KR20200137578A - Manufacturing method of Cathode material for lithium ion secondary battery - Google Patents

Manufacturing method of Cathode material for lithium ion secondary battery Download PDF

Info

Publication number
KR20200137578A
KR20200137578A KR1020190064173A KR20190064173A KR20200137578A KR 20200137578 A KR20200137578 A KR 20200137578A KR 1020190064173 A KR1020190064173 A KR 1020190064173A KR 20190064173 A KR20190064173 A KR 20190064173A KR 20200137578 A KR20200137578 A KR 20200137578A
Authority
KR
South Korea
Prior art keywords
active material
lithium
positive electrode
secondary battery
electrode active
Prior art date
Application number
KR1020190064173A
Other languages
Korean (ko)
Inventor
유시철
권기진
류지은
한승원
Original Assignee
주식회사 지엘비이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지엘비이 filed Critical 주식회사 지엘비이
Priority to KR1020190064173A priority Critical patent/KR20200137578A/en
Publication of KR20200137578A publication Critical patent/KR20200137578A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a method of manufacturing a positive electrode active material for a lithium secondary battery without any decrease in capacity and increase in resistance due to causing no damage to the active material from water treatment, wherein residual lithium existing as small particles separated from or on the surface of the active material is rotated at a high speed, using alcohol as a solvent, and is physically removed through filtration when synthesizing the positive electrode active material of a lithium secondary battery with a high nickel content.

Description

리튬이차전지용 양극소재의 제조방법 {Manufacturing method of Cathode material for lithium ion secondary battery}Manufacturing method of Cathode material for lithium ion secondary battery {Manufacturing method of Cathode material for lithium ion secondary battery}

본 발명은 니켈함량이 70%이상의 높은 양극물질 합성시 존재하는 리튬염(잔류리튬)의 효과적인 제거를 포함하는 리튬이차전지용 양극소재의 제조방법에 대한 것이다.The present invention relates to a method of manufacturing a cathode material for a lithium secondary battery including effective removal of lithium salt (remaining lithium) present when synthesizing a cathode material having a high nickel content of 70% or more.

그리고 본 발명은 다음의 국가연구개발사업으로부터 지원받은 것임을 밝힌다.And it turns out that the present invention has been supported by the following national research and development projects.

- 부처명: 중소벤처기업부-Department name: Ministry of Small and Medium Venture Business

- 연구사업명: 2018 산학연 협력기술개발사업-Research Project Name: 2018 Industry-Academic Cooperation Technology Development Project

- 연구과제명: 생활밀착형 스마트 웨어러블 기기 전원공급용 고에너지밀도 리튬이차전지 개발-Research Project Title: Development of high energy density lithium secondary battery for power supply to smart wearable devices

- 주관기관: ㈜지엘비이-Organizer: GLB Co., Ltd.

- 연구기간: 2018. 06. 01. ~ 2019. 05. 31.-Research period: 2018. 06. 01. ~ 2019. 05. 31.

최근 전기, 전자, 통신 및 컴퓨터 산업의 발전과 함께 친환경차 및 에너지 저장시장이 급속히 발전함으로써, 안전성이 높으면서도 고에너지밀도의 이차전지의 개발이 매우 중요해지고 있다. 특히 최근에는 에너지가격의 상승과 환경보호의 요구에 의해 전기차(electric vehicle, EV), 하이브리드 전기차(hybrid electric vehicle, HEV), 플러그인 하이브리드 전기차(plug-in hybrid electric vehicle, PHEV)의 개발이 활발하게 진행되고 있기 때문에 이들 자동차들에 상용화될 수 있을 정도로 수명과 고에너지밀도 그리고 에너지당 가격이 저렴한 소재의 개발이 필수적이다. 전체 소재비용 중에서 양극소재가 차지하는 비율이 가장 크기 때문에, 결국 양극소재의 용량을 확대하고 가격을 낮추는 것이 매우 중요하다 . With the recent development of the electric, electronic, communication, and computer industries, the eco-friendly vehicle and energy storage markets are rapidly developing, so that the development of a secondary battery having high safety and high energy density is becoming very important. In particular, the development of electric vehicles (EV), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs) has been actively developed in recent years due to rising energy prices and demand for environmental protection. As it is progressing, it is essential to develop materials that have a low lifespan, high energy density, and low cost per energy enough to be commercialized in these vehicles. Since the cathode material accounts for the largest proportion of the total material cost, it is very important to expand the capacity of the cathode material and lower the price.

하이브리드 자동차용 이차전지로는 리튬 이온 이차전지가 적용되고 있는데, 과거 하이브리드 자동차용 리튬이온 이차전지의 양극소재로 사용되었던 코발트산 리튬(LiCoO2, LCO)의 경우에는 에너지 밀도의 증가와 출력특성이 실용 한계치에 도달했을 뿐만 아니라 안정성 측면에서도 문제가 있고 또한 공해물질인 코발트를 함유하고 있었기 때문에 자동차용 이차전지로서의 대용량 리튬 전지의 양극재료로는 부적합한 것으로 평가되고 있다. 또한 Co가격이 급격히 상승함에 따라 아직 사용되고 있는 소형 이차전지 시장에서도 코발트산 리튬(LiCoO2, LCO)의 사용이 특별한 경우로 한정되어지고 있다. 그 결과 코발트산 리튬 계열의 양극 활물질을 대체할 수 있는 새로운 고용량의 양극소재로서 니켈함량이 높은 NCM(니켈, 코발트, 망간) 계열의 양극활물질과 NCA(니켈, 코발트, 알루미늄) 계열의 양극활물질이 소형 및 중대형 이차전지 양극소재로 일반화 되고 있다..Lithium-ion secondary batteries are used as secondary batteries for hybrid vehicles.In the case of lithium cobalt oxide (LiCoO 2 , LCO), which was used as a positive electrode material for lithium-ion secondary batteries for hybrid vehicles in the past, energy density and output characteristics are increased. Not only has reached the practical limit, but also has a problem in terms of stability, and it contains cobalt, a pollutant, which is evaluated as unsuitable as a cathode material for large-capacity lithium batteries as secondary batteries for automobiles. In addition, as the price of Co increases rapidly, the use of lithium cobalt oxide (LiCoO 2 , LCO) is limited to special cases in the small secondary battery market that is still in use. As a result, as a new high-capacity positive electrode material that can replace lithium cobalt oxide-based positive electrode active materials, NCM (nickel, cobalt, manganese)-based positive electrode active materials with high nickel content and NCA (nickel, cobalt, aluminum)-based positive electrode active materials It is becoming common as a cathode material for small and medium-sized secondary batteries.

Ni함량이 70% 이상의 몰비율을 갖고 있는 NC(니켈, 코발트), NCM(니켈, 코발트, 망간), NCA(니켈, 코발트, 알루미늄)소재는 고용량으로 에너지 밀도 향상과 최소의 코발트함량으로 코발트 가격상승에 따른 가격적인 어려움들을 극복해 줄 수 있어 산업계, 학계를 중심으로 상용화 연구가 계속 진행되고 있다.NC (nickel, cobalt), NCM (nickel, cobalt, manganese), and NCA (nickel, cobalt, aluminum) materials with a molar ratio of more than 70% of Ni content have high capacity to improve energy density and cost cobalt with minimal cobalt content. As it can overcome the price difficulties caused by the rise, commercialization research is continuing in the industry and academia.

Ni함량이 70%이상의 몰비율을 갖는 경우 합성된 소재와 리튬염이 함께 존재하고 이러한 리튬염은 고온에서 사용할 경우 가스발생으로 전지가 부풀어 오르게 되고 전극 코팅시 슬러리의 점도를 크게 하여 결착성을 약화시키게 되는 문제가 있다. 이를 극복하기 위하여 많은 연구가 진행되고 있고 가장 보편적인 것이 증류수로 활물질을 세척해서 리튬염을 제거하는 것이다. 하지만 증류수는 리튬염을 녹이기도 하지만 활물질과도 반응하여 증류수 처리 시간에 따라 용량이 급감하고 내부저항값도 커지게 된다. 이러한 문제로 증류수 처리는 짧게 진행할 수 밖에 없으며 이런 경우 리튬염의 부분적 제거만이 가능하게된다. When Ni content has a molar ratio of 70% or more, the synthesized material and lithium salt exist together, and when these lithium salts are used at high temperatures, the battery swells due to gas generation, and the viscosity of the slurry is increased when coating the electrode to weaken the binding properties. There is a problem to be made. In order to overcome this, many studies are being conducted, and the most common is to remove lithium salt by washing the active material with distilled water. However, distilled water also dissolves lithium salts, but reacts with the active material, so that the capacity decreases rapidly depending on the treatment time of distilled water and the internal resistance value increases. Due to this problem, the distilled water treatment is inevitable, and in this case, only partial removal of the lithium salt is possible.

예를 들어, 대한민국 특허출원 제10-2015-0185438호는 Li1.03Ni0.8CO0.1Mn0.1Zr0.0038)O2소재를 합성하여 15분 수세를 통해 잔류 리튬을 3,804ppm(Li2CO3)으로 줄인 것으로 보고하였다. 하지만 남아있는 잔류리튬양이 상당한 수치를 보이고 있어 수세를 통한 잔류리튬제거의 한계를 보여주고 있다.For example, Korean Patent Application No. 10-2015-0185438 reported that Li1.03Ni0.8CO0.1Mn0.1Zr0.0038)O2 material was synthesized and the residual lithium was reduced to 3,804 ppm (Li2CO3) by washing with water for 15 minutes. . However, the amount of residual lithium remaining shows a considerable number, showing the limitation of removing residual lithium through water washing.

대한민국 특허출원 제10-2017-0022858호 Li[Ni0.82Co0.07Mn0.11]O2소재를 합성하여 수세하였다. 다만 증류수만을 사용할 경우 증류수에 의한 활물질 손상을 억제하기 위하여 증류수에 에탄올을 일정비율로 혼합하여 수세를 진행하였으나 수세처리시간을 늘일 수는 있으나 증류수 비율이 낮아 리튬염의 제거효율이 떨어져 큰효과를 보기가 어렵다. Korean Patent Application No. 10-2017-0022858 Li[Ni0.82Co0.07Mn0.11]O2 material was synthesized and washed with water. However, if only distilled water is used, washing was carried out by mixing ethanol in a certain ratio with distilled water to prevent damage to the active material by distilled water, but the washing treatment time can be increased, but the removal efficiency of lithium salt is low due to the low ratio of distilled water. it's difficult.

본 발명의 발명자는, 종래의 니켈함량이 높은 NC(니켈, 코발트), NCM(니켈, 코발트, 망간), NCA(니켈, 코발트, 알루미늄)계열에서 종래기술들에 비해 활물질이 손상받지 않으면서 리튬염을 제거할 수 있는 새로운 양극소재의 제조방법을 개발하게 되었다.In the conventional NC (nickel, cobalt), NCM (nickel, cobalt, manganese), and NCA (nickel, cobalt, aluminum) series with high nickel content, the inventor of the present invention provides lithium without damage to the active material compared to the prior art. A new method of manufacturing a cathode material capable of removing salts was developed.

상기 문제점을 해결하기 위하여, 본 발명은 니켈함량이 높은 리튬이차전지의 양극 활물질에 합성후 표면에 붙어 있거나 작은 입자로 분리되어 존재하는 리튬염(잔류리튬)을 알콜을 용매로 하여 강하게 빠른 속도로 회전시켜 주어서 작은 입자를 여과하여 물리적으로 제거하는 것을 특징으로 한다. In order to solve the above problem, the present invention uses a lithium salt (remaining lithium) present after synthesis to the positive electrode active material of a lithium secondary battery having a high nickel content and separated into small particles by using alcohol as a solvent. It is characterized in that it is rotated to physically remove small particles by filtering.

상기 목적을 달성하기 위해 본 발명에 사용되는 양극소재는 Ni함량이 0.7이상인 것으로 알콜과 혼합후에 높은 회전수로 회전시켜 표면에 있는 리튬염을 제거하는 것으로 상기 목적을 달성하기 위해 본 발명에 의해 제공된 리튬이차전지용 양극소재의 제조방법으로는 (a) 공침으로 NibCMnd(OH)2(이때, 0.7≤b≤1.0, 0.00≤c≤0.3, 0≤d≤0.25)를 제조하는 단계; (b) 공침으로 제조한 전구체 니켈-코발트-금속복합수산화물과 첨가물(M1, M2) 원료들을 혼합한 후 혼합물을 가열로에 집어넣고 650~850의 온도로 5~24시간 동안 소성(燒成)하는 단계를 포함하여, Li1+aNibCMndM1eM2fO2 (이때, 0≤a≤0.1, 0.7≤b≤1.0, 0.0≤c≤0.3, 0≤d≤0.25, 0≤e≤0.05, 0≤f≤0.05)의 화학식으로 표시되는 조성의 리튬이차전지용 양극 활물질을 제조하는 단계;(c)제조한 양극활물질을 알콜과 무게비로 0.5 ~ 20비율로 혼합한 후에 500~2000rpm 회전시켜 양극 활물질 표면에 있는 잔류리튬을 작은 입자로 분리하는 단계; (d)고속회전을 거친 혼합용액을 여과장치에 넣어 분리된 작은 입자를 진공 여과하는 단계; (e) 여과한 양극 활물질을 100~150 온도에서 진공 건조하는 단계를 특징으로 한다.In order to achieve the above object, the positive electrode material used in the present invention has a Ni content of 0.7 or more, and is rotated at a high rotational speed after mixing with alcohol to remove the lithium salt on the surface. A method of manufacturing a cathode material for a lithium secondary battery includes the steps of: (a) preparing Ni b CMn d (OH) 2 (at this time, 0.7≦ b ≦1.0, 0.00≦c≦0.3, 0≦ d ≦0.25) by coprecipitation; (b) After mixing the precursor nickel-cobalt-metal complex hydroxide and additives (M1, M2) raw materials prepared by coprecipitation, put the mixture in a heating furnace and fired at a temperature of 650 to 850 for 5 to 24 hours. Including the step of, Li 1+a Ni b CMn d M1 e M2 f O 2 (here, 0≤a≤0.1, 0.7≤b≤1.0, 0.0≤c≤0.3, 0≤d≤0.25, 0≤e Manufacturing a positive electrode active material for a lithium secondary battery having a composition represented by the formula of ≤0.05, 0≤f≤0.05); (c) mixing the prepared positive electrode active material with alcohol at a weight ratio of 0.5 to 20 and then rotating 500 to 2000 rpm Separating the remaining lithium on the surface of the positive electrode active material into small particles; (d) vacuum filtering the separated small particles by putting the mixed solution through high-speed rotation into a filtering device; (e) vacuum drying the filtered positive electrode active material at a temperature of 100 to 150.

본 발명에 따른 리튬이차전지용 양극소재의 잔류리튬 제거 방식은 알콜을 사용하여 고속 회전시켜 물리적으로 잔류리튬을 제거함으로서 수세에 따른 활물질의 손상과 리튬염제거의 한계성을 극복할 수 있다. The method of removing residual lithium from the cathode material for a lithium secondary battery according to the present invention can overcome the limitation of lithium salt removal and damage to the active material due to water washing by physically removing residual lithium by rotating at a high speed using alcohol.

도1은 본 발명의 실시예1과 실시예2에 따른 리튬이차전지용 양극 소재로의 제조방법에 관한 순서도로서, 공침에 의한 전구체의 합성과 소성에 의한 양극소재의 합성하는 과정을 도시한다.
도2는 알콜과 양극 활물질을 고속 회전시켜 물리적으로 잔류리튬을 제거하는 방법에 대한 도시이다.
도3은 본 발명에 따른 실시예1과 비교예1의 SEM 사진들로서, 그림(a)는 실시예1의 SEM사진이며, 그림(b)는 비교예1의 SEM 사진이다.
도4는 본 발명에 따른 실시예1, 실시예2 및 비교예1의 충전-방전 용량 곡선이다.
1 is a flowchart illustrating a method of manufacturing a cathode material for a lithium secondary battery according to Examples 1 and 2 of the present invention, and shows a synthesis of a precursor by coprecipitation and a process of synthesizing a cathode material by firing.
2 is a diagram illustrating a method of physically removing residual lithium by rotating alcohol and a positive electrode active material at high speed.
3 is an SEM photograph of Example 1 and Comparative Example 1 according to the present invention. Figure (a) is a SEM photograph of Example 1, and Figure (b) is a SEM photograph of Comparative Example 1.
4 is a charge-discharge capacity curve of Examples 1, 2 and Comparative Example 1 according to the present invention.

이하, 본 발명에 따른 리튬이차전지용 양극소재의 제조방법의 구성 및 작용, 효과를 첨부한 도면들을 참고하여 설명한다.Hereinafter, the configuration, action, and effect of a method for manufacturing a cathode material for a lithium secondary battery according to the present invention will be described with reference to the accompanying drawings.

본 발명에 따른 리튬이차전지용 양극소재의 제1양태의 제조방법을 전체적으로 설명하면 다음과 같다.The overall description of the manufacturing method of the first aspect of the cathode material for a lithium secondary battery according to the present invention is as follows.

(1) 황산니켈, 황산코발트, 황산망간을 공침반응기에 투입하여 공침을 통해 전구체를 제조하는 단계, (2) 상기 전구체와 리튬 그리고 M1, M2를 혼합한 후에 가열로에 집어넣고 산소분위기하에서 650~850로 소성하는 단게, (3) 합성된 양극활물질을 알콜과 혼합하여 고속으로 회전시켜 잔류리튬을 활물질에서 제거, 분리하는 단계, (4) 고속회전시킨 활물질 용액을 여과하여 작은 입자와 용액을 분리하는 단계로 이루어져 있다. (1) preparing a precursor through coprecipitation by introducing nickel sulfate, cobalt sulfate, and manganese sulfate into a coprecipitation reactor, (2) mixing the precursor with lithium, and M1 and M2, and putting it in a heating furnace and putting it in a heating furnace at 650 under oxygen atmosphere. The step of firing at ~850, (3) removing and separating residual lithium from the active material by mixing the synthesized cathode active material with alcohol and rotating at high speed, (4) filtering the active material solution rotated at high speed to remove small particles and solutions. It consists of separating steps.

상기의 첨가제 M1은 Sb, Al, Mg 등이고 M2은 Ba, B, Ce, Cr, F, Mo, P, Sr, Ti, Zr등이다. M1은 주첨가제로서 첨가제의 양은 0≤M1≤0.25이고 더 세밀하게는 0.01≤M1≤0.1 이며 M2는 보조 첨가제로서 첨가제의 양은 0≤M2≤0.05이고 더 세밀하게는 0.001≤M2≤0.01 이다.The additive M1 is Sb, Al, Mg, and the like, and M2 is Ba, B, Ce, Cr, F, Mo, P, Sr, Ti, Zr, and the like. M1 is the main additive, the amount of the additive is 0≤M1≤0.25, more specifically 0.01≤M1≤0.1, M2 is the auxiliary additive, the amount of the additive is 0≤M2≤0.05, and more specifically 0.001≤M2≤0.01.

상기의 고속회전시 사용되는 용매인 알콜은 에탄올, 프로판올, 부탄올 등이고 메탄올을 제외한 모든 알콜 종류에 해당한다.Alcohol, which is a solvent used in the high-speed rotation, is ethanol, propanol, butanol, etc., and corresponds to all alcohol types except methanol.

상기의 고속회전 방식은 임펠라를 사용하거나 마그네틱바를 사용할 수 있으며 물리적으로 빠른 회전을 할 수 있으면 어떠한 방법이든 가능하다.The high-speed rotation method described above can use an impeller or a magnetic bar, and any method is possible as long as it can physically rotate quickly.

상기의 고속회전이라 함은 500~3000 rpm, 더 세밀하게는 1000~2000 rpm을 의미한다. The high-speed rotation means 500 to 3000 rpm, more specifically 1000 to 2000 rpm.

상기 여과시 사용되는 여과지의 공극은 3

Figure pat00001
m이하의 사이즈를 사용하여 활물질 표면에 붙어 있거나 분리되어 존재하던 3
Figure pat00002
m이하의 사이즈의 잔류리튬을 제거한다.The pores of the filter paper used for the filtration are 3
Figure pat00001
3 that existed separately or attached to the surface of the active material using a size of m or less.
Figure pat00002
Remaining lithium of a size less than m is removed.

세부적인 실시예들과 비교예에 있어서의 본 발명의 양극의 조성 및 제조과정을 상술하면 다음과 같다. The composition and manufacturing process of the positive electrode of the present invention in the detailed examples and comparative examples will be described in detail as follows.

<실시예1><Example 1>

5L 반응기에 수산화나트뮬 용액을 첨가하여 pH를 11.0으로 조절한 후 질소가스를 1L/분, 반응기 온도를 40℃, 교반속도를 1000 RPM으로 초기화하였다. 황산니켈, 황산 코발트, 황산망간의 비율이 9:0.7:0.3의 몰 비율로 혼합된 2M 농도의 금속 수용액을 0.32L/hr로, 6M 농도의 암모니아 용액을 반응기에 0.032L/hr로 연속적으로 투입하였으며 3M 농도의 수산화나트륨으로 pH 11로 조절하였으며 용액의 평균체류시간은 6시간으로 하여 구형의 니켈-코발트-망간 복합 수산화물을 연속적으로 얻었다. 얻은 수산화물은 여과한 후 130℃에서 24시간 건조하여 열처리전 전구체로 사용하였다. After adding sodium hydroxide solution to the 5L reactor to adjust the pH to 11.0, nitrogen gas was adjusted to 1L/min, the reactor temperature was set to 40°C, and the stirring speed was set to 1000 RPM. Nickel sulfate, cobalt sulfate, and manganese sulfate were mixed in a molar ratio of 9:0.7:0.3 to a 2M concentration of metal aqueous solution at 0.32L/hr, and a 6M concentration ammonia solution was continuously added to the reactor at 0.032L/hr. The pH was adjusted to 11 with 3M sodium hydroxide, and the average residence time of the solution was 6 hours to obtain a spherical nickel-cobalt-manganese composite hydroxide continuously. The obtained hydroxide was filtered, dried at 130° C. for 24 hours, and used as a precursor before heat treatment.

전구체 및 수산화 리튬(LiOH.H2O) 그리고 안티모니 산화물(Sb2O3)의 몰비를 0.98:0.515:0.02의 비율로 고밀도 폴리에틸렌(HDPE) 병 용기에 집어넣고 지르코니아 볼과 투입원료의 비가 5:1이 되도록 지르코니아 볼을 넣은 후 볼 밀러를 통하여 100rpm으로 10시간 동안 고상 혼합하였다. 이렇게 고상 혼합된 원료물질들을 지르코니아 볼들과 분리한 후에는 가열로에 넣고서 승온속도 1.25℃/min로 750℃까지 상승 시킨 후에 750℃에서 10시간 산소분위기하에서 소성하여 활물질을 제조하였다. 이렇게 제조된 양극활물질과 에탄올의 무게비율을 1: 10으로 하여 1L반응기에 넣고 모터를 통한 임펠라 회전수를 1000rpm으로 1시간 동안 회전시켜 잔류리튬을 제거하고 진공 여과한 후 130℃에서 10시간 진공 건조 하여 활물질을 제조하였다. 제조된 활물질의 SEM사진은 도3(a)와 같다. Put the molar ratio of the precursor, lithium hydroxide (LiOH.H2O) and antimony oxide (Sb2O3) into a high-density polyethylene (HDPE) bottle container in a ratio of 0.98:0.515:0.02, and zirconia so that the ratio between the zirconia balls and the input material is 5:1. After inserting the ball, the solid mixture was mixed at 100 rpm for 10 hours through a ball miller. After separating the solid-state mixed raw materials from the zirconia balls, they were put in a heating furnace, and the temperature was raised to 750°C at a rate of 1.25°C/min, and then calcined at 750°C for 10 hours in an oxygen atmosphere to prepare an active material. The weight ratio of the positive electrode active material and ethanol thus prepared was 1: 10, put into a 1L reactor, and rotated at 1000 rpm for 1 hour to remove residual lithium, followed by vacuum filtration at 130℃ for 10 hours. Thus, an active material was prepared. The SEM photograph of the prepared active material is shown in Fig. 3(a).

<실시예2><Example 2>

실시예1과는 모터를 통한 임펠라 회전수를 1500rpm으로 한 것 외에는 차이가 없다.There is no difference from Example 1 except that the number of rotations of the impeller through the motor is 1500 rpm.

<비교예1><Comparative Example 1>

실시예1과 동일하지만 에탄올과 혼합하여 고속 회전시키는 공정이 제외된 것으로 활물질 SEM 사진은 도3(b)와 같다.It is the same as Example 1, but the process of mixing with ethanol and rotating at high speed is excluded, and the SEM photograph of the active material is as shown in FIG.

도3에서 실시예1, 비교예1의 SEM사진을 통한 표면구조를 비교하면 붉은 원으로 표현되어 있는 잔류리튬이 도3(b)의 비교예1 사진에 비해서 도3(a)의 실시예1 사진에서 많이 제거된 것을 확인할 수 있다.When comparing the surface structures through SEM photographs of Example 1 and Comparative Example 1 in FIG. 3, the residual lithium represented by a red circle was compared to the photograph of Comparative Example 1 of FIG. 3(b) in Example 1 of FIG. 3(a). You can see that a lot has been removed from the photo.

상기 실시예1, 실시예2, 비교예1에서 제조된 활물질의 잔류 리튬을 측정하고 그 결과를 아래 표1에 나타내었다The residual lithium of the active material prepared in Example 1, Example 2, and Comparative Example 1 was measured, and the results are shown in Table 1 below.

잔류 리튬을 측정하기 위해 활물질 51 g을 초순수 100 g에 침지시킨 뒤 30 분간 교반하고 여과액을 취하여 0.1N HCl로 적정하였으며, 상기 여과액의 pH가 5가 될 때까지 투입된 HCl의 부피를 측정함으로써 활물질의 잔류 리튬을 분석하였다.To measure the residual lithium, 51 g of the active material was immersed in 100 g of ultrapure water, stirred for 30 minutes, and the filtrate was taken and titrated with 0.1N HCl, and the volume of HCl added until the pH of the filtrate reached 5 was measured. The residual lithium of the active material was analyzed.

구분division LiOHLiOH Li2CO3 Li 2 CO 3 실시예1Example 1 2,650 2,650 25002500 실시예2Example 2 30593059 30473047 비교예1Comparative Example 1 24,91724,917 57745774

<잔류 리튬양(ppm)> <Amount of lithium remaining (ppm)>

[표1]에 볼 수 있듯이, 비교예1에 비해서 실시예1, 실시예2의 잔류 리튬양이 크게 줄었고 특히 LiOH의 감소가 큼을 보여준다.As can be seen in [Table 1], compared to Comparative Example 1, the amount of residual lithium in Examples 1 and 2 was significantly reduced, and in particular, the reduction in LiOH was large.

한편, 상기 실시예1, 실시예2와 비교예1의 활물질의 방전용량을 비교하기 위한 전기화학적 특성의 평가는 다음과 같은 방법으로 진행하였다.Meanwhile, the evaluation of the electrochemical properties for comparing the discharge capacity of the active materials of Examples 1 and 2 and Comparative Example 1 was performed in the following manner.

① 상기 실시예들과 비교예1에서 제조된 양극제를 양극활물질로 하여, (양극활물질):(도전제):(폴리비닐플루오라이드 바인더)를 각각 88 : 7 : 5의 중량비로 N-메틸피롤리돈(N-Methylpyrrolidone) 용매에 녹여 양극활물질 슬러리를 제조하였다.① Using the positive electrode agent prepared in Examples and Comparative Example 1 as a positive electrode active material, (positive electrode active material): (conductive agent): (polyvinyl fluoride binder) was used as N-methyl in a weight ratio of 88:7:5, respectively. Pyrrolidone (N-Methylpyrrolidone) was dissolved in a solvent to prepare a cathode active material slurry.

② 상기 양극활물질 슬러리를 30㎛ 두께의 알루미늄 포일 위에 40㎛ 두께로 코팅한 다음 이를 1.9x1.9㎠의 사각 모양으로 잘라 전극을 제조하였다. ② The cathode active material slurry was coated on an aluminum foil having a thickness of 30 μm to a thickness of 40 μm, and then cut into a square shape of 1.9×1.9 cm 2 to prepare an electrode.

③ 상기 제조된 양극 전극과 리튬금속을 대극으로 하여 글로브 박스(glove box) 내에서 파우치 타입으로 반쪽전지를 제조하였다. 이때, 전해액으로는 1M LiPF6가 용해된 에틸렌카보네이트(Ethylene carbonate, EC)와 에틸메틸 카보네이트(Ethyl methyl carbonate, EMC)의 혼합용액(1:1 부피비)을 사용하였다.③ A pouch type half-cell was manufactured in a glove box using the prepared positive electrode and lithium metal as a counter electrode. At this time, a mixed solution (1:1 volume ratio) of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in which 1M LiPF6 was dissolved was used as the electrolyte.

④ 이렇게 조립된 반쪽전지는, 용량측정을 위해서는 25℃에서 0.1C/0.1C의 충방전 조건으로 테스트하였다. 이때, 충방전이 이루어지는 전압 구간은 2.7~4.3V 구간으로 실시하였다.④ The assembled half-battery was tested under the charge/discharge condition of 0.1C/0.1C at 25℃ for capacity measurement. At this time, the voltage section in which charging and discharging is performed was performed in the 2.7 ~ 4.3V section.

도4는 방전용량 그래프로서 실시예1, 실시예2, 비교예1이 거의 동일한 방전용량값을 보여주고 있다. 이는 에탄올을 용매로 고속회전을 시켰을 때에 활물질이 손상 되지 않고 물리적으로 잔류 리튬만 따로 제거할 수 있음을 보여준다.4 is a graph of the discharge capacity, showing approximately the same discharge capacity values in Example 1, Example 2, and Comparative Example 1. This shows that when ethanol is rotated at high speed as a solvent, the active material is not damaged and only residual lithium can be physically removed.

Claims (2)

(a) 공침으로 NibCMnd(OH)2(이때, 0.7≤b≤1.0, 0.00≤c≤0.3, 0≤d≤0.25)를 제조하는 단계;
(b) 공침으로 제조한 전구체 니켈-코발트-금속복합수산화물과 첨가물(M1, M2) 원료들을 혼합한 후 혼합물을 가열로에 집어넣고 650~850의 온도로 5~24시간 동안 소성(燒成)하는 단계를 포함하여, Li1+aNibCMndM1eM2fO2 (이때, 0≤a≤0.1, 0.7≤b≤1.0, 0.0≤c≤0.3, 0≤d≤0.25, 0≤e≤0.05, 0≤f≤0.05)의 화학식으로 표시되는 조성의 리튬이차전지용 양극 활물질을 제조하는 단계;
(c) 제조한 양극활물질을 알콜과 무게비로 0.5~20 비율로 혼합한 후에 500~2000rpm 회전시켜 양극 활물질 표면에 있는 잔류리튬을 작은 입자로 분리하는 단계;
(d) 고속회전을 거친 혼합용액을 여과장치에 넣어 분리된 작은 입자를 진공 여과하는 단계;
(e) 여과한 양극 활물질을 100~150 온도에서 진공 건조하는 단계;를 포함하는 것을 특징으로 하는 리튬이차전지용 양극소재의 제조방법.
(a) preparing Ni b CMn d (OH) 2 (here, 0.7≦ b ≦1.0, 0.00≦c≦0.3, 0≦ d ≦0.25) by coprecipitation;
(b) After mixing the precursor nickel-cobalt-metal complex hydroxide and additives (M1, M2) raw materials prepared by coprecipitation, put the mixture in a heating furnace and fired at a temperature of 650 to 850 for 5 to 24 hours. Including the step of, Li 1+a Ni b CMn d M1 e M2 f O 2 (here, 0≤a≤0.1, 0.7≤b≤1.0, 0.0≤c≤0.3, 0≤d≤0.25, 0≤e Manufacturing a cathode active material for a lithium secondary battery having a composition represented by the formula of ≤0.05, 0≤f≤0.05);
(c) mixing the prepared positive electrode active material with alcohol at a weight ratio of 0.5 to 20 and rotating 500 to 2000 rpm to separate the residual lithium on the surface of the positive electrode active material into small particles;
(d) vacuum filtering the separated small particles by putting the mixed solution through high-speed rotation into a filtering device;
(e) vacuum drying the filtered positive electrode active material at a temperature of 100 to 150; a method for producing a positive electrode material for a lithium secondary battery comprising:
(a) 5L 반응기에 수산화나트뮬 용액을 첨가하여 pH를 11.0으로 조절한 후 질소가스를 1L/분, 반응기 온도를 40℃, 교반속도를 1000 RPM으로 초기화하는 제1단계;
(b) 황산니켈, 황산 코발트, 황산망간의 비율이 9:0.7:0.3의 몰 비율로 혼합된 2M 농도의 금속 수용액을 0.32L/hr로, 6M 농도의 암모니아 용액을 반응기에 0.032L/hr로 연속적으로 투입하고, 3M 농도의 수산화나트륨으로 pH 11로 조절하며, 용액의 평균체류시간은 6시간으로 하여 구형의 니켈-코발트-망간 복합 수산화물을 연속적으로 얻는 제2단계;
(c) 전구체 및 수산화 리튬(LiOH.H2O) 그리고 안티모니 산화물(Sb2O3)의 몰비를 0.98:0.515:0.02의 비율로 고밀도 폴리에틸렌(HDPE) 병 용기에 집어넣고 지르코니아 볼과 투입원료의 비가 5:1이 되도록 지르코니아 볼을 넣은 후, 볼 밀러를 통하여 100rpm으로 10시간 동안 고상 혼합하는 제3단계;
(d) 상기 고상 혼합된 원료물질들을 지르코니아 볼들과 분리한 후에는 가열로에 넣고서 승온속도 1.25℃/min로 750℃까지 상승 시킨 후에 750℃에서 10시간 산소분위기하에서 소성하여 활물질을 제조하는 제4단계;
(e) 상기 제4단계에 의해서 제조된 양극활물질과 에탄올의 무게비율을 1: 10으로 하여 1L반응기에 넣고 모터를 통한 임펠라 회전수를 1000rpm으로 1시간 동안 회전시켜 잔류리튬을 제거하고 진공 여과한 후 130℃에서 10시간 진공 건조 하여 활물질을 제조하는 제5단계;를 포함하는 것을 특징으로 하는 리튬이차전지용 양극소재의 제조방법.
(a) a first step of adjusting the pH to 11.0 by adding a sodium hydroxide solution to the 5L reactor and then initializing nitrogen gas to 1L/min, the reactor temperature to 40°C, and the stirring speed to 1000 RPM;
(b) A 2M metal aqueous solution mixed at a molar ratio of 9:0.7:0.3 in a ratio of nickel sulfate, cobalt sulfate, and manganese sulfate at 0.32L/hr, and a 6M ammonia solution at 0.032L/hr in the reactor. A second step of continuously inputting and continuously obtaining a spherical nickel-cobalt-manganese complex hydroxide by adjusting the pH to 11 with sodium hydroxide of 3M concentration and having an average residence time of 6 hours;
(c) Put the precursor, lithium hydroxide (LiOH.H2O) and antimony oxide (Sb2O3) in a molar ratio of 0.98:0.515:0.02 into a high-density polyethylene (HDPE) bottle container, and the ratio of the zirconia balls and the input material is 5:1 After putting the zirconia balls so as to be, a third step of solid-state mixing for 10 hours at 100 rpm through a ball mirror;
(d) After separating the solid mixed raw materials from the zirconia balls, put them in a heating furnace, raise the temperature to 750°C at a heating rate of 1.25°C/min, and then sinter at 750°C for 10 hours under oxygen atmosphere to prepare an active material step;
(e) The weight ratio of the positive electrode active material and ethanol prepared in the fourth step is 1: 10, put in a 1L reactor, and rotated through a motor at 1000 rpm for 1 hour to remove residual lithium and vacuum filtered. After vacuum drying at 130° C. for 10 hours to prepare an active material, a fifth step of manufacturing an active material;
KR1020190064173A 2019-05-30 2019-05-30 Manufacturing method of Cathode material for lithium ion secondary battery KR20200137578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190064173A KR20200137578A (en) 2019-05-30 2019-05-30 Manufacturing method of Cathode material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190064173A KR20200137578A (en) 2019-05-30 2019-05-30 Manufacturing method of Cathode material for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
KR20200137578A true KR20200137578A (en) 2020-12-09

Family

ID=73786752

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190064173A KR20200137578A (en) 2019-05-30 2019-05-30 Manufacturing method of Cathode material for lithium ion secondary battery

Country Status (1)

Country Link
KR (1) KR20200137578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113415830A (en) * 2021-08-24 2021-09-21 金驰能源材料有限公司 Preparation method of lithium ion battery anode material precursor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113415830A (en) * 2021-08-24 2021-09-21 金驰能源材料有限公司 Preparation method of lithium ion battery anode material precursor

Similar Documents

Publication Publication Date Title
US20200335784A1 (en) Full-gradient nickel cobalt manganese positive electrode material, ruthenium oxide coated material and preparation method thereof
CN100508255C (en) Layered core-shell cathode active materials for lithium secondary batteries, method for preparing thereof and lithium secondary batteries using the same
US11508964B2 (en) Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
CN107681127B (en) Lithium composite oxide for lithium secondary battery and method for preparing same
JP6845869B2 (en) Method for producing positive electrode active material for lithium secondary battery and lithium secondary battery positive electrode active material produced by this method.
CN101426728A (en) Lithium-metal composite oxides and electrochemical device using the same
KR102357836B1 (en) Cathode active material for lithium secondary and lithium secondary batteries comprising the same
CN107611355B (en) Lithium composite oxide for lithium secondary battery and method for preparing same
KR20120108031A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN109786730B (en) Secondary battery anode active material and method for producing same
WO2014190662A1 (en) Dual-doped lithium-rich solid solution positive electrode composite and preparation method thereof, lithium-ion battery positive electrode plate, and lithium-ion battery
JP2015529943A (en) Lithium-rich positive electrode material, lithium battery positive electrode, and lithium battery
JP7150911B2 (en) Lithium composite oxide for lithium secondary battery and method for producing the same
CN112952085B (en) Gradient high-nickel single crystal ternary material, preparation method thereof and battery using material
JP2019091692A (en) Positive electrode active material for secondary battery and manufacturing method thereof
CN104953096A (en) Surface-modified high-voltage lithium cobalt oxide positive material and preparation method thereof
CN113644274A (en) O2 type lithium ion battery anode material and preparation method and application thereof
KR101344455B1 (en) Spinel lithium manganese oxide as cathode material for lithium secondary battery and a method for producing the same
KR20200137578A (en) Manufacturing method of Cathode material for lithium ion secondary battery
KR101991254B1 (en) Positive Active material with high Power density and longevity
CN111029536A (en) Lithium ion battery anode material and preparation method thereof
CN102738455A (en) Layered lithium manganate and preparation method thereof
CN116802846A (en) Positive electrode active material, positive electrode sheet, secondary battery, battery module, battery pack, and electricity device
KR20170041650A (en) Cathode material composed of Li-Ni-Co-Mn-Mg oxide for lithium secondary battery and a method for producing the same
KR20160088121A (en) Positive active material for lithium rechargeable battery, lithium rechargeable battery including the same, and manufacturing method for the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal