KR20200138137A - 영상 부호화/복호화 방법 및 장치 - Google Patents

영상 부호화/복호화 방법 및 장치 Download PDF

Info

Publication number
KR20200138137A
KR20200138137A KR1020200167255A KR20200167255A KR20200138137A KR 20200138137 A KR20200138137 A KR 20200138137A KR 1020200167255 A KR1020200167255 A KR 1020200167255A KR 20200167255 A KR20200167255 A KR 20200167255A KR 20200138137 A KR20200138137 A KR 20200138137A
Authority
KR
South Korea
Prior art keywords
block
current block
candidate
control point
information
Prior art date
Application number
KR1020200167255A
Other languages
English (en)
Inventor
김기백
Original Assignee
김기백
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김기백 filed Critical 김기백
Publication of KR20200138137A publication Critical patent/KR20200138137A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명에 따른 영상 부호화/복호화 방법 및 장치는, 현재 블록의 모션 정보 예측을 위한 후보 리스트를 생성하고; 여기서, 상기 후보 리스트는, 복수의 어파인 후보로 구성됨, 상기 후보 리스트와 후보 인덱스에 기반하여, 상기 현재 블록의 복수의 제1 모션 벡터들을 유도하고; 여기서, 상기 후보 인덱스는 상기 후보 리스트에 속한 복수의 어파인 후보 중 어느 하나를 특정함, 상기 현재 블록의 복수의 제1 모션 벡터들을 기반으로, 상기 현재 블록의 서브 블록 단위의 제2 모션 벡터를 유도하고; 및 상기 제2 모션 벡터를 이용하여, 상기 현재 블록에 대해 인터 예측을 수행할 수 있다.

Description

영상 부호화/복호화 방법 및 장치{METHOD AND APPARATUS FOR IMAGE ENCODING/DECODING}
본 발명은 영상 부호화/복호화 방법 및 장치에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 응용 분야에서 증가하고 있고, 이에 따라 고효율의 영상 압축 기술들이 논의되고 있다.
영상 압축 기술로 현재 픽쳐의 이전 또는 이후 픽쳐로부터 현재 픽쳐에 포함된 화소값을 예측하는 화면간 예측 기술, 현재 픽쳐 내의 화소 정보를 이용하여 현재 픽쳐에 포함된 화소값을 예측하는 화면내 예측 기술, 출현 빈도가 높은 값에 짧은 부호를 할당하고 출현 빈도가 낮은 값에 긴 부호를 할당하는 엔트로피 부호화 기술 등 다양한 기술이 존재하고 이러한 영상 압축 기술을 이용해 영상 데이터를 효과적으로 압축하여 전송 또는 저장할 수 있다.
본 발명은 화면간 예측 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명은 서브 블록 단위의 모션 보상 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명은 어파인 후보를 결정하는 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명에 따른 영상 부호화/복호화 방법 및 장치는, 현재 블록의 모션 정보 예측을 위한 후보 리스트를 생성하고; 여기서, 상기 후보 리스트는, 복수의 어파인 후보로 구성됨, 상기 후보 리스트와 후보 인덱스에 기반하여, 상기 현재 블록의 복수의 제1 모션 벡터들을 유도하고; 여기서, 상기 후보 인덱스는 상기 후보 리스트에 속한 복수의 어파인 후보 중 어느 하나를 특정함, 상기 현재 블록의 복수의 제1 모션 벡터들을 기반으로, 상기 현재 블록의 서브 블록 단위의 제2 모션 벡터를 유도하고; 및 상기 제2 모션 벡터를 이용하여, 상기 현재 블록에 대해 인터 예측을 수행할 수 있다.
본 발명에 따른 영상 부호화/복호화 방법 및 장치에 있어서, 상기 어파인 후보는, 공간적 후보, 시간적 후보 또는 유도된 후보 중 적어도 하나를 포함할 수 있다.
본 발명에 따른 영상 부호화/복호화 방법 및 장치에 있어서, 상기 유도된 후보는, 상기 현재 블록의 각 코너에 대응하는 제1 모션 벡터 중 적어도 2개의 조합에 기초하여 결정되고, 상기 현재 블록의 각 코너에 대응하는 제1 모션 벡터는, 상기 현재 블록에 공간적으로 인접한 주변 블록의 제3 모션 벡터에 기초하여 유도되며, 상기 주변 블록은, 상기 현재 블록의 좌측 블록, 상단 블록, 좌상단 블록, 우상단 블록 또는 좌하단 블록 중 적어도 하나를 포함할 수 있다.
본 발명에 따른 영상 부호화/복호화 방법 및 장치에 있어서, 비트스트림으로부터 상기 현재 블록의 움직임 모델에 관한 정보를 획득하는 단계를 더 포함하되, 상기 정보는, 상기 현재 블록이 어파인 모델로 부호화된 블록인지 여부 또는 상기 현재 블록이 이용하는 제1 모션 벡터의 개수 중 적어도 하나를 특정할 수 있다.
본 발명에 따른 영상 부호화/복호화 방법 및 장치에 있어서, 상기 서브 블록은, 복호화 장치에 기-정의된, 4x4의 고정된 크기를 가질 수 있다.
본 발명에 따르면, 어파인 모델 기반의 인터 예측을 통해 영상의 부호화/복호화 성능을 향상시킬 수 있다.
본 발명에 따르면, 서브 블록 단위의 인터 예측을 통해 예측의 정확성을 향상시킬 수 있다.
본 발명에 따르면, 효율적인 어파인 후보 결정을 통해, 인터 예측의 부호화/복호화 효율이 향상될 수 있다.
도 1은 본 발명의 실시예에 따른 영상 부호화 및 복호화 시스템에 대한 개념도이다.
도 2는 본 발명의 일 실시예에 따른 영상 부호화 장치에 대한 블록 구성도이다.
도 3은 본 발명의 일 실시예에 따른 영상 복호화 장치에 대한 블록 구성도이다.
도 4는 본 발명이 적용되는 일실시예로서, 화면간 예측 방법을 도시한 것이다.
도 5는 본 발명이 적용되는 일실시예로서, 공간적/시간적 주변 블록으로부터 어파인 후보를 유도하는 방법에 관한 것이다.
도 6은 본 발명이 적용되는 일실시예로서, 공간적/시간적 주변 블록의 모션 벡터의 조합에 기초하여 구성된 후보를 유도하는 방법을 도시한 것이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 것을 의미한다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 발명의 실시예에 따른 영상 부호화 및 복호화 시스템에 대한 개념도이다.
도 1을 참조하면, 영상 부호화 장치(105) 및 복호화 장치(100)는 개인용 컴퓨터(PC:Personal Computer), 노트북 컴퓨터, 개인 휴대 단말기(PDA: Personal Digital Assistant), 휴대형 멀티미디어 플레이어(PMP: Portable Multimedia Player), 플레이스테이션 포터블(PSP: PlayStation Portable), 무선 통신 단말기(Wireless Communication Terminal), 스마트폰(Smart Phone) 또는 TV 등과 같은 사용자 단말기이거나 응용 서버와 서비스 서버 등 서버 단말기일 수 있으며, 각종 기기 또는 유무선 통신망과 통신을 수행하기 위한 통신 모뎀 등의 통신 장치, 영상을 부호화 또는 복호화를 위해 인터 또는 인트라 예측하기 위한 각종 프로그램과 데이터를 저장하기 위한 메모리(memory, 120, 125) 또는 프로그램을 실행하여 연산 및 제어하기 위한 프로세서(processor, 110, 115) 등을 구비하는 다양한 장치를 포함할 수 있다.
또한, 영상 부호화 장치(105)에 의해 비트스트림으로 부호화된 영상은 실시간 또는 비실시간으로 인터넷, 근거리 무선 통신망, 무선랜망, 와이브로망 또는 이동통신망 등의 유무선 통신망(Network) 등을 통하거나 케이블 또는 범용 직렬 버스(USB: Universal Serial Bus) 등과 같은 다양한 통신 인터페이스를 통해 영상 복호화 장치(100)로 전송되어 영상 복호화 장치(100)에서 복호화되어 영상으로 복원되고 재생될 수 있다. 또한, 영상 부호화 장치(105)에 의해 비트스트림으로 부호화된 영상은 컴퓨터 판독 가능한 기록 매체를 통하여 영상 부호화 장치(105)에서 영상 복호화 장치(100)로 전달될 수 있다.
전술한 영상 부호화 장치와 영상 복호화 장치는 각각 별도의 장치들일 수 있으나, 구현에 따라서 하나의 영상 부호화/복호화 장치로 만들어질 수 있다. 그 경우, 영상 부호화 장치의 일부 구성은 영상 복호화 장치의 일부 구성과 실질적으로 동일한 기술요소로서 적어도 동일한 구조를 포함하거나 적어도 동일한 기능을 수행하도록 구현될 수 있다.
따라서, 이하의 기술요소들과 이들의 작동 원리 등에 대한 상세 설명에서는 대응 기술요소들의 중복되는 설명을 생략하기로 한다. 또한, 영상 복호화 장치는 영상 부호화 장치에서 수행되는 영상 부호화 방법을 복호화에 적용하는 컴퓨팅 장치에 대응하므로, 이하의 설명에서는 영상 부호화 장치를 중심으로 설명하기로 한다.
컴퓨팅 장치는 영상 부호화 방법 및/또는 영상 복호화 방법을 구현하는 프로그램이나 소프트웨어 모듈을 저장하는 메모리와 메모리에 연결되어 프로그램을 수행하는 프로세서를 포함할 수 있다. 여기서, 영상 부호화 장치는 부호화기로, 영상 복호화 장치는 복호화기로 각각 지칭될 수 있다.
도 2는 본 발명의 일 실시예에 따른 영상 부호화 장치에 대한 블록 구성도이다.
도 2를 참조하면, 영상 부호화 장치(20)는 예측부(200), 감산부(205), 변환부(210), 양자화부(215), 역양자화부(220), 역변환부(225), 가산부(230), 필터부(235), 부호화 픽쳐 버퍼(240) 및 엔트로피 부호화부(245)를 포함할 수 있다.
예측부(200)는 소프트웨어 모듈인 예측 모듈(prediction module)을 이용하여 구현될 수 있고, 부호화할 블록에 대하여 화면내 예측 방식(Intra Prediction)이나 화면간 예측 방식(Inter Prediction)으로 예측 블록을 생성할 수 있다. 예측부(200)는 영상에서 현재 부호화하고자 하는 현재 블록을 예측하여 예측 블록을 생성할 수 있다. 다시 말해, 예측부(200)는 영상에서 부호화하고자 하는 현재 블록의 각 화소의 화소값(pixel value)을 화면내 예측 또는 화면간 예측에 따라 예측하여 생성된 각 화소의 예측 화소값(prediced pixel value)를 갖는 예측 블록을 생성할 수 있다. 또한, 예측부(200)는 화면내 예측 모드 또는 화면간 예측 모드와 같은 예측 모드에 대한 정보와 같은 예측 블록을 생성하는데 필요한 정보를 부호화부로 전달하여 부호화부로 하여금 예측 모드에 대한 정보를 부호화하도록 할 수 있다. 이때, 예측이 수행되는 처리 단위와 예측 방법 및 구체적인 내용이 정해지는 처리 단위는 부/복호화 설정에 따라 정해질 수 있다. 예를 들어, 예측 방법, 예측 모드 등은 예측 단위로 결정되고, 예측의 수행은 변환 단위로 수행될 수 있다.
화면간 예측부에서 움직임 예측 방법에 따라 이동 움직임 모델(Translation motion model)과 이동외 움직임 모델(Affine motion model)로 구분할 수 있다. 이동 움직임 모델의 경우 평행 이동만을 고려하여 예측을 수행하고, 이동외 움직임 모델의 경우 평행 이동뿐만 아니라 회전, 원근, 줌 인/아웃(Zoom in/out) 등과 같은 움직임을 고려하여 예측을 수행할 수 있다. 단방향 예측을 가정할 때 이동 움직임 모델의 경우 하나의 움직임 벡터가 필요할 수 있지만, 이동외 움직임 모델의 경우 하나 이상의 움직임 벡터가 필요할 수 있다. 이동외 움직임 모델의 경우 각 움직임 벡터는 현재 블록의 좌상측 꼭지점, 우상측 꼭지점 등과 같이 현재 블록의 기 설정된 위치에 적용되는 정보일 수 있고, 해당 움직임 벡터를 통해 현재 블록의 예측하고자 하는 영역의 위치를 화소 단위 또는 서브 블록 단위로 획득할 수 있다. 화면간 예측부는 상기 움직임 모델에 따라 후술하는 일부 과정은 공통으로 적용될 수 있고 일부 과정은 개별적으로 적용될 수 있다.
화면간 예측부는 참조 픽쳐 구성부, 움직임 추정부, 움직임 보상부, 움직임 정보 결정부, 움직임 정보 부호화부를 포함할 수 있다. 참조 픽쳐 구성부는 현재 픽쳐를 중심으로 이전 또는 이후에 부호화된 픽쳐를 참조 픽쳐 리스트(L0, L1)에 포함할 수 있다. 상기 참조 픽쳐 리스트에 포함된 참조 픽쳐로부터 예측 블록을 획득할 수 있으며, 부호화 설정에 따라 현재 영상 또한 참조 픽쳐로 구성되어 참조 픽쳐 리스트 중 적어도 한 곳에 포함될 수 있다.
화면간 예측부에서 참조 픽쳐 구성부는 참조 픽쳐 보간부를 포함할 수 있으며, 보간 정밀도에 따라 소수 단위 화소를 위한 보간 과정을 수행할 수 있다. 예를 들어, 휘도 성분의 경우 8-tap DCT 기반의 보간 필터를 적용하고, 색차 성분의 경우 4-tap DCT 기반의 보간 필터를 적용할 수 있다.
화면간 예측부에서 움직임 추정부는 현재 블록과 상관성이 높은 블록을 참조 픽쳐를 통해 탐색하는 과정이며 FBMA(Full search-based block matching algorithm), TSS(Three step search) 등의 다양한 방법이 사용될 수 있고, 움직임 보상부는 움직임 추정 과정을 통해 예측 블록을 획득하는 과정을 의미한다.
화면간 예측부에서 움직임 정보 결정부는 현재 블록의 최적의 움직임 정보를 선정하기 위한 과정이 수행될 수 있으며, 움직임 정보는 스킵 모드(Skip Mode), 병합 모드(Merge Mode), 경쟁 모드(Competition Mode) 등의 움직임 정보 부호화 모드에 의해 부호화될 수 있다. 상기 모드는 움직임 모델에 따라 지원되는 모드가 결합되어 구성될 수 있으며, 스킵 모드(이동), 스킵 모드(이동외), 병합 모드(이동), 병합 모드(이동외), 경쟁 모드(이동), 경쟁 모드(이동외)가 그에 대한 예가 될 수 있다. 부호화 설정에 따라 상기 모드 중 일부가 후보군에 포함될 수 있다.
상기 움직임 정보 부호화 모드는 적어도 하나의 후보 블록에서 현재 블록의 움직임 정보(움직임 벡터, 참조 픽쳐, 예측 방향 등)의 예측값을 획득할 수 있으며, 둘 이상의 후보 블록이 지원되는 경우에는 최적의 후보 선택 정보가 발생할 수 있다. 스킵 모드(잔차 신호 없음)와 병합 모드(잔차 신호 존재)는 상기 예측값을 그대로 현재 블록의 움직임 정보로 사용할 수 있고, 경쟁 모드는 현재 블록의 움직임 정보와 상기 예측값과의 차분치 정보가 발생할 수 있다.
현재 블록의 움직임 정보 예측값을 위한 후보군은 움직임 정보 부호화 모드에 따라 적응적이고 다양한 구성을 가질 수 있다. 현재 블록에 공간적으로 인접한 블록(예를 들어, 좌, 상, 좌상, 우상, 좌하 블록 등)의 움직임 정보가 후보군에 포함될 수 있고, 시간적으로 인접한 블록의 움직임 정보가 후보군에 포함될 수 있으며, 공간적 후보와 시간적 후보의 혼합 움직임 정보 등이 후보군에 포함될 수 있다.
상기 시간적으로 인접한 블록은 현재 블록과 대응(또는 상응)하는 다른 영상 내 블록을 포함하고, 해당 블록을 중심으로 좌, 우, 상, 하, 좌상, 우상, 좌하, 우하 블록 등에 위치한 블록을 의미할 수 있다. 상기 혼합 움직임 정보는 공간적으로 인접한 블록의 움직임 정보와 시간적으로 인접한 블록의 움직임 정보를 통해 평균, 중앙값 등으로 획득되는 정보를 의미할 수 있다.
움직임 정보 예측값 후보군 구성을 위한 우선 순위가 존재할 수 있다. 상기 우선 순위에 따라 예측값 후보군 구성에 포함되는 순서가 정해질 수 있으며, 상기 우선 순위에 따라 후보군의 개수(움직임 정보 부호화 모드에 따라 정해짐)만큼 채워지면 후보군 구성을 완료할 수 있다. 이때, 공간적으로 인접한 블록의 움직임 정보, 시간적으로 인접한 블록의 움직임 정보, 공간적 후보와 시간적 후보의 혼합 움직임 정보 순서로 우선 순위가 정해질 수 있으나, 그 외의 변형 또한 가능하다.
예를 들어, 공간적으로 인접한 블록 중에서는 좌 - 상 - 우상 - 좌하 - 좌상 블록 등의 순서로 후보군에 포함할 수 있고, 시간적으로 인접한 블록 중에서는 우하 - 중 - 우 - 하 블록 등의 순서로 후보군에 포함할 수 있다.
감산부(205)는 현재 블록에서 예측 블록을 감산하여 잔차 블록(residual block)을 생성할 수 있다. 다시 말해, 감산부(205)는 부호화하고자 하는 현재 블록의 각 화소의 화소값과 예측부를 통해 생성된 예측 블록의 각 화소의 예측 화소값의 차이를 계산하여 블록 형태의 잔차 신호(residual signal)인 잔차 블록을 생성할 수 있다. 또한, 감산부(205)는 후술하는 블록 분할부를 통해 획득된 블록 단위 이외의 단위에 따라 잔차 블록을 생성할 수도 있다.
변환부(210)는 공간 영역에 속하는 신호를 주파수 영역에 속하는 신호로 변환할 수 있으며, 변환 과정을 거쳐 획득되는 신호를 변환 계수(Transformed Coefficient)라고 한다. 예를 들어, 감산부로부터 전달받은 잔차 신호를 갖는 잔차 블록을 변환하여 변환 계수를 갖는 변환 블록을 획득할 수 있는데, 입력 받은 신호는 부호화 설정에 따라 결정되며 이는 잔차 신호에 한정되지 않는다.
변환부는 잔차 블록을 하다마드 변환(Hadamard Transform), 이산 사인 변환(DST Based-Transform: Discrete Sine Transform), 이산 코사인 변환(DCT Based-Transform: Discrete Cosine Transform) 등과 같은 변환 기법을 사용하여 변환할 수 있으며, 이에 한정되지 않고 이를 개량 및 변형한 다양한 변환 기법이 사용될 수 있다.
상기 변환 기법 중 적어도 하나의 변환 기법이 지원될 수 있으며, 각 변환 기법에서 적어도 하나의 세부 변환 기법이 지원될 수 있다. 이때, 상기 세부 변한 기법은 각 변환 기법에서 기저 벡터의 일부가 달리 구성되는 변환 기법일 수 있다.
예를 들어, DCT의 경우 DCT-I 내지 DCT-VIII 중 하나 이상의 세부 변환 기법이 지원될 수 있고, DST의 경우 DST-I 내지 DST-VIII 중 하나 이상의 세부 변환 기법이 지원될 수 있다. 상기 세부 변환 기법의 일부를 구성하여 변환 기법 후보군을 구성할 수 있다. 일 예로, DCT-II, DCT-VIII, DST-VII를 변환 기법 후보군으로 구성하여 변환을 수행할 수 있다.
변환은 수평/수직 방향으로 수행될 수 있다. 예를 들어, DCT-II의 변환 기법을 사용하여 수평 방향으로 1차원 변환을 수행하고, DST-VIII의 변환 기법을 사용하여 수직 방향으로 1차원 변환을 수행하여 총 2차원 변환을 수행함으로써 공간 영역의 화소값을 주파수 영역으로 변환할 수 있다.
고정적인 하나의 변환 기법을 사용하여 변환을 수행할 수 있거나 부/복호화 설정에 따라 변환 기법을 적응적으로 선택하여 변환을 수행할 수 있다. 이때, 적응적인 경우에는 명시적 또는 묵시적인 방법을 사용하여 변환 기법을 선택할 수 있다. 명시적인 경우에는 수평, 수직 방향에 적용되는 각각의 변환 기법 선택 정보 또는 변환 기법 세트 선택 정보가 블록 등의 단위에서 발생할 수 있다. 묵시적인 경우는 영상 타입(I/P/B), 컬러 성분, 블록의 크기, 형태, 화면내 예측 모드 등에 따라 부호화 설정이 정의될 수 있으며, 이에 따라 기 정의된 변환 기법이 선택될 수 있다.
또한, 부호화 설정에 따라 상기 일부 변환이 생략되는 경우가 가능할 수 있다. 즉, 명시적 또는 묵시적으로 수평/수직 단위 중 하나 이상을 생략할 수 있음을 의미한다.
또한, 변환부는 변환 블록을 생성하는데 필요한 정보를 부호화부로 전달하여 이를 부호화하도록 할 수 있고, 그에 따른 정보를 비트스트림에 수록하여 이를 복호화기에 전송하고, 복호화기의 복호화부는 이에 대한 정보를 파싱하여 역변환 과정에 사용할 수 있다.
양자화부(215)는 입력 받은 신호를 양자화할 수 있으며, 이때 양자화 과정을 거쳐 획득되는 신호를 양자화 계수(Quantized Coefficient)라고 한다. 예를 들어, 변환부로부터 전달받은 잔차 변환 계수를 갖는 잔차 블록을 양자화하여 양자화 계수를 갖는 양자화 블록을 획득할 수 있는데, 입력 받은 신호는 부호화 설정에 따라 결정되며 이는 잔차 변환 계수에 한정되지 않는다.
양자화부는 변환된 잔차 블록을 데드존 균일 경계 양자화(Dead Zone Uniform Threshold Quantization), 양자화 가중치 매트릭스(Quantization Weighted Matrix) 등과 같은 양자화 기법을 사용하여 양자화할 수 있으며, 이에 한정되지 않고 이를 개량 및 변형한 다양한 양자화 기법이 사용될 수 있다.
부호화 설정에 따라 양자화 과정은 생략할 수 있다. 예를 들어, 부호화 설정(예를 들어, 양자화 파라미터가 0. 즉, 무손실 압축 환경)에 따라 양자화 과정을 생략(역과정도 포함)할 수 있다. 다른 예로, 영상의 특성에 따라 양자화를 통한 압축 성능이 발휘되지 않는 경우에는 양자화 과정을 생략할 수 있다. 이때, 양자화 블록(M x N) 중 양자화 과정이 생략되는 영역은 전체 영역이거나 또는 일부 영역(M/2 x N/2, M x N/2, M/2 x N 등)일 수 있으며, 양자화 생략 선택 정보는 묵시적 또는 명시적으로 정해질 수 있다.
양자화부는 양자화 블록을 생성하는데 필요한 정보를 부호화부로 전달하여 이를 부호화하도록 할 수 있고, 그에 따른 정보를 비트스트림에 수록하여 이를 복호화기에 전송하고, 복호화기의 복호화부는 이에 대한 정보를 파싱하여 이를 역양자화 과정에 사용할 수 있다.
상기 예에서는 변환부와 양자화부를 통해 잔차 블록을 변환하고 양자화하는 가정 하에 설명하였지만, 잔차 블록을 잔차 신호를 변환하여 변환 계수를 갖는 잔차 블록을 생성하고 양자화 과정을 수행하지 않을 수 있으며, 잔차 블록의 잔차 신호를 변환 계수로 변환하지 않고 양자화 과정만을 수행할 수 있을 뿐만 아니라, 변환과 양자화 과정 모두 수행하지 않을 수 있다. 이는 부호화기 설정에 따라 결정될 수 있다.
역양자화부(220)는 양자화부(215)에 의해 양자화된 잔차 블록을 역 양자화한다. 즉, 역양자화부(220)는 양자화 주파수 계수열을 역양자화하여 주파수 계수를 갖는 잔차 블록을 생성한다.
역변환부(225)는 역양자화부(220)에 의해 역양자화된 잔차 블록을 역변환한다. 즉, 역변환부(225)는 역양자화된 잔차 블록의 주파수 계수들을 역변환하여 화소값을 갖는 잔차 블록, 즉 복원된 잔차 블록을 생성한다. 여기서, 역변환부(225)는 변환부(210)에서 사용한 변환한 방식을 역으로 사용하여 역변환을 수행할 수 있다.
가산부(230)는 예측부(200)에서 예측된 예측 블록과 역변환부(225)에 의해 복원된 잔차 블록을 가산하여 현재 블록을 복원한다. 복원된 현재 블록은 부호화 픽쳐 버퍼(240)에 참조 픽쳐(또는 참조 블록)로서 저장되어 현재 블록의 다음 블록이나 향후 다른 블록, 다른 픽쳐를 부호화할 때 참조 픽쳐로서 사용될 수 있다.
필터부(235)는 디블록킹 필터, SAO(Sample Adaptive Offset), ALF(Adaptive Loop Filter) 등의 하나 이상의 후처리 필터 과정을 포함할 수 있다. 디블록킹 필터는 복원된 픽쳐에서 블록 간의 경계에 생긴 블록 왜곡을 제거할 수 있다. ALF는 디블록킹 필터를 통해 블록이 필터링된 후 복원된 영상과 원래의 영상을 비교한 값을 기초로 필터링을 수행할 수 있다. SAO는 디블록킹 필터가 적용된 잔차 블록에 대하여, 화소 단위로 원본 영상과의 오프셋 차이를 복원할 수 있다. 이와 같은 후처리 필터는 복원된 픽쳐 또는 블록에 적용될 수 있다.
부호화 픽쳐 버퍼(240)는 필터부(235)를 통해 복원된 블록 또는 픽쳐를 저장할 수 있다. 부호화 픽쳐 버퍼(240)에 저장된 복원 블록 또는 픽쳐는 화면내 예측 또는 화면간 예측을 수행하는 예측부(200)에 제공될 수 있다.
엔트로피 부호화부(245)는 생성된 양자화 주파수 계수열을 다양한 스캔 방식에 따라 스캔하여 양자화 계수열을 생성하고, 이를 엔트로피 부호화 기법 등을 이용하여 부호화 함으로써 출력한다. 스캔 패턴은 지그재그, 대각선, 래스터(raster) 등 다양한 패턴들 중 하나로 설정할 수 있다. 또한, 각 구성부로부터 전달되는 부호화 정보를 포함하는 부호화 데이터를 생성하여 비트스트림으로 출력할 수 있다.
도 3은 본 발명의 일 실시예에 따른 영상 복호화 장치에 대한 블록 구성도이다.
도 3을 참조하면, 영상 복호화 장치(30)는 엔트로피 복호화부(305), 예측부(310), 역양자화부(315), 역변환부(320), 가감산기(325), 필터(330) 및 복호화 픽쳐 버퍼(335)를 포함하여 구성될 수 있다.
또한, 예측부(310)는 다시 화면내 예측 모듈 및 화면간 예측 모듈을 포함하여 구성될 수 있다.
먼저, 영상 부호화 장치(20)로부터 전달된 영상 비트스트림이 수신되면, 엔트로피 복호화부(305)로 전달될 수 있다.
엔트로피 복호화부(305)는 비트스트림을 복호화하여 양자화된 계수들과 각 구성부로 전달되는 복호화 정보를 포함하는 복호화 데이터를 복호화할 수 있다.
예측부(310)는 엔트로피 복호화부(305)로부터 전달된 데이터들에 기초하여 예측 블록을 생성할 수 있다. 이때, 복호화된 픽쳐 버퍼(335)에 저장된 참조 영상에 기초하여, 디폴트(default) 구성 기법을 이용한 참조 픽쳐 리스트를 구성할 수도 있다.
화면간 예측부는 참조 픽쳐 구성부, 움직임 보상부, 움직임 정보 복호화부를 포함할 수 있으며, 일부는 부호화기와 동일한 과정을 수행하고 일부는 역으로 유도하는 과정을 수행할 수 있다.
역양자화부(315)는 비트스트림으로 제공되어 엔트로피 복호화부(305)에 의해 복호화된 양자화된 변환 계수들을 역양자화할 수 있다.
역변환부(320)는 역 DCT, 역 정수 변환 또는 그와 유사한 개념의 역변환 기법들을 변환 계수에 적용하여 잔차 블록을 생성할 수 있다.
이때, 역양자화부(315), 역변환부(320)는 앞서 설명한 영상 부호화 장치(20)의 변환부(210) 및 양자화부(215)에서 수행한 과정을 역으로 수행하며 다양한 방법으로 구현될 수 있다. 예를 들어, 변환부(210) 및 양자화부(215)와 공유하는 동일한 과정 및 역변환을 사용할 수도 있고, 영상 부호화 장치(20)로부터 변환 및 양자화 과정에 관한 정보(예를 들면, 변환 크기, 변환 모양, 양자화 타입 등)를 이용하여 변환 및 양자화 과정을 역으로 수행할 수 있다.
역양자화 및 역변환 과정을 거친 잔차 블록은 예측부(310)에 의해 도출된 예측 블록과 가산되어 복원된 영상 블록이 생성될 수 있다. 이러한 가산은 가감산기(325)에 의해 이루어 질 수 있다.
필터(330)는 복원된 영상 블록에 대하여, 필요에 따라 블록킹(blocking) 현상을 제거하기 위하여 디블록킹 필터를 적용할 수도 있고, 상기 복호화 과정 전 후에 다른 루프 필터들을 비디오 품질을 향상시키기 위해 추가로 사용할 수도 있다.
복원 및 필터를 거친 영상 블록은 복호화 픽쳐 버퍼(335)에 저장될 수 있다.
도면에 도시하지 않았지만 영상 부호화/복호화 장치에 픽쳐 분할부와 블록 분할부를 더 포함할 수 있다.
픽쳐 분할부는 픽쳐를 컬러 공간(예를 들어, YCbCr, RGB 또는 XYZ 등), 타일, 슬라이스, 기본 부호화 단위(또는 최대 부호화 단위) 등과 같은 적어도 하나의 처리 단위로 분할(또는 구획)할 수 있고, 블록 분할부는 기본 부호화 단위를 적어도 하나의 처리 단위(예를 들어, 부호화, 예측, 변환, 양자화, 엔트로피 및 인루프 필터 단위 등)로 분할할 수 있다.
기본 부호화 단위는 가로 방향과 세로 방향으로 픽쳐를 일정한 간격으로 분할하여 획득될 수 있다. 이를 기반으로 타일, 슬라이스 등의 분할이 수행될 수 있으나 이에 한정하지는 않는다. 상기 타일과 슬라이스와 같은 분할 단위는 기본 부호화 블록의 정수배로 구성될 수 있으나, 영상 경계에 위치한 분할 단위에서는 예외적인 경우가 발생할 수 있다. 이를 위해 기본 부호화 블록 크기의 조정이 발생할 수도 있다.
예를 들어, 픽쳐를 기본 부호화 단위로 구획한 후에 상기 단위로 분할할 수 있거나 또는 픽쳐를 상기 단위로 구획한 후에 기본 부호화 단위로 분할할 수 있다. 본 발명에서는 각 단위의 구획 및 분할 순서가 전자인 경우를 가정하여 설명하나 이에 한정되지 않고, 부/복호화 설정에 따라 후자의 경우 또한 가능할 수 있다. 후자의 경우 기본 부호화 단위의 크기가 분할 단위(타일 등)에 따라 적응적인 경우로의 변형이 가능할 수 있다. 즉, 각 분할 단위마다 다른 크기를 갖는 기본 부호화 블록이 지원될 수 있음을 의미한다.
본 발명에서는 픽쳐를 기본 부호화 단위로 구획하는 경우를 기본 설정으로 두어 후술하는 예를 설명할 것이다. 상기 기본 설정은 픽쳐가 타일 또는 슬라이스로 분할되지 않거나 또는 픽쳐가 하나의 타일 또는 하나의 슬라이스인 경우를 의미할 수 있다. 그러나 전술한 것처럼 각 분할 단위(타일, 슬라이스 등)를 먼저 구획하고 획득된 단위에 기반하여 기본 부호화 단위로 분할하는 경우(즉, 각 분할 단위가 기본 부호화 단위의 정수배가 되지 않는 경우 등)에도 후술하는 다양한 실시예가 동일하거나 변경되어 적용될 수 있음이 이해되어야 한다.
상기 분할 단위 중 슬라이스의 경우 스캔 패턴에 따라 연속하는 적어도 하나의 블록들의 묶음으로 구성될 수 있고, 타일의 경우 공간적으로 인접한 블록들의 직사각형 형태의 묶음으로 구성될 수 있으며, 그 외의 추가적인 분할 단위가 지원되어 그에 따른 정의에 의해 구성될 수 있다. 슬라이스와 타일은 병렬 처리 등을 위한 목적으로 지원되는 분할 단위일 수 있으며, 이를 위해 분할 단위 간의 참조는 제한(즉, 참조할 수 없음)할 수 있다.
슬라이스는 연속하는 블록의 시작 위치에 대한 정보로 각 단위의 분할 정보를 생성할 수 있고, 타일의 경우 수평, 수직 방향의 분할 선에 대한 정보를 생성하거나 또는 타일의 위치 정보(예를 들어, 좌상, 우상, 좌하, 우하 위치)를 생성할 수 있다.
이때, 슬라이스와 타일은 부/복호화 설정에 따라 복수의 단위로 구분될 수 있다.
예를 들어, 일부 단위<A>는 부/복호화 과정에 영향을 주는 설정 정보를 포함하는 단위(즉, 타일 헤더 또는 슬라이스 헤더를 포함)일 수 있고, 일부 단위<B>는 설정 정보를 포함하지 않는 단위일 수 있다. 또는, 일부 단위<A>는 부/복호화 과정에서 다른 단위를 참조할 수 없는 단위일 수 있고, 일부 단위<B>는 참조할 수 있는 단위일 수 있다. 또한, 일부 단위<A>는 다른 단위<B>를 포함하는 상하 관계일 수 있거나 일부 단위<A>는 다른 단위<B>와 대등한 관계일 수 있다.
여기서 A와 B는 슬라이스와 타일(또는 타일과 슬라이스)일 수 있다. 또는, A와 B는 슬라이스나 타일 중 하나로 구성될 수 있다. 예를 들어, A는 슬라이스/타일<타입 1>이고 B는 슬라이스/타일<타입 2>와 같은 구성이 가능할 수 있다.
여기서 타입 1과 타입 2는 각각 하나의 슬라이스 또는 타일일 수 있다. 또는, 타입 1은 (타입 2를 포함하는) 복수의 슬라이스 또는 타일(슬라이스 집합 또는 타일 집합)일 수 있고, 타입 2는 하나의 슬라이스 또는 타일일 수 있다.
이미 전술한 것과 같이 본 발명은 픽쳐가 하나의 슬라이스 또는 타일로 구성되는 경우를 가정하여 설명하지만, 둘 이상의 분할 단위가 발생하는 경우라면 위의 설명이 후술하는 실시예에 적용되어 이해될 수 있다. 또한, A와 B는 분할 단위가 가질 수 있는 특성에 대한 예시로 각 예시의 A와 B가 혼합 구성되는 예 또한 가능하다.
한편, 블록 분할부를 통해 다양한 크기의 블록으로 분할할 수 있다. 이때, 블록은 컬러 포맷에 따라 하나 이상의 블록으로 구성(예를 들어, 하나의 휘도 블록 및 둘의 색차 블록 등)될 수 있으며, 컬러 포맷에 따라 블록의 크기가 결정될 수 있다. 이하에서는 설명의 편의를 위해 하나의 컬러 성분(휘도 성분)에 따른 블록을 기준으로 설명한다.
후술하는 내용은 하나의 컬러 성분을 대상으로 하지만 컬러 포맷에 따른 비율(예를 들어, YCbCr 4:2:0의 경우 휘도 성분과 색차 성분의 가로 및 세로 길이 비율은 2:1)에 비례하여 다른 컬러 성분에 변경 적용될 수 있음을 이해하여야 한다. 또한, 다른 컬러 성분에 의존적인 블록 분할(예를 들어, Cb/Cr에서 Y의 블록 분할 결과에 의존적인 경우)이 가능할 수 있지만, 각 컬러 성분에 독립적인 블록 분할이 가능할 수 있음을 이해하여야 한다. 또한, 공통되는 하나의 블록 분할 설정(길이 비율에 비례하는 것은 고려)을 사용할 수 있지만, 컬러 성분에 따라 개별적인 블록 분할 설정이 사용되는 것 또한 고려하여 이해할 필요가 있다.
블록은 M × N(M과 N은 4, 8, 16, 32, 64, 128 등의 정수)과 같은 가변 크기를 가질 수 있으며, 부호화 수행을 위한 단위(부호화 블록. Coding Block)일 수 있다. 상세하게는 예측, 변환, 양자화 및 엔트로피 부호화 등의 기초가 되는 단위일 수 있으며, 본 발명에서는 이를 통칭하여 블록이라 표현한다. 여기서 블록은 사각형의 블록만을 의미하는 것이 아니라 삼각형, 원형 등 다양한 형태의 영역을 포함하는 넓은 개념으로 이해될 수 있으며, 본 발명에서는 사각형 형태인 경우를 중심으로 설명한다.
블록 분할부는 영상 부호화 장치 및 복호화 장치의 각 구성부에 관계되어 설정될 수 있으며, 이 과정을 통해 블록의 크기와 형태가 정해질 수 있다. 이때, 설정되는 블록은 구성부에 따라 달리 정의될 수 있으며, 예측부의 경우 예측 블록(Prediction Block), 변환부의 경우 변환 블록(Transform Block), 양자화부의 경우 양자화 블록(Quantization Block) 등이 이에 해당할 수 있다. 다만, 이에 한정되지 않고 다른 구성부에 따른 블록 단위가 추가로 정의될 수 있다. 본 발명에서는 각 구성부에서 입력과 출력이 블록(즉, 직사각 형태)인 경우를 가정하여 설명하지만, 일부 구성부에서는 다른 형태(예를 들어, 사각형, 삼각형 등)의 입/출력이 가능할 수도 있다.
블록 분할부의 초기(또는 시작) 블록의 크기 및 형태는 상위 단위로부터 결정될 수 있다. 예를 들어, 부호화 블록의 경우 기본 부호화 블록이 초기 블록일 수 있고, 예측 블록의 경우 부호화 블록이 초기 블록일 수 있다. 또한, 변환 블록의 경우 부호화 블록 또는 예측 블록이 초기 블록일 수 있으며, 이는 부/복호화 설정에 따라 정해질 수 있다.
예를 들어, 부호화 모드가 인트라(intra)일 경우 예측 블록은 변환 블록의 상위 단위일 수 있고, 인터(inter)일 경우 예측 블록은 변환 블록에 독립적인 단위일 수 있다. 분할의 시작 단위인 초기 블록은 작은 크기의 블록으로 분할될 수 있으며, 블록의 분할에 따른 최적의 크기 및 형태가 결정되면 그 블록은 하위 단위의 초기 블록으로 결정될 수 있다. 분할의 시작 단위인 초기 블록을 상위 단위의 초기 블록이라 볼 수 있다. 여기서, 상위 단위는 부호화 블록, 하위 단위는 예측 블록 또는 변환 블록일 수 있으나, 이에 한정되는 것은 아니다. 상기 예와 같이 하위 단위의 초기 블록이 정해지면 상위 단위와 같이 최적의 크기 및 형태의 블록을 찾기 위한 분할 과정이 수행될 수 있다.
정리하면, 블록 분할부는 기본 부호화 단위(또는 최대 부호화 단위)를 적어도 하나의 부호화 단위(또는 하위 부호화 단위)로 분할을 수행할 수 있다. 또한, 부호화 단위는 적어도 하나의 예측 단위로 분할을 수행할 수 있고, 적어도 하나의 변환 단위로 분할을 수행할 수 있다. 부호화 단위는 적어도 하나의 부호화 블록으로 분할을 수행할 수 있고, 부호화 블록은 적어도 하나의 예측 블록으로 분할을 수행할 수 있고, 적어도 하나의 변환 블록으로 분할을 수행할 수 있다. 예측 단위는 적어도 하나의 예측 블록으로 분할을 수행할 수 있고, 변환 단위는 적어도 하나의 변환 블록으로 분할을 수행할 수 있다.
이때, 일부 블록의 경우 다른 블록과 결합되어 하나의 분할 과정을 수행할 수 있다. 예를 들어, 부호화 블록과 변환 블록이 하나의 단위로 결합할 경우 최적의 블록의 크기 및 형태를 획득하기 위한 분할 과정이 수행되며, 이는 부호화 블록의 최적의 크기 및 형태뿐만 아니라 변환 블록의 최적의 크기 및 형태일 수 있다. 또는, 부호화 블록과 변환 블록이 하나의 단위로 결합할 수 있고, 예측 블록과 변환 블록이 하나의 단위로 결합할 수 있고, 부호화 블록과 예측 블록과 변환 블록이 하나의 단위로 결합할 수 있고, 그 외의 블록들의 결합이 가능할 수 있다. 단, 상기 결합 여부는 영상(픽쳐, 슬라이스, 타일 등) 내에서 일괄적으로 적용되는 것이 아니라 블록 단위의 세부 조건(예를 들어, 영상 타입, 부호화 모드, 블록의 크기/형태, 예측 모드 정보 등)에 따라 적응적으로 결합 여부 등이 정해질 수 있다.
상술한 바와 같이 최적의 크기 및 형태의 블록을 찾은 경우, 이에 대한 모드 정보(예를 들어, 분할 정보 등)가 생성될 수 있다. 모드 정보는 블록이 속하는 구성부에서 발생하는 정보(예를 들어, 예측 관련 정보 및 변환 관련 정보 등)과 함께 비트스트림에 수록되어 복호화기로 전송될 수 있고, 복호화기에서 동일 수준의 단위로 파싱되어 영상 복호화 과정에서 사용될 수 있다.
이하에서는 분할 방식에 대한 설명할 것이며, 설명의 편의를 위해 초기 블록이 정사각 형태인 것을 가정하지만, 초기 블록이 직사각 형태인 경우에도 동일하거나 유사하게 적용할 수 있으므로, 이에 한정되는 것은 아니다.
블록 분할을 위한 다양한 방법이 지원될 수 있지만 본 발명에서는 트리 기반의 분할에 중점을 두어 설명할 것이며, 최소 하나의 트리 분할이 지원될 수 있다. 이때, 트리 방식은 쿼드 트리(Quad Tree. QT), 바이너리 트리(Binary Tree. BT), 터너리 트리(Ternary Tree. TT) 등이 지원될 수 있다. 하나의 트리 방식이 지원되는 경우는 단일 트리 분할, 둘 이상의 트리 방식이 지원되는 경우는 다중 트리 방식이라 지칭할 수 있다.
쿼드 트리 분할의 경우 블록이 가로와 세로 방향으로 각각 2분할되는 방식을 의미하고, 바이너리 트리 분할의 경우 블록이 가로 또는 세로 중 한 방향으로 2분할되는 방식을 의미하며, 터너리 트리 분할의 경우 블록이 가로 또는 세로 중 한 방향으로 3분할되는 방식을 의미한다.
본 발명에서 분할 전 블록이 M x N일 경우 쿼드 트리 분할은 4개의 M/2 x N/2으로 분할되고, 바이너리 트리 분할은 2개의 M/2 x N 또는 M x N/2로 분할되고, 터너리 트리 분할의 경우 M/4 x N / M/2 x N / M/4 x N 또는 M x N/4 / M x N/2 / M x N/4로 분할되는 경우를 가정한다. 하지만 분할 결과가 위의 경우에만 한정되지는 않으며, 다양한 변형의 예가 가능할 수 있다.
부/복호화 설정에 따라 상기 트리 분할 중 하나 이상의 방식이 지원될 수 있다. 예를 들어, 쿼드 트리 분할을 지원할 수 있거나 또는 쿼드 트리 분할과 바이너리 트리 분할을 지원할 수 있거나 또는 쿼드 트리 분할과 터너리 트리 분할을 지원할 수 있거나 또는 쿼드 트리 분할과 바이너리 트리 분할과 터너리 트리 분할을 지원할 수 있다.
상기 예는 기본 분할 방식이 쿼드 트리이며 기타 트리 지원 여부에 따라 바이너리 트리 분할과 터너리 트리 분할이 추가 분할 방식에 포함되는 경우에 대한 예이지만, 다양한 변형이 가능할 수 있다. 이때, 기타 트리 지원 여부에 대한 정보(bt_enabled_flag, tt_enabled_flag, bt_tt_enabled_flag 등. 0 또는 1의 값을 가질 수 있고, 0이면 지원하지 않고 1이면 지원)는 부/복호화 설정에 따라 묵시적으로 정해지거나 또는 시퀀스, 픽쳐, 슬라이스, 타일 등의 단위로 명시적으로 결정될 수 있다.
분할 정보는 분할 여부에 대한 정보(tree_part_flag. 또는, qt_part_flag, bt_part_flag, tt_part_flag, bt_tt_part_flag. 0 또는 1의 값을 가질 수 있고, 0이면 분할되지 않고 1이면 분할)가 포함될 수 있다. 또한, 분할 방식(바이너리 트리, 터너리 트리)에 따라 분할 방향(dir_part_flag. 또는, bt_dir_part_flag, tt_dir_part_flag, bt_tt_dir_part_flag. 0 또는 1의 값을 가질 수 있고, 0이면 <가로/수평>이고 1이면 <세로/수직>)에 대한 정보가 추가될 수 있으며, 이는 분할이 수행되는 경우에 발생 가능한 정보일 수 있다.
복수의 트리 분할이 지원되는 경우에는 다양한 분할 정보 구성이 가능할 수 있다. 다음은 하나의 깊이(Depth) 수준(즉, 지원되는 분할 깊이가 하나 이상으로 설정되어 재귀적인 분할이 가능할 수도 있지만 설명의 편의를 위한 목적)에서 분할 정보가 어떻게 구성되어 있는지에 대한 예로 가정하여 설명한다.
일 예(1)로, 분할 여부에 대한 정보를 확인한다. 이때, 분할이 수행되지 않는 경우라면 분할이 종료된다.
만약 분할이 수행되는 경우라면 분할 종류에 대한 선택 정보(예를 들어, tree_idx. 0이면 QT, 1이면 BT, 2이면 TT)를 확인한다. 이때, 선택되는 분할 종류에 따라 분할 방향 정보를 추가로 확인하고 다음 단계(분할 깊이가 최대에 도달하지 않은 경우 등의 이유로 추가 분할이 가능하다면 다시 처음부터 시작하고, 분할이 불가한 경우라면 분할 종료)로 넘어간다.
일 예(2)로, 일부 트리 방식(QT)에 대한 분할 여부에 대한 정보를 확인하고 다음 단계로 넘어간다. 이때, 분할이 수행되지 않는 경우라면 일부 트리 방식(BT)의 분할 여부에 대한 정보를 확인한다. 이때, 분할이 수행되지 않는 경우라면 일부 트리 방식(TT)의 분할 여부에 대한 정보를 확인한다. 이때, 분할이 수행되지 않는 경우라면 분할이 종료된다.
만약 일부 트리 방식(QT)의 분할이 수행되는 경우라면 다음 단계로 넘어간다. 또한, 만약 일부 트리 방식(BT)의 분할이 수행되는 경우라면 분할 방향 정보를 확인하고 다음 단계로 넘어간다. 또한, 만약 일부 트리 분할 방식(TT)의 분할이 수행되는 경우라면 분할 방향 정보를 확인하고 다음 단계로 넘어간다.
일 예(3)로, 일부 트리 방식(QT)에 대한 분할 여부에 대한 정보를 확인한다. 이때, 분할이 수행되지 않는 경우라면 일부 트리 방식(BT와 TT)의 분할 여부에 대한 정보를 확인한다. 이때, 분할이 수행되지 않는 경우라면 분할이 종료된다.
만약 일부 트리 방식(QT)의 분할이 수행되는 경우라면 다음 단계로 넘어간다. 또한, 만약 일부 트리 방식(BT와 TT)의 분할이 수행되는 경우라면 분할 방향 정보를 확인하고 다음 단계로 넘어간다.
상기 예는 트리 분할의 우선 순위가 존재(2번과 3번 예)하거나 존재하지 않는 경우(1번 예)일 수 있으나, 다양한 변형의 예가 가능할 수 있다. 또한, 상기 예에서 현재 단계의 분할은 이전 단계의 분할 결과와는 무관한 경우를 설명하는 예이지만, 현재 단계의 분할이 이전 단계의 분할 결과에 의존적인 설정 또한 가능할 수 있다.
예를 들어, 1 내지 3번 예의 경우 이전 단계에서 일부 트리 방식의 분할(QT)이 수행되어 현재 단계로 넘어온 경우라면 현재 단계에서도 동일 트리 방식(QT)의 분할이 지원될 수 있다.
반면, 이전 단계에서 일부 트리 방식의 분할(QT)이 수행되지 않고 다른 트리 방식의 분할(BT 또는 TT)이 수행되어 현재 단계로 넘어온 경우라면 일부 트리 방식의 분할(QT)을 제외하고 일부 트리 방식의 분할(BT와 TT)이 현재 단계를 포함한 후속 단계에 지원되는 설정 또한 가능할 수 있다.
위와 같은 경우에는 블록 분할에 지원되는 트리 구성이 적응적일 수 있다는 것을 의미하므로, 전술한 분할 정보 구성 또한 달리 구성될 수 있음을 의미한다. (후술하는 예는 3번 예로 가정) 즉, 상기 예에서 일부 트리 방식(QT)의 분할이 이전 단계에서 수행되지 않았을 경우, 현재 단계에서는 일부 트리 방식(QT)은 고려하지 않고 분할 과정이 수행될 수 있다. 또한, 관련 트리 방식에 관한 분할 정보(예를 들어, 분할 여부에 대한 정보, 분할 방향 정보 등. 본 예<QT>에서는 분할 여부에 대한 정보)는 제거하여 구성될 수 있다.
상기 예는 블록 분할이 허용되는 경우(예를 들어, 블록 크기가 최대값과 최소값 사이의 범위 내에 존재, 각 트리 방식의 분할 깊이가 최대 깊이<허용 깊이>에 도달하지 않음 등)에 대한 적응적인 분할 정보 구성에 관한 경우이며, 블록 분할이 제한되는 경우(예를 들어, 블록 크기가 최대값과 최소값 사이의 범위에 존재하지 않음, 각 트리 방식의 분할 깊이가 최대 깊이에 도달함 등)에도 적응적인 분할 정보 구성이 가능할 수 있다.
이미 언급한 것과 같이 본 발명에서 트리 기반의 분할은 재귀적인 방식을 사용하여 수행될 수 있다. 예를 들어, 분할 깊이가 k인 부호화 블록의 분할 플래그가 0인 경우 부호화 블록의 부호화는 분할 깊이가 k인 부호화 블록에서 수행되며, 분할 깊이가 k인 부호화 블록의 분할 플래그가 1인 경우 부호화 블록의 부호화는 분할 방식에 따라 분할 깊이가 k+1인 N개의 서브 부호화 블록(이때, N은 2, 3, 4와 같은 2 이상의 정수)에서 수행된다.
상기 서브 부호화 블록은 다시 부호화 블록(k+1)으로 설정되어 상기 과정을 거쳐 서브 부호화 블록(k+2)으로 분할될 수 있으며, 이러한 계층적 분할 방식은 분할 범위 및 분할 허용 깊이 등의 분할 설정에 따라 결정될 수 있다.
이때, 분할 정보를 표현하기 위한 비트스트림 구조는 하나 이상의 스캔 방법 중 선택할 수 있다. 예를 들어, 분할 깊이 순서 기준으로 분할 정보의 비트스트림을 구성할 수 있거나 분할 여부 기준으로 분할 정보의 비트스트림을 구성할 수 있다.
예를 들어, 분할 깊이 순서 기준의 경우 최초 블록 기준으로 현 수준의 깊이에서의 분할 정보를 획득한 후 다음 수준의 깊이에서의 분할 정보를 획득하는 방법이며, 분할 여부 기준의 경우 최초 블록 기준으로 분할된 블록에서의 추가 분할 정보를 우선적으로 획득하는 방법을 의미하며, 다른 추가적인 스캔 방법이 고려될 수 있다. 본 발명에서는 분할 여부 기준으로 분할 정보의 비트스트림을 구성하는 경우를 가정한다.
전술한 것과 같이 블록 분할에 관한 다양한 경우를 살펴보았으며, 블록 분할에 관한 고정적이거나 적응적인 설정이 지원될 수 있다.
이때, 블록 분할에 관한 설정은 시퀀스, 픽쳐, 슬라이스, 타일 등의 단위에서 관련 정보를 명시적으로 포함할 수 있다. 또는, 부/복호화 설정에 따라 묵시적으로 블록 분할 설정이 정해질 수 있으며, 여기서 부/복호화 설정은 영상 타입(I/P/B), 컬러 성분, 분할 종류, 분할 깊이 등의 다양한 부/복호화 요소 중 하나 또는 둘 이상의 조합에 따라 구성될 수 있다.
도 4는 본 발명이 적용되는 일실시예로서, 화면간 예측 방법을 도시한 것이다.
도 4를 참조하면, 현재 블록의 모션 정보 예측을 위한 후보 리스트를 생성할 수 있다(S400).
상기 후보 리스트는, 하나 또는 그 이상의 어파인 모델 기반의 후보(이하, 어파인 후보라 함)를 포함할 수 있다. 어파인 후보(Affine Candidate)는, 제어점 벡터(control point vector)를 가진 후보를 의미할 수 있다. 제어점 벡터는, 어파인 모델을 위한 제어점의 모션 벡터를 의미하고, 블록의 코너 위치(예를 들어, 좌상단, 우상단, 좌하단, 또는 우하단 코너 중 적어도 하나의 위치)에 대해서 정의될 수 있다.
어파인 후보는, 공간적 후보, 시간적 후보 또는 구성된 후보 중 적어도 하나를 포함할 수 있다. 여기서, 공간적 후보는, 현재 블록에 공간적으로 인접한 주변 블록의 벡터로부터 유도될 수 있고, 시간적 후보는, 현재 블록에 시간적으로 인접한 주변 블록의 벡터로부터 유도될 수 있다. 여기서, 상기 주변 블록은 어파인 모델로 부호화된 블록을 의미할 수 있다. 상기 벡터는, 모션 벡터를 의미할 수도 있고, 제어점 벡터를 의미할 수도 있다.
공간적/시간적 주변 블록의 벡터를 기반으로 공간적/시간적 후보를 유도하는 방법에 대해서는 도 5를 참조하여 자세히 살펴 보도록 한다.
한편, 상기 구성된 후보는, 현재 블록에 공간적/시간적 주변 블록의 모션 벡터 간의 조합에 기초하여 유도될 수 있으며, 이는 도 6을 참조하여 자세히 살펴 보기로 한다.
전술한 복수의 어파인 후보는, 소정의 우선 순위에 기초하여 상기 후보 리스트에 배열될 수 있다. 예를 들어, 복수의 어파인 후보는, 공간적 후보, 시간적 후보, 구성된 후보의 순서로 후보 리스트에 배열될 수 있다. 또는, 복수의 어파인 후보는, 시간적 후보, 공간적 후보, 구성된 후보의 순서로 후보 리스트에 배열될 수도 있다. 다만, 이에 한정되지 아니하며, 시간적 후보는, 구성된 후보 다음에 배열될 수도 있다. 또는, 구성된 후보 중 일부는, 공간적 후보 전에 배열되고, 나머지는 공간적 후보 뒤에 배열될 수도 있다.
상기 후보 리스트와 후보 인덱스에 기반하여, 현재 블록의 제어점 벡터가 유도될 수 있다(S410).
후보 인덱스는, 현재 블록의 제어점 벡터를 유도하기 위해 부호화된 인덱스를 의미할 수 있다. 상기 후보 인덱스는, 후보 리스트에 속한 복수의 어파인 후보 중 어느 하나를 특정할 수 있다. 상기 후보 인덱스에 의해 특정된 어파인 후보의 제어점 벡터를 이용하여, 현재 블록의 제어점 벡터가 유도될 수 있다.
예를 들어, 현재 블록의 어파인 모델의 타입이 4-parameter인 경우(즉, 현재 블록이 2개의 제어점 벡터를 사용하는 것으로 결정된 경우)를 가정한다. 이때, 상기 후보 인덱스에 의해 특정된 어파인 후보가 3개의 제어점 벡터를 가진 경우, 상기 3개의 제어점 벡터 중 2개의 제어점 벡터(e.g., Idx=0, 1인 제어점 벡터)만을 선택하고, 이를 현재 블록의 제어점 벡터로 설정할 수 있다. 또는, 상기 특정된 어파인 후보의 3개의 제어점 벡터를 현재 블록의 제어점 벡터로 설정할 수 있다. 이 경우, 현재 블록의 어파인 모델의 타입은 6-parameter로 갱신될 수 있다.
반대로, 현재 블록의 어파인 모델의 타입이 6-parameter인 경우(즉, 현재 블록이 3개의 제어점 벡터를 사용하는 것으로 결정된 경우)를 가정한다. 이때, 상기 후보 인덱스에 의해 특정된 어파인 후보가 2개의 제어점 벡터를 가진 경우, 1개의 추가적인 제어점 벡터를 생성하고, 상기 어파인 후보의 2개의 제어점 벡터 및 추가적인 제어점 벡터를 현재 블록의 제어점 벡터로 설정할 수 있다. 상기 추가적인 제어점 벡터는, 어파인 후보의 2개의 제어점 벡터, 현재/주변 블록의 크기 또는 위치 정보 중 적어도 하나에 기초하여 유도될 수 있다. 또는, 상기 특정된 어파인 후보의 2개의 제어점 벡터를 현재 블록의 제어점 벡터로 설정할 수 있다. 이 경우, 현재 블록의 어파인 모델의 타입은 4-parameter로 갱신될 수 있다.
현재 블록의 제어점 벡터를 기반으로, 현재 블록의 모션 벡터가 유도될 수 있다(S420).
상기 모션 벡터는, 현재 블록의 서브 블록의 단위로 유도될 수 있다. 여기서, NxM 서브 블록은, 직사각형(N>M 또는 N<M) 또는 정사각형(N=M)의 형태일 수 있다. 상기 N과 M 값은, 4, 8, 16, 32 또는 그 이상일 수 있다. 서브 블록의 크기/형태는, 복호화 장치에 기-정의된 고정된 크기/형태일 수 있다.
또는, 서브 블록의 크기/형태는, 전술한 블록의 속성에 기초하여 가변적으로 유도될 수도 있다. 예를 들어, 현재 블록의 크기가 소정의 문턱크기보다 크거나 같은 경우, 현재 블록은 제1 서브 블록의 단위(e.g., 8x8, 16x16)로 분할되고, 그렇지 않은 경우, 현재 블록은 제2 서브 블록의 단위(e.g., 4x4)로 분할될 수 있다. 또는, 서브 블록의 크기/형태에 관한 정보가 부호화 장치에서 부호화되어 시그날링될 수도 있다.
상기 유도된 모션 벡터를 이용하여 현재 블록에 대해 인터 예측을 수행할 수 있다(S430).
구체적으로, 현재 블록의 모션 벡터를 이용하여 참조 블록을 특정할 수 있다. 상기 참조 블록은, 현재 블록의 서브 블록 별로 각각 특정될 수 있다. 각 서브 블록의 참조 블록은, 하나의 참조 픽쳐에 속할 수 있다. 즉, 현재 블록에 속한 서브 블록은 하나의 참조 픽쳐를 공유할 수 있다. 또는, 현재 블록의 서브 블록 별로 참조 픽쳐 인덱스가 독립적으로 설정될 수도 있다.
상기 특정된 참조 블록은 현재 블록의 예측 블록으로 설정될 수 있다. 전술한 실시예는, 머지 모드뿐만 아니라 일반적인 인터 모드(e.g., AMVP 모드)에서도 동일/유사하게 적용될 수 있다. 전술한 실시예는, 현재 블록의 크기가 소정의 문턱크기보다 크거나 같은 경우에 한하여 수행될 수 있다. 여기서, 문턱크기는, 8x8, 8x16, 16x8, 16x16 또는 그 이상일 수 있다.
전술한 서브 블록 단위의 예측을 위해, 서브 블록 단위의 예측 또는 파라미터 유도를 지시하는 플래그가 시그날링될 수 있다. 상기 플래그의 값에 따라 전술한 S400 내지 S430 중 적어도 하나가 수행될 수 있다. 상기 플래그는, 상기 문턱크기보다 크거나 같은 경우에 한하여 시그날링될 수 있다. 상기 플래그의 파싱은, CABAC에 기초하여 수행될 수 있고, 이때 확률 정보(e.g., ctxInc)는, 주변 블록의 플래그의 값에 기초하여 유도될 수 있다. 여기서, 주변 블록은, 현재 블록의 좌측 또는 상단 주변 블록 중 적어도 하나를 포함할 수 있다.
도 5는 본 발명이 적용되는 일실시예로서, 공간적/시간적 주변 블록으로부터 어파인 후보를 유도하는 방법에 관한 것이다.
설명의 편의를 위해, 본 실시예에서는 공간적 주변 블록으로부터 어파인 후보를 유도하는 방법에 대해서 살펴 보기로 한다.
도 5를 참조하면, 현재 블록(500)의 너비와 높이는 각각 cbW, cbH이고, 현재 블록의 위치는 (xCb, yCb)이다. 공간적 주변 블록(510)의 너비와 높이는 각각 nbW, nbH이고, 공간적 주변 블록의 위치는 (xNb, yNb)이다. 도 5는, 공간적 주변 블록으로서 현재 블록의 좌상단 블록을 도시하나, 이에 한정되지 아니한다. 즉, 공간적 주변 블록은, 현재 블록의 좌측 블록, 좌하단 블록, 우상단 블록, 상단 블록 또는 좌상단 블록 중 적어도 하나를 포함할 수 있다.
공간적 후보는, n개의 제어점 벡터(cpMV)를 가질 수 있다. 여기서, n 값은, 1, 2, 3, 또는 그 이상의 정수일 수 있다. n 값은, 서브 블록 단위로 복호화되는지 여부에 관한 정보, 어파인 모델로 부호화된 블록인지 여부에 관한 정보 또는 어파인 모델의 타입(4-parameter 또는 6-parameter)에 관한 정보 중 적어도 하나에 기초하여 결정될 수 있다.
상기 정보는, 부호화 장치에서 부호화되어 시그날링될 수도 있다. 또는, 상기 정보 전부 또는 일부는, 블록의 속성에 기초하여 복호화 장치에서 유도될 수도 있다. 여기서, 블록은, 현재 블록을 의미할 수도 있고, 현재 블록의 공간적/시간적 주변 블록을 의미할 수도 있다. 상기 속성은, 크기, 형태, 위치, 분할 타입, 인터 모드, 잔차 계수에 관한 파라미터 등을 의미할 수 있다. 상기 인터 모드는, 복호화 장치에 기-정의된 모드로서, 머지 모드, 스킵 모드, AMVP 모드, 어파인 모델, 인트라/인터 조합 모드, 현재 픽쳐 참조 모드 등을 의미할 수 있다. 또는, n 값은 전술한 블록의 속성에 기초하여 복호화 장치에서 유도될 수도 있다.
본 실시예에서, n개의 제어점 벡터는, 제1 제어점 벡터(cpMV[0]), 제2 제어점 벡터(cpMV[1]), 제3 제어점 벡터(cpMV[2]), ?? 제n 제어점 벡터(cpMV[n-1])로 표현될 수 있다. 일예로, 제1 제어점 벡터(cpMV[0]), 제2 제어점 벡터(cpMV[1]), 제3 제어점 벡터(cpMV[2]) 및 제4 제어점 벡터(cpMV[3])는, 블록의 좌상단 샘플, 우상단 샘플, 좌하단 샘플 및 우하단 샘플의 위치에 각각 대응하는 벡터일 수 있다. 여기서, 공간적 후보는, 3개의 제어점 벡터를 가지는 것을 가정하며, 3개의 제어점 벡터는 제1 내지 제n 제어점 벡터 중에서 선택된 임의의 제어점 벡터일 수 있다. 다만, 이에 한정되지 아니하며, 공간적 후보는 2개의 제어점 벡터를 가질 수 있고, 2개의 제어점 벡터는 제1 내지 제n 제어점 벡터 중에서 선택된 임의의 제어점 벡터일 수 있다.
한편, 도 5에 도시된 경계(520)가 CTU boundary인지 여부에 따라 공간적 후보의 제어점 벡터가 상이하게 유도될 수 있다.
1. 현재 블록의 경계(520)가 CTU boundary에 접하지 않는 경우
상기 제1 제어점 벡터는, 공간적 주변 블록의 제1 제어점 벡터, 소정의 차분값, 현재 블록의 위치 정보 (xCb, yCb) 또는 공간적 주변 블록의 위치 정보 (xNb, yNb) 중 적어도 하나에 기초하여 유도될 수 있다.
상기 차분값의 개수는, 1개, 2개, 3개 또는 그 이상일 수 있다. 상기 차분값의 개수는, 전술한 블록의 속성을 고려하여 가변적으로 결정될 수도 있고, 복호화 장치에 기-약속된 고정된 값일 수도 있다. 상기 차분값은, 복수의 제어점 벡터 중 어느 하나와 다른 하나 간의 차분값으로 정의될 수 있다. 예를 들어, 상기 차분값은, 제2 제어점 벡터와 제1 제어점 벡터 간의 제1 차분값, 제3 제어점 벡터와 제1 제어점 벡터 간의 제2 차분값, 제4 제어점 벡터와 제3 제어점 벡터 간의 제3 차분값, 또는 제4 제어점 벡터와 제2 제어점 벡터 간의 제4 차분값 중 적어도 하나를 포함할 수 있다.
예를 들어, 제1 제어점 벡터는 다음 수학식 1과 같이 유도될 수 있다.
[수학식 1]
cpMvLX[ 0 ][ 0 ] = ( mvScaleHor + dHorX * ( xCb - xNb ) + dHorY * ( yCb - yNb ) )
cpMvLX[ 0 ][ 1 ] = ( mvScaleVer + dVerX * ( xCb - xNb ) + dVerY * ( yCb - yNb ) )
수학식 1에서, 변수 mvScaleHor와 mvScaleVer는 공간적 주변 블록의 제1 제어점 벡터를 의미할 수도 있고, 제1 제어점 벡터에 k만큼 쉬프트 연산을 적용하여 유도된 값을 의미할 수도 있다. 여기서, k는 1, 2, 3, 4, 5, 6, 7, 8, 9 또는 그 이상의 정수일 수 있다. 변수 dHorX와 dVerX는, 제2 제어점 벡터와 제1 제어점 벡터 간의 제1 차분값의 x 성분과 y 성분에 각각 대응된다. 변수 dHorY와 dVerY는, 제3 제어점 벡터와 제1 제어점 벡터 간의 제2 차분값의 x 성분과 y 성분에 각각 대응된다. 전술한 변수는, 다음 수학식 2와 같이 유도될 수 있다.
[수학식 2]
mvScaleHor = CpMvLX[ xNb ][ yNb ][ 0 ][ 0 ] << 7
mvScaleVer = CpMvLX[ xNb ][ yNb ][ 0 ][ 1 ] << 7
dHorX = ( CpMvLX[ xNb + nNbW - 1 ][ yNb ][ 1 ][ 0 ] - CpMvLX[ xNb ][ yNb ][ 0 ][ 0 ] ) << ( 7 - log2NbW )
dVerX = ( CpMvLX[ xNb + nNbW - 1 ][ yNb ][ 1 ][ 1 ] - CpMvLX[ xNb ][ yNb ][ 0 ][ 1 ] ) << ( 7 - log2NbW )
dHorY = ( CpMvLX[ xNb ][ yNb + nNbH - 1 ][ 2 ][ 0 ] - CpMvLX[ xNb ][ yNb ][ 2 ][ 0 ] ) << ( 7 - log2NbH )
dVerY = ( CpMvLX[ xNb ][ yNb + nNbH - 1 ][ 2 ][ 1 ] - CpMvLX[ xNb ][ yNb ][ 2 ][ 1 ] ) << ( 7 - log2NbH )
제2 제어점 벡터는, 공간적 주변 블록의 제1 제어점 벡터, 소정의 차분값, 현재 블록의 위치 정보 (xCb, yCb), 블록 크기(너비 또는 높이) 또는 공간적 주변 블록의 위치 정보 (xNb, yNb) 중 적어도 하나에 기초하여 유도될 수 있다. 여기서, 블록 크기는, 현재 블록 및/또는 공간적 주변 블록의 크기를 의미할 수 있다. 상기 차분값은, 제1 제어점 벡터에서 살펴본 바와 같은바, 여기서 자세한 설명은 생략하기로 한다. 다만, 제2 제어점 벡터의 유도 과정에서 이용되는 차분값의 범위 및/또는 개수는 제1 제어점 벡터와 상이할 수 있다.
예를 들어, 제2 제어점 벡터는 다음 수학식 3과 같이 유도될 수 있다.
[수학식 3]
cpMvLX[ 1 ][ 0 ] = ( mvScaleHor + dHorX * ( xCb + cbWidth - xNb ) + dHorY * ( yCb - yNb ) )
cpMvLX[ 1 ][ 1 ] = ( mvScaleVer + dVerX * ( xCb + cbWidth - xNb ) + dVerY * ( yCb - yNb ) )
수학식 3에서, 변수 mvScaleHor, mvScaleVer, dHorX, dVerX, dHorY, dVerY는, 수학식 1에서 살펴본 바와 같으며, 여기서 자세한 설명은 생략하기로 한다.
제3 제어점 벡터는, 공간적 주변 블록의 제1 제어점 벡터, 소정의 차분값, 현재 블록의 위치 정보 (xCb, yCb), 블록 크기(너비 또는 높이) 또는 공간적 주변 블록의 위치 정보 (xNb, yNb) 중 적어도 하나에 기초하여 유도될 수 있다. 여기서, 블록 크기는, 현재 블록 및/또는 공간적 주변 블록의 크기를 의미할 수 있다. 상기 차분값은, 제1 제어점 벡터에서 살펴본 바와 같은바, 여기서 자세한 설명은 생략하기로 한다. 다만, 제3 제어점 벡터의 유도 과정에서 이용되는 차분값의 범위 및/또는 개수는 제1 제어점 벡터 또는 제2 제어점 벡터와 상이할 수 있다.
예를 들어, 제3 제어점 벡터는 다음 수학식 4와 같이 유도될 수 있다.
[수학식 4]
cpMvLX[ 2 ][ 0 ] = ( mvScaleHor + dHorX * ( xCb - xNb ) + dHorY * ( yCb + cbHeight - yNb ) )
cpMvLX[ 2 ][ 1 ] = ( mvScaleVer + dVerX * ( xCb - xNb ) + dVerY * ( yCb + cbHeight - yNb ) )
수학식 4에서, 변수 mvScaleHor, mvScaleVer, dHorX, dVerX, dHorY, dVerY는, 수학식 1에서 살펴본 바와 같으며, 여기서 자세한 설명은 생략하기로 한다. 한편, 전술한 과정을 통해, 공간적 후보의 제n 제어점 벡터가 유도될 수 있다.
2. 현재 블록의 경계(520)가 CTU boundary에 접하는 경우
상기 제1 제어점 벡터는, 공간적 주변 블록의 모션 벡터(MV), 소정의 차분값, 현재 블록의 위치 정보 (xCb, yCb) 또는 공간적 주변 블록의 위치 정보 (xNb, yNb) 중 적어도 하나에 기초하여 유도될 수 있다.
상기 모션 벡터는, 공간적 주변 블록의 최하단에 위치한 서브 블록의 모션 벡터일 수 있다. 상기 서브 블록은, 공간적 주변 블록의 최하단에 위치한 복수의 서브 블록 중 최좌측, 중앙 또는 최우측에 위치한 것일 수 있다. 또는, 상기 모션 벡터는, 서브 블록의 모션 벡터의 평균값, 최대값 또는 최소값을 의미할 수도 있다.
상기 차분값의 개수는, 1개, 2개, 3개 또는 그 이상일 수 있다. 상기 차분값의 개수는, 전술한 블록의 속성을 고려하여 가변적으로 결정될 수도 있고, 복호화 장치에 기-약속된 고정된 값일 수도 있다. 상기 차분값은, 공간적 주변 블록에서 서브 블록의 단위로 저장된 복수의 모션 벡터 중 어느 하나와 다른 하나 간의 차분값으로 정의될 수 있다. 예를 들어, 상기 차분값은, 공간적 주변 블록의 우하단 서브 블록의 모션 벡터와 좌하단 서브 블록의 모션 벡터 간의 차분값을 의미할 수 있다.
예를 들어, 제1 제어점 벡터는 다음 수학식 5와 같이 유도될 수 있다.
[수학식 5]
cpMvLX[ 0 ][ 0 ] = ( mvScaleHor + dHorX * ( xCb - xNb ) + dHorY * ( yCb - yNb ) )
cpMvLX[ 0 ][ 1 ] = ( mvScaleVer + dVerX * ( xCb - xNb ) + dVerY * ( yCb - yNb ) )
수학식 5에서, 변수 mvScaleHor와 mvScaleVer는 전술한 공간적 주변 블록의 모션 벡터(MV) 또는 상기 모션 벡터에 k만큼 쉬프트 연산을 적용하여 유도된 값을 의미할 수도 있다. 여기서, k는 1, 2, 3, 4, 5, 6, 7, 8, 9 또는 그 이상의 정수일 수 있다.
상기 변수 dHorX와 dVerX는, 소정의 차분값의 x 성분과 y 성분에 각각 대응된다. 여기서, 차분값은, 공간적 주변 블록 내 우하단 서브 블록의 모션 벡터와 좌하단 서브 블록의 모션 벡터 간의 차분값을 의미한다. 변수 dHorY와 dVerY는, 상기 변수 dHorX와 dVerX에 기초하여 유도될 수 있다. 전술한 변수는, 다음 수학식 6과 같이 유도될 수 있다.
[수학식 6]
mvScaleHor = MvLX[ xNb ][ yNb + nNbH - 1 ][ 0 ] << 7
mvScaleVer = MvLX[ xNb ][ yNb + nNbH - 1 ][ 1 ] << 7
dHorX = ( MvLX[ xNb + nNbW - 1 ][ yNb + nNbH - 1 ][ 0 ] - MvLX[ xNb ][ yNb + nNbH - 1 ][ 0 ] ) << ( 7 - log2NbW )
dVerX = ( MvLX[ xNb + nNbW - 1 ][ yNb + nNbH - 1 ][ 1 ] - MvLX[ xNb ][ yNb + nNbH - 1 ][ 1 ] ) << ( 7 - log2NbW )
dHorY = - dVerX
dVerY = dHorX
제2 제어점 벡터는, 공간적 주변 블록의 모션 벡터(MV), 소정의 차분값, 현재 블록의 위치 정보 (xCb, yCb), 블록 크기(너비 또는 높이) 또는 공간적 주변 블록의 위치 정보 (xNb, yNb) 중 적어도 하나에 기초하여 유도될 수 있다. 여기서, 블록 크기는, 현재 블록 및/또는 공간적 주변 블록의 크기를 의미할 수 있다. 상기 모션 벡터와 차분값에 대해서는, 제1 제어점 벡터에서 살펴본 바와 같은바, 여기서 자세한 설명은 생략하기로 한다. 다만, 제2 제어점 벡터의 유도 과정에서 이용되는 모션 벡터의 위치, 차분값의 범위 및/또는 개수는 제1 제어점 벡터와 상이할 수 있다.
예를 들어, 제2 제어점 벡터는 다음 수학식 7과 같이 유도될 수 있다.
[수학식 7]
cpMvLX[ 1 ][ 0 ] = ( mvScaleHor + dHorX * ( xCb + cbWidth - xNb ) + dHorY * ( yCb - yNb ) )
cpMvLX[ 1 ][ 1 ] = ( mvScaleVer + dVerX * ( xCb + cbWidth - xNb ) + dVerY * ( yCb - yNb ) )
수학식 7에서, 변수 mvScaleHor, mvScaleVer, dHorX, dVerX, dHorY, dVerY는, 수학식 5에서 살펴본 바와 같으며, 여기서 자세한 설명은 생략하기로 한다.
제3 제어점 벡터는, 공간적 주변 블록의 모션 벡터(MV), 소정의 차분값, 현재 블록의 위치 정보 (xCb, yCb), 블록 크기(너비 또는 높이) 또는 공간적 주변 블록의 위치 정보 (xNb, yNb) 중 적어도 하나에 기초하여 유도될 수 있다. 여기서, 블록 크기는, 현재 블록 및/또는 공간적 주변 블록의 크기를 의미할 수 있다. 상기 모션 벡터와 차분값은, 제1 제어점 벡터에서 살펴본 바와 같은바, 여기서 자세한 설명은 생략하기로 한다. 다만, 제3 제어점 벡터의 유도 과정에서 이용되는 모션 벡터의 위치, 차분값의 범위 및/또는 개수는 제1 제어점 벡터 또는 제2 제어점 벡터와 상이할 수 있다.
예를 들어, 제3 제어점 벡터는 다음 수학식 8과 같이 유도될 수 있다.
[수학식 8]
cpMvLX[ 2 ][ 0 ] = ( mvScaleHor + dHorX * ( xCb - xNb ) + dHorY * ( yCb + cbHeight - yNb ) )
cpMvLX[ 2 ][ 1 ] = ( mvScaleVer + dVerX * ( xCb - xNb ) + dVerY * ( yCb + cbHeight - yNb ) )
수학식 8에서, 변수 mvScaleHor, mvScaleVer, dHorX, dVerX, dHorY, dVerY는, 수학식 5에서 살펴본 바와 같으며, 여기서 자세한 설명은 생략하기로 한다. 한편, 전술한 과정을 통해, 공간적 후보의 제n 제어점 벡터가 유도될 수 있다.
전술한 어파인 후보의 유도 과정은, 기-정의된 공간적 주변 블록 각각에 대해서 수행될 수 있다. 기-정의된 공간적 주변 블록은, 현재 블록의 좌측 블록, 좌하단 블록, 우상단 블록, 상단 블록 또는 좌상단 블록 중 적어도 하나를 포함할 수 있다.
또는, 상기 어파인 후보의 유도 과정은, 상기 공간적 주변 블록의 그룹 별로 각각 수행될 수도 있다. 여기서, 공간적 주변 블록은, 좌측 블록 및 좌하단 블록을 포함한 제1 그룹과 우상단 블록, 상단 블록 및 좌상단 블록을 포함한 제2 그룹으로 분류될 수 있다.
예를 들어, 제1 그룹에 속한 공간적 주변 블록으로부터 하나의 어파인 후보가 유도될 수 있다. 상기 유도는, 소정의 우선 순위에 기초하여, 가용한 어파인 후보가 발견될 때까지 수행될 수 있다. 상기 우선 순위는, 좌측 블록 -> 좌하단 블록의 순서일 수도 있고, 그 역순일 수도 있다.
마찬가지로, 제2 그룹에 속한 공간적 주변 블록으로부터 하나의 어파인 후보가 유도될 수 있다. 상기 유도는, 소정의 우선 순위에 기초하여, 가용한 어파인 후보가 발견될 때까지 수행될 수 있다. 상기 우선 순위는, 우상단 블록 -> 상단 블록 -> 좌상단 블록의 순서일 수도 있고, 그 역순일 수도 있다.
전술한 실시예는, 시간적 주변 블록에 대해서도 동일/유사하게 적용될 수 있다. 여기서, 시간적 주변 블록은, 현재 블록과 다른 픽쳐에 속하나, 현재 블록과 동일 위치의 블록일 수 있다. 동일 위치의 블록이라 함은, 현재 블록의 좌상단 샘플의 위치, 중앙 위치 또는 현재 블록의 우하단 샘플에 인접한 샘플의 위치를 포함하는 블록일 수 있다.
또는, 시간적 주변 블록은, 상기 동일 위치의 블록에서 소정의 변이 벡터만큼 쉬프트된 위치의 블록을 의미할 수 있다. 여기서, 변이 벡터는, 전술한 현재 블록의 공간적 주변 블록 중 어느 하나의 모션 벡터에 기초하여 결정될 수 있다.
도 6은 본 발명이 적용되는 일실시예로서, 공간적/시간적 주변 블록의 모션 벡터의 조합에 기초하여 구성된 후보를 유도하는 방법을 도시한 것이다.
본 발명의 구성된 후보는, 현재 블록의 각 코너에 대응하는 제어점 벡터(이하, 제어점 벡터(cpMVCorner[n])라 함) 중 적어도 2개의 조합에 기초하여 유도될 수 있다. 여기서, n은 0, 1, 2, 3일 수 있다.
상기 제어점 벡터는, 공간적 주변 블록 및/또는 시간적 주변 블록의 모션 벡터에 기초하여 유도될 수 있다. 여기서, 공간적 주변 블록은, 현재 블록의 좌상단 샘플에 인접한 제1 주변 블록(C, D 또는 E), 현재 블록의 우상단 샘플에 인접한 제2 주변 블록(F 또는 G) 또는 현재 블록의 좌하단 샘플에 인접한 제3 주변 블록(A 또는 B) 중 적어도 하나를 포함할 수 있다. 시간적 주변 블록은, 현재 블록과 다른 픽쳐에 속하는 블록으로서, 현재 블록의 우하단 샘플에 인접한 제4 주변 블록(Col)을 의미할 수 있다.
제1 주변 블록은, 현재 블록의 좌상단(D), 상단(E) 또는 좌측(C)의 주변 블록을 의미할 수 있다. 소정의 우선 순위에 따라 주변 블록 C, D, E의 모션 벡터가 가용한지 여부를 판단하고, 가용한 주변 블록의 모션 벡터를 이용하여 제어점 벡터를 결정할 수 있다. 상기 가용성 판단은, 가용한 모션 벡터를 가진 주변 블록이 발견될 때까지 수행될 수 있다. 여기서, 우선 순위는, D -> E -> C의 순일 수도 있다. 다만, 이에 한정되지 아니하며, D -> C -> E, C -> D -> E, E -> D -> C의 순일 수도 있다.
제2 주변 블록은, 현재 블록의 상단(F) 또는 우상단(G) 주변 블록을 의미할 수 있다. 마찬가지로, 소정의 우선 순위에 따라 주변 블록 F, G의 모션 벡터가 가용한지 여부를 판단하고, 가용한 주변 블록의 모션 벡터를 이용하여 제어점 벡터를 결정할 수 있다. 상기 가용성 판단은, 가용한 모션 벡터를 가진 주변 블록이 발견될 때까지 수행될 수 있다. 여기서, 우선 순위는, F -> G의 순일 수도 있고, G -> F의 순일 수도 있다.
제3 주변 블록은, 현재 블록의 좌측(B) 또는 좌하단(A)의 주변 블록을 의미할 수 있다. 마찬가지로, 소정의 우선 순위에 따라 주변 블록의 모션 벡터가 가용한지 여부를 판단하고, 가용한 주변 블록의 모션 벡터를 이용하여 제어점 벡터를 결정할 수 있다. 상기 가용성 판단은, 가용한 모션 벡터를 가진 주변 블록이 발견될 때까지 수행될 수 있다. 여기서, 우선 순위는, A -> B의 순일 수도 있고, B -> A의 순일 수도 있다.
예를 들어, 제1 제어점 벡터(cpMVCorner[0])는 제1 주변 블록의 모션 벡터로 설정될 수 있고, 제2 제어점 벡터(cpMVCorner[1])는 제2 주변 블록의 모션 벡터로 설정될 수 있고, 제3 제어점 벡터(cpMVCorner[2])는 제3 주변 블록의 모션 벡터로 설정될 수 있다. 제4 제어점 벡터(cpMVCorner[3])는 제4 주변 블록의 모션 벡터로 설정될 수 있다.
또는, 상기 제1 내지 제4 제어점 벡터 중 어느 하나는 다른 하나에 기초하여 유도될 수 있다. 예를 들어, 제2 제어점 벡터는, 제1 제어점 벡터에 소정의 오프셋 벡터를 적용하여 유도될 수 있다. 오프셋 벡터는, 제3 제어점 벡터와 제1 제어점 벡터 간의 차분 벡터이거나 상기 차분 벡터에 소정의 스케일링 팩터를 적용하여 유도될 수 있다. 스케일링 팩터는, 현재 블록 및/또는 주변 블록의 너비 또는 높이 중 적어도 하나에 기초하여 결정될 수 있다.
전술한 제1 내지 제4 제어점 벡터 중 적어도 2개의 조합을 통해, 본 발명에 따른 K개의 구성된 후보(ConstK)가 결정될 수 있다. K 값은, 1, 2, 3, 4, 5, 6, 7 또는 그 이상의 정수일 수 있다. K 값은, 부호화 장치에서 시그날링되는 정보에 기초하여 유도될 수도 있고, 복호화 장치에 기-약속된 값일 수도 있다. 상기 정보는, 후보 리스트에 포함되는 구성된 후보의 최대 개수를 지시하는 정보를 포함할 수 있다.
구체적으로, 제1 구성된 후보(Const1)는, 제1 내지 제3 제어점 벡터를 조합하여 유도될 수 있다. 예를 들어, 제1 구성된 후보(Const1)는 다음 표 1과 같은 제어점 벡터를 가질 수 있다. 한편, 제1 주변 블록의 참조 픽쳐 정보가 제2 및 제3 주변 블록의 참조 픽쳐 정보와 동일한 경우에 한하여, 표 1과 같이 제어점 벡터가 구성되도록 제한될 수도 있다. 여기서, 참조 픽쳐 정보는, 참조 픽쳐 리스트 내에서 해당 참조 픽쳐의 위치를 나타내는 참조 픽쳐 인덱스를 의미할 수도 있고, 출력 순서를 나타내는 POC(picture order count) 값을 의미할 수도 있다.
Idx 제어점 벡터
0 cpMvCorner[ 0 ]
1 cpMvCorner[ 1 ]
2 cpMvCorner[ 2 ]
제2 구성된 후보(Const2)는, 제1, 제2 및 제4 제어점 벡터를 조합하여 유도될 수 있다. 예를 들어, 제2 구성된 후보(Const2)는 다음 표 2와 같은 제어점 벡터를 가질 수 있다. 한편, 제1 주변 블록의 참조 픽쳐 정보가 제2 및 제4 주변 블록의 참조 픽쳐 정보와 동일한 경우에 한하여, 표 2와 같이 제어점 벡터가 구성되도록 제한될 수도 있다. 여기서, 참조 픽쳐 정보는 전술한 바와 같다.
Idx 제어점 벡터
0 cpMvCorner[ 0 ]
1 cpMvCorner[ 1 ]
2 cpMvCorner[ 3 ] + cpMvCorner[ 1 ] - cpMvCorner[ 0 ]
제3 구성된 후보(Const3)는, 제1, 제3 및 제4 제어점 벡터를 조합하여 유도될 수 있다. 예를 들어, 제3 구성된 후보(Const3)는 다음 표 3과 같은 제어점 벡터를 가질 수 있다. 한편, 제1 주변 블록의 참조 픽쳐 정보가 제3 및 제4 주변 블록의 참조 픽쳐 정보와 동일한 경우에 한하여, 표 2와 같이 제어점 벡터가 구성되도록 제한될 수도 있다. 여기서, 참조 픽쳐 정보는 전술한 바와 같다.
Idx 제어점 벡터
0 cpMvCorner[ 0 ]
1 cpMvCorner[ 3 ] + cpMvCorner[ 0 ] - cpMvCorner[ 2 ]
2 cpMvCorner[ 2 ]
제4 구성된 후보(Const4)는, 제2, 제3 및 제4 제어점 벡터를 조합하여 유도될 수 있다. 예를 들어, 제4 구성된 후보(Const4)는 다음 표 4와 같은 제어점 벡터를 가질 수 있다. 한편, 제2 주변 블록의 참조 픽쳐 정보가 제3 및 제4 주변 블록의 참조 픽쳐 정보와 동일한 경우에 한하여, 표 4와 같이 구성되도록 제한될 수도 있다. 여기서, 참조 픽쳐 정보는 전술한 바와 같다.
Idx 제어점 벡터
0 cpMvCorner[ 1 ] + cpMvCorner[ 2 ] - cpMvCorner[ 3 ]
1 cpMvCorner[ 1 ]
2 cpMvCorner[ 2 ]
제5 구성된 후보(Const5)는, 제1 및 제2 제어점 벡터를 조합하여 유도될 수 있다. 예를 들어, 제5 구성된 후보(Const5)는 다음 표 5와 같은 제어점 벡터를 가질 수 있다. 한편, 제1 주변 블록의 참조 픽쳐 정보가 제2 주변 블록의 참조 픽쳐 정보와 동일한 경우에 한하여, 표 5와 같이 제어점 벡터가 구성되도록 제한될 수도 있다. 여기서, 참조 픽쳐 정보는 전술한 바와 같다.
Idx 제어점 벡터
1 cpMvCorner[ 0 ]
2 cpMvCorner[ 1 ]
제6 구성된 후보(Const6)는, 제1 및 제3 제어점 벡터를 조합하여 유도될 수 있다. 예를 들어, 제6 구성된 후보(Const6)는 다음 표 6과 같은 제어점 벡터를 가질 수 있다. 한편, 제1 주변 블록의 참조 픽쳐 정보가 제3 주변 블록의 참조 픽쳐 정보와 동일한 경우에 한하여, 표 6와 같이 제어점 벡터가 구성되도록 제한될 수도 있다. 여기서, 참조 픽쳐 정보는 전술한 바와 같다.
Idx 제어점 벡터
1 cpMvCorner[ 0 ]
2 cpMvCorner[ 1 ]
표 6에서, cpMvCorner[ 1 ]는, 상기 제1 및 제3 제어점 벡터를 기반으로 유도된 제2 제어점 벡터일 수 있다. 제2 제어점 벡터는, 제1 제어점 벡터, 소정의 차분값 또는 현재/주변 블록의 크기 중 적어도 하나에 기초하여 유도될 수 있다. 예를 들어, 제2 제어점 벡터는, 다음 수학식 9와 같이 유도될 수 있다.
[수학식 9]
cpMvCorner[ 1 ][ 0 ] = ( cpMvCorner[ 0 ][ 0 ] << 7 ) + ( ( cpMvCorner[ 2 ][ 1 ] - cpMvCorner[ 0 ][ 1 ] ) << ( 7 + Log2( cbHeight / cbWidth ) ) )
cpMvCorner[ 1 ][ 1 ] = ( cpMvCorner[ 0 ][ 1 ] << 7 ) + ( ( cpMvCorner[ 2 ][ 0 ] - cpMvCorner[ 0 ][ 0 ] ) << ( 7 + Log2( cbHeight / cbWidth ) ) )
전술한 제1 내지 제6 구성된 후보 모두 상기 후보 리스트에 포함될 수도 있고, 일부만이 후보 리스트에 포함될 수도 있다.
본 발명에 따른 방법들은 다양한 컴퓨터 수단을 통해 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 컴퓨터 판독 가능 매체에 기록되는 프로그램 명령은 본 발명을 위해 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다.
컴퓨터 판독 가능 매체의 예에는 롬(ROM), 램(RAM), 플래시 메모리(flash memory) 등과 같이 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함될 수 있다. 프로그램 명령의 예에는 컴파일러(compiler)에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터(interpreter) 등을 사용해서 컴퓨터에 의해 실행될 수 있는 고급 언어 코드를 포함할 수 있다. 상술한 하드웨어 장치는 본 발명의 동작을 수행하기 위해 적어도 하나의 소프트웨어 모듈로 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
또한, 상술한 방법 또는 장치는 그 구성이나 기능의 전부 또는 일부가 결합되어 구현되거나, 분리되어 구현될 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (7)

  1. 현재 블록의 모션 정보 예측을 위한 후보 리스트를 생성하는 단계; 여기서, 상기 후보 리스트는, 복수의 어파인 후보로 구성됨,
    상기 후보 리스트와 후보 인덱스에 기반하여, 상기 현재 블록의 복수의 제1 모션 벡터들을 유도하는 단계; 여기서, 상기 후보 인덱스는 상기 후보 리스트에 속한 복수의 어파인 후보 중 어느 하나를 특정함,
    상기 현재 블록의 복수의 제1 모션 벡터들을 기반으로, 상기 현재 블록의 서브 블록 단위의 제2 모션 벡터를 유도하는 단계; 및
    상기 제2 모션 벡터를 이용하여, 상기 현재 블록에 대해 인터 예측을 수행하는 단계를 포함하는, 영상 복호화 방법.
  2. 제1항에 있어서,
    상기 어파인 후보는, 공간적 후보, 시간적 후보 또는 유도된 후보 중 적어도 하나를 포함하는, 영상 복호화 방법.
  3. 제2항에 있어서,
    상기 유도된 후보는, 상기 현재 블록의 각 코너에 대응하는 제1 모션 벡터 중 적어도 2개의 조합에 기초하여 결정되고,
    상기 현재 블록의 각 코너에 대응하는 제1 모션 벡터는, 상기 현재 블록에 공간적으로 인접한 주변 블록의 제3 모션 벡터에 기초하여 유도되며,
    상기 주변 블록은, 상기 현재 블록의 좌측 블록, 상단 블록, 좌상단 블록, 우상단 블록 또는 좌하단 블록 중 적어도 하나를 포함하는, 영상 복호화 방법.
  4. 제1항에 있어서,
    비트스트림으로부터 상기 현재 블록의 움직임 모델에 관한 정보를 획득하는 단계를 더 포함하되,
    상기 정보는, 상기 현재 블록이 어파인 모델로 부호화된 블록인지 여부 또는 상기 현재 블록이 이용하는 제1 모션 벡터의 개수 중 적어도 하나를 특정하는, 영상 복호화 방법.
  5. 제1항에 있어서,
    상기 서브 블록은, 복호화 장치에 기-정의된, 4x4의 고정된 크기를 가지는, 영상 복호화 방법.
  6. 현재 블록의 모션 정보 예측을 위한 후보 리스트를 생성하는 단계; 여기서, 상기 후보 리스트는, 복수의 어파인 후보로 구성됨,
    상기 후보 리스트에 속한 복수의 어파인 후보 중 어느 하나에 기반하여, 상기 현재 블록의 복수의 제1 모션 벡터들을 결정하는 단계;
    상기 현재 블록의 복수의 제1 모션 벡터들을 기반으로, 상기 현재 블록의 서브 블록 단위의 제2 모션 벡터를 유도하는 단계; 및
    상기 제2 모션 벡터를 이용하여, 상기 현재 블록에 대해 인터 예측을 수행하는 단계를 포함하되,
    상기 후보 리스트에 속한 복수의 어파인 후보 중 어느 하나를 특정하는 후보 인덱스가 부호화되는, 영상 부호화 방법.
  7. 영상의 복호화를 위한 비트스트림을 저장하는 컴퓨터 판독 가능한 기록 매체에 있어서,
    상기 비트스트림을 이용하는 영상 복호화 방법은,
    현재 블록의 모션 정보 예측을 위한 후보 리스트를 생성하는 단계; 여기서, 상기 후보 리스트는, 복수의 어파인 후보로 구성됨,
    상기 후보 리스트와 후보 인덱스에 기반하여, 상기 현재 블록의 복수의 제1 모션 벡터들을 유도하는 단계; 여기서, 상기 후보 인덱스는 상기 후보 리스트에 속한 복수의 어파인 후보 중 어느 하나를 특정함,
    상기 현재 블록의 복수의 제1 모션 벡터들을 기반으로, 상기 현재 블록의 서브 블록 단위의 제2 모션 벡터를 유도하는 단계; 및
    상기 제2 모션 벡터를 이용하여, 상기 현재 블록에 대해 인터 예측을 수행하는 단계를 포함하는, 컴퓨터 판독 가능한 기록 매체.
KR1020200167255A 2018-03-27 2020-12-03 영상 부호화/복호화 방법 및 장치 KR20200138137A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180034882 2018-03-27
KR20180034882 2018-03-27
KR20180085679 2018-07-24
KR1020180085679 2018-07-24

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190033763A Division KR20190113611A (ko) 2018-03-27 2019-03-25 영상 부호화/복호화 방법 및 장치

Publications (1)

Publication Number Publication Date
KR20200138137A true KR20200138137A (ko) 2020-12-09

Family

ID=68209010

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020190033763A KR20190113611A (ko) 2018-03-27 2019-03-25 영상 부호화/복호화 방법 및 장치
KR1020200167255A KR20200138137A (ko) 2018-03-27 2020-12-03 영상 부호화/복호화 방법 및 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020190033763A KR20190113611A (ko) 2018-03-27 2019-03-25 영상 부호화/복호화 방법 및 장치

Country Status (1)

Country Link
KR (2) KR20190113611A (ko)

Also Published As

Publication number Publication date
KR20190113611A (ko) 2019-10-08

Similar Documents

Publication Publication Date Title
KR102125956B1 (ko) 화면 내 예측을 이용한 영상 부호화/복호화 방법 및 장치
KR102378882B1 (ko) 영상 부호화/복호화 방법 및 장치
WO2013042888A2 (ko) 머지 후보 블록 유도 방법 및 이러한 방법을 사용하는 장치
US20210203978A1 (en) Merge mode-based inter-prediction method and apparatus
CN111937399B (zh) 基于仿射模型的图像编码/解码方法和装置
US11924414B2 (en) Image encoding/decoding method and device using intra prediction
JP7447097B2 (ja) 画像符号化/復号化方法及び装置
KR102514392B1 (ko) 움직임 벡터 차분치를 이용하는 영상 부호화 및 복호화 방법과 영상 복호화 장치
KR20210008105A (ko) 영상 부호화/복호화 방법 및 장치
AU2019241823A1 (en) Image encoding/decoding method and device
KR20210016054A (ko) 영상 부호화/복호화 방법 및 장치
KR20190110065A (ko) 영상 복호화 방법/장치, 영상 부호화 방법/장치 및 비트스트림을 저장한 기록 매체
KR20240036533A (ko) 복수의 예측 모드 후보군을 사용하여 화면내 예측을 수행하는 영상 부호화/복호화 방법 및 장치
KR102476230B1 (ko) 움직임 벡터 정밀성을 이용하는 영상 부호화 및 복호화 방법과 영상 복호화 장치
JP7453236B2 (ja) 画像符号化/復号化方法及び装置
KR20200138137A (ko) 영상 부호화/복호화 방법 및 장치
RU2790325C2 (ru) Способ и устройство для межкадрового предсказания на основе режима слияния
KR20210000691A (ko) 비디오 부호화 및 복호화 방법, 그를 이용한 장치
CN116684578A (zh) 基于控制点运动矢量的仿射模型优化

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination