KR20210013950A - Method for dividing a solar cell for a shingled solar panel and a solar panel using the same - Google Patents

Method for dividing a solar cell for a shingled solar panel and a solar panel using the same Download PDF

Info

Publication number
KR20210013950A
KR20210013950A KR1020190091827A KR20190091827A KR20210013950A KR 20210013950 A KR20210013950 A KR 20210013950A KR 1020190091827 A KR1020190091827 A KR 1020190091827A KR 20190091827 A KR20190091827 A KR 20190091827A KR 20210013950 A KR20210013950 A KR 20210013950A
Authority
KR
South Korea
Prior art keywords
solar cell
cutting line
wafer
solar panel
manufacturing
Prior art date
Application number
KR1020190091827A
Other languages
Korean (ko)
Inventor
정채환
지홍섭
박민준
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020190091827A priority Critical patent/KR20210013950A/en
Priority to CN201980098859.1A priority patent/CN114175279A/en
Priority to US17/631,166 priority patent/US20220271190A1/en
Priority to PCT/KR2019/015749 priority patent/WO2021020657A1/en
Publication of KR20210013950A publication Critical patent/KR20210013950A/en
Priority to KR1020210144619A priority patent/KR102427904B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention relates to a method for dividing a solar cell for a shingled solar panel and a solar panel using the same. According to the present invention, a provided solar cell is divided into strips such that independent upper and lower bus bars are given and the strips overlap in part (shingled structure) for string manufacturing. The method includes: (a) a step of preparing a solar cell wafer; (b) a step of preparing multiple cutting lines in the front and back portions of the wafer; (c) a step of preparing multiple bus bars in the front and back portions of the wafer; and (d) a step of preparing multiple solar cells by cutting the wafer along the cutting lines. A pair of the bus bars are prepared on both sides and adjacent to one of the cutting lines, and five or six solar cells can be efficiently divided.

Description

슁글드 태양광 패널용 태양전지 셀의 제조방법 및 이를 이용한 태양광 패널{Method for dividing a solar cell for a shingled solar panel and a solar panel using the same} Method for dividing a solar cell for a shingled solar panel and a solar panel using the same method for manufacturing a solar cell for a shingled solar panel

본 발명은 슁글드 태양광 패널용 태양전지 셀의 분할방법 및 이를 이용한 태양광 패널에 관한 것으로, 특히 제공되는 태양전지 셀을 각각의 독립적인 상 하부 버스바를 가지도록 스트립으로 분할하고, 복수개의 스트립이 서로 부분적으로 중첩(슁글드 구조)되어 스트링을 제작하는 슁글드 태양광 패널용 태양전지 셀의 분할방법 및 이를 이용한 태양광 패널에 관한 것이다.The present invention relates to a method of dividing a solar cell for a shingled solar panel and a solar panel using the same, and in particular, the provided solar cell is divided into strips so as to have independent upper and lower bus bars, and a plurality of strips The present invention relates to a method of dividing a solar cell for a shingled solar panel in which a string is formed by partially overlapping each other (shingled structure), and a solar panel using the same.

최근 석유나 석탄과 같은 기존 에너지 자원의 고갈이 예측되면서 이들을 대체할 대체 에너지에 대한 관심이 높아지고 있다. 환경문제 및 고갈의 우려가 없는 대체에너지로 풍력, 수력, 원자력, 태양에너지 등이 있으며, 그 중에서도 태양 전지는 태양 에너지로부터 전기 에너지를 생산하는 전지로서, 에너지 자원이 풍부하고 환경오염에 대한 문제점이 없어 주목 받고 있다.Recently, as the depletion of existing energy resources such as oil and coal is predicted, interest in alternative energy to replace them is increasing. There are wind, hydro, nuclear, and solar energy as alternative energy sources that are not subject to environmental problems or depletion. Among them, solar cells are cells that produce electric energy from solar energy, and are rich in energy resources and have problems related to environmental pollution. There is no attention.

태양광 발전은 무한정, 무공해의 태양 에너지를 직접 전기에너지로 변환시키는 기술이다. 태양광 발전의 기본 원리는 반도체 PN 접합으로 구성된 태양전지(solar cell)에 태양광이 조사되면 광에너지에 의한 전자, 정공 쌍이 생겨나고, 전자와 정공이 이동하여 n 층과 p 층을 가로질러 전류가 흐르게 되는 광기전력 효과에 의해 기전력이 발생하여 외부에 접속된 부하에 전류가 흐르게 된다.Solar power generation is a technology that directly converts infinite, pollution-free solar energy into electrical energy. The basic principle of photovoltaic power generation is that when sunlight is irradiated to a solar cell composed of a semiconductor PN junction, pairs of electrons and holes are generated by light energy, and the electrons and holes move and current across the n and p layers. Electromotive force is generated by the photovoltaic effect that flows, and current flows through the externally connected load.

이러한 태양전지는 광전 변환 효과를 이용하여 태양 에너지를 전기 에너지로 변환하는 것으로, 한 개의 태양전지는 대략 수 와트(W) 내외의 작은 전력을 생산한다. 따라서 원하는 출력을 얻기 위해서는 여러 개의 태양전지를 일정 패턴으로 배치 및 정렬시키고, 직렬 또는 병렬로 연결한 후 방수 처리한 형태의 태양전지모듈을 사용한다.Such a solar cell converts solar energy into electric energy using a photoelectric conversion effect, and one solar cell produces a small amount of power of about several watts (W). Therefore, in order to obtain the desired output, several solar cells are arranged and arranged in a certain pattern, connected in series or in parallel, and then a waterproof solar cell module is used.

태양전지 모듈은 일반적으로 전면에 유리가 위치하고, 후면에는 EVA 시트가 배치되며, 스트링 라인이 설치된다. 또한, 셀 뒷면에는 셀을 보호하기 위한 EVA와 백시트(Backsheet)가 놓이고 라미네이션 공정이 진행된다. 라미네이션이 끝난 모듈은 외부로 전기를 추출하기 위한 배선이 포함된 정션박스를 부착하고 모듈의 설치를 용이하게 하거나 보호를 위한 프레임을 부착하는 공정이 진행된다.In general, a solar cell module has a glass on the front, an EVA sheet on the back, and a string line. In addition, on the back of the cell, EVA and a backsheet are placed to protect the cell, and a lamination process is performed. In the module after lamination, a junction box containing wiring for extracting electricity is attached to the outside, and a process of attaching a frame for easy installation or protection is performed.

상기와 같은 종래의 태양전지 모듈에서, 태양전지에 의해 발전한 전력을 외부로 출력하기 위해서는 태양전지에 형성된 버스바 및 인터커넥션 리본과, 리드선을 통해 태양전지 모듈의 외부로 취출하는 방법이 이용된다.In the conventional solar cell module as described above, in order to output power generated by the solar cell to the outside, a bus bar and an interconnection ribbon formed on the solar cell, and a method of taking out the power generated by the solar cell to the outside of the solar cell module through a lead wire are used.

한편, 태양광 모듈은 다수의 스트링(string)이 직렬 연결되어 구성된다. 예를 들어, 6개의 스트링이 하나의 태양광 모듈을 구성하며, 이들 각각은 독립적으로 태양광 발전 기능을 갖는다. 이러한 태양광 모듈 스트링은 부하까지 직접 전력 케이블이 연결되는데 종종 선로의 누전으로 인해 불필요한 전력 소모가 심각하게 누적되는 문제점이 있다.On the other hand, the solar module is configured by connecting a plurality of strings in series. For example, six strings make up one solar module, each of which independently has a solar power function. In such a solar module string, a power cable is directly connected to a load, and there is a problem that unnecessary power consumption is seriously accumulated due to a short circuit in the line.

이러한 기술의 일 예가 하기 문헌 1 내지 3 등에 개시되어 있다.An example of such a technique is disclosed in Documents 1 to 3 below.

예를 들어, 하기 특허문헌 1에는 도 1에 도시된 바와 같이, 프레임(B) 상에서 직렬로 연결된 복수의 분할 태양전지 셀(10)로 구성된 복수의 스트링(S)을 서로 연결하도록 어느 한 스트링(S)의 최상부 분할 태양전지 셀(10) 또는 최하부 분할 전지셀(10)의 전면 버스바 전극 또는 후면 버스바 전극과 나란하도록 소정길이 연장되고, 접착부에 의해 분할 태양전지 셀(10)의 전면 버스바 전극 또는 후면 버스바 전극에 연결된 스트링 리본(40)과 상기 스트링 리본(40)의 분기 스트립 상에 인접하는 스트링(S)과의 접속을 위한 연결 리본(60)을 포함하고, 상기 스트링 리본(40)은 전면 버스바 전극 또는 후면 버스바 전극에 연결 및 접속될 수 있게 라인 상으로 형성된 메인 스트립과 메인 스트립으로부터 분기된 복수의 분기 스트립(45)을 구비한 분할 태양전지 모듈(1)에 대해 개시되어 있다.For example, in Patent Document 1, as shown in FIG. 1, any one string (S) consisting of a plurality of divided solar cells 10 connected in series on the frame (B) is connected to each other. S) the uppermost divided solar cell 10 or the front bus of the divided solar cell 10 by a predetermined length extending parallel to the front busbar electrode or the rear busbar electrode of the lowermost divided solar cell 10 A string ribbon 40 connected to a bar electrode or a rear busbar electrode and a connection ribbon 60 for connection with a string S adjacent to a branch strip of the string ribbon 40 are included, and the string ribbon ( 40) for a divided solar cell module 1 having a main strip formed in a line so as to be connected and connected to the front busbar electrode or the rear busbar electrode, and a plurality of branching strips 45 branched from the main strip. It is disclosed.

또 하기 특허문헌 2에는 둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀(super cell)들을 포함하고, 각 슈퍼 셀은 실리콘 태양 전지(solar cell)들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비하며, 제1 태양 전지의 후면 상에 위치하는 정상 동작에서 유효한 전류를 전도하지 않는 히든 탭(hidden tap) 콘택 패드를 포함하고, 상기 제1 태양 전지는 상기 슈퍼 셀들의 열들의 제1의 것 내의 상기 슈퍼 셀들의 제1의 것을 따라 중간 위치에 위치하며, 상기 히든 탭 콘택 패드는 상기 슈퍼 셀들의 열들의 제2의 것 내의 적어도 제2 태양 전지에 전기적으로 병렬로 연결되는 태양광 모듈에 대해 개시되어 있다.In addition, Patent Document 2 below includes a plurality of super cells arranged in two or more parallel rows, and each super cell overlaps to electrically connect the silicon solar cells in series and is conductive to each other. A plurality of rectangular or substantially rectangular silicon solar cells arranged in a line with the long sides of adjacent silicon solar cells coupled to each other, and not conducting an effective current in normal operation located on the rear surface of the first solar cell. And a hidden tap contact pad, wherein the first solar cell is located at an intermediate position along the first of the super cells in the first of the rows of super cells, and the hidden tap contact pad Is disclosed for a solar module electrically connected in parallel to at least a second solar cell in a second one of the rows of super cells.

한편, 하기 특허문헌 3에는 도 2에 도시된 바와 같이, 웨이퍼(45)를 6등분의 분할 태양전지 셀(10)로 분할하고, 웨이퍼(45)의 제1 외측 에지에 평행하게 인접하게 배치된 제1 버스바(15)를 포함하는 전면 금속화 패턴 및 웨이퍼의 제1 에지에 대향하고 그에 평행한 웨이퍼의 제2 외측 에지에 평행하고, 그에 인접하게 배치된 제2 버스 바(접촉 패드 열)를 포함하고 다수의 핑거(20)를 구비한 분할 태양전지 셀(10) 각각에 스크라이브 라인을 레이저 스크라이빙하여 실리콘 태양 전지에 복수의 직사각형 영역을 한정하고, 웨이퍼(45)의 제1 및 제2 외측 에지에 평행한 스크라이브 라인을 따라 실리콘 웨이퍼를 절단하는 슁글드 태양전지 모듈에 대해 개시되어 있다.On the other hand, in the following Patent Document 3, as shown in Figure 2, the wafer 45 is divided into six equally divided solar cells 10, and disposed in parallel and adjacent to the first outer edge of the wafer 45. A front surface metallization pattern including a first bus bar 15 and a second bus bar (contact pad row) disposed adjacent to and parallel to a second outer edge of the wafer opposite and parallel to the first edge of the wafer Including, and laser scribing a scribe line on each of the divided solar cell 10 having a plurality of fingers 20 to define a plurality of rectangular regions in the silicon solar cell, and the first and the first of the wafer 45 2 Disclosed is a shingled solar cell module that cuts a silicon wafer along a scribe line parallel to the outer edge.

대한민국 등록특허공보 제10-1852606호(2018.04.20 등록)Korean Patent Publication No. 10-1852606 (registered on April 20, 2018) 대한민국 공개특허공보 제2017-0057177호(2017.05.24 공개)Republic of Korea Patent Publication No. 2017-0057177 (published on May 24, 2017) 미국 등록특허공보 US 9,484,484(2016.11.05 등록)US Patent Publication US 9,484,484 (registered on November 5, 2016)

상술한 바와 같은 특허문헌에 개시된 기술에서는 태양전지 셀을 분할할 때에 절단면에서 한쪽 방향으로 버스바를 형성하고, 에지면은 중심부보다 짧게 형성되므로, 이러한 경우 그 만큼 버스바 형성을 위한 재료가 낭비되는 단점이 있었다.In the technology disclosed in the patent document as described above, when dividing the solar cell, the busbar is formed in one direction from the cut surface, and the edge surface is formed shorter than the center. In this case, the material for forming the busbar is wasted. There was this.

또 상기 특허문헌 등에 개시된 기술에서는 절단선에 따른 스크라이버의 가이드 기능이 결여되어 정밀한 스크라이빙이 요구되며, 각각의 전극에 대해 열처리를 실행하므로 어닐링 효과가 저하된다는 문제도 있었다.In addition, the technology disclosed in the above patent documents lacks the guiding function of the scriber along the cutting line, so that precise scribing is required, and there is also a problem that the annealing effect is lowered because heat treatment is performed on each electrode.

본 발명의 목적은 상술한 바와 같은 문제점을 해결하기 위해 이루어진 것으로서, 제공되는 태양전지 셀을 각각의 독립적인 상 하부 버스바를 가지도록 스트립으로 분할하고, 복수개의 스트립이 서로 부분적으로 중첩(슁글드 구조)되어 스트링을 제작할 수 있는 슁글드 태양광 패널용 태양전지 셀의 제조방법 및 이를 이용한 태양광 패널을 제공하는 것이다.An object of the present invention has been made to solve the above-described problems, and the provided solar cell is divided into strips so as to have respective independent upper and lower bus bars, and a plurality of strips partially overlap each other (shingled structure ) Is to provide a method of manufacturing a solar cell for a shingled solar panel capable of producing a string and a solar panel using the same.

본 발명의 다른 목적은 태양전지 셀의 효율적인 분할 구조를 가지며, 셀을 스트립으로 분할 후 추가적인 작업 없이 바로 적층 할 수 있는 슁글드 태양광 패널용 태양전지 셀의 제조방법 및 이를 이용한 태양광 패널을 제공하는 것이다.Another object of the present invention is to provide a method of manufacturing a solar cell for a shingled solar panel and a solar panel using the same, which has an efficient division structure of a solar cell, and can be directly stacked without additional work after dividing the cell into strips. Is to do.

상기 목적을 달성하기 위해 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조방법은 (a) 태양전지용 웨이퍼를 마련하는 단계, (b) 상기 웨이퍼의 전면부 및 후면부에 각각 다수의 절단선을 마련하는 단계, (c) 상기 웨이퍼의 전면부 및 후면부에 각각 다수의 버스바를 마련하는 단계, (d) 상기 다수의 절단선에 따라 상기 웨이퍼를 절단하여 다수의 태양전지 셀을 마련하는 단계를 포함하고, 상기 버스바는 상기 하나의 절단선에 인접하여 양측에 한 쌍으로 마련되는 것을 특징으로 한다.In order to achieve the above object, the method of manufacturing a solar cell for a shingled solar panel according to the present invention includes the steps of: (a) preparing a wafer for solar cells, (b) a plurality of cutting lines, respectively, on the front and rear portions of the wafer. Providing a step, (c) providing a plurality of bus bars on the front and rear portions of the wafer, respectively, (d) cutting the wafer along the plurality of cutting lines to prepare a plurality of solar cells. Including, the bus bar is characterized in that provided in a pair on both sides adjacent to the one cutting line.

또 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조방법에서, 상기 다수의 절단선은 일정 간격을 갖고 4개 또는 5개로 마련된 것을 특징으로 한다.In addition, in the method of manufacturing a solar cell for a shingled solar panel according to the present invention, the plurality of cutting lines are provided in 4 or 5 with a predetermined interval.

또 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조방법에서, 상기 전면부 및 후면부에 마련된 다수의 절단선은 일정 간격을 갖고 각각 제1 절단선, 제2 절단선, 제3 절단선, 제4 절단선으로 마련되고, 상기 전면부에 마련된 버스바는 하나의 에지부, 상기 제2 절단선의 양측 및 상기 제4의 절단선의 양측에 마련되고, 상기 후면부에 마련된 버스바는 상기 제1 절단선의 양측, 상기 제3의 절단선의 양측 및 다른 하나의 에지부에 마련된 것을 특징으로 한다.In addition, in the method of manufacturing a solar cell for a shingled solar panel according to the present invention, a plurality of cutting lines provided on the front and rear portions have a predetermined interval, and each of a first cutting line, a second cutting line, and a third cutting line , The bus bar is provided as a fourth cutting line, and the bus bar provided on the front part is provided on one edge part, on both sides of the second cutting line, and on both sides of the fourth cutting line, and the bus bar provided on the rear part is the first It characterized in that it is provided on both sides of the cutting line, both sides of the third cutting line, and the other edge.

또 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조방법에서, 상기 전면부 및 후면부에 마련된 다수의 절단선은 일정 간격을 갖고 각각 제1 절단선, 제2 절단선, 제3 절단선, 제4 절단선, 제5 절단선으로 마련되고, 상기 전면부에 마련된 버스바는 상기 제1 절단선의 양측, 제3 절단선의 양측 및 상기 제5의 절단선의 양측에 마련되고, 상기 후면부에 마련된 버스바는 하나의 에지부, 상기 제2 절단선의 양측, 상기 제4의 절단선의 양측 및 다른 하나의 에지부에 마련된 것을 특징으로 한다.In addition, in the method of manufacturing a solar cell for a shingled solar panel according to the present invention, a plurality of cutting lines provided on the front and rear portions have a predetermined interval, and each of a first cutting line, a second cutting line, and a third cutting line , A fourth cutting line and a fifth cutting line, and the bus bars provided on the front part are provided on both sides of the first cutting line, on both sides of the third cutting line, and on both sides of the fifth cutting line, and provided on the rear part. The bus bar is provided at one edge portion, both sides of the second cutting line, both sides of the fourth cutting line, and the other edge portion.

또 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조방법에서, 상기 버스바는 도트 형상으로 마련된 것을 특징으로 한다.In addition, in the method of manufacturing a solar cell for a shingled solar panel according to the present invention, the bus bar is provided in a dot shape.

또 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조방법에서, 상기 웨이퍼는 4 모서리 부분이 테이퍼진 사각 형상(pseudo-squared) 또는 사각 형상(full-squared)으로 이루어진 것을 특징으로 한다.In addition, in the method of manufacturing a solar cell for a shingled solar panel according to the present invention, the wafer is characterized in that it has a pseudo-squared shape or a full-squared shape in which four corner portions are tapered.

또 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조방법에서, 상기 절단선에 인접하여 양측에 마련된 한 쌍의 버스바는 상기 다수의 절단선에 따라 스크라이버로 상기 웨이퍼를 절단할 때 상기 스크라이버의 가이드 기능을 실현하는 것을 특징으로 한다.In addition, in the method of manufacturing a solar cell for a shingled solar panel according to the present invention, a pair of busbars provided on both sides adjacent to the cutting line are used when cutting the wafer with a scriber along the plurality of cutting lines. It is characterized by realizing the guiding function of the scriber.

또 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조방법에서, 상기 하나의 절단선에 인접하여 양측에 마련된 한 쌍의 버스바는 270~350㎛의 간격으로 형성된 것을 특징으로 한다.In addition, in the method of manufacturing a solar cell for a shingled solar panel according to the present invention, a pair of bus bars provided on both sides adjacent to the one cutting line are formed at intervals of 270 to 350 μm.

또 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조방법에서, 상기 태양전지 셀은 p-PERC(Passivated Emitter and Rearside Contact), n-HIT(Hetrojunction with Intrinsic Thin lyaer), n-PERT (Passivated Emitter and Rear Totally diffused), CSC(Charge Selective Contact) 중의 어느 하나로 형성된 것을 특징으로 한다.In addition, in the method of manufacturing a solar cell for a shingled solar panel according to the present invention, the solar cell is p-PERC (Passivated Emitter and Rearside Contact),  n-HIT (Hetrojunction with Intrinsic Thin lyaer), n-PERT It is characterized by being formed in one of Passivated Emitter and Rear Totally diffused) or CSC (Charge Selective Contact).

또한, 상기 목적을 달성하기 위해 본 발명에 슁글드 태양광 패널은 상술한 슁글드 태양광 패널용 태양전지 셀의 제조방법에 의해 제조된 태양전지 셀을 포함하는 것을 특징으로 한다.In addition, in order to achieve the above object, the shingled solar panel according to the present invention includes a solar cell manufactured by the method of manufacturing a solar cell for a shingled solar panel described above.

상술한 바와 같이, 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조방법 및 이를 이용한 태양광 패널에 의하면, 버스바가 하나의 절단선에 인접하여 양측에 한 쌍으로 마련되어 전극의 열처리를 통한 어닐링의 효과가 상승하고, 5개 또는 6개의 태양전지 셀을 효율적으로 분할할 수 있다는 효과가 얻어진다.As described above, according to the method of manufacturing a solar cell for a shingled solar panel according to the present invention and a solar panel using the same, a busbar is provided in pairs on both sides adjacent to one cutting line, and heat treatment of the electrode is performed. The effect of annealing increases, and the effect of being able to efficiently divide 5 or 6 solar cell cells is obtained.

또 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조방법 및 이를 이용한 태양광 패널에 의하면, 다수의 버스바를 도트 형상으로 마련하므로, 버스바를 형성하기 위한 페이스트량을 50% 정도 절감할 수 있다는 효과도 얻어진다.In addition, according to the method of manufacturing a solar cell for a shingled solar panel and a solar panel using the same according to the present invention, since a plurality of bus bars are provided in a dot shape, the amount of paste for forming the bus bar can be reduced by about 50%. There is also an effect.

도 1은 분할 태양전지 모듈의 스트링 리본의 배치 구조를 나타내는 도면,
도 2는 종래의 기술에 따른 슁글드 태양전지 모듈의 실리콘 웨이퍼의 도면,
도 3은 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조 과정을 설명하기 위한 공정도,
도 4는 본 발명의 제1 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도,
도 5는 도 4에 도시된 웨이퍼의 후면부의 사시도,
도 6은 본 발명의 제2 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도,
도 7은 도 6에 도시된 웨이퍼의 후면부의 사시도,
도 8은 본 발명의 제3 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도,
도 9는 도 8에 도시된 웨이퍼의 후면부의 사시도,
도 10은 본 발명의 제4 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도,
도 11은 도 10에 도시된 웨이퍼의 후면부의 사시도,
도 12는 본 발명의 제5 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도,
도 13은 도 12에 도시된 웨이퍼의 후면부의 사시도,
도 14는 본 발명의 제6 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도,
도 15는 도 14에 도시된 웨이퍼의 후면부의 사시도,
도 16은 본 발명의 제7 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도,
도 17은 도 16에 도시된 웨이퍼의 후면부의 사시도,
도 18은 본 발명의 제8 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도,
도 19는 도 18에 도시된 웨이퍼의 후면부의 사시도.
1 is a diagram showing an arrangement structure of a string ribbon of a split solar cell module;
2 is a view of a silicon wafer of a shingled solar cell module according to the prior art,
3 is a process chart for explaining the manufacturing process of the solar cell for a shingled solar panel according to the present invention,
4 is a perspective view of a front portion of a wafer for manufacturing a solar cell for a shingled solar panel according to a first embodiment of the present invention;
5 is a perspective view of a rear portion of the wafer shown in FIG. 4;
6 is a perspective view of a front portion of a wafer for manufacturing a solar cell for a shingled solar panel according to a second embodiment of the present invention;
7 is a perspective view of a rear portion of the wafer shown in FIG. 6;
8 is a perspective view of a front portion of a wafer for manufacturing a solar cell for a shingled solar panel according to a third embodiment of the present invention;
9 is a perspective view of a rear portion of the wafer shown in FIG. 8;
10 is a perspective view of a front portion of a wafer for manufacturing a solar cell for a shingled solar panel according to a fourth embodiment of the present invention;
11 is a perspective view of a rear portion of the wafer shown in FIG. 10;
12 is a perspective view of a front portion of a wafer for manufacturing a solar cell for a shingled solar panel according to a fifth embodiment of the present invention;
13 is a perspective view of a rear portion of the wafer shown in FIG. 12;
14 is a perspective view of a front portion of a wafer for manufacturing a solar cell for a shingled solar panel according to a sixth embodiment of the present invention;
15 is a perspective view of a rear portion of the wafer shown in FIG. 14;
16 is a perspective view of a front portion of a wafer for manufacturing a solar cell for a shingled solar panel according to a seventh embodiment of the present invention;
17 is a perspective view of a rear portion of the wafer shown in FIG. 16;
18 is a perspective view of a front portion of a wafer for manufacturing a solar cell for a shingled solar panel according to an eighth embodiment of the present invention;
19 is a perspective view of a rear portion of the wafer shown in FIG. 18;

본 발명의 상기 및 그 밖의 목적과 새로운 특징은 본 명세서의 기술 및 첨부 도면에 의해 더욱 명확하게 될 것이다.The above and other objects and new features of the present invention will become more apparent from the description of the present specification and the accompanying drawings.

본원에서 사용하는 용어 "웨이퍼"는 태양전지용 웨이퍼로서 단결정 또는 다결정 실리콘으로 이루어지고, "태양전지 셀"은 P-형의 실리콘 기판에 전극이 스크린 프린트(screen print)된 형태로 마련되며, p-PERC(Passivated Emitter and Rearside Contact), n-HIT(Hetrojunction with Intrinsic Thin lyaer), n-PERT (Passivated Emitter and Rear Totally diffused), CSC(Charge Selective Contact)로 형성될 수 있다.The term "wafer" as used herein is a wafer for solar cells and is made of single crystal or polycrystalline silicon, and the "solar cell" is provided in a form in which electrodes are screen printed on a P-type silicon substrate, and p- PERC (Passivated Emitter and Rearside Contact),  n-HIT (Hetrojunction with Intrinsic Thin lyaer), n-PERT (Passivated Emitter and Rear Totally diffused), CSC (Charge Selective Contact).

또 용어 "슁글드(shingled) 어레이 구조"는 태양전지 모듈의 단위당 변환 효율과 출력을 높이기 위해 전면 전극과 후면 전극(버스바)이 마련된 태양전지 셀을 절단하여 복수의 단위 셀을 형성하고 이 전면 전극과 후면 전극을 전도성 접착제로 접착하여 연결된 구조를 의미한다.In addition, the term "shingled array structure" refers to the formation of a plurality of unit cells by cutting the solar cell provided with the front electrode and the rear electrode (busbar) in order to increase the conversion efficiency and output per unit of the solar cell module. It refers to a structure connected by bonding an electrode and a rear electrode with a conductive adhesive.

또 "태양전지 모듈"은 프레임 상에서 다수개의 슁글드 어레이 구조의 태양전지 스트링이 전기적으로 연결되고, 전면에 유리가 위치하고, 후면에는 EVA 시트가 형성되고, 중간에 충진재 등이 배치되어 태양전지 패널을 형성하는 것을 의미한다. In addition, in the "solar cell module", a plurality of shingled array solar cell strings are electrically connected on the frame, glass is located on the front, EVA sheet is formed on the back, and a filler is placed in the middle to make the solar cell panel. Means to form.

본원에서 사용하는 용어 "전도성 접착제(Electroconductive Adhesive)"는 전기 전자 제품이나 회로의 배선 접합에 사용하는 전기 전도성을 가진 접착제로, 에폭시 수지에 은 입자를 배합한 것을 사용한다. 이러한 전도성 접착제가 전도성을 발현하는 원리는 접착제 중에 분산되어 있는 전도성 필러가 경화 또는 고화 단계에서 필러와 필러의 접촉이 일어나 전도성을 발현하는 것이다. 또 전도성 접착제는 마이크로 디스펜서를 이용하여 도포하며 니들로부터의 토출량이 일정해야 하고 흘러내리지 않게 한다. 전도성 충진제로는 금, 백금, 은, 구리, 니켈 등의 금속분말, 카본 또는 카본 섬유, 흑연 및 복합 분말 등이 사용할 수 있다.The term "electroconductive adhesive" as used herein is an adhesive having electrical conductivity used for bonding wiring of electric and electronic products or circuits, and a mixture of silver particles in an epoxy resin is used. The principle that the conductive adhesive exhibits conductivity is that the conductive filler dispersed in the adhesive exhibits conductivity by contacting the filler with the filler during the curing or solidification step. In addition, the conductive adhesive is applied using a micro dispenser, and the discharge amount from the needle must be constant and do not flow down. As the conductive filler, metal powder such as gold, platinum, silver, copper, nickel, carbon or carbon fiber, graphite, and composite powder may be used.

이하, 본 발명에 따른 실시 예를 도면에 따라서 설명한다.Hereinafter, embodiments according to the present invention will be described with reference to the drawings.

[ 제1 실시 예 ][First embodiment]

도 3은 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조 과정을 설명하기 위한 공정도이고, 도 4는 본 발명의 제1 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도 이며, 도 5는 도 4에 도시된 웨이퍼의 후면부의 사시도 이다.3 is a process chart for explaining the manufacturing process of a solar cell for a shingled solar panel according to the present invention, and FIG. 4 is a manufacturing process for a solar cell for a shingled solar panel according to the first embodiment of the present invention. It is a perspective view of the front part of the wafer for, and FIG. 5 is a perspective view of the rear part of the wafer shown in FIG.

먼저, 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위해 도 4 및 도 5에 도시된 바와 같은 태양전지용 웨이퍼(100)를 마련한다(S10). 상기 웨이퍼(100)는 태양전지용 웨이퍼로서 단결정 또는 다결정 실리콘으로 이루어질 수 있으며, 4 모서리 부분이 테이퍼진 사각 형상(pseudo-squared)으로 마련된다. First, in order to manufacture a solar cell for a shingled solar panel according to the present invention, a solar cell wafer 100 as shown in FIGS. 4 and 5 is prepared (S10). The wafer 100 is a solar cell wafer and may be made of single crystal or polycrystalline silicon, and is provided in a pseudo-squared shape having four corners tapered.

다음에, 상기 단계 S10에서 마련된 상기 웨이퍼(100)의 전면부 및 후면부에 각각 도 4 및 도 5에 도시된 바와 같이 다수의 절단선(200)을 마련한다(S20).Next, as shown in FIGS. 4 and 5, a plurality of cutting lines 200 are provided on the front and rear portions of the wafer 100 prepared in step S10 (S20).

상기 전면부 및 후면부에 마련된 다수의 절단선(200)은 일정 간격, 즉 절단선에 따른 절단 후 각각의 태양전지 셀의 폭이 동일하게 되도록 각각 제1 절단선, 제2 절단선, 제3 절단선 및 제4 절단선으로 마련된다. The plurality of cutting lines 200 provided on the front and rear portions are at predetermined intervals, that is, the first cutting line, the second cutting line, and the third cutting line so that the width of each solar cell is the same after cutting according to the cutting line. It is provided with a line and a fourth cutting line.

또 상기 웨이퍼(100)의 전면부 및 후면부에 각각 다수의 버스바(300)를 마련한다(S30). 각각의 버스바(300)은 1.1~1.4㎜의 폭으로 마련된다.In addition, a plurality of bus bars 300 are provided on the front and rear surfaces of the wafer 100, respectively (S30). Each bus bar 300 is provided with a width of 1.1 to 1.4 mm.

상기 전면부에 마련된 버스바(300)는 도 4에 도시된 바와 같이 좌측의 하나의 에지부, 상기 제2 절단선의 양측 및 상기 제4의 절단선의 양측에 마련된다. 또 상기 후면부에 마련된 버스바(300)는 도 5에 도시된 바와 같이, 상기 제1 절단선의 양측, 상기 제3의 절단선의 양측 및 우측의 다른 하나의 에지부에 마련된다. As shown in FIG. 4, the bus bar 300 provided on the front side is provided on one edge on the left side, on both sides of the second cutting line, and on both sides of the fourth cutting line. In addition, as shown in FIG. 5, the bus bars 300 provided on the rear side are provided on both sides of the first cutting line, on both sides of the third cutting line, and on the other edge on the right side.

즉 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조에서는 종래의 기술과 달리, 버스바(300)가 하나의 절단선(200)에 인접하여 양측에 한 쌍으로 마련될 수 있다. That is, in the manufacture of a solar cell for a shingled solar panel according to the present invention, unlike the conventional technology, the bus bar 300 may be provided in a pair on both sides adjacent to one cutting line 200.

상기 하나의 절단선에 인접하여 양측에 마련된 한 쌍의 버스바는 270~350㎛의 간격, 바람직하게는 300㎛으로 형성된다.A pair of busbars provided on both sides adjacent to the one cutting line are formed with an interval of 270 to 350 μm, preferably 300 μm.

이어서, 상기 다수의 절단선(200)에 따라 상기 웨이퍼(100)를 절단하여 다수의 태양전지 셀을 마련한다(S40).Subsequently, the wafer 100 is cut along the plurality of cutting lines 200 to prepare a plurality of solar cells (S40).

따라서, 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조에 관한 제1 실시예에서는 5개의 태양전지 셀을 마련할 수 있다.Accordingly, in the first embodiment of the manufacturing of the solar cell for a shingled solar panel according to the present invention, five solar cells may be provided.

한편, 본 발명에서는 도 4 및 도 5에 도시된 바와 같이, 버스바(300)가 하나의 절단선(200)에 인접하여 양측에 한 쌍으로 마련되므로, 상기 단계 S40에서 절단선(200)에 따라 스크라이버로 상기 웨이퍼(100)를 절단할 때 한 쌍의 버스바(300)는 상기 스크라이버의 가이드 기능을 실현할 수 있다. 또 레이저 조사에 의한 스크라이빙의 실행시 인접한 버스바(300)에서 전극의 열처리를 통한 어닐링의 효과가 상승된다. 특히, 저온 공정에서 형성되는 HIT(Heterojunction with Intrinsic Thinlayer) 셀에 적용하는 경우 어닐링 효과는 더 상승하게 된다. On the other hand, in the present invention, as shown in Figs. 4 and 5, since the bus bar 300 is provided in a pair on both sides adjacent to one cutting line 200, the cut line 200 in the step S40 Accordingly, when the wafer 100 is cut with a scriber, the pair of bus bars 300 can realize the guiding function of the scriber. In addition, when scribing by laser irradiation is performed, the effect of annealing through heat treatment of the electrode in the adjacent bus bar 300 is increased. In particular, when applied to a Heterojunction with Intrinsic Thinlayer (HIT) cell formed in a low-temperature process, the annealing effect is further increased.

또 상기 스크라이빙은 예를 들어 나노 세컨드 레이저(532nm, 20ns, 30-100 KHz from Coherent)에 의해 실행될 수 있다. 즉 532nm 파장을 사용하는 20ns 레이저에서 평균 파워 10W, 주파수 50KHz, 스캔 속도 1,300mm/s로 설정하여 실행될 수 있다.In addition, the scribing may be performed by, for example, a nanosecond laser (532nm, 20ns, 30-100 KHz from Coherent). That is, it can be executed by setting an average power of 10W, a frequency of 50KHz, and a scan speed of 1,300mm/s in a 20ns laser using a 532nm wavelength.

이어서 상기 단계 S40 마련된 5개의 태양전지 셀의 전면부의 버스바(300)와 후면부의 버스바(300) 중의 적어도 어느 하나에 전도성 접착제를 도포한다(S50).Subsequently, a conductive adhesive is applied to at least one of the bus bar 300 of the front and the bus bar 300 of the rear of the five solar cells prepared in step S40 (S50).

이러한 전도성 접착제로서는 시장에 나와 있는 전도성 접착제 중에 높은 전도성과 알맞은 점도를 가진 제품으로서, 예를 들어 SKC Panacol의 EL-3012, EL-3556, EL-3653, EL-3655과 Henkel의 CE3103WLV, CA3556HF을 적용할 수 있으며, 예를 들어, 25℃에서의 점도 28,000~35,000 mPa·s(cP), 전기적 특성으로서, 체적 저항률 0.0025 Ω·cm, 경화 온도 130~150℃, 경화 시간 25~35초의 특성이 있는 접착제를 적용한다. 또 전도성 접착제에서 전도성 충진제는 Au, Pt, Pd, Ag, Cu, Ni 및 카본 중에서 선택된 적어도 하나의 물질을 포함할 수 있다. 또 전도성 접착제는 예를 들어 250㎛의 직경을 갖는 마이크로 디스펜서의 니들에서 토출량을 RPM의 제어로 실행될 수 있다. These conductive adhesives are products with high conductivity and suitable viscosity among the conductive adhesives on the market. For example, SKC Panacol's EL-3012, EL-3556, EL-3653, EL-3655 and Henkel's CE3103WLV, CA3556HF are applied. For example, viscosity at 25 ℃ 28,000 ~ 35,000 mPa · s (cP), as an electrical characteristic, volume resistivity 0.0025 Ω · cm, curing temperature 130 ~ 150 ℃, curing time 25 ~ 35 seconds Apply adhesive. In addition, the conductive filler in the conductive adhesive may include at least one material selected from Au, Pt, Pd, Ag, Cu, Ni, and carbon. In addition, the conductive adhesive may be discharged from a needle of a micro dispenser having a diameter of, for example, 250 µm by controlling the amount of RPM.

다음에 상기 단계 S50에서 상기 전도성 접착제가 도포된 상기 전면부의 버스바와 후면부의 버스바를 서로 직렬 연결하여 슁글드 모듈 구조의 태양전지 스트링을 형성한다(S60). 상기 단계 S60에서의 스트링 형성은 예를 들어 25~35초 및 130~150℃의 열처리 조건에서 실행될 수 있다.Next, in step S50, the bus bar of the front and the bus bars of the rear portion to which the conductive adhesive is applied are connected in series to each other to form a solar cell string having a shingled module structure (S60). The string formation in step S60 may be performed under heat treatment conditions of, for example, 25 to 35 seconds and 130 to 150°C.

이어서, 상기 단계 S60에서 마련된 각각의 스트링을 직렬, 병렬 또는 직병렬 연결하여 태양전지 패널을 형성한다(S70).Subsequently, each string prepared in step S60 is connected in series, parallel or in series to form a solar panel (S70).

상술한 바와 같이, 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조에 관한 제1 실시 예에서는 5개의 태양전지 셀을 효율적으로 분할하는 구조를 마련할 수 있다.As described above, in the first embodiment of the manufacturing of the solar cell for a shingled solar panel according to the present invention, a structure for efficiently dividing five solar cells can be provided.

[ 제2 실시 예 ][Second Embodiment]

다음에 본 발명의 제2 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀의 제조에 대해 도 6 및 도 7에 따라 설명한다. 또 제2 실시 예에서 제1 실시 예와 동일 부분에는 동일 부호를 부여하고 그 반복적인 설명은 생략한다.Next, manufacturing of a solar cell for a shingled solar panel according to a second embodiment of the present invention will be described with reference to FIGS. 6 and 7. Also, in the second embodiment, the same reference numerals are assigned to the same parts as in the first embodiment, and repetitive descriptions thereof are omitted.

도 6은 본 발명의 제2 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도 이고, 도 7은 도 6에 도시된 웨이퍼의 후면부의 사시도 이다.6 is a perspective view of a front portion of a wafer for manufacturing a solar cell for a shingled solar panel according to a second embodiment of the present invention, and FIG. 7 is a perspective view of a rear portion of the wafer shown in FIG. 6.

본 발명의 제2 실시 예에는 4 모서리 부분이 테이퍼진 사각 형상으로 이루어진 제1 실시 예의 웨이퍼와 달리 도 6 및 도 7에 도시된 바와 같이 웨이퍼(100)가 사각 형상(full-squared)으로 이루어진다.In the second embodiment of the present invention, unlike the wafer of the first embodiment in which four corners have a tapered square shape, as shown in FIGS. 6 and 7, the wafer 100 has a full-square shape.

이 제2 실시 예에서는 버스바(300)가 하나의 절단선(200)에 인접하여 양측에 한 쌍으로 마련되고, 웨이퍼(100)의 에지 부분이 중심부와 동일 길이로 마련되므로, 버스바를 형성하기 위한 재료의 낭비를 방지할 수 있고, 웨이퍼(100)의 좌우 양측의 에지 부분도 중심부와 동일하게 사용할 수 있으므로, 제1 실시 예에 비해 태양전지 패널의 제조 효율성을 향상시킬 수 있다.In this second embodiment, since the bus bar 300 is provided in a pair on both sides adjacent to one cutting line 200 and the edge portion of the wafer 100 is provided with the same length as the center, the bus bar is formed. Waste of materials for the wafer 100 can be prevented, and the edge portions of both left and right sides of the wafer 100 can be used in the same manner as the center, thereby improving the manufacturing efficiency of the solar cell panel compared to the first embodiment.

[ 제3 실시 예 ][Third embodiment]

다음에 본 발명의 제3 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀의 제조에 대해 도 8 및 도 9에 따라 설명한다. 또 제3 실시 예에서 제1 실시 예와 동일 부분에는 동일 부호를 부여하고 그 반복적인 설명은 생략한다.Next, manufacturing of a solar cell for a shingled solar panel according to a third embodiment of the present invention will be described with reference to FIGS. 8 and 9. Also, in the third embodiment, the same reference numerals are assigned to the same parts as in the first embodiment, and repetitive descriptions thereof are omitted.

도 8은 본 발명의 제3 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도 이고, 도 9는 도 8에 도시된 웨이퍼의 후면부의 사시도 이다.8 is a perspective view of a front portion of a wafer for manufacturing a solar cell for a shingled solar panel according to a third embodiment of the present invention, and FIG. 9 is a perspective view of a rear portion of the wafer shown in FIG. 8.

본 발명의 제3 실시 예에서는 제1 실시 예와 같이, 웨이퍼(100)가 태양전지용 웨이퍼로서 단결정 또는 다결정 실리콘으로 이루어질 수 있으며, 4 모서리 부분이 테이퍼진 사각 형상(pseudo-squared)으로 마련되고, 버스바(300)가 하나의 절단선(200)에 인접하여 양측에 한 쌍으로 마련되며, 도 8 및 도 9에 도시된 바와 같이, 웨이퍼(100)의 전면부 및 후면부에 각각 마련된 다수의 버스바(300)가 도트 형상으로 이루어진 것이다.In the third embodiment of the present invention, as in the first embodiment, the wafer 100 may be made of single crystal or polycrystalline silicon as a solar cell wafer, and four corner portions are provided in a pseudo-squared shape, Busbars 300 are provided in pairs on both sides adjacent to one cutting line 200, and as shown in FIGS. 8 and 9, a plurality of buses respectively provided on the front and rear portions of the wafer 100 The bar 300 is formed in a dot shape.

이 제3 실시 예에서는 다수의 버스바(300)가 도트 형상으로 이루어지므로, 제1 실시 예에 비해 버스바를 형성하기 위한 페이스트량을 50% 정도 절감할 수 있다.In the third embodiment, since the plurality of bus bars 300 are formed in a dot shape, the amount of paste for forming the bus bar can be reduced by about 50% compared to the first embodiment.

[ 제4 실시 예 ][The fourth embodiment]

다음에 본 발명의 제4 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀의 제조에 대해 도 10 및 도 11에 따라 설명한다. 또 제4 실시 예에서 제2 실시 예와 동일 부분에는 동일 부호를 부여하고 그 반복적인 설명은 생략한다.Next, manufacturing of a solar cell for a shingled solar panel according to a fourth embodiment of the present invention will be described with reference to FIGS. 10 and 11. In addition, in the fourth embodiment, the same reference numerals are assigned to the same parts as in the second embodiment, and a repetitive description thereof will be omitted.

도 10은 본 발명의 제4 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도 이고, 도 11은 도 10에 도시된 웨이퍼의 후면부의 사시도 이다.10 is a perspective view of a front portion of a wafer for manufacturing a solar cell for a shingled solar panel according to a fourth embodiment of the present invention, and FIG. 11 is a perspective view of a rear portion of the wafer shown in FIG. 10.

본 발명의 제4 실시 예에서는 제2 실시 예와 동일하게 도 10 및 도 11에 도시된 바와 같이 웨이퍼(100)가 사각 형상(full-squared)으로 이루어지고, 버스바(300)가 하나의 절단선(200)에 인접하여 양측에 한 쌍으로 마련되며, 웨이퍼(100)의 전면부 및 후면부에 각각 마련된 다수의 버스바(300)가 도트 형상으로 이루어진 것이다.In the fourth embodiment of the present invention, the wafer 100 is formed in a full-squared shape as shown in FIGS. 10 and 11 as in the second embodiment, and the bus bar 300 is cut by one A pair of bus bars 300 are provided on both sides adjacent to the line 200, and a plurality of bus bars 300 respectively provided on the front and rear sides of the wafer 100 are formed in a dot shape.

이 제4 실시 예에서는 다수의 버스바(300)가 도트 형상으로 이루어지므로, 제2 실시 예에 비해 버스바를 형성하기 위한 페이스트량을 50% 정도 절감할 수 있다.In the fourth embodiment, since the plurality of bus bars 300 are formed in a dot shape, the amount of paste for forming the bus bar can be reduced by about 50% compared to the second embodiment.

[ 제5 실시 예 ][Fifth Embodiment]

다음에 본 발명의 제5 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀의 제조에 대해 도 12 및 도 13에 따라 설명한다. 또 제5 실시 예에서 제1 실시 예와 동일 부분에는 동일 부호를 부여하고 그 반복적인 설명은 생략한다.Next, manufacturing of a solar cell for a shingled solar panel according to a fifth embodiment of the present invention will be described with reference to FIGS. 12 and 13. In addition, in the fifth embodiment, the same reference numerals are assigned to the same parts as those in the first embodiment, and a repetitive description thereof is omitted.

도 12는 본 발명의 제5 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도 이고, 도 13은 도 12에 도시된 웨이퍼의 후면부의 사시도 이다.12 is a perspective view of a front portion of a wafer for manufacturing a solar cell for a shingled solar panel according to a fifth embodiment of the present invention, and FIG. 13 is a perspective view of a rear portion of the wafer shown in FIG. 12.

본 발명의 제5 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위해 도 12 및 도 13에 도시된 바와 같이, 4 모서리 부분이 테이퍼진 사각 형상(pseudo-squared)으로 웨이퍼(100)를 마련된다. In order to manufacture the solar cell for a shingled solar panel according to the fifth embodiment of the present invention, as shown in FIGS. 12 and 13, the wafer 100 has a pseudo-squared shape having four corners tapered. ) Is provided.

또, 상기 웨이퍼(100)의 전면부 및 후면부에 마련된 다수의 절단선(200)은 일정 간격, 즉 절단선에 따른 절단 후 각각의 태양전지 셀의 폭이 동일하게 되도록 각각 제1 절단선, 제2 절단선, 제3 절단선, 제4 절단선 및 제5 절단선으로 마련되고, 상기 웨이퍼(100)의 전면부에는 도 12에 도시된 바와 같이 상기 제1 절단선의 양측, 제3 절단선의 양측 및 상기 제5의 절단선의 양측에 버스바(300)가 마련되고, 상기 후면부에는 도 13에 도시된 바와 같이 하나의 에지부, 상기 제2 절단선의 양측, 상기 제4의 절단선의 양측 및 다른 하나의 에지부에 버스바(300)가 마련된다. In addition, the plurality of cutting lines 200 provided on the front and rear surfaces of the wafer 100 are respectively a first cutting line and a first cutting line so that the width of each solar cell after cutting according to the cutting line is the same. It is provided with a 2 cutting line, a third cutting line, a fourth cutting line, and a fifth cutting line, and as shown in FIG. 12 on the front side of the wafer 100, both sides of the first cutting line and the third cutting line And busbars 300 are provided on both sides of the fifth cutting line, and as shown in FIG. 13 on the rear portion, one edge portion, both sides of the second cutting line, both sides of the fourth cutting line, and the other The bus bar 300 is provided at the edge of the.

즉 본 발명의 제5 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀의 제조에서는 종래의 기술과 달리, 버스바(300)가 하나의 절단선(200)에 인접하여 양측에 한 쌍으로 마련되며, 6개의 태양전지 셀을 마련할 수 있다.That is, in the manufacturing of the solar cell for a shingled solar panel according to the fifth embodiment of the present invention, unlike the conventional technology, the bus bar 300 is adjacent to one cutting line 200 and provided in pairs on both sides. And, it is possible to provide 6 solar cells.

본 발명에 따른 제5 실시 예에서도 상술한 제1 실시 예와 같이, 버스바(300)가 하나의 절단선(200)에 인접하여 양측에 한 쌍으로 마련되므로, 절단선(200)에 따라 스크라이버로 상기 웨이퍼(100)를 절단할 때, 한 쌍의 버스바(300)는 상기 스크라이버의 가이드 기능을 실현할 수 있고, 레이저 조사에 의한 스크라이빙의 실행시 인접한 버스바(300)에서 전극의 열처리를 통한 어닐링의 효과가 상승된다.In the fifth embodiment according to the present invention, as in the first embodiment described above, since the bus bar 300 is provided in a pair on both sides adjacent to one cutting line 200, the screen according to the cutting line 200 When cutting the wafer 100 with a driver, the pair of busbars 300 can realize the guiding function of the scriber, and when scribing by laser irradiation is performed, the electrodes from the adjacent busbars 300 The effect of annealing through heat treatment is increased.

또 본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조에 관한 제5 실시 예에서는 6개의 태양전지 셀을 효율적으로 분할하는 구조를 마련할 수 있다.In addition, in the fifth embodiment of the manufacturing of a solar cell for a shingled solar panel according to the present invention, a structure for efficiently dividing six solar cells may be provided.

[ 제6 실시 예 ][The sixth embodiment]

다음에 본 발명의 제6 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀의 제조에 대해 도 14 및 도 15에 따라 설명한다. 또 제6 실시 예에서 제5 실시 예와 동일 부분에는 동일 부호를 부여하고 그 반복적인 설명은 생략한다.Next, manufacturing of a solar cell for a shingled solar panel according to a sixth embodiment of the present invention will be described with reference to FIGS. 14 and 15. Also, in the sixth embodiment, the same reference numerals are assigned to the same parts as in the fifth embodiment, and repetitive descriptions thereof are omitted.

도 14는 본 발명의 제6 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도 이고, 도 15는 도 14에 도시된 웨이퍼의 후면부의 사시도 이다.14 is a perspective view of a front portion of a wafer for manufacturing a solar cell for a shingled solar panel according to a sixth embodiment of the present invention, and FIG. 15 is a perspective view of a rear portion of the wafer shown in FIG. 14.

본 발명의 제6 실시 예에는 4 모서리 부분이 테이퍼진 사각 형상으로 이루어진 제5 실시 예의 웨이퍼와 달리 도 14 및 도 15에 도시된 바와 같이 웨이퍼(100)가 사각 형상(full-squared)으로 이루어진다.In the sixth embodiment of the present invention, unlike the wafer of the fifth embodiment in which four corners have a tapered square shape, as shown in FIGS. 14 and 15, the wafer 100 has a full-square shape.

이 제6 실시 예에서는 버스바(300)가 하나의 절단선(200)에 인접하여 양측에 한 쌍으로 마련되고, 웨이퍼(100)의 에지 부분이 중심부와 동일 길이로 마련되므로, 제5 실시 예에 비해 버스바를 형성하기 위한 재료의 낭비를 방지할 수 있고, 웨이퍼(100)의 좌우 양측의 에지 부분도 중심부와 동일하게 사용할 수 있으므로, 제5 실시 예에 비해 태양전지 패널의 제조 효율성을 향상시킬 수 있다.In this sixth embodiment, since the bus bars 300 are provided in pairs on both sides adjacent to one cutting line 200, and the edge portion of the wafer 100 is provided with the same length as the center, the fifth embodiment Compared to the fifth embodiment, the waste of materials for forming the bus bar can be prevented, and the edges of the left and right sides of the wafer 100 can also be used in the same manner as the center, thereby improving the manufacturing efficiency of the solar cell panel compared to the fifth embodiment. I can.

[ 제7 실시 예 ][The seventh embodiment]

다음에 본 발명의 제7 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀의 제조에 대해 도 16 및 도 17에 따라 설명한다. 또 제7 실시 예에서 제5 실시 예와 동일 부분에는 동일 부호를 부여하고 그 반복적인 설명은 생략한다.Next, manufacturing of a solar cell for a shingled solar panel according to a seventh embodiment of the present invention will be described with reference to FIGS. 16 and 17. Also, in the seventh embodiment, the same reference numerals are assigned to the same parts as in the fifth embodiment, and repetitive descriptions thereof are omitted.

도 16은 본 발명의 제7 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도 이고, 도 17은 도 16에 도시된 웨이퍼의 후면부의 사시도 이다.16 is a perspective view of a front portion of a wafer for manufacturing a solar cell for a shingled solar panel according to a seventh embodiment of the present invention, and FIG. 17 is a perspective view of a rear portion of the wafer shown in FIG. 16.

본 발명의 제7 실시 예에서는 제5 실시 예와 같이, 웨이퍼(100)가 태양전지용 웨이퍼로서 단결정 또는 다결정 실리콘으로 이루어질 수 있으며, 4 모서리 부분이 테이퍼진 사각 형상(pseudo-squared)으로 마련되고, 버스바(300)가 하나의 절단선(200)에 인접하여 양측에 한 쌍으로 마련되며, 도 16 및 도 17에 도시된 바와 같이, 웨이퍼(100)의 전면부 및 후면부에 각각 마련된 다수의 버스바(300)가 도트 형상으로 이루어진 것이다.In the seventh embodiment of the present invention, as in the fifth embodiment, the wafer 100 may be made of single crystal or polycrystalline silicon as a solar cell wafer, and four corner portions are provided in a pseudo-squared shape, Busbars 300 are provided in pairs on both sides adjacent to one cutting line 200, and as shown in FIGS. 16 and 17, a plurality of buses provided respectively on the front and rear sides of the wafer 100 The bar 300 is formed in a dot shape.

이 제3 실시 예에서는 다수의 버스바(300)가 도트 형상으로 이루어지므로, 제5 실시 예에 비해 버스바를 형성하기 위한 페이스트량을 50% 정도 절감할 수 있다.In the third embodiment, since the plurality of bus bars 300 are formed in a dot shape, the amount of paste for forming the bus bar can be reduced by about 50% compared to the fifth embodiment.

[ 제8 실시 예 ][Eighth Embodiment]

다음에 본 발명의 제8 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀의 제조에 대해 도 18 및 도 19에 따라 설명한다. 또 제8 실시 예에서 제6 실시 예와 동일 부분에는 동일 부호를 부여하고 그 반복적인 설명은 생략한다.Next, manufacturing of a solar cell for a shingled solar panel according to an eighth embodiment of the present invention will be described with reference to FIGS. 18 and 19. In addition, in the eighth embodiment, the same reference numerals are assigned to the same parts as in the sixth embodiment, and a repetitive description thereof will be omitted.

도 18은 본 발명의 제8 실시 예에 따른 슁글드 태양광 패널용 태양전지 셀을 제조하기 위한 웨이퍼의 전면부의 사시도 이고, 도 19는 도 18에 도시된 웨이퍼의 후면부의 사시도 이다.18 is a perspective view of a front portion of a wafer for manufacturing a solar cell for a shingled solar panel according to an eighth embodiment of the present invention, and FIG. 19 is a perspective view of a rear portion of the wafer shown in FIG. 18.

본 발명의 제8 실시 예에서는 제6 실시 예와 동일하게 도 18 및 도 19에 도시된 바와 같이 웨이퍼(100)가 사각 형상(full-squared)으로 이루어지고, 버스바(300)가 하나의 절단선(200)에 인접하여 양측에 한 쌍으로 마련되며, 웨이퍼(100)의 전면부 및 후면부에 각각 마련된 다수의 버스바(300)가 도트 형상으로 이루어진 것이다.In the eighth embodiment of the present invention, as shown in Figs. 18 and 19, the wafer 100 is formed in a full-squared shape, and the bus bar 300 is cut by one, as in the sixth embodiment. A pair of bus bars 300 are provided on both sides adjacent to the line 200, and a plurality of bus bars 300 respectively provided on the front and rear sides of the wafer 100 are formed in a dot shape.

이 제8 실시 예에서는 다수의 버스바(300)가 도트 형상으로 이루어지므로, 제6 실시 예에 비해 버스바를 형성하기 위한 페이스트량을 50% 정도 절감할 수 있다.In the eighth embodiment, since the plurality of busbars 300 are formed in a dot shape, the amount of paste for forming the busbars can be reduced by about 50% compared to the sixth embodiment.

이상 본 발명자에 의해서 이루어진 발명을 상기 실시 예에 따라 구체적으로 설명하였지만, 본 발명은 상기 실시 예에 한정되는 것은 아니고 그 요지를 이탈하지 않는 범위에서 여러 가지로 변경 가능한 것은 물론이다.Although the invention made by the present inventor has been described in detail according to the above embodiment, the invention is not limited to the above embodiment, and can be changed in various ways without departing from the gist of the invention.

본 발명에 따른 슁글드 태양광 패널용 태양전지 셀의 제조방법 및 이를 이용한 태양광 패널을 사용하는 것에 의해 버스바가 하나의 절단선에 인접하여 양측에 한 쌍으로 마련되어 5개 또는 6개의 태양전지 셀을 효율적으로 분할할 수 있다.The method of manufacturing a solar cell for a shingled solar panel according to the present invention and by using a solar panel using the same, a busbar is provided in pairs on both sides adjacent to one cutting line, and five or six solar cell cells Can be divided efficiently.

100 : 웨이퍼
200 : 절단선
300 : 버스바
100: wafer
200: cutting line
300: bus bar

Claims (11)

(a) 태양전지용 웨이퍼를 마련하는 단계,
(b) 상기 웨이퍼의 전면부 및 후면부에 각각 다수의 절단선을 마련하는 단계,
(c) 상기 웨이퍼의 전면부 및 후면부에 각각 다수의 버스바를 마련하는 단계,
(d) 상기 다수의 절단선에 따라 상기 웨이퍼를 절단하여 다수의 태양전지 셀을 마련하는 단계를 포함하고,
상기 버스바는 상기 하나의 절단선에 인접하여 양측에 한 쌍으로 마련되는 것을 특징으로 하는 슁글드 태양광 패널용 태양전지 셀의 제조방법.
(a) preparing a wafer for solar cells,
(b) providing a plurality of cutting lines on the front and rear surfaces of the wafer, respectively,
(c) providing a plurality of busbars on the front and rear surfaces of the wafer, respectively,
(d) cutting the wafer along the plurality of cutting lines to prepare a plurality of solar cells,
The method of manufacturing a solar cell for a shingled solar panel, wherein the bus bar is provided in a pair on both sides adjacent to the one cutting line.
제1항에서,
상기 다수의 절단선은 일정 간격을 갖고 4개 또는 5개로 마련된 것을 특징으로 하는 슁글드 태양광 패널용 태양전지 셀의 제조방법.
In claim 1,
The method of manufacturing a solar cell for a shingled solar panel, characterized in that the plurality of cutting lines are provided in four or five with a predetermined interval.
제2항에서,
상기 전면부 및 후면부에 마련된 다수의 절단선은 일정 간격을 갖고 각각 제1 절단선, 제2 절단선, 제3 절단선, 제4 절단선으로 마련되고,
상기 전면부에 마련된 버스바는 하나의 에지부, 상기 제2 절단선의 양측 및 상기 제4의 절단선의 양측에 마련되고, 상기 후면부에 마련된 버스바는 상기 제1 절단선의 양측, 상기 제3의 절단선의 양측 및 다른 하나의 에지부에 마련된 것을 특징으로 하는 슁글드 태양광 패널용 태양전지 셀의 제조방법.
In paragraph 2,
The plurality of cutting lines provided on the front part and the rear part are provided with a first cutting line, a second cutting line, a third cutting line, and a fourth cutting line, respectively, with a predetermined interval,
The bus bars provided on the front part are provided at one edge part, both sides of the second cutting line, and both sides of the fourth cutting line, and the bus bars provided on the rear part are provided at both sides of the first cutting line and the third cutting line. Method of manufacturing a solar cell for a shingled solar panel, characterized in that provided on both sides of the line and the other edge.
제2항에서,
상기 전면부 및 후면부에 마련된 다수의 절단선은 일정 간격을 갖고 각각 제1 절단선, 제2 절단선, 제3 절단선, 제4 절단선, 제5절단선으로 마련되고,
상기 전면부에 마련된 버스바는 상기 제1 절단선의 양측, 제3 절단선의 양측 및 상기 제5의 절단선의 양측에 마련되고, 상기 후면부에 마련된 버스바는 하나의 에지부, 상기 제2 절단선의 양측, 상기 제4의 절단선의 양측 및 다른 하나의 에지부에 마련된 것을 특징으로 하는 슁글드 태양광 패널용 태양전지 셀의 제조방법.
In paragraph 2,
The plurality of cutting lines provided on the front and rear portions are provided with a first cutting line, a second cutting line, a third cutting line, a fourth cutting line, and a fifth cutting line, respectively, with a predetermined interval,
The bus bars provided on the front part are provided on both sides of the first cutting line, on both sides of the third cutting line, and on both sides of the fifth cutting line, and the bus bars provided on the rear part have one edge part and both sides of the second cutting line. , The method of manufacturing a solar cell for a shingled solar panel, characterized in that provided on both sides of the fourth cutting line and the other edge portion.
제2항에서,
상기 버스바는 도트 형상으로 마련된 것을 특징으로 하는 슁글드 태양광 패널용 태양전지 셀의 제조방법.
In paragraph 2,
The bus bar is a method of manufacturing a solar cell for a shingled solar panel, characterized in that provided in a dot shape.
제1항에서,
상기 웨이퍼는 4 모서리 부분이 테이퍼진 사각 형상(pseudo-squared) 또는 사각 형상(full-squared)으로 이루어진 것을 특징으로 하는 슁글드 태양광 패널용 태양전지 셀의 제조방법.
In claim 1,
The wafer is a method of manufacturing a solar cell for a shingled solar panel, characterized in that the four corners have a tapered square shape (pseudo-squared) or a square shape (full-squared).
제1항에서,
상기 절단선에 인접하여 양측에 마련된 한 쌍의 버스바는 상기 다수의 절단선에 따라 스크라이버로 상기 웨이퍼를 절단할 때 상기 스크라이버의 가이드 기능을 실현하는 것을 특징으로 하는 슁글드 태양광 패널용 태양전지 셀의 제조방법.
In claim 1,
A pair of busbars provided on both sides adjacent to the cutting line realizes the guiding function of the scriber when cutting the wafer with a scriber along the plurality of cutting lines. Method of manufacturing a solar cell.
제1항에서,
상기 버스바의 폭은 1.1~1.4㎜인 것을 특징으로 하는 슁글드 태양광 패널용 태양전지 셀의 제조방법.
In claim 1,
A method of manufacturing a solar cell for a shingled solar panel, characterized in that the width of the bus bar is 1.1 to 1.4 mm.
제1항에서,
상기 하나의 절단선에 인접하여 양측에 마련된 한 쌍의 버스바는 270~350㎛의 간격으로 형성된 것을 특징으로 하는 슁글드 태양광 패널용 태양전지 셀의 제조방법.
In claim 1,
A method of manufacturing a solar cell for a shingled solar panel, characterized in that the pair of busbars provided on both sides adjacent to the one cutting line are formed at intervals of 270 to 350 μm.
제2항에서,
상기 태양전지 셀은 p-PERC(Passivated Emitter and Rearside Contact), n-HIT(Hetrojunction with Intrinsic Thin lyaer), n-PERT (Passivated Emitter and Rear Totally diffused), CSC(Charge Selective Contact) 중의 어느 하나로 형성된 것을 특징으로 하는 슁글드 태양광 패널용 태양전지 셀의 제조방법.
In paragraph 2,
The solar cell is formed of any one of p-PERC (Passivated Emitter and Rearside Contact), n-HIT (Hetrojunction with Intrinsic Thin lyaer), n-PERT (Passivated Emitter and Rear Totally diffused), and CSC (Charge Selective Contact). A method of manufacturing a solar cell for a shingled solar panel, characterized in that.
청구항 제1항 내지 제10항 중의 어느 한 항의 슁글드 태양광 패널용 태양전지 셀의 제조방법에 의해 제조된 태양전지 셀을 포함하는 것을 특징으로 하는 태양광 패널.A solar panel comprising a solar cell manufactured by the method of manufacturing a solar cell for a shingled solar panel according to any one of claims 1 to 10.
KR1020190091827A 2019-07-29 2019-07-29 Method for dividing a solar cell for a shingled solar panel and a solar panel using the same KR20210013950A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020190091827A KR20210013950A (en) 2019-07-29 2019-07-29 Method for dividing a solar cell for a shingled solar panel and a solar panel using the same
CN201980098859.1A CN114175279A (en) 2019-07-29 2019-11-18 Laminated tile type solar cell panel and manufacturing method thereof
US17/631,166 US20220271190A1 (en) 2019-07-29 2019-11-18 Shingled solar cell panel and method of manufacturing the same
PCT/KR2019/015749 WO2021020657A1 (en) 2019-07-29 2019-11-18 Shingled solar cell panel and method for manufacturing same
KR1020210144619A KR102427904B1 (en) 2019-07-29 2021-10-27 Method for dividing a solar cell for a shingled solar panel and a solar panel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190091827A KR20210013950A (en) 2019-07-29 2019-07-29 Method for dividing a solar cell for a shingled solar panel and a solar panel using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210144619A Division KR102427904B1 (en) 2019-07-29 2021-10-27 Method for dividing a solar cell for a shingled solar panel and a solar panel using the same

Publications (1)

Publication Number Publication Date
KR20210013950A true KR20210013950A (en) 2021-02-08

Family

ID=74560325

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020190091827A KR20210013950A (en) 2019-07-29 2019-07-29 Method for dividing a solar cell for a shingled solar panel and a solar panel using the same
KR1020210144619A KR102427904B1 (en) 2019-07-29 2021-10-27 Method for dividing a solar cell for a shingled solar panel and a solar panel using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210144619A KR102427904B1 (en) 2019-07-29 2021-10-27 Method for dividing a solar cell for a shingled solar panel and a solar panel using the same

Country Status (1)

Country Link
KR (2) KR20210013950A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690324A (en) * 2021-08-17 2021-11-23 江苏辉伦太阳能科技有限公司 Novel HIT battery piece and manufacturing method thereof and component manufacturing method
CN113690324B (en) * 2021-08-17 2024-04-30 江苏辉伦太阳能科技有限公司 Novel HIT battery piece and manufacturing method and assembly manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9484484B2 (en) 2014-05-27 2016-11-01 Sunpower Corporation Shingled solar cell module
KR20170057177A (en) 2014-05-27 2017-05-24 선파워 코포레이션 Shingled solar cell module
KR101852606B1 (en) 2017-08-28 2018-04-30 주식회사 탑선 PV module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7302761B2 (en) * 2005-10-05 2007-12-04 Loomis Industries, Inc. Automatic tool tilting apparatus for a scribe tool
EP2579320A2 (en) * 2011-10-06 2013-04-10 Samsung SDI Co., Ltd. Photovoltaic device
KR102126790B1 (en) * 2014-05-27 2020-06-25 선파워 코포레이션 Shingled solar cell module
CN110335902A (en) * 2017-03-09 2019-10-15 伟创力有限公司 Stacked tile type array solar cells and manufacture include the method for the solar components of stacked tile type array solar cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9484484B2 (en) 2014-05-27 2016-11-01 Sunpower Corporation Shingled solar cell module
KR20170057177A (en) 2014-05-27 2017-05-24 선파워 코포레이션 Shingled solar cell module
KR101852606B1 (en) 2017-08-28 2018-04-30 주식회사 탑선 PV module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690324A (en) * 2021-08-17 2021-11-23 江苏辉伦太阳能科技有限公司 Novel HIT battery piece and manufacturing method thereof and component manufacturing method
CN113690324B (en) * 2021-08-17 2024-04-30 江苏辉伦太阳能科技有限公司 Novel HIT battery piece and manufacturing method and assembly manufacturing method thereof

Also Published As

Publication number Publication date
KR102427904B9 (en) 2023-04-12
KR20210133195A (en) 2021-11-05
KR102427904B1 (en) 2022-08-01

Similar Documents

Publication Publication Date Title
US6441297B1 (en) Solar cell arrangement
US7498508B2 (en) High voltage solar cell and solar cell module
CN106165116B (en) Photovoltaic module with bypass diode
CN212136454U (en) Sliced cell photovoltaic module
JP2018500775A (en) Non-main grid high-efficiency back contact solar cell, assembly and manufacturing process thereof
US20160284895A1 (en) Photovoltaic apparatus
US20220271190A1 (en) Shingled solar cell panel and method of manufacturing the same
US20230144536A1 (en) Designable shingled photovoltaic module and manufacturing method therefor
JP2010050350A (en) Solar cell module and solar cell
KR102400387B1 (en) Solar cell module of high power shingled array structure amd manufacturing method thereof
JP2020510321A (en) Battery string for splicing N-type IBC solar cells and method of manufacturing the same, module and system
JP5153279B2 (en) Solar cell module
WO2013094556A1 (en) Solar cell with wiring sheet, solar cell module, and solar cell manufacturing method
KR102511697B1 (en) Solar cell having a plurality of sub-cells coupled by cell level interconnection
KR102427904B1 (en) Method for dividing a solar cell for a shingled solar panel and a solar panel using the same
KR102419880B1 (en) Solar Cell And Manufacturing Method Of Solar Cell Module With Designable Shingled String Structure
CN209981238U (en) Solar cell module
KR102357660B1 (en) Shingled solar cell module with HIT and manufacturing method there of
KR102233683B1 (en) Shingled solar cell panel with wire and manufacturing method thereof
KR102410785B1 (en) Shingled high power module and manufacturing method thereof
KR102186560B1 (en) Solar cell module for road block amd manufacturing method thereof
KR20230048715A (en) High-output shingled solar cell module using string array and manufacturing method thereof
KR20210149378A (en) Silicon-Based Window-Type Semi Transparent Flexible Solar Cell Module And Manufacturing Method Of Solar Cell Module

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application