared to the calculated back to the step (S231), and if the If pre exceeds added epoch value that case, pre-maximum error rate (E max) if the pre- If it is equal to or greater than the input maximum error rate (E max ), the process returns to the step S231.

상기 학습량, 은닉층의 수, 최대 에러율은 선정하는 데 있어서 분명한 규칙을 두지 않고, 잘못된 초기값은 과대적합(Overfitting) 문제를 보이므로 관리자는 상기 학습량, 은닉층의 수, 최대 에러율의 선정에 있어서 적절한 값을 선정하여 반복적인 학습 실험을 통해 최적의 초기값을 찾을 수 있다.The amount of learning, the number of hidden layers, and the maximum error rate do not have clear rules in selecting, and an incorrect initial value shows an overfitting problem, so the administrator is an appropriate value in selecting the amount of learning, the number of hidden layers, and the maximum error rate. By selecting, the optimal initial value can be found through repeated learning experiments.

상기 단계(S230)를 통과한 데이터 대하여는 모델 테스팅 단계(S240)를 실시한다.The model testing step (S240) is performed on the data that has passed the step (S230).

상기 모델 테스팅 단계(S240)는 상기 데이터 정제단계(S221)에서 설정된 기준에 따라 생성된 테스트셋(D2)과 블라인드셋(D3)을 이용한다.In the model testing step (S240), a test set (D2) and a blind set (D3) generated according to the criteria set in the data purification step (S221) are used.

상기 테스트셋(D2)은 일반적인 딥러닝 테스트 단계에서 사용하는, 학습 완료 후 검증을 하기 위하여 사용되는 데이터이며 상기 블라인드셋(D3)은 추가로 구분지어져 사용되는 벨리데이션 셋으로서 학습을 하는데 필요한 학습률 및 과대적합 현상을 줄이기 위하여 사용되는 데이터이다.The test set (D2) is data used in a general deep learning test step and used for verification after completion of learning, and the blind set (D3) is a validation set that is additionally classified and used, and the learning rate required for learning and This data is used to reduce overfitting.

상기 단계(S240)를 통과한 데이터는 높은 적중률을 보이는 예측모델 데이터(CD)가 되어, 미래의 발전량을 효과적으로 예측할 수 있게 된다.The data passing through the step S240 become predictive model data (CD) showing a high hit rate, so that the future generation amount can be effectively predicted.

100 : 태양광 발전부. 110 : 태양전지부.
111 : 태양전지 발전부. 112 : 센서부.
1121 : 조도센서. 1122 : 온도센서.
1123 : 습도센서. 1124 : 이산화탄소 센서.
113 : 태양전지 측정부. 1131 : 태양전지 발전전압 측정부.
1132 : 태양전지 전류 측정부. 120 : 축전지부.
121 : 축전지 저장부. 1221 : 축전지 전압 측정부.
1222 : 축전지 충전전류 측정부. 130 : 통신부.
200 : 제어서버. 210 : 제어부.
211 : 고장판단부. 212 : 통계작성부.
213 : 데이터수집부. 214 : 발전량학습부.
220 : 서버 DB. 221 : 시스템 현황 DB.
2211, 2212 : 시스템 개별 DB. 222: 시스템 현황 DB.
2221 : 발전량 DB. 2222 : 이산화탄소 절감총량 DB.
2223 : 발전비용 DB. 2224 : 발전시간 DB.
2225 : 인버터가동률 DB. 2226 : 변환효율 DB.
223 : 외부환경 DB. 2231 : 일사량 DB.
2232 : 강수량 DB. 2233 : 기온 DB.
2234 : 전운량 DB. 2235 : 습도 DB.
2236 : 안개 DB. 224 : 학습 DB.
2241 : 형성모델 DB. 2242 : 트레이닝셋 DB.
2243 : 테스트셋 DB. 2244 : 블라인드셋 DB.
230 : 서버 통신부. 300 : 단말기.
100: solar power generation unit. 110: solar cell unit.
111: solar cell power generation unit. 112: sensor unit.
1121: illuminance sensor. 1122: temperature sensor.
1123: humidity sensor. 1124: carbon dioxide sensor.
113: solar cell measuring unit. 1131: Solar cell generation voltage measurement unit.
1132: solar cell current measuring unit. 120: storage battery unit.
121: storage battery storage unit. 1221: Storage battery voltage measuring unit.
1222: Storage battery charging current measurement unit. 130: Communication Department.
200: control server. 210: control unit.
211: Failure determination section. 212: Statistics preparation department.
213: Data collection unit. 214: Power generation learning department.
220: Server DB. 221: System status DB.
2211, 2212: System individual DB. 222: System status DB.
2221: Power generation DB. 2222: Total carbon dioxide reduction DB.
2223: Power generation cost DB. 2224: Power generation time DB.
2225: Inverter operation rate DB. 2226: Conversion efficiency DB.
223: External environment DB. 2231: Insolation DB.
2232: precipitation DB. 2233: Temperature DB.
2234: Total cloud volume DB. 2235: humidity DB.
2236: fog DB. 224: Learning DB.
2241: Formation model DB. 2242: Training set DB.
2243: Test set DB. 2244: blind set DB.
230: Server communication unit. 300: terminal.

Claims (18)

하나 이상의 태양광 발전부와, 상기 하나 이상의 태양광 발전부와 유선 또는 무선으로 통신 가능하게 연결되는 제어서버, 그리고 상기 제어서버와 유선 또는 무선으로 통신 가능하게 연결되는 하나 이상의 관리자 단말기를 포함하는 태양광 발전 및 제어시스템으로서,
상기 태양광 발전부는 하나 이상의 태양전지들을 포함하는 태양전지 발전부; 주변의 환경정보를 감지할 수 있는 하나 이상의 센서를 포함하는 센서부; 그리고 상기 태양전지 발전부 내 태양전지들의 발전전압 및 전류를 측정할 수 있는 태양전지 측정부를 포함하는 태양전지부; 상기 태양전지부에서 발전을 실시하여 생산한 전기에너지를 저장하기 위하여, 하나 이상의 개별 축전지들을 포함하는 축전지 저장부; 그리고 상기 축전지 저장부 내 개별 축전지들의 축전지 전압 및 축전지에 충전되는 전류량을 측정할 수 있는 축전지 측정부를 포함하는 축전지부; 그리고 상기 제어서버와 유선 또는 무선으로 통신할 수 있는 통신수단 및 프로그램을 포함하는 통신부를 포함하고,
상기 제어서버는 상기 하나 이상의 태양광 발전부를 개별적으로 제어하기 위하여, 상기 하나 이상의 태양광 발전부 각각의 고장을 개별적으로 진단하고 판단하기 위한 고장판단부; 상기 하나 이상의 태양광 발전부와 관련된 하나 이상의 데이터 및 수치에 대한 통계를 작성하는 통계작성부; 외부의 전기통신망을 참조하여 데이터를 갈무리하는 데이터수집부; 그리고 심층 신경망 방식을 이용하여 미래의 태양광 발전량을 예측할 수 있도록 하는 발전량학습부를 포함하는 제어부; 상기 하나 이상의 태양광 발전부 각각의 현황을 구분하여 갱신 저장하는 시스템 현황 DB; 상기 통계작성부가 생성하는 하나 이상의 통계 정보를 저장하는 시스템 통계 DB; 상기 데이터수집부가 외부의 전기통신망을 참조하여 갈무리한 데이터를 저장하는 외부환경 DB; 그리고 상기 발전량학습부(214)의 동작에 따라 생성되는 데이터를 저장하는 학습 DB를 포함하는 서버 DB; 그리고 상기 하나 이상의 태양광 발전부 및 상기 하나 이상의 관리자 단말기와 유선 또는 무선으로 통신 가능하게 연결되는 서버 통신부를 포함하는 것을 특징으로 하는, 태양광 발전 및 제어시스템.
An aspect comprising one or more photovoltaic power generation units, a control server that is communicatively connected to the at least one photovoltaic power generation unit by wire or wireless, and at least one manager terminal that is communicatively connected to the control server by wire or wirelessly As a photovoltaic power generation and control system,
The solar power generation unit solar cell power generation unit including one or more solar cells; A sensor unit including at least one sensor capable of detecting surrounding environment information; And a solar cell unit including a solar cell measuring unit capable of measuring the power generation voltage and current of the solar cells in the solar cell generating unit. A storage battery storage unit including one or more individual storage batteries to store electric energy produced by power generation by the solar cell unit; And a storage battery unit including a storage battery measuring unit capable of measuring a storage battery voltage and an amount of current charged in the storage battery of the individual storage batteries in the storage battery storage unit. And a communication unit including a communication means and a program capable of communicating with the control server by wire or wirelessly,
The control server may include a failure determination unit for individually diagnosing and determining a failure of each of the one or more solar power generation units to individually control the at least one solar power generation unit; A statistics creation unit for creating statistics on one or more data and values related to the one or more solar power generation units; A data collection unit storing data by referring to an external telecommunication network; And a control unit including a power generation amount learning unit capable of predicting a future solar power generation amount using a deep neural network method. A system status DB for updating and storing the status of each of the one or more solar power generation units; A system statistics DB for storing one or more statistical information generated by the statistics generating unit; An external environment DB in which the data collection unit stores data stored by referring to an external telecommunication network; And a server DB including a learning DB for storing data generated according to the operation of the power generation learning unit 214; And a server communication unit connected to the at least one photovoltaic power generation unit and the at least one manager terminal through wired or wireless communication.
제 1항에 있어서, 상기 태양전지 측정부는 상기 하나 이상의 태양전지들의 발전전압을 개별적으로 측정할 수 있는 태양전지 발전전압 측정부; 그리고 상기 하나 이상의 태양전지들의 전류를 개별적으로 측정할 수 있는 태양전지 전류 측정부를 포함하고,
상기 축전지 측정부는 상기 하나 이상의 개별 축전지들의 전압을 측정할 수 있는 축전지 전압 측정부; 그리고 상기 하나 이상의 개별 축전지들의 충전 전류를 측정할 수 있는 축전지 충전전류 측정부를 포함하는 것을 특징으로 하는, 태양광 발전 및 제어시스템.
The method of claim 1, wherein the solar cell measurement unit comprises: a solar cell generation voltage measurement unit capable of individually measuring the generated voltage of the one or more solar cells; And a solar cell current measuring unit capable of individually measuring the current of the one or more solar cells,
The storage battery measurement unit includes a storage battery voltage measurement unit capable of measuring the voltage of the one or more individual storage batteries; And a storage battery charging current measuring unit capable of measuring the charging current of the one or more individual storage batteries.
제 1항에 있어서, 상기 센서부는 조도센서, 온도센서, 습도센서, 이산화탄소 센서를 포함하는 것을 특징으로 하는, 태양광 발전 및 제어시스템.The solar power generation and control system of claim 1, wherein the sensor unit comprises an illuminance sensor, a temperature sensor, a humidity sensor, and a carbon dioxide sensor. 제 1항에 있어서, 상기 통신부는 상기 센서부, 태양전지 측정부, 그리고 축전지 측정부에서 송신하는 아날로그 신호를 수신하고 이를 맨체스터 코드화하여 디지털 신호로 변환한 다음 상기 서버 통신부로 송신하는 것을 특징으로 하는, 태양광 발전 및 제어시스템.The method of claim 1, wherein the communication unit receives the analog signal transmitted from the sensor unit, the solar cell measurement unit, and the storage battery measurement unit, converts it into a Manchester coded digital signal, and transmits it to the server communication unit. , Solar power generation and control system. 제 1항에 있어서, 상기 제어서버는 둘 이상의 컴퓨터를 포함하고, 상기 제어서버에 포함되는 둘 이상의 컴퓨터에는 분산처리 프로그램이 설치되어, 상기 제어서버가 상기 분산처리 프로그램에 의해 구현되는 것을 특징으로 하는, 태양광 발전 및 제어시스템.The method of claim 1, wherein the control server comprises two or more computers, and a distributed processing program is installed in at least two computers included in the control server, and the control server is implemented by the distributed processing program. , Solar power generation and control system. 제 5항에 있어서, 상기 분산처리 하둡 소프트웨어 프레임워크임을 특징으로 하는, 태양광 발전 및 제어시스템.The solar power generation and control system according to claim 5, which is the distributed processing Hadoop software framework. 제 1항에 있어서, 상기 시스템 통계 DB는 발전량 DB, 이산화탄소 절감총량 DB, 발전비용 DB, 발전시간 DB, 인버터가동률 DB, 그리고 변환효율 DB를 포함하는 것을 특징으로 하는, 태양광 발전 및 제어시스템.The photovoltaic power generation and control system according to claim 1, wherein the system statistics DB includes a power generation DB, a carbon dioxide reduction total DB, a power generation cost DB, a power generation time DB, an inverter operation rate DB, and a conversion efficiency DB. 제 1항에 있어서, 상기 외부환경 DB는 일사량 DB, 강수량 DB, 기온 DB, 전운량 DB, 습도 DB, 그리고 안개 DB를 포함하는 것을 특징으로 하는, 태양광 발전 및 제어시스템.The solar power generation and control system according to claim 1, wherein the external environment DB includes a solar radiation DB, a precipitation DB, a temperature DB, a total cloud DB, a humidity DB, and a fog DB. 제 1항에 있어서, 상기 학습 DB는 형성모델 DB, 트레이닝셋 DB, 테스트셋 DB, 그리고 블라인드셋 DB를 포함하는 것을 특징으로 하는, 태양광 발전 및 제어시스템.The photovoltaic power generation and control system of claim 1, wherein the learning DB includes a formation model DB, a training set DB, a test set DB, and a blind set DB. 제 1항의 태양광 발전 및 제어시스템의 운영 방법으로서,
상기 태양광 발전부 중 어느 하나의 태양전지 발전전압(V)을 측정하고 판단하는 발전전압 측정단계(S100);
상기 단계(S100) 이후, 상기 단계(S100)에서 측정 대상이 된 태양광 발전부의 축전지 전류량(Bat_C)을 측정하고 판단하는 축전지 전류량 측정단계(S110)
그리고 상기 단계(S100) 이후, 상기 단계(S100)에서 측정 대상이 된 태양광 발전부의 광량(R)을 측정하고 판단하는 광량측정단계(S120)를 실시하여 고장을 진단하는 것을 특징으로 하는, 태양광 발전 및 제어시스템의 운영 방법.
As a method of operating the solar power generation and control system of claim 1,
A power generation voltage measurement step (S100) of measuring and determining the power generation voltage (V) of any one of the solar power generation units;
After the step (S100), a storage battery current amount measuring step (S110) of measuring and determining the amount of battery current (Bat_C) of the solar power generation unit to be measured in the step (S100)
And after the step (S100), characterized in that the fault is diagnosed by performing the light amount measurement step (S120) of measuring and determining the amount of light (R) of the solar power generation unit to be measured in the step (S100). How to operate the photovoltaic and control system.
제 10항에 있어서,
상기 단계(S100)에서 상기 발전전압(V)이 0V가 아니고 현재 축전지 전압값(Bat_V) 이하로 판단되면 측정 대상 태양광 발전부가 정상 동작임을 확인하는 정상동작 확인단계(S101)를 실시하고 상기 단계(S110, S120)를 실시하지 않은 채 고장진단을 종료하는 것을 특징으로 하는, 태양광 발전 및 제어시스템의 운영 방법.
The method of claim 10,
In the step (S100), if the power generation voltage (V) is determined to be less than the current storage battery voltage value (Bat_V) rather than 0V, a normal operation check step (S101) is performed to confirm that the solar power generation unit to be measured is in normal operation, and the step (S110, S120), characterized in that the fault diagnosis is terminated without performing, solar power generation and control system operating method.
제 10항에 있어서,상기 단계(S100)에서 상기 발전전압(V)이 0V가 아니고 현재 축전지 전압값(Bat_V) 초과이며, 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)이 0A 이하라면, 측정 대상 태양광 발전부 중 태양전지의 전류측정부가 고장난 것으로 판단하고 이를 관리자의 단말기에 통보하는 태양전지 전류측정부 문제확인단계(S111)를 실시하고 상기 단계(S120)를 실시하지 않은 채 고장진단을 종료하는 것을 특징으로 하는, 태양광 발전 및 제어시스템의 운영 방법.The measurement of claim 10, wherein in the step (S100), the power generation voltage (V) is not 0V but exceeds the current storage battery voltage value (Bat_V), and the storage battery current amount (Bat_C) is 0A or less in the step (S110). Among the target photovoltaic power generation units, the solar cell current measurement unit, which determines that the current measurement unit of the solar cell has failed, and notifies the administrator's terminal, performs a problem checking step (S111) of the solar cell current measurement unit and diagnoses the failure without performing the step (S120). The method of operating a solar power generation and control system, characterized in that the termination. 제 10항에 있어서, 상기 단계(S100)에서 상기 발전전압(V)이 0V이고, 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)이 0A 초과이며, 상기 단계(S120)에서 상기 광량(R)이 20W/㎡ 초과이면 측정 대상 태양광 발전부 중 태양전지의 전류측정부가 고장난 것으로 판단하고 이를 관리자의 단말기에 통보하는 태양전지 전류측정부 문제확인단계(S121)를 실시하고 고장진단을 종료하는 것을 특징으로 하는, 태양광 발전 및 제어시스템의 운영 방법.The method of claim 10, wherein the power generation voltage (V) is 0V in the step (S100), the storage battery current amount (Bat_C) is greater than 0A in the step (S110), and the light amount (R) in the step (S120) If it exceeds 20W/㎡, it is determined that the current measuring unit of the solar cell among the solar power generation units to be measured has failed, and the problem confirmation step (S121) of the solar cell current measurement unit informing the administrator's terminal is performed, and the failure diagnosis is terminated. Characterized in, solar power generation and control system operating method. 제 10항에 있어서,
상기 단계(S100)에서 상기 발전전압(V)이 0V이고, 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)이 0A 초과이며, 상기 단계(S120)에서의 상기 광량(R)이 20W/㎡ 미만이거나,
상기 단계(S100)에서 상기 발전전압(V)이 0V이고, 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)이 0A 이하이며, 상기 단계(S120)에서의 상기 광량(R)이 20W/㎡ 초과이면 측정 대상 태양광 발전부 중 태양전지의 전압측정부 및 전류측정부가 고장난 것으로 판단하고 이를 관리자의 단말기에 통보하는 태양전지 전압, 전류측정부 문제확인단계(S122)를 실시하고 고장진단을 종료하는 것을 특징으로 하는, 태양광 발전 및 제어시스템의 운영 방법.
The method of claim 10,
The power generation voltage (V) is 0V in the step (S100), the storage battery current amount (Bat_C) is more than 0A in the step (S110), and the light amount (R) in the step (S120) is less than 20W/m2 Or
The power generation voltage (V) is 0V in the step (S100), the storage battery current amount (Bat_C) is less than 0A in the step (S110), and the light amount (R) in the step (S120) exceeds 20W/m² If it is determined that the voltage measurement unit and the current measurement unit of the solar cell among the solar power generation units to be measured are broken, the solar cell voltage and current measurement unit problem check step (S122) is performed to notify the manager's terminal and the failure diagnosis is terminated. Characterized in that, solar power generation and control system operating method.
제 10항에 있어서,
상기 단계(S100)에서 상기 발전전압(V)이 0V이고, 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)이 0A 이하이며, 상기 단계(S120)에서의 상기 광량(R)이 20W/㎡ 이하이거나,
상기 단계(S100)에서 상기 발전전압(V)이 0V가 아니고 현재 축전지 전압값(Bat_V) 미만이고, 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)이 0A 초과이며, 상기 단계(S120)에서의 상기 광량(R)이 20W/㎡ 이상이라면, 측정 대상 태양광 발전부가 정상 동작임을 확인하는 정상동작 확인단계(S123)를 실시하고 고장진단을 종료하는 것을 특징으로 하는, 태양광 발전 및 제어시스템의 운영 방법.
The method of claim 10,
The power generation voltage (V) is 0V in the step (S100), the storage battery current amount (Bat_C) is 0A or less in the step (S110), and the light amount (R) in the step (S120) is 20W/m² or less. Or
In the step (S100), the power generation voltage (V) is not 0V but less than the current storage battery voltage value (Bat_V), the storage battery current amount (Bat_C) in the step (S110) is greater than 0A, and in the step (S120) If the amount of light (R) is 20W/m² or more, a normal operation check step (S123) is performed to confirm that the solar power generation unit to be measured is in normal operation, and failure diagnosis is terminated. Operating method.
제 10항에 있어서,
상기 단계(S100)에서 상기 발전전압(V)이 0V가 아니고 현재 축전지 전압값(Bat_V) 미만이고, 상기 단계(S110)에서 상기 축전지 전류량(Bat_C)이 0A 초과이며, 상기 단계(S120)에서의 상기 광량(R)이 20W/㎡ 미만이라면, 측정 대상 태양광 발전부의 광량센서가 고장난 것으로 판단하고 이를 관리자의 단말기에 통보하는 광량센서 문제확인단계(S124)를 실시하고 고장진단을 종료하는 것을 특징으로 하는, 태양광 발전 및 제어시스템의 운영 방법.
The method of claim 10,
In the step (S100), the power generation voltage (V) is not 0V but less than the current storage battery voltage value (Bat_V), the storage battery current amount (Bat_C) in the step (S110) is greater than 0A, and in the step (S120) If the amount of light (R) is less than 20W/㎡, it is determined that the light amount sensor of the solar power generation unit to be measured has failed, and a light amount sensor problem checking step (S124) of notifying the administrator's terminal is performed, and the failure diagnosis is terminated. The solar power generation and control system operation method.
제 1항의 태양광 발전 및 제어시스템의 운영 방법으로서,
상기 데이터수집부가 외부의 전기통신망으로부터 데이터를 수집하여 상기 외부환경 DB에 갱신 저장하는 데이터 조달단계(S210);
상기 외부환경 DB에 갱신된 데이터에 대하여 데이터마이닝을 실시하여 원시모델 데이터(PD)를 생산하는 데이터마이닝 단계(S220);
상기 단계(S220)를 실시하여 생성된 상기 원시모델 데이터(PD)에 대하여 적어도 1회 이상 실시되는 모델 트레이닝 단계(S230);
그리고 상기 단계(S230)를 적어도 1회 실행한 다음, 테스팅을 실시하여 예측모델 데이터(CD)를 생성하도록 하고,
상기 데이터마이닝 단계(S220)에서는 가공된 데이터인 또한 트레이닝셋, 테스트셋, 그리고 블라인드셋을 형성하는 데이터 정제단계(S221)가 실시되는 것을 특징으로 하는, 태양광 발전 및 제어시스템의 운영 방법.
As a method of operating the solar power generation and control system of claim 1,
A data procurement step (S210) in which the data collection unit collects data from an external telecommunication network and updates and stores it in the external environment DB;
A data mining step (S220) of producing raw model data PD by performing data mining on the updated data in the external environment DB;
A model training step (S230) performed at least once or more on the raw model data PD generated by performing the step (S220);
And after performing the step (S230) at least once, and then performing testing to generate the predictive model data (CD),
In the data mining step (S220), a data refining step (S221) of forming a training set, a test set, and a blind set, which are processed data, is performed.
제 17항에 있어서,
상기 모델 트레이닝 단계(S230)는 인입되는 원시모델 데이터(PD)에 대하여 관리자가 수치를 선정하고 선정된 수치 및 학습 패턴쌍을 입력하는 수치선정 및 입력단계(S231), 은닉층(HL) 및 출력층(OL)의 입력 가중합 및 최종 출력을 계산하는 출력계산 단계(S232), 오차신호값을 계산하는 오차계산단계(S233), 그리고 다음 회차의 학습단계에 사용될 연결강도를 구하는 연결강도 변화량 계산단계(S234)를 포함하고,
상기 단계(S234) 실시 이후 상기 모델 트레이닝 단계(S230)의 실시 횟수가 정해진 epoch수 미만이거나, 미리 입력된 최대 에러율 이상이라면 상기 단계(S231)를 다시 실시하는 것을 특징으로 하는, 태양광 발전 및 제어시스템의 운영 방법.
The method of claim 17,
In the model training step (S230), a numerical selection and input step (S231) in which an administrator selects a numerical value for the incoming raw model data PD and inputs the selected numerical value and learning pattern pair (S231), a hidden layer (HL), and an output layer ( The output calculation step (S232) for calculating the input weighted sum and the final output of OL), the error calculation step (S233) for calculating the error signal value, and the connection strength variation calculation step for obtaining the connection strength to be used in the next learning step ( S234), and
If the number of times the model training step (S230) is performed after the step (S234) is less than a predetermined number of epochs or is greater than or equal to a pre-input maximum error rate, the step (S231) is performed again. How the system operates.
KR1020190093622A 2019-08-01 2019-08-01 Solar cell power plant and control system, and its method of operating thereof KR102292748B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190093622A KR102292748B1 (en) 2019-08-01 2019-08-01 Solar cell power plant and control system, and its method of operating thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190093622A KR102292748B1 (en) 2019-08-01 2019-08-01 Solar cell power plant and control system, and its method of operating thereof

Publications (3)

Publication Number Publication Date
KR20210015168A true KR20210015168A (en) 2021-02-10
KR102292748B1 KR102292748B1 (en) 2021-08-23
KR102292748B9 KR102292748B9 (en) 2023-01-13

Family

ID=74561402

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190093622A KR102292748B1 (en) 2019-08-01 2019-08-01 Solar cell power plant and control system, and its method of operating thereof

Country Status (1)

Country Link
KR (1) KR102292748B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102650607B1 (en) * 2022-09-29 2024-03-26 김동완 Method for controlling power used in dc-dc converter employing hybrid parallel for increasing of generation quantity for increasing of generation quantity

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110005368A (en) * 2009-07-10 2011-01-18 주식회사 메타비즈 An operation maintenance system and method for photovoltaic power generator
JP2014072872A (en) * 2012-10-02 2014-04-21 Panasonic Corp Automatic meter reading apparatus, gas meter, and gas automatic meter reading system
KR101761686B1 (en) 2017-03-31 2017-07-31 (주)하모니앤유나이티드 Real time predicting system for energy management system using machine learning
KR20170090114A (en) * 2016-01-28 2017-08-07 주식회사 아임클라우드 Factory smart analysis system and method based on bigdata
KR101864695B1 (en) 2016-12-02 2018-06-05 서울과학기술대학교 산학협력단 Signal processing method in visible light communication
KR20180109101A (en) 2017-03-27 2018-10-08 조두산 Prediction Method of Photovolatic Power Generation Using Machine Learning
KR20180123951A (en) * 2017-05-10 2018-11-20 주식회사 알스피릿 Device and method for diagnosing/predicting status of solar cell or solar cell array on real time based on machine learing
KR101967440B1 (en) * 2018-07-05 2019-04-09 첨단제어시스템 주식회사 Integrated renewable energy monitoring system
KR20190071426A (en) * 2017-12-14 2019-06-24 주식회사 지에스씨 The apparatus of smart energy management to energy visualize in solar power
KR102002548B1 (en) 2017-12-28 2019-07-22 한국남동발전 주식회사 Farming type photovoltaic generation forecasting system and method for forecasting power generation amount and profitability using thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110005368A (en) * 2009-07-10 2011-01-18 주식회사 메타비즈 An operation maintenance system and method for photovoltaic power generator
JP2014072872A (en) * 2012-10-02 2014-04-21 Panasonic Corp Automatic meter reading apparatus, gas meter, and gas automatic meter reading system
KR20170090114A (en) * 2016-01-28 2017-08-07 주식회사 아임클라우드 Factory smart analysis system and method based on bigdata
KR101864695B1 (en) 2016-12-02 2018-06-05 서울과학기술대학교 산학협력단 Signal processing method in visible light communication
KR20180109101A (en) 2017-03-27 2018-10-08 조두산 Prediction Method of Photovolatic Power Generation Using Machine Learning
KR101761686B1 (en) 2017-03-31 2017-07-31 (주)하모니앤유나이티드 Real time predicting system for energy management system using machine learning
KR20180123951A (en) * 2017-05-10 2018-11-20 주식회사 알스피릿 Device and method for diagnosing/predicting status of solar cell or solar cell array on real time based on machine learing
KR20190071426A (en) * 2017-12-14 2019-06-24 주식회사 지에스씨 The apparatus of smart energy management to energy visualize in solar power
KR102002548B1 (en) 2017-12-28 2019-07-22 한국남동발전 주식회사 Farming type photovoltaic generation forecasting system and method for forecasting power generation amount and profitability using thereof
KR101967440B1 (en) * 2018-07-05 2019-04-09 첨단제어시스템 주식회사 Integrated renewable energy monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102650607B1 (en) * 2022-09-29 2024-03-26 김동완 Method for controlling power used in dc-dc converter employing hybrid parallel for increasing of generation quantity for increasing of generation quantity

Also Published As

Publication number Publication date
KR102292748B1 (en) 2021-08-23
KR102292748B9 (en) 2023-01-13

Similar Documents

Publication Publication Date Title
Afrasiabi et al. Multi-agent microgrid energy management based on deep learning forecaster
Mahmoud et al. An advanced approach for optimal wind power generation prediction intervals by using self-adaptive evolutionary extreme learning machine
Carpinone et al. Very short-term probabilistic wind power forecasting based on Markov chain models
Sengar et al. Ensemble approach for short term load forecasting in wind energy system using hybrid algorithm
Jiang et al. Day‐ahead renewable scenario forecasts based on generative adversarial networks
CN112785027A (en) Wind-solar-storage combined power generation system confidence capacity evaluation method and system
KR102498535B1 (en) System for managing renewable energy generator
Yan et al. Development of a tool for urban microgrid optimal energy planning and management
CN112906757A (en) Model training method, optical power prediction method, device, equipment and storage medium
KR20210133066A (en) Building Energy management apparatus and Method
Wu et al. Design of A battery energy management system for capacity charge reduction
KR102292748B1 (en) Solar cell power plant and control system, and its method of operating thereof
Arshad et al. Wind power prediction using genetic programming based ensemble of artificial neural networks (GPeANN)
WO2021015332A1 (en) Solar power generation and control system, and method for operating solar power generation and control system
CN115907131B (en) Method and system for constructing electric heating load prediction model in northern area
KR102379984B1 (en) System for managing renewable energy generator
KR102259096B1 (en) Solar cell power plant and control system, and its method of operating thereof
CN109447843A (en) A kind of photovoltaic power generation output forecasting method and device
Paulin et al. SOLAR PHOTOVOLTAIC OUTPUT POWER FORECASTING USING BACK PROPAGATION NEURAL NETWORK.
Cho et al. Application of Parallel ANN-PSO to Hourly Solar PV Estimation
Guanoluisa-Pineda et al. Short-Term forecasting of photovoltaic power in an isolated area of Ecuador using deep learning techniques
KR20200129343A (en) Weather data processing device for energy management and energy management system
Tian et al. Fusion modeling for wind power forecasting based on redundant method elimination
KR102642404B1 (en) Method for prediction power generation using meta-learning, device and system using the same
CN118282030A (en) Distributed new energy cluster risk active early warning method and system

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]