KR20200145896A - Manufacturing methods of bone replacement materials composite material for variations in viscosity of cyanoacrylate to physical properties change, and its composite - Google Patents

Manufacturing methods of bone replacement materials composite material for variations in viscosity of cyanoacrylate to physical properties change, and its composite Download PDF

Info

Publication number
KR20200145896A
KR20200145896A KR1020190073040A KR20190073040A KR20200145896A KR 20200145896 A KR20200145896 A KR 20200145896A KR 1020190073040 A KR1020190073040 A KR 1020190073040A KR 20190073040 A KR20190073040 A KR 20190073040A KR 20200145896 A KR20200145896 A KR 20200145896A
Authority
KR
South Korea
Prior art keywords
composite material
weight
parts
change
adhesive component
Prior art date
Application number
KR1020190073040A
Other languages
Korean (ko)
Other versions
KR102281485B1 (en
Inventor
박경준
박정민
Original Assignee
주식회사 오쎄인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 오쎄인 filed Critical 주식회사 오쎄인
Priority to KR1020190073040A priority Critical patent/KR102281485B1/en
Publication of KR20200145896A publication Critical patent/KR20200145896A/en
Application granted granted Critical
Publication of KR102281485B1 publication Critical patent/KR102281485B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/42Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • A61L27/425Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of phosphorus containing material, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/046Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention relates to a method for manufacturing a composite material for bone replacement through a change of physical properties depending on a change in viscosity of cyanide acrylate. The method comprises: an inorganic material manufacturing step of manufacturing an inorganic material in a granule and powder type having osteoconductivity; a transplantation component mixing step of manufacturing paste (A) by mixing organic and inorganic materials; an adhesive component mixing step of manufacturing a cyanide acrylate based adhesive composition by controlling a polymerization rate through irradiation with gamma rays; a composite material manufacturing step of manufacturing a composite material including the organic and inorganic materials by mixing the inorganic material in a granule and powder type and the paste (A); and a bone replacement manufacturing step of mixing the adhesive composition with the composite material. The present invention reduces pain of a patient by improving adhesive strength and compressive strength of the composite material, helps recovery of the patient, and widens an application range as a medical composite material by maximizing advantages of the inorganic material and the organic material included in the composite material.

Description

시안화아크릴레이트의 점도 변화에 따른 물성변화를 통한 골대체용 복합재료의 제조방법 및 그것의 조성물{Manufacturing methods of bone replacement materials composite material for variations in viscosity of cyanoacrylate to physical properties change, and its composite} Manufacturing methods of bone replacement materials composite material for variations in viscosity of cyanoacrylate to physical properties change, and its composite}

본 발명은 골대체용 복합재료에 접착성분으로 첨가하는 시안화아크릴레이트에 관한 것으로, 특히 상기 시안화아크릴레이트에 감마선을 조사하여 점성을 변화시킨 후, 이를 이식성분과 혼합하여 상기 복합재료의 접착강도 및 압축강도를 향상시킬 수 있도록 한, 시안화아크릴레이트의 점도 변화에 따른 물성변화를 통한 골대체용 복합재료의 제조방법 및 그것의 조성물에 관한 것이다. The present invention relates to a cyanide acrylate added as an adhesive component to a composite material for bone replacement, and in particular, after irradiating the cyanide acrylate with gamma rays to change its viscosity, it is mixed with a graft component to achieve adhesion strength and compression of the composite material. The present invention relates to a method for preparing a composite material for bone replacement through a change in physical properties according to a change in viscosity of cyanide acrylate and a composition thereof to improve strength.

일반적으로, 의료용 조직 접착제는 상처 봉합에 매우 편리하고 유용한 방법이다. 상처 부위에 적용이 간편하고 봉합사나 스테이플러와 비교하여 이차적인 상처가 적고, 통증이 적으며, 봉합사 등의 제거가 필요하지 않고, 외관상으로도 눈에 띄지 않아 상처 봉합에 많이 사용된다. In general, medical tissue adhesives are a very convenient and useful method for wound closure. It is easy to apply to the wound area, has fewer secondary wounds and less pain compared to sutures or staplers, does not require removal of sutures, and is not conspicuous in appearance, so it is widely used for wound closure.

상기 현재 상용화된 몇 종류의 접착제가 있는데, 이들을 원재료에 따라 자연물 접착제(natural adhesive), 합성 접착제(synthetic adhesive), 반합성 접착제(semi-synthetic adhesive)로 구분한다.There are several types of adhesives currently commercially available, and these are classified into natural adhesives, synthetic adhesives, and semi-synthetic adhesives according to raw materials.

먼저, 상기 자연물 접착제의 대표적인 예는 피브린 글루, 콜라겐 접착제 등이 있는데, 몇 가지 용도에 매우 효과적이나, 자가조직 물질로 이루어져 있어서 가격이 비싸고 공급량이 한정돼 있다. First, representative examples of the natural adhesive are fibrin glue, collagen adhesive, and the like, which are very effective for several uses, but are made of self-organizing materials, so the price is high and the supply amount is limited.

피브린 글루는 비교적 약한 인장강도와 접착 강도를 보이며, 시술 전에 사전 준비과정이 필요하다는 단점이 있다. 피브린 글루는 트롬빈(thrombin)과 피브리노겐(fibrinogen)으로 이루어져 있는데, 인간 혈액에서 추출하기 때문에 정확한 스크리닝이 이루어지지 않으면 인간 면역결핍 바이러스(human immunodeficiency virus, HIV), 간염(hepatitis) 등의 바이러스에 감염될 위험이 있다. Fibrin glue exhibits relatively weak tensile strength and adhesive strength, and has a disadvantage in that it requires preliminary preparation before the procedure. Fibrin glue is composed of thrombin and fibrinogen.Because it is extracted from human blood, if accurate screening is not performed, it will be infected with viruses such as human immunodeficiency virus (HIV) and hepatitis. There is a risk.

이와 같이 일반적으로 자연물 접착제는 가격이 비싸고, 종종 낮은 기계적 강도와 조직 접착력을 보이며, 대부분 단백질 추출물로 이루어져 있기 때문에 잠재적으로 면역 반응을 일으킬 위험이 있다.As such, in general, natural adhesives are expensive, often exhibit low mechanical strength and tissue adhesion, and because they consist mostly of protein extracts, there is a potential risk of causing an immune response.

한편, 반합성 및 합성 접착제도 최근 몇 십 년 간 활발히 상품으로 개발되어 왓으며, 젤라틴-레졸시놀-포름알데하이드(gelatinresorcinol-formaldehyde, GRF), 우레탄 프리폴리머(urethane prepolymer)등을 포함한다. 이 접착제들은 일반적으로 생체흡수가 잘 되지 않으며, 세포독성이 비교적 높으며(다시 말해, 생체 적합성이 낮으며), 수분이 많은 표면에 접착력이 낮다. On the other hand, semi-synthetic and synthetic adhesives have been actively developed as products in recent decades, and include gelatin-resorcinol-formaldehyde (GRF), urethane prepolymers, and the like. These adhesives generally have poor bioabsorption, relatively high cytotoxicity (ie, low biocompatibility), and low adhesion to moist surfaces.

젤라틴-레졸시놀-포름알데하이드 접착제의 경우, 포름알데하이드, 방향성 다이아민(aromatic diamine) 등이 분해물질로 방출되어 만성염증이나 암을 유발할 가능성이 있다. In the case of gelatin-resorcinol-formaldehyde adhesives, formaldehyde and aromatic diamine are released as decomposition substances, which may cause chronic inflammation or cancer.

비방향족 우레탄 프리폴리머는 비교적 높은 접착력을 가지나 가교 시간이 대체로 길어 짧은 시간 안에 접착력을 가지는 용도로는 사용하기 어렵다. 시안화아크릴레이트는 합성 접착제 중 가장 많이 제품으로 개발되었다. Non-aromatic urethane prepolymers have relatively high adhesion, but are difficult to use for applications having adhesion within a short time because crosslinking time is generally long. Cyanide acrylate is the most developed product among synthetic adhesives.

시안화아크릴레이트(Cyanoacrylate)는 순간접착제로 많이 사용되는 액상의 물질이며 물이나 아미드기 등과 같은 약염기성 물질에 의해 급격한 이온반응을 거쳐 중합이 이루어지며 습기가 존재하는 상황에서도 경화되는 분해형 고분자로서, 의료용 접착제로 그 응용성이 확대되고 있는바, 시안화아크릴레이트를 기질로하는 연조직 접착제는 Histoacryl(n-butyl-2-cyanoacrylate), Dermabond(octyl-cyanoa crylate), Traumaseal, GluStitch 등과 같이 종류가 다양하고, 미국 FDA에서 승인을 받아 그 사용 용도가 점점 증가하고 있는 추세로써 현재 생 분해 속도가 느린 butyl-, octyl cyanoacrylate 등이 의료용으로 사용되고 있다. Cyanoacrylate is a liquid substance that is frequently used as an instant adhesive. It is a decomposition polymer that undergoes rapid ionic reaction by a weak basic substance such as water or an amide group, and is cured even in the presence of moisture. As medical adhesives are expanding their applicability, there are various types of soft tissue adhesives based on cyanide acrylate, such as Histoacryl (n-butyl-2-cyanoacrylate), Dermabond (octyl-cyanoa crylate), Traumaseal, GluStitch, etc. As a result of approval from the US FDA, its use is gradually increasing. Currently, butyl- and octyl cyanoacrylate, which have a slow biodegradation rate, are being used for medical purposes.

시안화아크릴레이트 장점은 실온 조건에서 중합되며, 이에 열이나 촉매, 압력을 가하지 않아도 중합이 이루어지며, 수분이 있는 조건에서도 중합이 가능하다는 점이나, 종래에는 시안화아크릴레이트가 일반 무기재료와 접촉시 순식간에 중합이 진행되어 경화반응을 제어할 수 없다는 문제점이 있으므로 약염기인 무기재료의 표면 특성으로 인해 중합 반응이 급속하게 일어나는 것이다. The advantage of cyanide acrylate is that it is polymerized under room temperature conditions, and polymerization is carried out without applying heat, catalyst, or pressure, and polymerization is possible even under moisture conditions. However, conventionally, when cyanide acrylate is in contact with general inorganic materials, Since the polymerization proceeds and the curing reaction cannot be controlled, the polymerization reaction occurs rapidly due to the surface properties of the inorganic material, which is a weak base.

시안화아크릴레이트의 점도는 매우 낮기 때문에 뼈와 같이 치밀하지 않은 조직과의 접착시 생기는 문제를 해소하기 위하여 고분자를 첨가하지만 이는 접착력 등 물성을 감소시키고, 순수 시안화아크릴레이트의 경우 높은 반응열로 인해 세포를 괴사시키는 우려도 배제할 수 없는 문제점을 갖고 있었다.Since the viscosity of cyanide acrylate is very low, polymers are added to solve the problem that occurs when adhesion with non-dense tissues such as bones, but this reduces physical properties such as adhesion, and in the case of pure cyanide acrylate, cells are damaged due to high reaction heat. There was also a problem that could not be excluded from the concern of necrosis.

한편, 뼈는 노화 및 다른 생리적인 이유로 손상되거나 여러 가지 사고로 손상될 수 있으며, 손상된 뼈의 이식에는 환자 자신의 조직을 이식하는 방법(자가골 이식), 타인(동종골)이나 동물(이종골)의 뼈를 이식하는 방법 등이 있다. On the other hand, bones can be damaged due to aging or other physiological reasons or can be damaged by various accidents. In the case of transplanting damaged bones, the method of transplanting the patient's own tissue (autologous bone transplantation), other people (allogeneic bone) or animal And how to transplant bones.

골 대체재는 생체 조직과의 적합성이 높아야 하고, 사용 양이 제한 받지 않아야 하며, 형태의 부여가 용이해야 하고, 부여한 형태가 장기간 변화되지 않아야 하고 생체 조직에 의해 대체되거나 조직이 자라 들어오는데 장애가 없어야 되는 등의 요구 조건을 충분히 만족시킬 만한 재료가 아직은 없는 실정이다.Bone substitutes should have high compatibility with living tissues, should not be limited in the amount of use, should be easy to give shape, should not be changed for a long period of time, should be replaced by living tissues or have no obstacles in growing tissues, etc. There is no material yet sufficient to satisfy the requirements of

합성골(alloplastic bone, synthetic bone)의 연구가 진행됨에 따라 금속, 유기물, 세라믹 등 모든 재료 분야를 총망라하며 연구가 진행되고 있는바, Brown 등은 무기 재료 중 흡수성인 다공성 하이드록시-아파타이트(hydroxy-apatite, 이하 HA)를 연구하였으며, Wolfe는 베타-트리칼슘 포스페이트(β-tricalciumphosphate, 이하 β-TCP)가 자연골의 무기성분과 구조가 유사하기 때문에 서서히 분해되어 신생골로 대체된다고 발표하였고, Chow 등은 β-TCP의 골전도성에 대해 보고한 바 있으며 그 외에도 Posset 등은 테트라칼슘 포스페이트(tetracalcium phosphate)를, Frankenburg 등은 칼슘 포스페이트 시멘트(calcium phosphate cement) 등에 대한 연구를 보고한 바 있다. As research on alloplastic bone (synthetic bone) progresses, research is being conducted covering all fields of materials such as metals, organics, ceramics, etc.Brown, etc.are absorbable porous hydroxy-apatite among inorganic materials. apatite (hereinafter referred to as HA) was studied, and Wolfe reported that β-tricalciumphosphate (β-TCP) is gradually decomposed and replaced by new bone because it has a similar structure to the inorganic component of natural bone. Has reported on the bone conductivity of β-TCP, and in addition, Posset et al. reported studies on tetracalcium phosphate, and Frankenburg et al. reported on calcium phosphate cement.

그러나 현재까지 제시된 기술은 아직까지도 여러 부분에서 한계에 부딪치고 있으며, 현재 사용되는 합성 골은 칼슘 설페이트(calcium sulfate)계 및 칼슘 포스페이트(calcium phosphate)계가 대부분으로 칼슘 포스페이트는 천연 뼈 조성과의 유사성 및 뛰어난 뼈 전도성(osteoconductivity) 때문에, 골 대체재로서 상당한 관심을 관심을 받고 있다. However, the technology presented to date still faces limitations in many areas, and the currently used synthetic bones are mostly calcium sulfate and calcium phosphate, and calcium phosphate is similar to natural bone composition and Due to its excellent osteoconductivity, it has attracted considerable interest as a bone substitute.

무기재료의 단독이 아닌 여러 가지의 무기재료를 혼합한 골 시멘트의 형태로 만드는 연구도 있는 바, 이는 분말 형태가 아닌 점도를 갖는 재료로 초기 유동성을 막고, 어느 정도의 형태를 유지한다는 면에서 좋은 아이디어로 판단되지만, 이들 재료 대부분이 분말로 공급되거나, 형태를 부여하는 경우 강도가 약하고 그 형태가 오랫동안 유지되기 어려운 문제점 등으로 만족한 결과를 기대하기 어렵다.There is also a research on making bone cement that is not an inorganic material alone but a mixture of various inorganic materials. This is a material with viscosity rather than a powder form, which is good in that it prevents initial fluidity and maintains a certain shape. It is judged as an idea, but when most of these materials are supplied as powder or given a shape, it is difficult to expect satisfactory results due to problems such as weak strength and difficulty in maintaining the shape for a long time.

상기 골 재생용 생체 세라믹 재료는 골 유도성이 아닌 골 전도성 재료이기 때문에 골 조직이 재료 내부로 성장되어 들어올 수 있는 적당한 크기의 연결된 기공을 갖는 다공체로 사용되는 구성이 바람직하며, 신생골의 성장 속도와 유사한 생분해 속도를 가져야하는 물성이 요구되고 있는 성질이다.Since the bioceramic material for bone regeneration is a bone conductive material that is not bone-inducible, it is preferable to be used as a porous body having connected pores of an appropriate size to allow bone tissue to grow and enter the material, and the growth rate of new bone and It is a property that is required to have a similar biodegradation rate.

KR 10-1201984(B1)(등록일 : 2012.11.09.자)KR 10-1201984(B1) (Registration date: 2012.11.09.) KR 10-2016-0065891(A)(공개일 : 2016.06.09.자)KR 10-2016-0065891(A) (Publication date: 2016.06.09.) KR 10-2018-0124358(A)(공개일 : 2018.11.21.)KR 10-2018-0124358(A) (Publication date: 2018.11.21.) KR 10-2015-0004820(A)(공개일 : 2015.01.13.)KR 10-2015-0004820(A) (Publication date: 2015.01.13.) KR 10-1626941(B1)(등록일 : 2016.05.27.)KR 10-1626941(B1) (Registration date: 2016.05.27.)

이에, 본 발명은 상기한 문제점을 해결하기 위한 것으로서, 상기 시안화아크릴레이트에 감마선을 조사하여 중합속도의 제어를 통해 점성을 변화시킨 후, 이를 이식성분와 혼합하여 상기 복합재료의 접착강도 및 압축강도를 향상시킬 수 있는, 시안화아크릴레이트의 점도 변화에 따른 물성변화를 통한 골대체용 복합재료의 제조방법 및 그것의 조성물을 제공하는 데에 그 목적이 있다.Accordingly, the present invention is to solve the above problems, by irradiating the cyanide acrylate with gamma rays to change the viscosity through control of the polymerization rate, and then mixing it with the implant component to improve the adhesive strength and compressive strength of the composite material. An object thereof is to provide a method for preparing a composite material for bone replacement through a change in physical properties according to a change in viscosity of cyanide acrylate and a composition thereof that can be improved.

상기한 목적을 해결하기 위한 본 발명의 제조방법은; 골전도성을 갖는 과립, 분말형의 무기재료를 제조하는 무기재료 제조단계와; 유기 및 무기재료를 혼합한 페이스트(A)를 제조하는 이식성분 혼합단계; 시안화아크릴레이트계 접착성분에 감마선 조사를 통해 중합속도를 제어하여 제조하는 접착성분 혼합단계; 상기 과립, 분말형의 무기재료와 상기 페이스트(A)를 혼합하여 유기재료와 무기재료를 포함하는 복합재료를 제조하는 복합재료 제조단계; 및 상기 복합재료에 상기 접착성분을 혼합하는 골대체물 제조단계를 포함한다.The manufacturing method of the present invention for solving the above object is; An inorganic material manufacturing step of preparing an inorganic material in granules or powder form having bone conductivity; Transplant component mixing step of preparing a paste (A) in which organic and inorganic materials are mixed; An adhesive component mixing step of controlling the polymerization rate through irradiation of gamma rays to the cyanide acrylate adhesive component; A composite material manufacturing step of preparing a composite material including an organic material and an inorganic material by mixing the granular, powdery inorganic material and the paste (A); And a bone substitute manufacturing step of mixing the adhesive component with the composite material.

상기한 목적을 달성하기 위한 본 발명의 조성물은, 복합재료의 전체조성물 100중량부에 대해, 2-옥틸시아노아크릴레이트(2-OCA) 13.9±3 중량부 - 노말부틸시아노아크릴레이트(n-BCA) 1.5±1 중량부 - β-트리칼슘포스페이트(β-Tricalcium Phosphate) 10.3±2 중량부 - 칼슘 설페이트 반수화물(Calcium Sulfate Hemihydrate) 5.1±1중량부 - 바이페이직 칼슘 포스페이트(Biphasic Calcium Phopsphate) 25.6±3중량부 - 모노칼슘포스페이트(Monocalcium phosphte) 10.3±2중량부 - 염화나트륨(Sodium chloride) 7.7±2 중량부 - 비스무스 옥사이드(Bismuth Oxide) 7.7±2 중량부 - 솔비톨(Sorbitol F Solution) 17.9±3 중량부인 것을 특징으로 한다.The composition of the present invention to achieve the above object, based on 100 parts by weight of the total composition of the composite material, 2-octyl cyanoacrylate (2-OCA) 13.9 ± 3 parts by weight-normal butyl cyanoacrylate (n -BCA) 1.5±1 parts by weight-β-Tricalcium Phosphate 10.3±2 parts by weight-Calcium Sulfate Hemihydrate 5.1±1 parts by weight-Biphasic Calcium Phosphate ) 25.6±3 parts by weight-Monocalcium phosphte 10.3±2 parts by weight-Sodium chloride 7.7±2 parts by weight-Bismuth Oxide 7.7±2 parts by weight-Sorbitol (Sorbitol F Solution) 17.9 It is characterized in that ±3 parts by weight.

이상과 같이, 본 발명은 적어도 다음의 효과를 포함한다. As described above, the present invention includes at least the following effects.

첫째, 상기 시안화아크릴레이트계 물질에 감마선을 조사하여 점도를 조절한 후 이를 이식성분에 혼합하여 상기 골대체용 복합재료를 제조함으로써, 상기 복합재료의 접착강도 및 압축강도가 향상되고, 이로 인해 상기 환자의 통증을 줄일 수 있음은 물론 상기 환자의 회복에 도움을 줄 수 있다.First, the cyanide acrylate-based material is irradiated with gamma rays to adjust the viscosity, and then mixed with the graft component to prepare the composite material for bone replacement, thereby improving the adhesive strength and compressive strength of the composite material. Not only can it reduce the pain of the patient, but it can also help the patient's recovery.

둘째, 상기 시안화아크릴레이트계 물질의 물성변화에 의해 형상유지 및 접착성 향상은 물론 신생 뼈에 대한 골유도성 및 골전도성을 증가시킴으로써, 상기 복합재료에 포함되는 상기 무기재료 및 상기 유기재료가 갖는 장점을 극대화할 수 있어 상기 의료용 복합재료로서 활용범위가 넓어진다.Second, the advantages of the inorganic material and the organic material included in the composite material by increasing the shape maintenance and adhesion as well as the bone induction and bone conductivity for new bones by the change in the physical properties of the cyanide acrylate-based material It can maximize the range of use as the medical composite material is wide.

즉, 상기 시안화아크릴레이트계 접착성분이 갖는 장점에 의해, 상기 뼈결함 충진을 위한 골대체재 매식시술 시 또는 상기 매식시술 전 재료성형에 따른 용이성이 향상되어 상기 복합재료의 보급화가 가능해진다.That is, due to the advantages of the cyanide acrylate-based adhesive component, the ease of material shaping during the bone replacement implantation procedure for filling the bone defects or before the implantation procedure is improved, and the composite material can be popularized.

도 1은 본 발명에 따른 복합재료의 초기압축강도의 변화량을 나타낸 그래프,
도 2a 내지 2b는 본 발명에 복합재료의 점주도의 변화량을 나타낸 사진,
도 3a 내지 3g는 본 발명에 따른 복합재료의 온도변화에 따른 변성여부를 나타낸 NMR이다.
1 is a graph showing the amount of change in the initial compressive strength of the composite material according to the present invention,
Figures 2a to 2b are photographs showing the amount of change in the point of the composite material in the present invention,
3A to 3G are NMR showing whether or not the composite material according to the present invention is denatured according to temperature change.

먼저, 본 발명의 기술사상이 구체적으로 구현되는 실시양태를 하기의 실시예를 통하여 더욱 상세히 설명하기로 하나 이들 실시예는 단지 본 발명의 현실 적용 가능성을 설명하기 위한 예시에 불과한 것이므로, 본 발명의 권리범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않음은 당연하다 할 것이다.First, embodiments in which the technical idea of the present invention is specifically implemented will be described in more detail through the following examples, but these examples are merely examples for explaining the practical applicability of the present invention. It is natural that the scope of rights is not construed as being limited by these examples.

이하, 본 발명에 따른 실시 예를 설명한다.Hereinafter, an embodiment according to the present invention will be described.

도 1 내지 3에서와 같이, 본 발명은 골전도성을 갖는 과립, 분말형의 무기재료를 제조하는 무기재료 제조단계와; 유기 및 무기재료를 혼합한 페이스트(A)를 제조하는 이식성분 혼합단계; 시안화아크릴레이트계 접착성분에 감마선 조사를 통해 중합속도를 제어하여 제조하는 접착성분 혼합단계; 상기 과립, 분말형의 무기재료와 상기 페이스트(A)를 혼합하여 유기재료와 무기재료를 포함하는 복합재료를 제조하는 복합재료 제조단계; 및 상기 복합재료에 상기 접착성분을 혼합하는 골대체물 제조단계를 포함한다.As shown in Figures 1 to 3, the present invention comprises an inorganic material manufacturing step of preparing an inorganic material in the form of granules or powder having bone conductivity; Transplant component mixing step of preparing a paste (A) in which organic and inorganic materials are mixed; An adhesive component mixing step of controlling the polymerization rate through irradiation of gamma rays to the cyanide acrylate adhesive component; A composite material manufacturing step of preparing a composite material including an organic material and an inorganic material by mixing the granular, powdery inorganic material and the paste (A); And a bone substitute manufacturing step of mixing the adhesive component with the composite material.

먼저, 본 발명에 따른 의료용 복합재료의 필수구성요소로서 혼합되는 원료명 및 제조회사는 표 1과 같이 요약할 수 있다.First, the names of raw materials and manufacturers mixed as essential components of the medical composite material according to the present invention can be summarized as shown in Table 1.

사용원료명Raw material name 제조회사manufacture company 2-옥틸시아노아크릴레이트(2-OCA) 2-octylcyanoacrylate (2-OCA) Glustitch INC. (CAS No. : 133978-15-1), Glustitch INC. (CAS No.: 133978-15-1), 노말부틸시아노아크릴레이트(n-BCA)Normal butyl cyanoacrylate (n-BCA) Glustitch INC. (CAS No. : 6606-65-1)Glustitch INC. (CAS No.: 6606-65-1) 베타-트리칼슘포스페이트(β-Tricalcium Phosphate) Beta-Tricalcium Phosphate HIMED (CAS NO. : 7758-87-4)HIMED (CAS NO.: 7758-87-4) 모노칼슘포스페이트(Monocalcium phosphte) Monocalcium phosphte HIMED (CAS NO. : 7758-23-8)HIMED (CAS NO.: 7758-23-8) 염화나트륨(Sodium chloride)Sodium chloride Acros Oranics (CAS NO. : 7647-14-5)Acros Oranics (CAS NO.: 7647-14-5) 솔비톨(Sorbitol F Solution)Sorbitol (Sorbitol F Solution) Sigma Aldrich (CAS NO. : 50-70-4)Sigma Aldrich (CAS NO.: 50-70-4) 칼슘 설페이트 반수화물(Calcium Sulfate Hemihydrate)Calcium Sulfate Hemihydrate Acros Organics (CAS NO. : 10034-76-1) Acros Organics (CAS NO.: 10034-76-1) 비스무스 옥사이드(Bismuth Oxide) Bismuth Oxide Sigma Aldrich(CAS No. : 1304-76-3)Sigma Aldrich (CAS No.: 1304-76-3)

표 1에서 상기 시안화아크릴레이트계 물질인 상기 2-OCA 또는 상기 n-BCA의 성분을 "접착성분"이라고 칭하고, 상기 2-OCA 및 상기 n-BCA를 제외한 나머지의 성분을 "이식성분"이라고 칭하기로 한다. In Table 1, the components of the 2-OCA or n-BCA, which are cyanide acrylate-based materials, are referred to as "adhesive components", and the remaining components excluding the 2-OCA and n-BCA are referred to as "transplant components" To

특히, 상기 접착성분과 상기 이식성분을 대략 1 : 7의 중량비로 혼합한 물질을 "복합재료"라고 칭하기로 한다.In particular, a material obtained by mixing the adhesive component and the implant component at a weight ratio of approximately 1:7 will be referred to as a "composite material".

이하. 상기 복합재료의 제조방법을 각 단계별로 설명한다. Below. The method of manufacturing the composite material will be described for each step.

(1) 무기재료 제조단계 (1) Inorganic material manufacturing step

본 발명에 따른 무기재료 제조단계는 이후에 설명하게 되는 β-트리칼슘포스페이트(β-Tricalcium Phosphate)를 포함한 각종 무기재료를 적정한 크기로 분쇄하여 과립, 분말형으로 제조하는 단계를 의미한다.The inorganic material manufacturing step according to the present invention refers to a step of pulverizing various inorganic materials including β-Tricalcium Phosphate to be described later to an appropriate size to form granules or powder.

(2) 접착성분 혼합단계(2) Adhesive component mixing step

본 발명에 따른 상기 접착성분을 구성함에 있어서, 상기 시안화아크릴레이트계 물질인 상기 2-OCA 및 상기 n-BCA를 적절한 혼합비를 혼합하여 혼합물을 제조한 후 상기 혼합물에 감마선을 조사하였다.In constituting the adhesive component according to the present invention, a mixture was prepared by mixing the cyanide acrylate-based material, the 2-OCA and the n-BCA, in an appropriate mixing ratio, and then gamma rays were irradiated on the mixture.

표 2에서와 같이, 상기 복합재료에 일정량 첨가되는 상기 접착성분으로 인해 어떠한 변화가 일어나는지를 확인하기 위해, 상기 2-OCA 및 상기 n-BCA의 혼합물에 상기 감마선을 조사하였다. As shown in Table 2, the gamma ray was irradiated on the mixture of the 2-OCA and the n-BCA in order to confirm what kind of change occurs due to the adhesive component added in a certain amount to the composite material.

상기 2-OCA 및 상기 n-BCA의 혼합비는 100 : 0 내지 50 : 50로 조정하였으며, 상기 감마선의 조사강도는 1 - 40kGy로 조정하였다, The mixing ratio of the 2-OCA and the n-BCA was adjusted to 100: 0 to 50: 50, and the irradiation intensity of the gamma ray was adjusted to 1-40 kGy,

표 2와 같은 함량비를 갖는 상기 접착성분의 접착성능을 확인하기 위해 점주도 실험을 수행하였으며, 그 결과는 표 3과 같다. In order to confirm the adhesion performance of the adhesive component having the content ratio as shown in Table 2, a shopkeeper experiment was also performed, and the results are shown in Table 3.

샘플Sample 시안화아크릴레이트Cyanide acrylate 비율ratio 감마선 조사량Gamma radiation dose 2-OCA(g)2-OCA(g) n-BCA(g)n-BCA(g) 2-OCA : n-BCA2-OCA: n-BCA 1One 100100 00 100 : 0100: 0 1 - 5 kGy1-5 kGy 22 100100 00 100 : 0100: 0 15 - 20 kGy15-20 kGy 33 100100 00 100 : 0100: 0 18 - 22 kGy18-22 kGy 44 100100 00 100 : 0100: 0 25 - 40 kGy25-40 kGy 55 9090 1010 90 : 1090: 10 18 - 22 kGy18-22 kGy 66 8080 2020 80 : 2080: 20 18 - 22 kGy18-22 kGy 77 7070 3030 70 : 3070: 30 18 - 22 kGy18-22 kGy 88 6060 4040 60 : 4060: 40 18 - 22 kGy18-22 kGy 99 5050 5050 50 : 5050: 50 18 - 22 kGy18-22 kGy

상기 접착성분의 점주도 실험을 다음과 같이 진행하였다.The storekeeper experiment of the adhesive component was also conducted as follows.

① 슬라이드 글라스에 감마선 조사를 통해 제조된 시안화아크릴레이트계 접착성분를 한 방울 떨어뜨린다.(측정환경 : 25℃, 40% 상대습도 환경)① Drop a drop of the cyanide acrylate adhesive component manufactured through gamma irradiation on the slide glass (measurement environment: 25℃, 40% relative humidity environment)

② 슬라이드 글라스에 떨어진 접착성분의 지름을 측정한다.(지름의 측정은 버니어캘리퍼스(FUSO, 300mm)를 이용하여 측정한다)② Measure the diameter of the adhesive component dropped on the slide glass. (Measure the diameter with a vernier caliper (FUSO, 300mm))

③ 상기 시안화아크릴레이트계 접착성분의 흐름성이 좋을수록 지름의 결과가 크게 나타나는 특징이 있으며, 상기 접착성분의 흐름성은 도 2a 및 도 2b의 지름의 측정 모습을 통해 명확하게 확인할 수 있다.③ The better the flowability of the cyanide acrylate-based adhesive component is, the larger the diameter result is, and the flowability of the adhesive component can be clearly confirmed through the measurement of the diameter in FIGS. 2A and 2B.

상기 샘플 1에서와 같이, 상기 2-OCA와 상기 n-BCA를 100 : 0의 중량비로 혼합한 후, 상기 감마선을 1 - 5 kGy 강도로 조사하는 경우 상기 지름이 1.0㎝를 유지하였다. 상기 샘플 2 내지 샘플 5에서와 같이 상기 2-OCA와 상기 n-BCA를 100 : 0의 중량비로 혼합한 후, 상기 감마선을 15 - 25 kGy 강도로 조사하는 경우 상기 지름이 0.8㎝ 내지 0.9㎝을 유지하였다.As in Sample 1, when the 2-OCA and the n-BCA were mixed at a weight ratio of 100:0, the diameter was maintained at 1.0 cm when the gamma ray was irradiated with an intensity of 1-5 kGy. As in Samples 2 to 5, when the 2-OCA and the n-BCA are mixed at a weight ratio of 100:0, and the gamma ray is irradiated with an intensity of 15-25 kGy, the diameter is 0.8 cm to 0.9 cm. Maintained.

샘플Sample 비율ratio 감마선 조사량Gamma radiation dose 지름diameter 2-OCA : n-BCA2-OCA: n-BCA 1One 100 : 0100: 0 1 - 5 kGy1-5 kGy 1.0 ㎝1.0 cm 22 100 : 0100: 0 15 - 20 kGy15-20 kGy 0.9 ㎝0.9 cm 33 100 : 0100: 0 18 - 22 kGy18-22 kGy 0.9 ㎝0.9 cm 44 100 : 0100: 0 25 kGy25 kGy 0.8 ㎝0.8 cm 55 90 : 1090: 10 18 - 22 kGy18-22 kGy 0.6 ㎝0.6 cm 66 80 : 2080: 20 18 - 22 kGy18-22 kGy 0.8 ㎝0.8 cm 77 70 : 3070: 30 18 - 22 kGy18-22 kGy 0.8 ㎝0.8 cm 88 60 : 4060: 40 18 - 22 kGy18-22 kGy 0.9 ㎝0.9 cm 99 50 : 5050: 50 18 - 22 kGy18-22 kGy 0.9 ㎝0.9 cm

상기 샘플 6 내지 샘플 10에서와 같이, 상기 2-OCA와 상기 n-BCA의 비율을 조정하면서 상기 감마선을 18 - 22 kGy의 강도로 조사하는 경우, 상기 지름이 0.8㎝ 내지 0.9㎝를 유지하였다. As in Samples 6 to 10, when the gamma ray was irradiated with an intensity of 18 to 22 kGy while adjusting the ratio of the 2-OCA and the n-BCA, the diameter was maintained at 0.8 cm to 0.9 cm.

즉, 상기 시안화아크릴레이트계 접착성분인 상기 2-OCA 또는 상기 n-BCA 중 어느 하나 또는 이들을 혼합한 후 상기 감마선을 조사하는 경우, 상기 접착성분의 지름이 0.8 내지 1.0 ㎝로서 흐름성이 매우 양호하였다. That is, when irradiating the gamma ray after mixing the cyanide acrylate-based adhesive component, the 2-OCA or the n-BCA, or after mixing them, the diameter of the adhesive component is 0.8 to 1.0 cm, so the flowability is very good. I did.

특히, 상기 2-OCA와 상기 n-BCA의 혼합비와는 무관하게 상기 감마선을 조사하는 경우 상기 접착성분의 흐름성이 양호하였으며, 상기 감마선이 상기 접착성분의 흐름성을 향상시키는 핵심원인임을 알 수 있었다.In particular, irrespective of the mixing ratio of the 2-OCA and the n-BCA, when the gamma ray was irradiated, the flowability of the adhesive component was good, and it can be seen that the gamma ray is a key cause of improving the flowability of the adhesive component. there was.

(3) 이식성분 혼합단계 (3) Graft ingredient mixing step

먼저, 본 발명에 따른 상기 이식성분을 구성함에 있어서, 상기 시안화아크릴레이트계 접착성분과의 반응성이 우수한 것으로 알려진 표 4에서와 같은 유기재료 및 무기재료를 이용하여 상기 이식성분을 제조하였다. First, in constituting the implantation component according to the present invention, the implantation component was prepared using organic and inorganic materials as shown in Table 4, which are known to have excellent reactivity with the cyanide acrylate-based adhesive component.

표 4에서와 같이 상기 이식성분의 상기 무기재료는 상기 β-트리칼슘포스페이트와 칼슘 설페이트 반수화물과 바이페이직 칼슘 포스페이트와 모노칼슘포스페이트와 염화나트륨과 비스무스 옥사이드이고, 상기 이식성분의 유기재료는 솔비톨용액이다.As shown in Table 4, the inorganic material of the implantation component is the β-tricalcium phosphate, calcium sulfate hemihydrate, biphasic calcium phosphate, monocalcium phosphate, sodium chloride and bismuth oxide, and the organic material of the implantation component is a sorbitol solution. to be.

복합재료Composite material 중량부Parts by weight 접착
성분
adhesion
ingredient
유기재료Organic material 2-옥틸시아노아크릴레이트(2-OCA) 2-octylcyanoacrylate (2-OCA) 13.9±3 중량부13.9±3 parts by weight
노말부틸시아노아크릴레이트 (n-BCA) Normal butyl cyanoacrylate (n-BCA) 1.5±1 중량부1.5±1 parts by weight

이식
성분


transplantation
ingredient



무기재료



Inorganic material
β-트리칼슘포스페이트(β-Tricalcium Phosphate)β-Tricalcium Phosphate 10.3±2 중량부10.3±2 parts by weight
칼슘 설페이트 반수화물(Calcium Sulfate Hemihydrate)Calcium Sulfate Hemihydrate 5.1±1중량부5.1±1 parts by weight 바이페이직 칼슘 포스페이트(Biphasic Calcium Phopsphate)Biphasic Calcium Phopsphate 25.6±3중량부25.6±3 parts by weight 모노칼슘포스페이트(Monocalcium phosphte)Monocalcium phosphte 10.3±2중량부10.3±2 parts by weight 염화나트륨(Sodium chloride) Sodium chloride 7.7±2 중량부7.7±2 parts by weight 비스무스 옥사이드(Bismuth Oxide)Bismuth Oxide 7.7±2 중량부7.7±2 parts by weight 유기재료Organic material 솔비톨(Sorbitol F Solution) Sorbitol (Sorbitol F Solution) 17.9±3 중량부17.9±3 parts by weight

상기 이식성분의 경우, 골전도성을 갖는 과립, 분말형의 무기재료를 제조하는 단계와; 골전도성, 다공성, 방사선 불투과성도 등을 높이기 위한 유기 및 무기재료를 혼합한 페이스트(A)를 제조하는 이식성분 혼합단계를 통해 제조된다.In the case of the implanted component, preparing a granular or powdered inorganic material having bone conduction; It is prepared through the step of mixing the graft components to prepare a paste (A) in which organic and inorganic materials are mixed to increase bone conductivity, porosity, and radiopacity.

본 발명에서는 상기 이식성분을 구성함에 있어서, 상기 천연 뼈 조성과의 유사성 및 뼈 전도성이 우수한 상기 칼슘 포스페이트 및 상기 칼슘 설페이트를 주성분으로 사용하였으며, 상기 주성분을 전체 100중량부에 대해 50중량부 내외로 첨가하는 경우 뼈 전도성이 우수한 것으로 확인되었다.In the present invention, in constituting the graft component, the calcium phosphate and the calcium sulfate, which have excellent similarity to the natural bone composition and bone conductivity, were used as main components, and the main component was approximately 50 parts by weight based on 100 parts by weight. When added, it was found to have excellent bone conductivity.

특히, 상기 이식성분인 상기 β-트리칼슘포스페이트, 상기 칼슘 설페이트 반수화물, 상기 바이페이직 칼슘 포스페이트, 상기 모노칼슘포스페이트 중 적어도 어느 하나와 상기 접착성분을 규정비율로 혼합하는 경우, 상기 이식성분과 상기 접착성분과의 반응성이 매우 우수함을 알 수 있었다. In particular, when mixing at least one of the β-tricalcium phosphate, the calcium sulfate hemihydrate, the biphasic calcium phosphate, and the monocalcium phosphate and the adhesive component at a prescribed ratio, the implant component and It was found that the reactivity with the adhesive component was very excellent.

표 4의 상기 염화나트륨과 상기 비스무스 옥사이드 및 상기 솔비톨은 상기 이식성분의 보조성분으로 첨가한 것으로서, 상기 이식성분의 조건에 따라 다양한 함량으로 첨가할 수 있으므로 이에 대한 설명은 생략한다.The sodium chloride, the bismuth oxide, and the sorbitol in Table 4 are added as auxiliary components of the transplant component and may be added in various amounts depending on the conditions of the transplant component, so a description thereof will be omitted.

(4) 복합재료 제조단계(4) Composite material manufacturing step

본 발명에 따른 상기 복합재료를 구성함에 있어서, 상기 접착성분 및 상기 이식성분은 다음과 같은 함량비로 혼합하였다.In constructing the composite material according to the present invention, the adhesive component and the implant component were mixed in the following content ratio.

본 발명에 따른 복합재로는 상기 복합재료 조성물 100중량부에 대해, 2-옥틸시아노아크릴레이트 13.9±3 중량부, 노말부틸시아노아크릴레이트(n-BCA) 1.5±1 중량부, β-트리칼슘포스페이트 10.3±2 중량부, 칼슘 설페이트 반수화물 5.1±1중량부, 바이페이직 칼슘 포스페이트 25.6±3중량부, 모노칼슘포스페이트 10.3±2중량부, 염화나트륨 7.7±2 중량부, 비스무스 옥사이드 7.7±2중량부, 솔비톨 17.9±3 중량부를 혼합하여 제조하였다.As the composite material according to the present invention, based on 100 parts by weight of the composite material composition, 2-octyl cyanoacrylate 13.9±3 parts by weight, normal butyl cyanoacrylate (n-BCA) 1.5±1 parts by weight, β-tri Calcium phosphate 10.3±2 parts by weight, calcium sulfate hemihydrate 5.1±1 parts by weight, biphasic calcium phosphate 25.6±3 parts by weight, monocalcium phosphate 10.3±2 parts by weight, sodium chloride 7.7±2 parts by weight, bismuth oxide 7.7±2 It was prepared by mixing parts by weight and 17.9±3 parts by weight of sorbitol.

샘플Sample 비율ratio 감마선 조사량Gamma radiation dose 초기압축강도Initial compressive strength
(MPa)(MPa)
2-OCA : n-BCA2-OCA: n-BCA 1One 100 : 0100: 0 1 - 5 kGy1-5 kGy 0.60.6 22 100 : 0100: 0 15 - 20 kGy15-20 kGy 1.271.27 33 100 : 0100: 0 18 - 22 kGy18-22 kGy 1.271.27 44 100 : 0100: 0 25 - 40 kGy25-40 kGy 1.251.25 55 90 : 1090: 10 18 - 22 kGy18-22 kGy 1.461.46 66 80 : 2080: 20 18 - 22 kGy18-22 kGy 1.451.45 77 70 : 3070: 30 18 - 22 kGy18-22 kGy 1.351.35 88 60 : 4060: 40 18 - 22 kGy18-22 kGy 1.321.32 99 50 : 5050: 50 18 - 22 kGy18-22 kGy 1.211.21 1010 100 : 00100: 00 감마선 조사하지 않음No gamma irradiation 0.50.5

표 3에서와 같은 감마선 조사를 통해 제조된 접착성분(2-OCA + n-BCA)과 표 4에서와 같은 함량비를 갖는 이식성분(무기재료 + 유기재료)을 규정의 함량비로 혼합하여 상기 복합재료를 제조하였다.The above composite is obtained by mixing the adhesive component (2-OCA + n-BCA) prepared through gamma irradiation as in Table 3 and the implantation component (inorganic material + organic material) having the content ratio as in Table 4 The material was prepared.

상기 접착성분과 상기 이식성분은 상기 전체 복합재료 100 중량부에 대해 대략 1 : 7의 비율로 혼합함이 바람직하다.It is preferable that the adhesive component and the implant component are mixed in a ratio of approximately 1:7 based on 100 parts by weight of the total composite material.

상기 복합재료가 의료용으로 적합한지의 여부를 확인하기 위해, 상기 복합재료의 초기압축강도 및 중합반응을 각각 실험하여 상기 복합재료의 물성을 확인였으며, 그 결과는 다음과 같이 요약할 수 있다.In order to confirm whether the composite material is suitable for medical use, the initial compressive strength and polymerization reaction of the composite material were respectively tested to confirm the physical properties of the composite material, and the results can be summarized as follows.

1) 복합재료의 압축강도 실험1) Compressive strength test of composite materials

① 테프론 재질의 틀에 복합재료를 넣어 직경 0.5cm, 높이 1cm의 크기의 실험재료를 제작한다. ① Put a composite material in a Teflon frame to make an experiment material with a diameter of 0.5cm and a height of 1cm.

② 테프론 재질의 틀에 채워넣은 복합재료를 95%의 상대습도, 37.5℃의 온도를 유지해주는 항온항습기(제이오텍(주),TH-PE-065)에서 약 15분 경화 후, 테프론재질의 틀에서 분리한다.② After curing for about 15 minutes in a thermo-hygrostat (TH-PE-065) that maintains 95% relative humidity and a temperature of 37.5℃, the composite material filled in the Teflon mold Separate from

③ 테프론 재질의 틀에서 분리한 복합재료는 37.5 ℃의 온도를 유지해주는 항온항습기에서 약 1시간 경화시간을 갖는다.③ The composite material separated from the Teflon mold has a curing time of about 1 hour in a thermo-hygrostat that maintains a temperature of 37.5 ℃.

④ 복합재료의 경화시간 종료 후, 표면의 수분 제거하고 만능시험기((주)태원, TW-D102)를 이용하여 초기압축강도를 측정하였다.④ After the curing time of the composite material was over, the moisture was removed from the surface and the initial compressive strength was measured using a universal testing machine (Taewon Co., Ltd., TW-D102).

⑤ 초기압축강도 측정은 표 5에서와 같은 접착성분을 갖는 샘플 1 내지 샘플 10을 사용하여 측정하였으며 그 결과는 표 5에 나타내었다. 이때, 상기 접합성분에 대한 감마선의 조사량에 따른 초기압축강도의 변화량은 도 1에서와 같은 그래프를 통해서도 확인할 수 있다.⑤ Initial compressive strength was measured using Samples 1 to 10 having adhesive components as shown in Table 5, and the results are shown in Table 5. In this case, the amount of change in the initial compressive strength according to the irradiation amount of gamma rays to the bonding component can also be confirmed through a graph as in FIG. 1.

상기 접착성분(2-OCA + n-BCA)과 상기 이식성분(무기재료 + 유기재료)를 혼합한 후 초기압축강도가 측정한 결과, 상기 접착성분에 상기 감마선을 25 - 40 kGy의 강도로 조사하는 경우, 상기 초기압축강도가 대략 1.21 MPa 이상이어서 만족할만한 수준의 강도를 얻을 수 있었다. After mixing the adhesive component (2-OCA + n-BCA) and the implant component (inorganic material + organic material), the initial compressive strength was measured, and the gamma ray was irradiated to the adhesive component at a strength of 25-40 kGy. In this case, since the initial compressive strength was approximately 1.21 MPa or more, a satisfactory level of strength could be obtained.

특히 상기 감마선의 조사강도로서 18 - 22 kGy를 벗어나더라도 초기압축강도가 비슷한 경향을 보이므로 상기 감마선은 18 - 22 kGy가 바람직하다.Particularly, even if the irradiation intensity of the gamma ray exceeds 18-22 kGy, the initial compressive strength tends to be similar, so the gamma ray is preferably 18-22 kGy.

따라서, 상기 접착성분을 제조함에 있어서, 상기 2-OCA 또는 상기 n-BCA 중 적어도 어느 하나에 상기 감마선을 조사하여 액상화한 후 상기 이식성분과 혼합하는 경우, 상기 복합재료의 초기압축강도가 향상되며, 이로 인해 본 발명의 복합재로는 의료용을 적합함을 확인할 수 있었다.Therefore, in preparing the adhesive component, when at least one of the 2-OCA or the n-BCA is liquefied by irradiating the gamma ray and then mixed with the implant component, the initial compressive strength of the composite material is improved. , Therefore, it was confirmed that the composite material of the present invention is suitable for medical use.

샘플 Sample 온도Temperature 시간time NMR상의 중합비율Polymerization ratio on NMR 추가적인 중합진행 여부Whether to proceed with additional polymerization aa 냉동보관
(-5 ∼ -2℃)
Frozen storage
(-5 ∼ -2℃)
12 h12 h 5 : 15: 1 진행되지 않음Not in progress
bb 냉장보관
(0 ∼ 5℃)
Refrigerated storage
(0 ∼ 5℃)
12 h12 h 5 : 15: 1 진행되지 않음Not in progress
cc 60 ℃60 ℃ 12 h12 h 5 : 1 5: 1 진행되지 않음Not in progress dd 60 ℃60 ℃ 18 h18 h 5 : 15: 1 진행되지 않음Not in progress ee 60 ℃60 ℃ 24 h24 h 5 : 15: 1 진행되지 않음Not in progress ff 60 ℃60 ℃ 48 h48 h 5 : 15: 1 진행되지 않음Not in progress gg 60 ℃60 ℃ 72 h72 h 5 : 15: 1 진행되지 않음Not in progress

2) 복합재료의 중합반응실험2) Polymerization reaction test of composite material

상기 접착성분(2-OCA + n-BCA)와 상기 이식성분(무기재료 + 유기재료)를 혼합하여 상기 복합재료를 제조한 후, 상기 접착성분의 온도변화에 따른(냉장, 냉동, 60℃) 추가 중합반응 여부를 확인하였다.After preparing the composite material by mixing the adhesive component (2-OCA + n-BCA) and the implant component (inorganic material + organic material), according to the temperature change of the adhesive component (refrigerated, frozen, 60 ℃) It was confirmed whether or not further polymerization reaction.

상기 복합재료의 중합반응여부는 다음의 공정을 통해 진행하였다.The polymerization reaction of the composite material was carried out through the following process.

① 샘플 1을 각각의 조건에 맞는 온도 및 시간동안 재료를 처리한다.Sample 1 is treated with the material for the temperature and time appropriate for each condition.

② 온도 및 시간에 따른 재료 처리 완료 후, D-클로로포름(CDCl3) 용액을 이용하여 1H-NMR 측정을 위한 샘플을 제작한다.② After completing the material treatment according to temperature and time, prepare a sample for 1H-NMR measurement using a D-chloroform (CDCl 3 ) solution.

③ 1H-NMR상에서 d 7.0부근의 proton을 1.00으로 기준을 설정한 후, 각각의 proton에 대해 적분하여 비율을 확인한다. ③ On 1H-NMR, after setting the standard as 1.00 for protons around d 7.0, check the ratio by integrating for each proton.

상기 접착성분의 중합반응 여부를 확인하기 위해, 표 5에서와 같은 혼합비를 갖는 샘플 1을 이용하여 OVEN 및 NMR을 통해 상기 접착성분의 중합반응 진행여부를 확인하였으며, 그 결과는 표 6 및 도 3과 같다. To confirm the polymerization reaction of the adhesive component, it was confirmed whether the polymerization reaction of the adhesive component proceeded through OVEN and NMR using Sample 1 having a mixing ratio as shown in Table 5, and the results are shown in Tables 6 and 3 Same as

표 6에서와 같이, 상기 샘플 1을 냉동 및 냉장 보관하는 경우는 물론 60℃ 이상의 온도로 장시간(72시간) 유지하더라도, 상기 복합재료의 중합반응이 진행되지 않아 보관성이 매우 우수할 것으로 예측된다. As shown in Table 6, even when the sample 1 is frozen and refrigerated, as well as maintained at a temperature of 60°C or higher for a long time (72 hours), the polymerization reaction of the composite material does not proceed, so it is predicted that the storage performance will be very excellent. .

따라서, 본 발명에 따른 복합재료를 제조함에 있어서, 상기 접착성분(2-OCA + n-BCA)에 감마선을 조사하여 액상화한 후 이를 상기 이식성분(무기재료 + 유기재료)에 혼합하는 경우, 상기 복합재료의 접착강도 및 압축강도를 원하는 만큼 얻을 수 있어 상기 의료용으로 적합함을 확인할 수 있었다.Therefore, in the preparation of the composite material according to the present invention, when the adhesive component (2-OCA + n-BCA) is liquefied by irradiation with gamma rays and then mixed with the implant component (inorganic material + organic material), the It was confirmed that the adhesive strength and compressive strength of the composite material could be obtained as desired, and thus it was suitable for the medical use.

(5) 골대체물 제조단계(5) Bone substitute manufacturing step

본 발명에 따른 골대체물 제조단계는 상기 복합재료에 상기 접착성분을 혼합하는 단계를 의미하며. 상기 접착성분과 상기 이식성분을 대략 1 : 7의 중량비로 혼합합이 바람직하지만, 이에 한정하지는 않는다.The bone substitute manufacturing step according to the present invention refers to a step of mixing the adhesive component with the composite material. It is preferable to mix the adhesive component and the implant component in a weight ratio of approximately 1:7, but is not limited thereto.

이상과 같이, 본 발명은 상술한 실시 예에 한정되지 아니하며, 청구 범위에서 청구되는 본 발명의 기술적 사상에 벗어남 없이 해당 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 자명한 변형 실시가 가능하며, 이러한 변형 실시는 본 발명의 범위에 속한다. As described above, the present invention is not limited to the above-described embodiments, and obvious modifications can be implemented by those of ordinary skill in the technical field to which the present invention belongs without departing from the technical spirit of the present invention claimed in the claims. And, these modifications are within the scope of the present invention.

Claims (6)

골전도성을 갖는 과립, 분말형의 무기재료를 제조하는 무기재료 제조단계와;
유기 및 무기재료를 혼합한 페이스트(A)를 제조하는 이식성분 혼합단계;
시안화아크릴레이트계 접착성분에 감마선 조사를 통해 중합속도를 제어하여 제조하는 접착성분 혼합단계;
상기 과립, 분말형의 무기재료와 상기 페이스트(A)를 혼합하여 유기재료와 무기재료를 포함하는 복합재료를 제조하는 복합재료 제조단계; 및
상기 복합재료에 상기 접착성분을 혼합하는 골대체물 제조단계;
를 포함하는 것을 특징으로 하는 시안화아크릴레이트의 점도 변화에 따른 물성변화를 통한 골대체용 복합재료의 제조방법.
An inorganic material manufacturing step of preparing an inorganic material in granules or powder form having bone conductivity;
Transplant component mixing step of preparing a paste (A) in which organic and inorganic materials are mixed;
An adhesive component mixing step of controlling the polymerization rate through irradiation of gamma rays to the cyanide acrylate adhesive component;
A composite material manufacturing step of preparing a composite material including an organic material and an inorganic material by mixing the granular, powdery inorganic material and the paste (A); And
A bone substitute manufacturing step of mixing the adhesive component with the composite material;
Method for producing a composite material for bone replacement through a change in physical properties according to the viscosity change of cyanide acrylate comprising a.
제 1항에 있어서, 상기 접착성분은,
2-옥틸시아노아크릴레이트(2-OCA), 노말부틸시아노아크릴레이트(n-BCA) 중 어느 하나, 또는 상기 2-옥틸시아노아크릴레이트와 상기 노말부틸시아노아크릴레이트의 혼합물인 것을 특징으로 하는 시안화아크릴레이트의 점도 변화에 따른 물성변화를 통한 골대체용 복합재료의 제조방법.
The method of claim 1, wherein the adhesive component,
It is characterized in that it is any one of 2-octyl cyanoacrylate (2-OCA), normal butyl cyanoacrylate (n-BCA), or a mixture of the 2-octyl cyanoacrylate and the normal butyl cyanoacrylate Method for producing a composite material for bone replacement through the change in physical properties according to the viscosity change of cyanide acrylate.
제 2항에 있어서, 상기 접착성분이 혼합물인 경우,
상기 접착성분 100 중량부에 대해, 상기 2-옥틸시아노아크릴레이트 50 내지 100 중량부 - 상기 노말부틸시아노아크릴레이트 10 내지 50 중량부로 혼합한 것을 특징으로 하는 시안화아크릴레이트의 점도 변화에 따른 물성변화를 통한 골대체용 복합재료의 제조방법.
The method of claim 2, wherein when the adhesive component is a mixture,
Physical properties according to viscosity change of cyanide acrylate, characterized in that 50 to 100 parts by weight of the 2-octyl cyanoacrylate-10 to 50 parts by weight of the normal butyl cyanoacrylate are mixed with respect to 100 parts by weight of the adhesive component A method of manufacturing a composite material for bone replacement through change.
제 1항에 있어서, 상기 감마선은,
상기 접착성분에 18 - 22 kGy 강도로 조사되는 것을 특징으로 하는 시안화아크릴레이트의 점도 변화에 따른 물성변화를 통한 골대체용 복합재료의 제조방법.
The method of claim 1, wherein the gamma ray is
Method for producing a composite material for bone replacement through a change in physical properties according to a change in viscosity of cyanide acrylate, characterized in that irradiated to the adhesive component at a strength of 18-22 kGy.
제 1항에 있어서,
상기 무기재료는, 바이페이직 칼슘 포스페이트, β-트리칼슘포스페이트, 칼슘 설페이트 반수화물, 모노칼슘포스페이트 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 시안화아크릴레이트의 점도 변화에 따른 물성변화를 통한 골대체용 복합재료의 제조방법.
The method of claim 1,
The inorganic material includes at least one of biphasic calcium phosphate, β-tricalcium phosphate, calcium sulfate hemihydrate, and monocalcium phosphate, for bone replacement through a change in physical properties according to a change in viscosity of cyanide acrylate. Manufacturing method of composite material.
골대체용 복합재료의 조성물로서,
상기 복합재료의 전체조성물 100중량부에 대해, 2-옥틸시아노아크릴레이트 13.9±3 중량부 - 노말부틸시아노아크릴레이트 1.5±1 중량부 - β-트리칼슘포스페이트 10.3±2 중량부 - 칼슘 설페이트 반수화물 5.1±1 중량부 - 바이페이직 칼슘 포스페이트 25.6±3 중량부 - 모노칼슘포스페이트 10.3±2 중량부 - 염화나트륨 7.7±2 중량부 - 비스무스 옥사이드 7.7±2 중량부 - 솔비톨 용액 17.9±3 중량부인 것을 특징으로 하는 골대체용 복합재료의 조성물.
As a composition of a composite material for bone replacement,
Based on 100 parts by weight of the total composition of the composite material, 2-octyl cyanoacrylate 13.9±3 parts by weight-normal butyl cyanoacrylate 1.5±1 parts by weight-β-tricalcium phosphate 10.3±2 parts by weight-calcium sulfate Hemihydrate 5.1±1 parts by weight-Biphasic calcium phosphate 25.6±3 parts by weight-Monocalcium phosphate 10.3±2 parts by weight-Sodium chloride 7.7±2 parts by weight-Bismuth oxide 7.7±2 parts by weight-Sorbitol solution 17.9±3 parts by weight Composition of a composite material for bone replacement, characterized in that.
KR1020190073040A 2019-06-19 2019-06-19 Manufacturing methods of bone replacement materials composite material for variations in viscosity of cyanoacrylate to physical properties change, and its composite KR102281485B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190073040A KR102281485B1 (en) 2019-06-19 2019-06-19 Manufacturing methods of bone replacement materials composite material for variations in viscosity of cyanoacrylate to physical properties change, and its composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190073040A KR102281485B1 (en) 2019-06-19 2019-06-19 Manufacturing methods of bone replacement materials composite material for variations in viscosity of cyanoacrylate to physical properties change, and its composite

Publications (2)

Publication Number Publication Date
KR20200145896A true KR20200145896A (en) 2020-12-31
KR102281485B1 KR102281485B1 (en) 2021-07-28

Family

ID=74087653

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190073040A KR102281485B1 (en) 2019-06-19 2019-06-19 Manufacturing methods of bone replacement materials composite material for variations in viscosity of cyanoacrylate to physical properties change, and its composite

Country Status (1)

Country Link
KR (1) KR102281485B1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0146409B1 (en) * 1993-12-23 1998-08-01 데이비드 피. 멜로디 Sterilized cyanoacrylate adhesive composition and a method of making such a composition
KR100650453B1 (en) * 2005-06-04 2006-11-27 주식회사 예스바이오 Composite materials for bone defect filling and bone replacement
WO2009155589A2 (en) * 2008-06-20 2009-12-23 Adhezion Biomedical, Llc. Stable and sterile tissue adhesive composition with a controlled high viscosity
KR20100030007A (en) * 2008-09-09 2010-03-18 주식회사 예스바이오 Method for preparation of composite materials for bone defect filling and bone replacement
US20110283662A1 (en) * 2010-05-21 2011-11-24 Adhezion Biomedical, Llc Low dose gamma sterilization of liquid adhesives
KR101201984B1 (en) 2012-02-28 2012-11-15 주식회사 제네웰 Tissue adhesives for wound-connection and method for preparing threrof
KR20150004820A (en) 2012-04-04 2015-01-13 메르크 파텐트 게엠베하 Cyclic amides as metap-2 inhibitors
CN104399113A (en) * 2014-11-25 2015-03-11 苏州市贝克生物科技有限公司 Adhesive for soft tissues and preparation method of adhesive
KR101626941B1 (en) 2014-10-10 2016-06-03 박승찬 Composition for Promoting Osteogenesis and Composition for Preventing or Treating Hyperlipidemia
KR20160065891A (en) 2013-09-30 2016-06-09 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Silicone-polyether copolymers, adhesives and medical articles comprising same, and methods of making same
KR20180124358A (en) 2017-05-11 2018-11-21 한문석 Drain Tube Fixation and Surgical Skin Closure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0146409B1 (en) * 1993-12-23 1998-08-01 데이비드 피. 멜로디 Sterilized cyanoacrylate adhesive composition and a method of making such a composition
KR100650453B1 (en) * 2005-06-04 2006-11-27 주식회사 예스바이오 Composite materials for bone defect filling and bone replacement
WO2009155589A2 (en) * 2008-06-20 2009-12-23 Adhezion Biomedical, Llc. Stable and sterile tissue adhesive composition with a controlled high viscosity
KR20100030007A (en) * 2008-09-09 2010-03-18 주식회사 예스바이오 Method for preparation of composite materials for bone defect filling and bone replacement
US20110283662A1 (en) * 2010-05-21 2011-11-24 Adhezion Biomedical, Llc Low dose gamma sterilization of liquid adhesives
KR101201984B1 (en) 2012-02-28 2012-11-15 주식회사 제네웰 Tissue adhesives for wound-connection and method for preparing threrof
KR20150004820A (en) 2012-04-04 2015-01-13 메르크 파텐트 게엠베하 Cyclic amides as metap-2 inhibitors
KR20160065891A (en) 2013-09-30 2016-06-09 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Silicone-polyether copolymers, adhesives and medical articles comprising same, and methods of making same
KR101626941B1 (en) 2014-10-10 2016-06-03 박승찬 Composition for Promoting Osteogenesis and Composition for Preventing or Treating Hyperlipidemia
CN104399113A (en) * 2014-11-25 2015-03-11 苏州市贝克生物科技有限公司 Adhesive for soft tissues and preparation method of adhesive
KR20180124358A (en) 2017-05-11 2018-11-21 한문석 Drain Tube Fixation and Surgical Skin Closure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. Guarino et al., "Compilation of radiation damage test date", CERN(2001), pp.1-121* *

Also Published As

Publication number Publication date
KR102281485B1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
US6018095A (en) Method for preparing an implantable composite material, resulting material, implant including said material, and kit therefor
JP4975934B2 (en) Injectable bone mineral replacement material
US4373217A (en) Implantation materials and a process for the production thereof
Farrar Bone adhesives for trauma surgery: A review of challenges and developments
US5605713A (en) Process for the preparation of calcium phosphate cements and its application as bio-materials
US4668295A (en) Surgical cements
KR101276632B1 (en) Injectable composite material suitable for use as a bone substitute
EP2490727B1 (en) Composition for the treatment of a bone fracture
US20200046874A1 (en) Compositions for tissue hemostasis, repair and reconstruction
KR20080023340A (en) Bone cement composition
US8642064B2 (en) Bioabsorbable composite material
Wistlich et al. A bone glue with sustained adhesion under wet conditions
EP3031478B1 (en) Bone regeneration material kit, paste-like bone regeneration material, bone regeneration material, and bone bonding material
KR20140129058A (en) Injectable, biodegradable bone cements and methods of making and using same
US20120195848A1 (en) Strontium-containing bioactive bone cement
WO2015193836A1 (en) Injectable apatitic cement ionically multi-substituted for regenerative vertebroplasty and kyphoplasty
US9351812B2 (en) Calcium aluminate based paste for stabilizing dental implants and restoring tissue attachment after surgery and methods therefor
Moussi et al. Injectable macromolecule-based calcium phosphate bone substitutes
KR101019741B1 (en) Method for preparation of composite materials for Bone Defect Filling and Bone Replacement
US20110178525A1 (en) Biomaterials containing calcium phosphate
KR101654600B1 (en) Composition containing injectable self-hardened apatite cement
KR102281485B1 (en) Manufacturing methods of bone replacement materials composite material for variations in viscosity of cyanoacrylate to physical properties change, and its composite
KR101176793B1 (en) Bone cement composition containing silk fibroin hydrolysates and polymethylmetacrylate
EP2593149B1 (en) Composite material comprising pectin and calcium phosphate and method for its realisation
KR102106312B1 (en) Bone alternative synthetic bone having paste form, and method for producing the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant