KR20200134546A - Surface reinforcement material contained visible light responsive photocatalytic material - Google Patents

Surface reinforcement material contained visible light responsive photocatalytic material Download PDF

Info

Publication number
KR20200134546A
KR20200134546A KR1020190060124A KR20190060124A KR20200134546A KR 20200134546 A KR20200134546 A KR 20200134546A KR 1020190060124 A KR1020190060124 A KR 1020190060124A KR 20190060124 A KR20190060124 A KR 20190060124A KR 20200134546 A KR20200134546 A KR 20200134546A
Authority
KR
South Korea
Prior art keywords
photocatalyst
visible light
ferrocene
inorganic oxide
iron oxide
Prior art date
Application number
KR1020190060124A
Other languages
Korean (ko)
Other versions
KR102285333B1 (en
Inventor
오주명
Original Assignee
주식회사 제이치글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제이치글로벌 filed Critical 주식회사 제이치글로벌
Priority to KR1020190060124A priority Critical patent/KR102285333B1/en
Publication of KR20200134546A publication Critical patent/KR20200134546A/en
Application granted granted Critical
Publication of KR102285333B1 publication Critical patent/KR102285333B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5041Titanium oxide or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/002Catalysts characterised by their physical properties
    • B01J35/004Photocatalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1004Surface area
    • B01J35/1009Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1052Pore diameter
    • B01J35/10612-50 nm
    • B01J35/39
    • B01J35/612
    • B01J35/647
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5036Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • C04B2111/2061Materials containing photocatalysts, e.g. TiO2, for avoiding staining by air pollutants or the like

Abstract

The present invention relates to a surface reinforcement material containing a visible light-responsive photocatalytic material. An object of the present invention is to provide an excellent photoactivity (photocatalytic reaction) in a visible ray area in applying a surface strengthening agent to the surface of a concrete product and remove hazardous substances (such as acetaldehyde, NOx, SOx, VOCs, acetic acid, toluene, and formaldehyde) with an excellent photolysis efficiency even under various humidity and temperature conditions. The surface reinforcement material contains the surface strengthening agent applied to the concrete product and a photocatalyst dispersed in the surface strengthening agent. The photocatalyst contains an inorganic oxide and a ferrocene-derived iron oxide layer formed on the inorganic oxide.

Description

가시광 응답형 광촉매 물질이 포함된 표면강화물질{SURFACE REINFORCEMENT MATERIAL CONTAINED VISIBLE LIGHT RESPONSIVE PHOTOCATALYTIC MATERIAL}Surface reinforcement material containing visible light-responsive photocatalytic material{SURFACE REINFORCEMENT MATERIAL CONTAINED VISIBLE LIGHT RESPONSIVE PHOTOCATALYTIC MATERIAL}

본 발명은 가시광 응답형 광촉매 물질이 포함된 표면강화물질에 관한 것으로, 보다 구체적으로는 콘크리트 제품의 표면에 표면강화제를 도포함에 있어서, 가시광선 영역에서 우수한 광활성(광촉매 반응)을 갖도록 하고, 다양한 습도 및 온도 조건에서도 우수한 광분해 효율로 유해물질(아세트알데히드, NOx, SOx, VOCs, 아세트산, 톨루엔, 포름알데히드 등)을 제거하기 위한 가시광 응답형 광촉매 물질이 포함된 표면강화물질에 관한 것이다. The present invention relates to a surface reinforcing material containing a visible light-responsive photocatalytic material, and more specifically, in applying a surface reinforcing agent to the surface of a concrete product, it has excellent photoactivity (photocatalytic reaction) in the visible light range, and various humidity levels. And a visible light-responsive photocatalytic material for removing harmful substances (acetaldehyde, NOx, SOx, VOCs, acetic acid, toluene, formaldehyde, etc.) with excellent photolysis efficiency even under temperature conditions.

일반적으로, 차량이 통과하는 도로, 교통량이 빈번한 주차장, 물류센터의 창고 등의 바닥에 콘크리트가 사용되고 있다. 그러나, 콘크리트는 다양한 환경요소에 영향을 받아 백화, 중성화, 염해, 동결융해 등과 같은 현상이 발생하여 강도저하, 균열발생 및 박리 등을 포함한 다양한 문제점들이 나타나 콘크리트 바닥의 수명이 단축되고 있다.In general, concrete is used for floors of roads through which vehicles pass, parking lots with frequent traffic, and warehouses of distribution centers. However, as concrete is affected by various environmental factors, phenomena such as whitening, neutralization, salt damage, freezing and thawing occur, and various problems including strength reduction, cracking, and peeling appear, and the life of the concrete floor is shortened.

특히, 옥외 콘크리트의 경우 제설재의 사용에 따른 염소성분, 공기중의 이산화탄소, 자동차 배기가스로 인한 산성비 및 수분의 침투에 의해 내구성이 약해져 사용 수명이 빠르게 단축되고 있다. 콘크리트는 결합재로 사용되는 시멘트가 물과 수화 반응하여 고체화되어 pH는 12~13 정도의 강알칼리성의 성질을 가지고 있다. 이러한 콘크리트는 공기중에 이산화탄소화 접촉하면 pH 7에 가까운 탄산칼슘으로 변화하게 되는 중성화 현상이 발생한다.In particular, in the case of outdoor concrete, durability is weakened by penetration of chlorine component, carbon dioxide in the air, acid rain and moisture from automobile exhaust gas due to the use of snow removal material, and the service life is rapidly shortened. Concrete is solidified by hydration reaction of cement used as a binder with water, and has a strong alkaline property of about 12 to 13 pH. When such concrete is in contact with carbon dioxide in the air, a neutralization phenomenon occurs that changes to calcium carbonate close to pH 7.

또한, 산성비에 포함된 이산화황이나 이산화질소도 같은 작용을 한다. 중성화가 진행되면서 콘크리트의 내식성이 약해져 콘크리트 속의 철근까지 부식시키게 되는데, 철근은 부식하면 2.7배까지 부피가 팽창하여 콘크리트에 균열이 발생하게 된다. 또한, 해안가의 구조물의 경우, 염분의 황산염에 노출되고, 도로의 방호벽이나 중앙분리대 등도 제설작업을 위한 염화칼슘 등 화학성분에 노출되어 콘크리트의 균열이 발생하게 되는 염해현상이 나타나게 된다.In addition, sulfur dioxide and nitrogen dioxide contained in acid rain have the same effect. As the neutralization proceeds, the corrosion resistance of concrete weakens, and it corrodes even the reinforcing bars in the concrete. If the reinforcing bars are corroded, the volume expands up to 2.7 times, causing cracks in the concrete. In addition, in the case of coastal structures, the salt damage phenomenon that cracks in concrete occurs due to exposure to salt sulphate, and to chemical components such as calcium chloride for snow removal work, such as road protection walls and central separators.

이에 따라, 콘크리트를 보호하기 위해서 에폭시수지 혹은 우레탄수지를 사용한 유기계 바닥강화제 혹은 시멘트를 주성분으로 사용한 무기계 바닥강화제를 사용하는 방법이 적용되었으나, 유기계 바닥강화제는 장기간 사용시 박리되고 색상이 변질되는 문제점이 나타났고, 무기계 바닥강화제는 대부분 건조수축에 의해 균열이 발생하는 문제점이 나타났다.Accordingly, in order to protect concrete, an organic floor reinforcement using epoxy resin or urethane resin or an inorganic floor reinforcement using cement as a main component was applied, but the organic floor reinforcement had a problem that peeling off and deteriorating color when used for a long time. Most of the inorganic floor reinforcing agents had a problem of generating cracks due to drying shrinkage.

이에 따라, 알칼리 규산염을 단독 혹은 수용성 고분자 에멀젼과 혼합하여 사용하는 방법 및 여기에 콘크리트 열화를 방지하기 위하여 아질산염, 아미노알콜 등의 열화방지제를 혼합한 기능성 표면강화제가 제안되고 있다.Accordingly, a method of using an alkali silicate alone or in combination with a water-soluble polymer emulsion and a functional surface strengthening agent in which a deterioration inhibitor such as nitrite or amino alcohol is mixed to prevent deterioration of concrete has been proposed.

그러나 열화방지제로 사용된 아질산염, 아미노알콜 등은 물에 대한 용해도가 높기 때문에 열화방지제를 첨가한 표면강화제를 도포한 콘크리트는 초기에 우수한 열화방지 기능을 발휘하지만, 지속적인 수분의 침투에 의해 열화방지제가 용해되어 표면으로 배출됨으로써 장기에 열화방지 기능이 저하되어 콘크리트의 내구성이 저하되는 문제점이 있다.However, since nitrite and amino alcohol used as deterioration inhibitors have high solubility in water, concrete coated with a surface strengthening agent added with a deterioration inhibitor exhibits excellent deterioration prevention function at the beginning, but due to the continuous penetration of moisture, deterioration inhibitors As it is dissolved and discharged to the surface, there is a problem in that the durability of concrete decreases due to deterioration prevention function in the long term.

대한민국 등록특허공보 제10-1793660호 (발명의 명칭 : 콘크리트 기능성 표면강화제 조성물 및 제조방법, 2017. 11. 03. 공고)Republic of Korea Patent Publication No. 10-1793660 (Name of invention: concrete functional surface strengthening agent composition and manufacturing method, 2017. 11. 03. Announcement)

본 발명의 목적은 종래의 문제점을 해결하기 위한 것으로서, 콘크리트 제품의 표면에 표면강화제를 도포함에 있어서, 가시광선 영역에서 우수한 광활성(광촉매 반응)을 갖도록 하고, 다양한 습도 및 온도 조건에서도 우수한 광분해 효율로 유해물질(아세트알데히드, NOx, SOx, VOCs, 아세트산, 톨루엔, 포름알데히드 등)을 제거하기 위한 가시광 응답형 광촉매 물질이 포함된 표면강화물질을 제공함에 있다.An object of the present invention is to solve the conventional problems, in applying a surface strengthening agent to the surface of a concrete product, to have excellent photoactivity (photocatalytic reaction) in the visible region, and to achieve excellent photolysis efficiency even under various humidity and temperature conditions. It is to provide a surface enhancing material containing a visible light-responsive photocatalytic material to remove harmful substances (acetaldehyde, NOx, SOx, VOCs, acetic acid, toluene, formaldehyde, etc.).

상술한 본 발명의 목적을 달성하기 위한 바람직한 실시예에 따르면, 본 발명에 따른 가시광 응답형 광촉매 물질이 포함된 표면강화물질은 콘크리트 제품에 도포되는 표면강화제; 및 상기 표면강화제에 분산되는 광촉매;를 포함하고, 상기 광촉매는, 무기산화물; 및 상기 무기산화물 상에 형성되는 페로센 유래 철 산화물층;을 포함한다.According to a preferred embodiment for achieving the object of the present invention described above, the surface reinforcing material containing the visible light-responsive photocatalytic material according to the present invention includes a surface reinforcing agent applied to a concrete product; And a photocatalyst dispersed in the surface enhancer, wherein the photocatalyst comprises: an inorganic oxide; And a ferrocene-derived iron oxide layer formed on the inorganic oxide.

여기서, 상기 페로센 유래 철 산화물층에서 철의 함량은, 상기 무기산화물 대비 0.001 내지 10 중량%이다.Here, the content of iron in the ferrocene-derived iron oxide layer is 0.001 to 10% by weight relative to the inorganic oxide.

여기서, 상기 페로센 유래 철 산화물층은, 상기 무기산화물 상에 증착된 페로센이 열처리된다.Here, in the ferrocene-derived iron oxide layer, ferrocene deposited on the inorganic oxide is heat treated.

여기서, 상기 무기산화물은, Ti, Zn, Al 및 Sn 중 적어도 하나를 포함하는 산화물로 이루어진 군에서 선택된 적어도 하나를 포함한다.Here, the inorganic oxide includes at least one selected from the group consisting of oxides containing at least one of Ti, Zn, Al, and Sn.

여기서, 상기 무기산화물은, 비드, 분말, 로드, 와이어, 니들 및 섬유 형태로 이루어진 군에서 선택된 적어도 하나를 포함하고, 상기 무기산화물의 크기는, 1 nm 내지 500 ㎛이다.Here, the inorganic oxide includes at least one selected from the group consisting of beads, powder, rod, wire, needle, and fiber, and the size of the inorganic oxide is 1 nm to 500 μm.

여기서, 상기 광촉매는, 400 nm 이상의 가시광선 영역에서 광활성을 갖는다.Here, the photocatalyst has photoactivity in a visible region of 400 nm or more.

여기서, 상기 광촉매는, 30% 이하의 습도의 건식 조건에서 광활성을 갖는다.Here, the photocatalyst has photoactivity in dry conditions of 30% or less of humidity.

여기서, 상기 페로센 유래 철 산화물은, 하기의 [화학식 1]로 표시되는 화합물 중 1종 이상을 포함한다.Here, the ferrocene-derived iron oxide contains one or more of the compounds represented by the following [Chemical Formula 1].

[화학식 1][Formula 1]

FeXOYHZ Fe X O Y H Z

(X, Y 및 Z는 각각 0 내지 3에서 선택되고, X 및 Y는 0이 아니다.)(X, Y and Z are each selected from 0 to 3, and X and Y are not 0.)

여기서, 상기 광촉매는, 비표면적이 5(m2/g) 이상이고, 평균 기공 크기는 50nm 이하이다.Here, the photocatalyst has a specific surface area of 5 (m2/g) or more, and an average pore size of 50 nm or less.

본 발명에 따른 가시광 응답형 광촉매 물질이 포함된 표면강화물질에 따르면, 콘크리트 제품의 표면에 표면강화제를 도포함에 있어서, 가시광선 영역에서 우수한 광활성(광촉매 반응)을 갖도록 하고, 다양한 습도 및 온도 조건에서도 우수한 광분해 효율로 유해물질(아세트알데히드, NOx, SOx, VOCs, 아세트산, 톨루엔, 포름알데히드 등)을 제거할 수 있다.According to the surface reinforcing material containing the visible light-responsive photocatalytic material according to the present invention, when the surface reinforcing agent is applied to the surface of a concrete product, it has excellent photoactivity (photocatalytic reaction) in the visible region, and even under various humidity and temperature conditions. It can remove harmful substances (acetaldehyde, NOx, SOx, VOCs, acetic acid, toluene, formaldehyde, etc.) with excellent photolysis efficiency.

또한, 본 발명은 콘크리트 제품의 내구성을 강화시키고, 콘크리트 제품으로부터 비산먼지가 발생되는 것을 방지할 수 있다.In addition, the present invention can enhance the durability of the concrete product and prevent scattering dust from occurring from the concrete product.

또한, 본 발명은 광촉매를 통해 가시광선 영역에서 광촉매 반응이 안정적으로 발생되도록 하고, 콘크리트 제품에서 산성가스 및 유해물질의 제거율을 향상시킬 수 있으며, 고온의 하절기에 화학약품 고유의 냄새를 저감시킬 수 있다.In addition, the present invention allows the photocatalytic reaction to stably occur in the visible light region through the photocatalyst, improves the removal rate of acid gases and harmful substances from concrete products, and reduces the inherent odor of chemicals during the high temperature summer season. have.

또한, 본 발명은 광촉매를 통해 다양한 습도 및 온도 영역에서 우수한 광분해 효율을 갖는 무기산화물 기반 광촉매를 제공할 수 있다.In addition, the present invention can provide an inorganic oxide-based photocatalyst having excellent photolysis efficiency in various humidity and temperature regions through the photocatalyst.

또한, 본 발명은 광촉매를 통해 간단하고 경제적인 방법으로 무기산화물 기반 광촉매를 제공할 수 있고, 무기산화물 기반 광촉매는 가시광선 영역의 빛에 감응하여 휘발성 유기화합물을 높은 효율로 분해시키는 능력과 뛰어난 안정성을 지니고 있어 실내외 공기청정을 위한 소재로 효과적으로 적용할 수 있다.In addition, the present invention can provide an inorganic oxide-based photocatalyst in a simple and economical way through a photocatalyst, and the inorganic oxide-based photocatalyst has the ability to decompose volatile organic compounds with high efficiency and excellent stability in response to light in the visible region. As it has, it can be effectively applied as a material for indoor and outdoor air purification.

또한, 본 발명은 광촉매를 통해 페로센 도핑 공정에 의해서 가시광 영역에서 광촉매 활성이 우수한 무기산화물 기반 광촉매를 제공하고, 광촉매는 광활성 기능을 부가할 수 있다.In addition, the present invention provides an inorganic oxide-based photocatalyst having excellent photocatalytic activity in a visible light region by a ferrocene doping process through a photocatalyst, and the photocatalyst may add a photoactive function.

도 1은 본 발명의 일 실시예에 따른 가시광 응답형 광촉매 물질이 포함된 표면강화물질에서 광촉매의 제조방법을 도시한 블럭도이다.
도 2는 본 발명의 일 실시예에 따른 가시광 응답형 광촉매 물질이 포함된 표면강화물질에서 광촉매의 제조공정에 이용되는 TR-CVD 반응기의 구성을 예시적으로 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 가시광 응답형 광촉매 물질이 포함된 표면강화물질에서 광촉매의 제조공정을 예시적으로 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 가시광 응답형 광촉매 물질이 포함된 표면강화물질에서 가시광선(백색광) 조사 시간에 따른 (a) 아세트알데하이드 몰수 변화 및 (b) 아세트알데하이드의 광분해 반응의 결과 발생한 이산화탄소 몰수 변화를 나타낸 그래프이다.
도 5는 본 발명의 일 실시예에 따른 가시광 응답형 광촉매 물질이 포함된 표면강화물질에 의한 메틸렌 블루 용액의 제거 시험으로써, (a)는 메틸렌 블루 용액만 공급한 상태이고, (b)는 메틸렌 블루 용액에 표면강화물질을 투입하고 일정 시간이 경과된 상태를 나타내는 사진이다.
1 is a block diagram illustrating a method of manufacturing a photocatalyst from a surface enhancing material including a visible light-responsive photocatalyst material according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a configuration of a TR-CVD reactor used in a manufacturing process of a photocatalyst from a surface enhancing material containing a visible light-responsive photocatalyst material according to an embodiment of the present invention.
3 is a diagram illustrating a manufacturing process of a photocatalyst from a surface enhancing material including a visible light-responsive photocatalyst material according to an embodiment of the present invention.
Figure 4 is a result of (a) acetaldehyde mole number change and (b) acetaldehyde photolysis reaction according to the irradiation time of visible light (white light) in the surface-enhancing material containing the visible light-responsive photocatalytic material according to an embodiment of the present invention This is a graph showing the change in the number of moles of carbon dioxide generated.
5 is a test for removing methylene blue solution by a surface enhancing material containing a visible light-responsive photocatalytic material according to an embodiment of the present invention, in which (a) is a state in which only methylene blue solution is supplied, and (b) is methylene This is a photograph showing the state that a certain amount of time has elapsed after a surface reinforcing material was added to the blue solution.

이하, 첨부된 도면들을 참조하여 본 발명에 따른 가시광 응답형 광촉매 물질이 포함된 표면강화물질의 일 실시예를 설명한다. 이때, 본 발명은 실시예에 의해 제한되거나 한정되는 것은 아니다. 또한, 본 발명을 설명함에 있어서, 공지된 기능 혹은 구성에 대해 구체적인 설명은 본 발명의 요지를 명확하게 하기 위해 생략될 수 있다.Hereinafter, an embodiment of a surface-enhancing material including a visible light-responsive photocatalytic material according to the present invention will be described with reference to the accompanying drawings. At this time, the present invention is not limited or limited by the examples. In addition, in describing the present invention, detailed descriptions of known functions or configurations may be omitted to clarify the gist of the present invention.

도 1 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 가시광 응답형 광촉매 물질이 포함된 표면강화물질은 콘크리트 제품에 도포되는 표면강화제와, 표면강화제에 분산되는 광촉매를 포함할 수 있다.Referring to FIGS. 1 to 5, a surface reinforcing material including a visible light-responsive photocatalytic material according to an embodiment of the present invention may include a surface reinforcing agent applied to a concrete product and a photocatalyst dispersed in the surface reinforcing agent.

여기서, 표면강화제를 한정하는 것은 아니고, 하드너, 페인트 등 공지된 다양한 표면강화제를 적용할 수 있다.Here, the surface strengthening agent is not limited, and various known surface strengthening agents such as hardeners and paints may be applied.

또한, 콘크리트 제품을 한정하는 것은 아니고, 주차장, 콘크리트 구조물, 콘크리트 벽체, 프리캐스트, 전축용 프로파일, 중앙분리대 등 공지된 다양한 콘크리트 제품을 적용할 수 있다.In addition, the concrete product is not limited, and a variety of known concrete products such as parking lot, concrete structure, concrete wall, precast, full-axis profile, and center divider can be applied.

광촉매는 무기산화물과, 무기산화물 상에 형성되는 페로센 유래 철 산화물층을 포함할 수 있다. 본 발명의 일 실시예에서 광촉매는 분말형으로 제조된 것일 수 있으나, 본 발명이 여기에 한정되는 것은 아니다.The photocatalyst may include an inorganic oxide and a ferrocene-derived iron oxide layer formed on the inorganic oxide. In an embodiment of the present invention, the photocatalyst may be manufactured in a powder form, but the present invention is not limited thereto.

광촉매는 무기산화물 기반으로 제조되는 광촉매일 수 있다.The photocatalyst may be a photocatalyst manufactured based on an inorganic oxide.

일예로, 광촉매는 무기산화물 및 페로센 도핑 공정에 의해 형성된 페로센 유래 철 산화물층을 포함할 수 있다. 페로센 유래 철 산화물층은 무기산화물 상에 코팅층으로 형성되고, 가시광선 영역에서 광흡수 및 광촉매 효율을 향상시킬 수 있다.As an example, the photocatalyst may include an inorganic oxide and a ferrocene-derived iron oxide layer formed by a ferrocene doping process. The ferrocene-derived iron oxide layer is formed as a coating layer on the inorganic oxide, and can improve light absorption and photocatalytic efficiency in the visible light region.

무기산화물은 빛 에너지를 흡수하여 촉매활성을 나타내는 무기반도체 화합물이며, 예를 들어, Ti, Zn, Al, Fe, W, Sn, Bi, Ta, Cu, Si, Ru, Sr, Ba 및 Ce으로 이루어진 군에서 선택된 적어도 하나를 포함하는 산화물이며, 바람직하게는 Ti, Zn, Al 및 Sn일 수 있다. 구체적으로 TiO2, Al2O3, ZnO2, SrTiO3, Fe2O3, Ta2O5, WO3, SnO2, BiO3, NiO, Cu2O, SiO, SiO2, MoS2, InPb, RuO2, CeO2 등일 수 있다. 또한, 산화물 외에 CdS, GaP, InP, GaAs, InPb 등의 반도체 화합물을 더 포함할 수 있다.Inorganic oxides are inorganic semiconductor compounds that absorb light energy and exhibit catalytic activity. For example, Ti, Zn, Al, Fe, W, Sn, Bi, Ta, Cu, Si, Ru, Sr, Ba and Ce It is an oxide containing at least one selected from the group, preferably Ti, Zn, Al and Sn. Specifically, TiO 2 , Al 2 O 3 , ZnO 2 , SrTiO 3 , Fe 2 O 3 , Ta 2 O 5 , WO 3 , SnO 2 , BiO 3 , NiO, Cu 2 O, SiO, SiO 2 , MoS 2 , InPb , RuO 2 , CeO 2 and the like. In addition, semiconductor compounds such as CdS, GaP, InP, GaAs, InPb, etc. may be further included in addition to oxides.

무기산화물은 비드, 분말, 로드, 와이어, 니들 및 섬유 형태로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있다.The inorganic oxide may include at least one selected from the group consisting of beads, powders, rods, wires, needles, and fibers.

무기산화물의 크기는 1 nm 이상; 10 nm 이상; 30 nm 내지 500 ㎛; 30 nm 내지 100 ㎛; 또는 30 nm 내지 1 ㎛일 수 있다. 여기서, 무기산화물의 크기는 형태에 따라 직경, 두께, 길이 등을 의미할 수 있다. The size of the inorganic oxide is 1 nm or more; 10 nm or more; 30 nm to 500 μm; 30 nm to 100 μm; Alternatively, it may be 30 nm to 1 μm. Here, the size of the inorganic oxide may mean a diameter, a thickness, a length, etc. depending on the shape.

페로센 유래 철 산화물층은 페로센 도핑 공정에 의해서 형성된 것이다. 예를 들어, 무기산화물 상에 형성된 페로센층을 열처리하여 페로센을 열분해하고, 이러한 열분해 공정에 의해 페로센에서 전환된 철 산화물을 포함할 수 있다. 페로센 도핑 공정은 이하의 제조방법에서 보다 구체적으로 설명한다.The ferrocene-derived iron oxide layer is formed by a ferrocene doping process. For example, the ferrocene layer formed on the inorganic oxide may be heat-treated to thermally decompose ferrocene, and iron oxide converted from ferrocene may be included by this pyrolysis process. The ferrocene doping process will be described in more detail in the following manufacturing method.

페로센 유래 철 산화물은 페로센, 페로센 유도체 중 적어도 하나에 의해 유래된 철 산화물이며, 페로센 유도체는 페로센 알데히드, 페로센 케톤, 페로센 카르복시산, 페로센 알콜, 페놀 또는 에테르 화합물, 질소-함유 페로센 화합물, 황-함유 페로센 화합물, 인-함유 페로센 화합물, 규소-함유 페로센 화합물, 1,1'-디코퍼 페로센(1,1'-di-copper ferrocene), 페로센 보로닉산(ferrocene boricacid), 페로세닐 큐프러스 아세틸라이트(ferrocenyl cuprous acetylide) 및 비스페로세닐 티타노센(bisferrocenyl titanocene)으로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있다.The ferrocene-derived iron oxide is an iron oxide derived from at least one of ferrocene and ferrocene derivatives, and the ferrocene derivative is ferrocene aldehyde, ferrocene ketone, ferrocene carboxylic acid, ferrocene alcohol, phenol or ether compound, nitrogen-containing ferrocene compound, sulfur-containing ferrocene Compound, phosphorus-containing ferrocene compound, silicon-containing ferrocene compound, 1,1'-di-copper ferrocene, ferrocene boric acid, ferrocenyl cuprus acetylite cuprous acetylide) and bisferrocenyl titanocene, and at least one selected from the group consisting of.

페로센 유래 철 산화물층에서 철의 함량은 무기산화물 대비 0.001 내지 10 중량%; 0.01 내지 10 중량%; 0.01 내지 3 중량%; 0.01 내지 1.5 중량%; 또는 0.01 내지 1 중량%로 포함될 수 있다.The iron content in the ferrocene-derived iron oxide layer is 0.001 to 10% by weight relative to the inorganic oxide; 0.01 to 10% by weight; 0.01 to 3% by weight; 0.01 to 1.5% by weight; Or it may be included in 0.01 to 1% by weight.

상술한 설정범위 내에 포함되면, 가시광 영역에서 광촉매 활성을 증가시켜 광분해 효율을 향상시킬 수 있다. 또한, 철의 함량이 증가하면, 가시광 영역의 흡수가 증가할 수 있으나, 이러한 철 함량 증가에 의한 광촉매 활성의 저하가 발생할 수 있으므로, 상술한 설정범위 내의 철의 함량을 포함하는 것이 유리하다.If it falls within the above-described setting range, photocatalytic activity can be increased in the visible light region, thereby improving photolysis efficiency. In addition, when the iron content is increased, absorption in the visible light region may increase, but since the photocatalytic activity may be deteriorated due to the increase in the iron content, it is advantageous to include the iron content within the above-described setting range.

바람직하게, 철의 함량은 0.01 내지 1 중량%일 수 있다.Preferably, the content of iron may be 0.01 to 1% by weight.

페로센 유래 철 산화물층은 0.01 nm 이상; 0.1 nm 이상; 10 nm 이상; 또는 1 nm 내지 100 nm의 두께를 갖는 것일 수 있다.The ferrocene-derived iron oxide layer is 0.01 nm or more; 0.1 nm or more; 10 nm or more; Alternatively, it may have a thickness of 1 nm to 100 nm.

상술한 두께 설정범위 내에 포함되면, 코팅층의 두께 증가에 따른 광촉매의 다공도 저하를 방지하고, 표면에 수분, OH- 이온, 분해 대상 등의 흡착량을 증가시켜 광분해 성능을 향상시킬 수 있다.When included within the above-described thickness setting range, it is possible to prevent a decrease in the porosity of the photocatalyst due to an increase in the thickness of the coating layer, and increase the adsorption amount of moisture, OH- ions, and decomposition targets on the surface, thereby improving photolysis performance.

또한, 페로센 유래 철 산화물층은 0.01 nm 이상; 0.1 nm 이상; 10 nm 이상; 또는 1 nm 내지 100 nm의 크기를 갖는 페로센 유래 철산화물을 포함할 수 있다. 여기서, 페로센 유래 철산화물의 크기는 형태에 따라 길이, 직경, 두께 등을 의미할 수 있다.In addition, the ferrocene-derived iron oxide layer is 0.01 nm or more; 0.1 nm or more; 10 nm or more; Or it may include ferrocene-derived iron oxide having a size of 1 nm to 100 nm. Here, the size of ferrocene-derived iron oxide may mean length, diameter, thickness, etc. depending on the shape.

페로센 유래 철 산화물은 하기의 [화학식 1]로 표시되는 화합물 중 1종 이상을 포함할 수 있다.Ferrocene-derived iron oxide may include one or more of the compounds represented by the following [Chemical Formula 1].

[화학식 1][Formula 1]

FeXOYHZ Fe X O Y H Z

여기서, X, Y 및 Z는 각각 0 내지 3에서 선택되고, X 및 Y는 0이 아니다.Here, X, Y and Z are each selected from 0 to 3, and X and Y are not 0.

페로센 유래 철 산화물은 가시광선 영역의 빛을 흡수하고 안정적이며 값이 싼 반도체성 물질인 산화철(FeXOYHZ)을 나노 크기의 입자 형태로 TiO2 표면에 도입하여 가시광선에 감응하는 광촉매를 형성할 수 있다.Ferrocene-derived iron oxide is a photocatalyst that absorbs light in the visible light region and reacts to visible light by introducing iron oxide (Fe X O Y H Z ), a stable and inexpensive semiconducting material, into the TiO 2 surface in the form of nano-sized particles. Can be formed.

본 발명의 일 실시 예에 따른 무기산화물 기반 광촉매는 광흡수하여 광반응을 나타내는 파장 영역이 자외선에서 가시광선 영역까지 확대되고, 특히, 400nm 이상의 가시광선 영역에서 우수한 광촉매 활성을 나타낼 수 있다.The inorganic oxide-based photocatalyst according to an embodiment of the present invention absorbs light and extends a wavelength region exhibiting a photoreaction from ultraviolet to visible light, and particularly, may exhibit excellent photocatalytic activity in a visible light region of 400 nm or more.

또한, 표면에서 분해 대상의 흡착 및 분해시킬 수 있는 광촉매 반응성이 향상되어 다양한 습도 영역에서 광촉매 활성을 가지며, 30% 이하의 습도의 건식 조건에서도 우수한 광촉매 활성을 나타낼 수 있다.In addition, the photocatalytic reactivity capable of adsorbing and decomposing decomposition targets on the surface is improved, so that photocatalytic activity is obtained in various humidity regions, and excellent photocatalytic activity can be exhibited even in dry conditions of 30% or less humidity.

본 발명의 일 실시 예에 따른 무기산화물 기반 광촉매는 5(㎡/g) 이상; 5(㎡/g) 내지 1000(㎡/g); 또는 5(㎡/g) 내지 100(㎡/g)의 비표면적을 갖고, 평균 기공 크기는 50nm 이하일 수 있다.The inorganic oxide-based photocatalyst according to an embodiment of the present invention is 5 (m 2 /g) or more; 5 (m 2 /g) to 1000 (m 2 /g); Alternatively, it may have a specific surface area of 5 (m 2 /g) to 100 (m 2 /g), and the average pore size may be 50 nm or less.

무기산환물의 표면에 페로센 유래 철 산화물을 도입함으로써, 광촉매의 표면에 분해 대상의 흡착량이 증가하고, 광분해 반응성을 증가시켜 광촉매의 효율을 향상시킬 수 있다.By introducing ferrocene-derived iron oxide to the surface of the inorganic acid compound, the amount of adsorption of the decomposition target is increased on the surface of the photocatalyst, and the photocatalytic reactivity can be increased, thereby improving the efficiency of the photocatalyst.

본 발명의 일 실시 예에 따른 무기산화물 기반 광촉매는 다양한 유해 물질의 분해에 적용되고, 환경 오염물질, 악취 물질, 유기화합물, 산성가스 등의 처리에 이용될 수 있다.The inorganic oxide-based photocatalyst according to an embodiment of the present invention is applied to decomposition of various harmful substances, and may be used to treat environmental pollutants, odor substances, organic compounds, acid gases, and the like.

예를 들어, 기체, 액체 및 고체 물질 중 적어도 하나를 흡착하거나, 광분해하는데 이용되고, 할로겐램프, 제논램프, 태양광, 발광다이오드 등 다양한 광선을 포함하는 빛 에너지에 의해서 광활성을 나타낼 수 있다.For example, it is used for adsorption or photolysis of at least one of a gas, a liquid, and a solid material, and may exhibit photoactivity by light energy including various rays such as a halogen lamp, a xenon lamp, sunlight, and a light emitting diode.

기체로는 산성, 염기성 가스, 아세트알데히드, 케톤류 등의 VOC(휘발성 유기 화합, Volatile Organic Compounds), 방향족 탄화수소와 지방족탄화수소(Paraffin계와 Olefin계)의 탄화수소류, 오존 가스, 유기 및 무기계 유리 가스 등일 수 있고, 보다 구체적으로, 이산화탄소, 일산화탄소, NOx, SOx, HCl, HF, NH3, 메틸아민, 포름알데히드, 황화수소, 아민, 메틸메르갑탄, 수소, 산소, 질소, 메탄, 파라핀, 올레핀 등일 수 있다.Gases include VOCs (Volatile Organic Compounds) such as acidic, basic gases, acetaldehyde, ketones, etc., hydrocarbons of aromatic and aliphatic hydrocarbons (Paraffin and Olefin), ozone gas, organic and inorganic glass gases, etc. And more specifically, carbon dioxide, carbon monoxide, NOx, SOx, HCl, HF, NH 3 , methylamine, formaldehyde, hydrogen sulfide, amine, methyl mercaptan, hydrogen, oxygen, nitrogen, methane, paraffin, olefin, etc. .

액체로는 포름알데하이드(Formaldehyde), 아세트알데하이드(Acetaldehyde), 벤젠(Benzene), 톨루엔(Toluene), MEK(Methyl Ethyl Ketone), 트리클로로에틸렌(Trichloroethylene), 살균제, 가솔린, 디젤, 오일, 알코올, 페놀, 염료 등일 수 있다.Liquids include formaldehyde, acetaldehyde, benzene, toluene, MEK (Methyl Ethyl Ketone), trichloroethylene, disinfectant, gasoline, diesel, oil, alcohol, phenol. , Dyes, etc.

고체로는 전이금속, Pt, Pd 등의 귀금속, Hg, Cr 등의 이온 및/또는 입자, 100 nm 이하의 나노입자 등일 수 있으나, 이에 제한되지 않는다.The solid may be a transition metal, noble metals such as Pt, Pd, ions and/or particles such as Hg, Cr, or nanoparticles of 100 nm or less, but is not limited thereto.

본 발명의 일 실시 예에 따른 무기산화물 기반 광촉매의 제조방법은 도 1에 도시된 바와 같이 무기산화물을 준비하는 단계(S110)와, 무기산화물 상에 페로센층을 형성하는 단계(S120)와, 페로센층을 형성하는 단계 이후에 열처리하여 페로센 유래 철 산화물층을 형성하는 단계(S130)를 포함할 수 있다.A method of manufacturing an inorganic oxide-based photocatalyst according to an embodiment of the present invention includes preparing an inorganic oxide (S110), forming a ferrocene layer on the inorganic oxide (S120), and ferrocene. After the step of forming a layer, heat treatment may include forming a ferrocene-derived iron oxide layer (S130).

무기산화물을 준비하는 단계(S110)는 무기산화물 분산액을 준비하거나 또는 무기산화물을 기판 상에 도포한다.In the step of preparing an inorganic oxide (S110), an inorganic oxide dispersion is prepared or an inorganic oxide is applied on a substrate.

여기서, 분산액은 수성 용매, 유성 용매 또는 이 둘의 혼합물을 적용하고, 기판은 실리콘 기판, 웨이퍼, 유리 기판, 반도체 기판, 금속 기판 등일 수 있다.Here, as the dispersion, an aqueous solvent, an oil solvent, or a mixture of both is applied, and the substrate may be a silicon substrate, a wafer, a glass substrate, a semiconductor substrate, a metal substrate, or the like.

상기 무기산화물은 스핀 코팅, 롤 코팅, 스프레이 코팅, 딥 코팅, 플로 코팅, 닥터 블레이드법 등으로 도포될 수 있다.The inorganic oxide may be applied by spin coating, roll coating, spray coating, dip coating, flow coating, doctor blade method, or the like.

페로센층을 형성하는 단계(S120)는 습식 코팅법, 스퍼터링법 또는 증착법을이용하여 페로센막을 형성할 수 있다. 바람직하게는, ALD(atomic layer deposition), CVD(temperature-regulated chemical vapor deposition) 등의 증착법을 이용할 수 있다. 본 발명의 일 실시예에서는 TR-CVD(온도 조절식 화학 증착법, temperatureregulated chemical vapor deposition)를 이용하여 페로센층을 형성할 수 있다.In the step of forming the ferrocene layer (S120), a ferrocene layer may be formed using a wet coating method, a sputtering method, or a vapor deposition method. Preferably, a deposition method such as atomic layer deposition (ALD) or temperature-regulated chemical vapor deposition (CVD) may be used. In an embodiment of the present invention, a ferrocene layer may be formed using TR-CVD (temperature regulated chemical vapor deposition).

여기서, TR-CVD의 적용 시 페로센 양의 조절을 통하여 무기산화물 상에 증착되는 철 산화물의 양을 용이하게 조절할 수 있고, 광촉매의 제조공정을 단순화시키고 효율적으로 광촉매를 제공할 수 있다.Here, when TR-CVD is applied, the amount of iron oxide deposited on the inorganic oxide can be easily controlled through the control of the amount of ferrocene, and the manufacturing process of the photocatalyst can be simplified and the photocatalyst can be efficiently provided.

페로센층을 형성하는 단계(S120)는 상온 내지 120 ℃에서 실시되고, 바람직하게는 40 ℃ 내지 100 ℃; 더 바람직하게는 60 ℃ 내지 100 ℃에서 실시될 수 있다.The step of forming the ferrocene layer (S120) is performed at room temperature to 120°C, preferably 40°C to 100°C; More preferably, it may be carried out at 60 ℃ to 100 ℃.

특히, 페로센층을 형성하는 단계(S120)의 실시온도가 60℃ 내지 100 ℃에서 실시되는 경우, TR-CVD의 적용 시 페로센의 기화 공정에 의한 증착을 유도할 수 있다.In particular, when the operation temperature of the step of forming the ferrocene layer (S120) is performed at 60°C to 100°C, when TR-CVD is applied, deposition by a vaporization process of ferrocene may be induced.

페로센층을 형성하는 단계(S120)는 대기 조건 하에서 공기 또는 산소 분위기에서 실시되고, 비활성 기체를 더 포함할 수 있다.The step of forming the ferrocene layer (S120) is performed in an air or oxygen atmosphere under atmospheric conditions, and may further include an inert gas.

페로센층을 형성하는 단계(S120)는 무기산화물 대비 0.01 중량% 내지 20 중량%의 페로센을 포함하는 페로센층을 형성할 수 있다.In the step of forming the ferrocene layer (S120), a ferrocene layer including 0.01% to 20% by weight of ferrocene relative to the inorganic oxide may be formed.

페로센 유래 철 산화물층을 형성하는 단계(S130)는 페로센층의 열처리를 통하여 철 산화물로 부분적 또는 완전하게 산화시키고, 탄소 잔여물 등과 같은 불순물을 제거할 수 있다.In the step of forming the ferrocene-derived iron oxide layer (S130), the ferrocene layer may be partially or completely oxidized to iron oxide through heat treatment, and impurities such as carbon residue may be removed.

페로센 유래 철 산화물층을 형성하는 단계(S130)는 50 ℃ 내지 900 ℃; 또는 100 ℃ 내지 800 ℃; 온도에서 2 단계 이상으로 열처리할 수 있다.Forming the ferrocene-derived iron oxide layer (S130) is 50 ℃ to 900 ℃; Alternatively 100° C. to 800° C.; It can be heat-treated in two or more steps at temperature.

페로센 유래 철 산화물층을 형성하는 단계(S130)는 100 ℃ 내지 300 ℃ 온도에서 제1열처리하는 단계 및 300 ℃ 내지 900 ℃ 온도에서 제2열처리하는 단계를 포함할 수 있다.Forming the ferrocene-derived iron oxide layer (S130) may include a first heat treatment at a temperature of 100 ℃ to 300 ℃ and a second heat treatment at a temperature of 300 ℃ to 900 ℃.

제1열처리하는 단계와 제2열처리하는 단계는 서로 상이한 온도에서 열처리할 수 있다. 제1열처리하는 단계와 제2열처리하는 단계는 각각 1분 내지 20 시간 동안 실시되고, 공기, 20 % 이상; 40 % 이상의 산소를 포함하는 공기 또는 비활성 기체 분위기에서 실시될 수 있다.The first heat treatment step and the second heat treatment step may be heat treated at different temperatures. The first heat treatment step and the second heat treatment step are each carried out for 1 minute to 20 hours, air, 20% or more; It may be carried out in an air or inert gas atmosphere containing 40% or more oxygen.

제1열처리하는 단계는 페로센과 산소의 반응에 의해서 철 산화물로 전환하는 철 산화물 증착을 위한 어닐링 공정일 수 있다.The first heat treatment may be an annealing process for depositing iron oxide that converts to iron oxide by reaction of ferrocene and oxygen.

제2 열처리하는 단계는 제1열처리 단계 이후의 후열 처리단계이며, 탄화물 등과 같은 불순을 제거하여 광촉매의 활성 및 성능을 향상시키는 어닐링 공정일 수 있다.The second heat treatment step is a post heat treatment step after the first heat treatment step, and may be an annealing process for improving the activity and performance of the photocatalyst by removing impurities such as carbides.

실시예1Example 1

도 2의 TR-CVD(온도 조절식 화학 증착법) 반응기를 이용하고, 도 3에 나타낸 온도 조절식 화학 증착법을 활용하여 TiO2에 나노 크기의 산화철 입자가 증착된 광촉매(Fe-TiO2)를 제조하였다.With reference to Fig. 2 of the TR-CVD (temperature controlled chemical vapor deposition) reactor, utilizing a temperature controlled chemical vapor deposition as shown in Figure 3 produce a photocatalyst (Fe-TiO 2) of the iron oxide particles in the nano-scale deposited on the TiO 2 I did.

구체적으로. 가열 밴드로 둘러 쌓인 스테인리스강으로 만든 반응기의 내부 바닥에 철의 전구체인 Ferrocene 0.02g을 Quartz로 만든 용기에 담아 위치시킨다.Specifically. 0.02g of ferrocene, a precursor of iron, is placed in a container made of quartz on the inner bottom of the reactor made of stainless steel surrounded by a heating band.

반응기 내부 중앙에 3g의 TiO2(TiO2, P-25, Evonik, 입자 크기: 25 nm)를 스테인리스강 철망으로 만든 용기에 담은 뒤 위치시킨 후, 반응기를 폴리이미드 테이프를 이용하여 밀봉한다. 반응기의 온도를 60℃에서 2시간 동안 TR-CVD 기화 공정으로 페로센의 증착공정을 진행하고, 다음으로, 온도를 200℃로 올려 12시간 동안 유지하여 철산화물로 전환하였다.After placing 3g of TiO 2 (TiO 2, P-25, Evonik, particle size: 25 nm) in the center of the reactor in a container made of stainless steel wire mesh, the reactor is sealed with polyimide tape. The ferrocene deposition process was carried out by the TR-CVD vaporization process at 60° C. for 2 hours at the temperature of the reactor, and then, the temperature was raised to 200° C. and maintained for 12 hours to convert to iron oxide.

이어서, TiO2를 꺼내 건조 공기 가스 분위기에서 750 ℃에서 2 시간 동안 추가적인 열처리를 하여 최종적으로 철 산화물-TiO2 하이브리드 나노구조의 광촉매(또는, Fe-TiO2로 표시)를 제조하였다. 해당 조건에서 TiO2에 증착된 철의 함량은 약 0.09wt%이다.Then, take out the TiO 2 to the additional heat treatment for 2 hours at 750 ℃ in dry air gas atmosphere to prepare a final iron oxide -TiO 2 hybrid photocatalytic nano-structure (or, expressed as Fe-TiO 2). The content of iron deposited on TiO 2 under this condition is about 0.09 wt%.

실시예2Example 2

철 전구체 Ferrocene를 0.05g을 적용한 것 외에는 실시예1과 동일한 방법으로 철 산화물-TiO2 하이브리드 나노구조의 광촉매를 제조하였다. 해당 조건에서 TiO2에 증착된 철의 함량은 약 0.13wt%이다.An iron oxide-TiO 2 hybrid nanostructured photocatalyst was prepared in the same manner as in Example 1, except that 0.05 g of the iron precursor Ferrocene was applied. The content of iron deposited on TiO 2 under this condition is about 0.13 wt%.

실시예3Example 3

철 전구체 Ferrocene를 0.1g을 적용한 것 외에는 실시예1과 동일한 방법으로 철 산화물-TiO2 하이브리드 나노구조의 광촉매를 제조하였다. 해당 조건에서 TiO2에 증착된 철의 함량은 약 0.65wt%이다.A photocatalyst having an iron oxide-TiO 2 hybrid nanostructure was prepared in the same manner as in Example 1, except that 0.1 g of the iron precursor Ferrocene was applied. The content of iron deposited on TiO 2 under this condition is about 0.65 wt%.

실시예4Example 4

철 전구체 Ferrocene를 0.3g을 적용한 것 외에는 실시예1과 동일한 방법으로 철 산화물-TiO2 하이브리드 나노구조의 광촉매를 제조하였다. 해당 조건에서 TiO2에 증착된 철의 함량은 약 1.81wt%이다.An iron oxide-TiO 2 hybrid nanostructure photocatalyst was prepared in the same manner as in Example 1, except that 0.3 g of the iron precursor Ferrocene was applied. The content of iron deposited on TiO 2 under this condition is about 1.81 wt%.

본 발명의 일 실시예에 따라 제조된 페로센 유래 철 산화물로 코팅된 광촉매(Fe-TiO2)는 철 산화물(Fe2O3)로 코팅된 광촉매(Fe2O-TiO2)보다 투명하고 연한 노란색을 갖는 것이 일반적이다.The photocatalyst (Fe-TiO 2 ) coated with ferrocene-derived iron oxide prepared according to an embodiment of the present invention is more transparent and lighter yellow than the photocatalyst (Fe 2 O-TiO 2 ) coated with iron oxide (Fe 2 O 3 ). It is common to have

제조된 광촉매(Fe-TiO2)의 질소 흡착 분석을 통한 비표면적(BET) 및 BJH 평균 기공 크기를 측정하여 하기 [표 1]에 나타내었다.The specific surface area (BET) and the average pore size of BJH through nitrogen adsorption analysis of the prepared photocatalyst (Fe-TiO 2 ) were measured and shown in Table 1 below.

0.13wt% Fe-TiO2 0.13wt% Fe-TiO 2 0.65wt% Fe-TiO2 0.65wt% Fe-TiO 2 1.81wt% Fe-TiO2 1.81wt% Fe-TiO 2 BET Surface area(㎡/g)BET Surface area(㎡/g) 11.625911.6259 10.342610.3426 8.39398.3939 BJH Adsorption average
pore size(nm)
BJH Adsorption average
pore size(nm)
13.213.2 12.512.5 13.913.9

[표 1]을 살펴보면, Fe-TiO2의 철의 함량이 변화하여도 비표면적과 표면 기공 크기는 크게 변하지 않는 것으로 확인할 수 있고, 광촉매(Fe-TiO2)의 메조 기공이 형성된 것을 확인할 수 있다.Looking at [Table 1], it can be confirmed that the specific surface area and surface pore size do not change significantly even when the iron content of Fe-TiO 2 is changed, and it can be seen that the mesopores of the photocatalyst (Fe-TiO 2 ) are formed. .

도 4에 도시된 바와 같이 본 발명의 일 실시예에 따른 가시광 응답형 광촉매 물질이 포함된 표면강화물질을 벽돌 위에 도포한 다음, 가시광선(백색광) 조사 시간에 따른 아세트알데하이드 몰수 변화를 살펴보면, 가시광선(백색광)이 조사되기 전부터 흡착으로 사라지는 것을 확인할 수 있다.As shown in FIG. 4, after applying a surface-enhancing material containing a visible light-responsive photocatalytic material according to an embodiment of the present invention on a brick, looking at the change in the number of moles of acetaldehyde according to the time of irradiation with visible light (white light), visible It can be seen that the light rays (white light) disappear by adsorption before irradiation.

또한, 도 4에 도시된 바와 같이 본 발명의 일 실시예에 따른 가시광 응답형 광촉매 물질이 포함된 표면강화물질을 벽돌 위에 도포한 다음, 아세트알데하이드의 광분해 반응의 결과 발생한 이산화탄소 몰수 변화를 살펴보면, 가시광선(백색광)이 조사되고 이산화탄소가 발생하는 것을 통해 광촉매 활성이 있다는 것을 확인할 수 있다.In addition, as shown in FIG. 4, after applying a surface-enhancing material containing a visible light-responsive photocatalytic material according to an embodiment of the present invention on a brick, looking at the change in the number of moles of carbon dioxide generated as a result of the photolysis reaction of acetaldehyde, It can be confirmed that photocatalytic activity is present through irradiation of light (white light) and generation of carbon dioxide.

도 5에 도시된 바와 같이 본 발명의 일 실시예에 따른 가시광 응답형 광촉매 물질이 포함된 표면강화물질에 의한 메틸렌 블루 용액의 제거 시험 결과, 메틸렌 블루 용액만 공급한 상태에서 가시광선(블루 엘이디)이 조사되어도 메틸렌 블루 용액이 그대로 남아 있음을 확인할 수 있다.As shown in FIG. 5, as a result of the removal test of the methylene blue solution by the surface-enhancing material containing the visible light-responsive photocatalytic material according to an embodiment of the present invention, visible light (blue LED) in the state of supplying only the methylene blue solution Even after this irradiation, it can be seen that the methylene blue solution remains as it is.

또한, 도 5에 도시된 바와 같이 본 발명의 일 실시예에 따른 가시광 응답형 광촉매 물질이 포함된 표면강화물질에 의한 메틸렌 블루 용액의 제거 시험 결과, 메틸렌 블루 용액에 표면강화물질을 투입하고 약 90분 동안 가시광선(블루 엘이디)이 조사되면 메틸렌 블루가 제거됨을 확인할 수 있다.In addition, as shown in FIG. 5, as a result of the removal test of the methylene blue solution by the surface-enhancing material containing the visible light-responsive photocatalytic material according to an embodiment of the present invention, the surface-enhancing material was added to the methylene blue solution and about 90 It can be seen that methylene blue is removed when visible light (blue LED) is irradiated for a minute.

일반적으로, 광촉매의 활성은 습도에 많은 영향을 받게 되지만, 본 발명의 일 실시예에 적용되는 광촉매(Fe-TiO2)는 건조 조건과 습도 조건에서 비슷한 촉매 활성을 보여 광촉매 활성이 습도에 민감하지 않음을 확인하였다.In general, the activity of the photocatalyst is greatly affected by humidity, but the photocatalyst (Fe-TiO 2 ) applied to an embodiment of the present invention exhibits similar catalytic activity under drying and humidity conditions, so that the photocatalytic activity is not sensitive to humidity. It was confirmed not.

다양한 철의 함량을 가지는광촉매(Fe-TiO2)의 질소 흡착 실험을 진행한 결과, 철의 함량이 광촉매의 총 비표면적에 크게 영향을 주지 않은 것을 확인하였다. 또한, 광촉매(Fe-TiO2)의 광촉매 활성은 철의 함량에 크게 영향을 받은 것으로 보았을 때, 광촉매의 활성은 표면 구조보다는 증착된 산화철 나노입자와 무기산화물(TiO2)이 이루는 계면의 전자구조가 더 중요하다는 것을 알 수 있다.As a result of conducting nitrogen adsorption experiments of photocatalysts having various iron contents (Fe-TiO 2 ), it was confirmed that the iron content did not significantly affect the total specific surface area of the photocatalyst. In addition, as the photocatalytic activity of the photocatalyst (Fe-TiO 2 ) was greatly influenced by the iron content, the activity of the photocatalyst was not the surface structure, but the electronic structure of the interface between the deposited iron oxide nanoparticles and the inorganic oxide (TiO 2 ). You can see that is more important.

또한 투과전자현미경을 통해 철 함량이 낮아질수록 표면에 존재하는 산화철 입자의 크기가 작아지는 것을 확인하였고, 1~3 나노미터 수준의 산화철 입자가 증착 되었을 때 광촉매 활성이 증가될 수 있다.In addition, it was confirmed through a transmission electron microscope that the smaller the iron content is, the smaller the size of the iron oxide particles present on the surface, and the photocatalytic activity can be increased when the iron oxide particles of 1 to 3 nanometers are deposited.

분석 결과들을 통해 미루어보았을 때, 아주 작은 크기의 산화철 나노입자가 약 0.09 wt%의 함량을 가질 때, 광촉매(Fe-TiO2)는 가시광선 영역의 빛을 흡수하여 전자/정공 쌍을 위한 가장 효율적으로 분리해내어, 산소/물과 반응해 라디칼을 생성시켜 아세트알데하이드를 빠르게 분해시킬 수 있다.From the analysis results, when very small iron oxide nanoparticles have a content of about 0.09 wt%, the photocatalyst (Fe-TiO 2 ) absorbs light in the visible region and is the most efficient for electron/hole pairs. It can be separated into and reacted with oxygen/water to generate radicals, which can rapidly decompose acetaldehyde.

한편 타켓 유기물이 완전히 산화되지 않고 부분적으로 산화가 되어 광촉매 표면에 남아 활성 자리를 막으면 광촉매의 활성이 감소하게 되는데 이는 광촉매의 가장 큰 문제점 중의 하나로 지적받고 있다.On the other hand, if the target organic material is not completely oxidized but partially oxidized and remains on the surface of the photocatalyst to block the active site, the activity of the photocatalyst decreases, which is pointed out as one of the biggest problems of the photocatalyst.

그러나 본 발명의 일 실시예에 적용되는 광촉매(Fe-TiO2)는 반복된 아세트알데하이드 광분해 실험에도 촉매 활성이 동일하게 유지가 되었고, 촉매 활성 저하의 문제점이 없는 것을 확인하였다.However, it was confirmed that the photocatalyst (Fe-TiO 2 ) applied to an embodiment of the present invention maintained the same catalytic activity even in repeated acetaldehyde photolysis experiments, and there was no problem of deteriorating catalytic activity.

상술한 가시광 응답형 광촉매 물질이 포함된 표면강화물질에 따르면, 콘크리트 제품의 표면에 표면강화제를 도포함에 있어서, 가시광선 영역에서 우수한 광활성(광촉매 반응)을 갖도록 하고, 다양한 습도 및 온도 조건에서도 우수한 광분해 효율로 유해물질(아세트알데히드, NOx, SOx, VOCs, 아세트산, 톨루엔, 포름알데히드 등)을 제거할 수 있다.According to the surface reinforcing material containing the above-described visible light-responsive photocatalytic material, when applying the surface reinforcing agent to the surface of a concrete product, it has excellent photoactivity (photocatalytic reaction) in the visible region, and excellent photolysis even under various humidity and temperature conditions. It can remove harmful substances (acetaldehyde, NOx, SOx, VOCs, acetic acid, toluene, formaldehyde, etc.) with efficiency.

또한, 콘크리트 제품의 내구성을 강화시키고, 콘크리트 제품으로부터 비산먼지가 발생되는 것을 방지할 수 있다.In addition, it can strengthen the durability of concrete products and prevent scattering dust from occurring from the concrete products.

또한, 광촉매를 통해 가시광선 영역에서 광촉매 반응이 안정적으로 발생되도록 하고, 콘크리트 제품에서 산성가스 및 유해물질의 제거율을 향상시킬 수 있으며, 고온의 하절기에 화학약품 고유의 냄새를 저감시킬 수 있다.In addition, through the photocatalyst, the photocatalytic reaction can be stably generated in the visible light region, the removal rate of acid gases and harmful substances from concrete products can be improved, and the inherent odor of chemicals can be reduced in the high temperature summer season.

또한, 광촉매를 통해 다양한 습도 및 온도 영역에서 우수한 광분해 효율을 갖는 무기산화물 기반 광촉매를 제공할 수 있다.In addition, it is possible to provide an inorganic oxide-based photocatalyst having excellent photolysis efficiency in various humidity and temperature ranges through the photocatalyst.

또한, 광촉매를 통해 간단하고 경제적인 방법으로 무기산화물 기반 광촉매를 제공할 수 있고, 무기산화물 기반 광촉매는 가시광선 영역의 빛에 감응하여 휘발성 유기화합물을 높은 효율로 분해시키는 능력과 뛰어난 안정성을 지니고 있어 실내외 공기청정을 위한 소재로 효과적으로 적용할 수 있다.In addition, an inorganic oxide-based photocatalyst can be provided in a simple and economical way through a photocatalyst, and the inorganic oxide-based photocatalyst has the ability to decompose volatile organic compounds with high efficiency and excellent stability in response to light in the visible region. It can be effectively applied as a material for indoor and outdoor air purification.

또한, 광촉매를 통해 페로센 도핑 공정에 의해서 가시광 영역에서 광촉매 활성이 우수한 무기산화물 기반 광촉매를 제공하고, 광촉매는 광활성 기능을 부가할 수 있다.In addition, the photocatalyst provides an inorganic oxide-based photocatalyst having excellent photocatalytic activity in the visible light region through a ferrocene doping process, and the photocatalyst may add a photoactive function.

상술한 바와 같이 도면을 참조하여 본 발명의 바람직한 실시예를 설명하였지만, 해당 기술분야의 숙련된 당업자라면, 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변경시킬 수 있다.As described above, preferred embodiments of the present invention have been described with reference to the drawings, but those skilled in the art will variously modify the present invention within the scope not departing from the spirit and scope of the present invention described in the following claims. Can be modified or changed.

S110: 무기산화물을 준비하는 단계
S120: 무기산화물 상에 페로센층을 형성하는 단계
S130: 페로센 유래 철 산화물층을 형성하는 단계
S110: Step of preparing inorganic oxide
S120: Step of forming a ferrocene layer on the inorganic oxide
S130: forming a ferrocene-derived iron oxide layer

Claims (9)

콘크리트 제품에 도포되는 표면강화제; 및
상기 표면강화제에 분산되는 광촉매;를 포함하고,
상기 광촉매는,
무기산화물; 및
상기 무기산화물 상에 형성되는 페로센 유래 철 산화물층;을 포함하는 것을 특징으로 하는 가시광 응답형 광촉매 물질이 포함된 표면강화물질.
Surface strengthening agent applied to concrete products; And
Including; a photocatalyst dispersed in the surface strengthening agent,
The photocatalyst,
Inorganic oxide; And
Ferrocene-derived iron oxide layer formed on the inorganic oxide; surface-enhancing material containing a visible light-responsive photocatalytic material comprising a.
제1항에 있어서,
상기 페로센 유래 철 산화물층에서 철의 함량은, 상기 무기산화물 대비 0.001 내지 10 중량%인 것을 특징으로 하는 가시광 응답형 광촉매 물질이 포함된 표면강화물질.
The method of claim 1,
The ferrocene-derived iron oxide layer has an iron content of 0.001 to 10% by weight relative to the inorganic oxide.
제1항에 있어서,
상기 페로센 유래 철 산화물층은, 상기 무기산화물 상에 증착된 페로센이 열처리된 것을 특징으로 하는 가시광 응답형 광촉매 물질이 포함된 표면강화물질.
The method of claim 1,
The ferrocene-derived iron oxide layer is a surface enhancing material containing a visible light-responsive photocatalytic material, characterized in that the ferrocene deposited on the inorganic oxide is heat treated.
제1항에 있어서,
상기 무기산화물은, Ti, Zn, Al 및 Sn 중 적어도 하나를 포함하는 산화물로 이루어진 군에서 선택된 적어도 하나를 포함하는 것을 특징으로 하는 가시광 응답형 광촉매 물질이 포함된 표면강화물질.
The method of claim 1,
The inorganic oxide includes at least one selected from the group consisting of oxides containing at least one of Ti, Zn, Al, and Sn. A surface-enhancing material containing a visible light-responsive photocatalytic material.
제1항에 있어서,
상기 무기산화물은, 비드, 분말, 로드, 와이어, 니들 및 섬유 형태로 이루어진 군에서 선택된 적어도 하나를 포함하고,
상기 무기산화물의 크기는, 1 nm 내지 500 ㎛인 것을 특징으로 하는 가시광 응답형 광촉매 물질이 포함된 표면강화물질.
The method of claim 1,
The inorganic oxide includes at least one selected from the group consisting of beads, powders, rods, wires, needles, and fibers,
The size of the inorganic oxide, a surface enhancing material containing a visible light-responsive photocatalytic material, characterized in that 1 nm to 500 ㎛.
제1항에 있어서,
상기 광촉매는, 400 nm 이상의 가시광선 영역에서 광활성을 갖는 것을 특징으로 하는 가시광 응답형 광촉매 물질이 포함된 표면강화물질.
The method of claim 1,
The photocatalyst is a surface-enhancing material containing a visible light-responsive photocatalytic material, characterized in that it has photoactivity in a visible light region of 400 nm or more.
제1항에 있어서,
상기 광촉매는, 30% 이하의 습도의 건식 조건에서 광활성을 갖는 것을 특징으로 하는 가시광 응답형 광촉매 물질이 포함된 표면강화물질.
The method of claim 1,
The photocatalyst is a surface enhancing material containing a visible light-responsive photocatalyst material, characterized in that it has photoactivity in a dry condition of 30% or less humidity.
제1항에 있어서,
상기 페로센 유래 철 산화물은, 하기의 [화학식 1]로 표시되는 화합물 중 1종 이상을 포함하는 것을 특징으로 하는 가시광 응답형 광촉매 물질이 포함된 표면강화물질.
[화학식 1]
FeXOYHZ
(X, Y 및 Z는 각각 0 내지 3에서 선택되고, X 및 Y는 0이 아니다.)
The method of claim 1,
The ferrocene-derived iron oxide is a surface-enhancing material containing a visible light-responsive photocatalytic material, characterized in that it contains at least one of the compounds represented by the following [Formula 1].
[Formula 1]
Fe X O Y H Z
(X, Y and Z are each selected from 0 to 3, and X and Y are not 0.)
제1항에 있어서,
상기 광촉매는, 비표면적이 5(m2/g) 이상이고, 평균 기공 크기는 50nm 이하인 것을 특징으로 하는 가시광 응답형 광촉매 물질이 포함된 표면강화물질.
The method of claim 1,
The photocatalyst has a specific surface area of 5 (m2/g) or more, and an average pore size of 50 nm or less. A surface-enhancing material containing a visible light-responsive photocatalyst material.
KR1020190060124A 2019-05-22 2019-05-22 Surface reinforcement material contained visible light responsive photocatalytic material KR102285333B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190060124A KR102285333B1 (en) 2019-05-22 2019-05-22 Surface reinforcement material contained visible light responsive photocatalytic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190060124A KR102285333B1 (en) 2019-05-22 2019-05-22 Surface reinforcement material contained visible light responsive photocatalytic material

Publications (2)

Publication Number Publication Date
KR20200134546A true KR20200134546A (en) 2020-12-02
KR102285333B1 KR102285333B1 (en) 2021-08-03

Family

ID=73791682

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190060124A KR102285333B1 (en) 2019-05-22 2019-05-22 Surface reinforcement material contained visible light responsive photocatalytic material

Country Status (1)

Country Link
KR (1) KR102285333B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230005520A (en) * 2021-07-01 2023-01-10 포항공과대학교 산학협력단 Self-wetting triphase photocatalytic composite, method of preparing same and method of air purification using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010084574A (en) * 2000-02-28 2001-09-06 이형석 A new type photocatalyst dopped and coated on silicagel and its method of preparation
KR20150055206A (en) * 2013-11-12 2015-05-21 (주)엘지하우시스 Visible light active photocatalyst coating composition, method for preparing visible light active photocatalyst coating composition and method for preparing visible light active photocatalyst layer
KR101763079B1 (en) * 2016-07-01 2017-07-28 주식회사 다이셀 Iron compound supporting titanium oxide photocatalyst
KR101793660B1 (en) 2017-05-23 2017-11-03 윤상훈 Manufacturing method and composition for a functional surface hardener for concrete
KR101862989B1 (en) * 2017-04-28 2018-05-30 울산대학교 산학협력단 Photocatalyst containing active carbon fiber dispersed with titanium dioxde, and water treatment method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010084574A (en) * 2000-02-28 2001-09-06 이형석 A new type photocatalyst dopped and coated on silicagel and its method of preparation
KR20150055206A (en) * 2013-11-12 2015-05-21 (주)엘지하우시스 Visible light active photocatalyst coating composition, method for preparing visible light active photocatalyst coating composition and method for preparing visible light active photocatalyst layer
KR101763079B1 (en) * 2016-07-01 2017-07-28 주식회사 다이셀 Iron compound supporting titanium oxide photocatalyst
KR101862989B1 (en) * 2017-04-28 2018-05-30 울산대학교 산학협력단 Photocatalyst containing active carbon fiber dispersed with titanium dioxde, and water treatment method using the same
KR101793660B1 (en) 2017-05-23 2017-11-03 윤상훈 Manufacturing method and composition for a functional surface hardener for concrete

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230005520A (en) * 2021-07-01 2023-01-10 포항공과대학교 산학협력단 Self-wetting triphase photocatalytic composite, method of preparing same and method of air purification using same

Also Published As

Publication number Publication date
KR102285333B1 (en) 2021-08-03

Similar Documents

Publication Publication Date Title
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
EP2802412B1 (en) Transparent photocatalyst coating
KR102009397B1 (en) Photocatalys and method for preparing the same
WO2005102521A1 (en) Titanium oxide base photocatalyst, process for producing the same and use thereof
KR100993457B1 (en) Visible light response-type titanium oxide photocatalyst, method for manufacturing the visible light response-type titanium oxide photocatalyst, and use of the visible light response-type titanium oxide photocatalyst
KR102285333B1 (en) Surface reinforcement material contained visible light responsive photocatalytic material
JP4011705B2 (en) Photocatalyst compound, photocatalyst-containing material, photocatalyst function material and method for producing the same
KR102120253B1 (en) Curing paint composition comprising visible light active photocatalys
JP2006297350A (en) Photocatalyst film and manufacturing method
KR102070720B1 (en) Concrete block with inorganic oxide based photocatalyst
Cruz‐Yusta et al. Metal oxide nanomaterials for nitrogen oxides removal in urban environments
KR102089491B1 (en) Clay concrete comprising visible light active photocatalys
KR102060521B1 (en) Water proofing material comprising visible light active photocatalyst for air cleaning
JP2006297351A (en) Photocatalyst film and manufacturing method
KR102130373B1 (en) Photocatalys and method for preparing the same
JP2007117999A (en) Titanium oxide-based photocatalyst and its use
KR102152874B1 (en) Soundproofing pannel comprising visible light active photocatalyst
JP3885248B2 (en) Photocatalyst composition
KR102266706B1 (en) Photocatalytic composite composition containing titanium dioxide
KR102244534B1 (en) Led comprising visible light active photocatalys
KR102114720B1 (en) Load facility comprising visible light active photocatalyst
JP2009268943A (en) Photocatalyst, photocatalyst dispersion containing the same, and photocatalyst coating composition
KR102082762B1 (en) Light emitting artificial plant comprising visible light active photocatalys
KR102128681B1 (en) Filling material for artificial turf using photocatalyst
US20220143261A1 (en) Photocatalyst and preparation method therefor

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant