KR20200085065A - A Gas sensor containing Carbon-doped Tungsten Oxide nanomaterials and Preparation Method Thereof - Google Patents

A Gas sensor containing Carbon-doped Tungsten Oxide nanomaterials and Preparation Method Thereof Download PDF

Info

Publication number
KR20200085065A
KR20200085065A KR1020190001132A KR20190001132A KR20200085065A KR 20200085065 A KR20200085065 A KR 20200085065A KR 1020190001132 A KR1020190001132 A KR 1020190001132A KR 20190001132 A KR20190001132 A KR 20190001132A KR 20200085065 A KR20200085065 A KR 20200085065A
Authority
KR
South Korea
Prior art keywords
carbon
gas sensor
tungsten oxide
substrate
tungsten
Prior art date
Application number
KR1020190001132A
Other languages
Korean (ko)
Other versions
KR102176988B1 (en
Inventor
김종백
백대현
강윤성
표순재
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020190001132A priority Critical patent/KR102176988B1/en
Publication of KR20200085065A publication Critical patent/KR20200085065A/en
Application granted granted Critical
Publication of KR102176988B1 publication Critical patent/KR102176988B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure

Abstract

The present invention relates to a gas sensor containing carbon-doped tungsten oxide having a nanostructure and a manufacturing method thereof. Provided is the gas sensor which provides excellent reaction and response speeds as well as stably detecting a very small amount of harmful gas even at room temperature by synthesizing carbon-doped tungsten oxide having a nanostructure using a tungsten-coated carbon nanotube template and using the carbon-doped tungsten oxide as a sensing material.

Description

탄소가 도핑된 산화텅스텐 나노물질을 포함하는 가스 센서 및 이의 제조방법{A Gas sensor containing Carbon-doped Tungsten Oxide nanomaterials and Preparation Method Thereof}A gas sensor containing Carbon-doped Tungsten Oxide nanomaterials and Preparation Method Thereof}

본 발명은 가스 센서에 관한 것으로, 보다 상세하게는 나노 구조를 갖는 탄소가 도핑된 텅스텐 산화물을 포함하는 가스 센서 및 이의 제조방법에 관한 것이다.The present invention relates to a gas sensor, and more particularly, to a gas sensor including a carbon-doped tungsten oxide having a nano-structure and a method for manufacturing the same.

금속산화물 반도체 기반의 저항변화식 가스센서(metal oxide semiconductor based gas sensor)는 금속산화물 반도체 감지소재 표면에 특정 종류의 가스 분자가 흡착 및 탈착되는 과정에서 발생하는 표면반응(surface reaction)에 의하여, 전기 저항값이 변화되는 현상을 이용한다.A metal oxide semiconductor based gas sensor is used to generate electricity by a surface reaction that occurs during the adsorption and desorption of certain types of gas molecules on the surface of a metal oxide semiconductor sensing material. The phenomenon in which the resistance value is changed is used.

금속산화물 반도체 기반의 저항변화식 가스센서는, 공기중에서의 저항 대비 특정 가스에서의 저항비를 분석함으로 가스의 농도를 정량적으로 감지하는 원리를 이용하고 있어 센서 시스템 구성이 간단하고, 초소형으로 제작이 가능한 장점이 있다. 이뿐만 아니라 비교적 저렴한 가격으로 다종 센서 어레이(array)를 구성할 수 있기 때문에, 유해 가스 누출 경보기, 대기 오염도 측정기, 알코올 검출기, 화재 경보기 등 다양한 분야에서, 금속산화물 반도체 기반의 가스센서가 널리 사용되고 있다.The metal oxide semiconductor-based resistance change type gas sensor uses the principle of quantitatively sensing the concentration of gas by analyzing the resistance ratio in a specific gas compared to the resistance in the air, so the sensor system configuration is simple and it can be manufactured in a compact size. There are possible advantages. In addition, since it is possible to construct a multi-sensor array at a relatively low price, metal oxide semiconductor-based gas sensors are widely used in various fields such as hazardous gas leak detectors, air pollution detectors, alcohol detectors, and fire alarms. .

텅스텐 산화물(WO3)은 이러한 반도체 기반의 가스 센서에서 가장 널리 사용되는 감지 물질 중 하나로, 이산화질소(NO2)를 민감하게 감지할 수 있다. 그러나, 일반적인 텅스텐 산화물(WO3)기반의 가스 센서는 감도를 높이기 위해서 높은 온도가 필요하며, 이에 따라 추가적인 가열 방법이 필요하다는 단점이 있다.Tungsten oxide (WO 3 ) is one of the most widely used sensing materials in these semiconductor-based gas sensors, and can sensitively detect nitrogen dioxide (NO 2 ). However, a general tungsten oxide (WO 3 )-based gas sensor has a disadvantage in that a high temperature is required to increase sensitivity, and thus an additional heating method is required.

이에, 전력 요구량을 줄이기 위해 금속과 금속 산화물로 헤터로 접합을 형성하는 것과 같이 상온에서 텅스텐 산화물(WO3)의 감지 성능을 향상시키기 위한 연구가 진행되었지만, 여전히 상온에서 1ppm 미만의 이산화질소(NO2) 검출에 대한 민감도는 낮은 문제가 있다. Accordingly, studies have been conducted to improve the detection performance of tungsten oxide (WO 3 ) at room temperature, such as forming a junction with metal and metal oxide as a heater to reduce power demand, but still have less than 1 ppm of nitrogen dioxide (NO 2) at room temperature. ) The sensitivity to detection is low.

Carbon doped tungsten oxide nanorods NO2 sensor prepared by glancing angle RF sputtering, Sensors and Actuators B: Chemical, Vol.181, May 2013, p.388-394 Carbon doped tungsten oxide nanorods NO2 sensor prepared by glancing angle RF sputtering, Sensors and Actuators B: Chemical, Vol.181, May 2013, p.388-394

본 발명에서는 이러한 종래 기술의 문제점을 보다 효과적으로 해결하기 위해, 나노 구조를 갖는 탄소가 도핑된 텅스텐 산화물을 감지물질로 이용함으로써, 상온에서도 극미량의 유해가스를 감지할 수 있고, 반응 및 응답 속도가 빠른 가스 센서를 제공하는 것을 목적으로 한다.In the present invention, in order to more effectively solve the problems of the prior art, by using tungsten oxide doped with carbon having a nano-structure as a sensing material, it is possible to detect a very small amount of harmful gas even at room temperature, and the reaction and response speed is fast. It is an object to provide a gas sensor.

본 발명의 일 실시 형태로는, 기판; 상기 기판 상에 형성된 텅스텐 산화물; 및 상기 텅스텐 산화물 상에 형성되는 전극;을 포함하며, 상기 텅스텐 산화물은 탄소가 도핑된 것인 가스 센서를 들 수 있다.In one embodiment of the present invention, a substrate; Tungsten oxide formed on the substrate; And an electrode formed on the tungsten oxide, wherein the tungsten oxide is a gas sensor in which carbon is doped.

상기 기판은, 실리콘(Si), 산화규소(SiO2), 유리(glass) 및 사파이어(Al2O3)로 이루어진 군에서 선택되고, 상기 전극은, 금(Au), 백금(Pt), 팔라듐(Pd), 알루미늄(Al), 몰르브덴(Mo), 은(Ag), 티타늄(Ti), 티탄나이트라이드(TiN), 루테늄(Ru), 이리듐(Ir) 또는 구리(Cu) 중에서 선택되는 어느 하나 이상이며, 상기 텅스텐 산화물은 나노 구조를 갖는 탄소가 도핑된 삼산화텅스텐(WO3)인 것이 바람직하다.The substrate is selected from the group consisting of silicon (Si), silicon oxide (SiO 2 ), glass and sapphire (Al 2 O 3 ), and the electrode is gold (Au), platinum (Pt), palladium Any one selected from (Pd), aluminum (Al), molybdenum (Mo), silver (Ag), titanium (Ti), titanium nitride (TiN), ruthenium (Ru), iridium (Ir) or copper (Cu) It is preferred that the tungsten oxide is tungsten trioxide (WO 3 ) doped with carbon having a nanostructure.

본 발명의 다른 실시 형태로 가스 센서를 제조하는 방법을 들 수 있는데, 기판 상에 탄소나노튜브층을 적층시키는 단계; 탄소나노튜브층이 적층된 기판을 텅스텐 클로라이드(WCl6)용액에 침지시켜 텅스텐이 코팅된 탄소나노튜브 템플릿을 형성하는 단계; 텅스텐이 코팅된 탄소나노튜브 템플릿이 형성된 기판을 어닐링하여 탄소가 도핑된 텅스텐 산화물을 형성하는 단계; 및 상기 탄소가 도핑된 텅스텐 산화물 상에 전극을 형성하는 단계;를 포함한다.Another embodiment of the present invention includes a method of manufacturing a gas sensor, comprising: laminating a carbon nanotube layer on a substrate; Forming a tungsten-coated carbon nanotube template by immersing the substrate in which the carbon nanotube layer is stacked in a tungsten chloride (WCl 6 ) solution; Annealing the substrate on which the tungsten-coated carbon nanotube template is formed to form tungsten oxide doped with carbon; And forming an electrode on the carbon-doped tungsten oxide.

상기 기판은, 실리콘(Si), 산화규소(SiO2), 유리(glass) 및 사파이어(Al2O3)로 이루어진 군에서 선택되고, 상기 전극은, 금(Au), 백금(Pt), 팔라듐(Pd), 알루미늄(Al), 몰르브덴(Mo), 은(Ag), 티타늄(Ti), 티탄나이트라이드(TiN), 루테늄(Ru), 이리듐(Ir) 또는 구리(Cu) 중에서 선택되는 어느 하나 이상이며, 상기 텅스텐 산화물은 나노 구조를 갖는 탄소가 도핑된 삼산화텅스텐(WO3)인 것이 바람직하다.The substrate is selected from the group consisting of silicon (Si), silicon oxide (SiO 2 ), glass and sapphire (Al 2 O 3 ), and the electrode is gold (Au), platinum (Pt), palladium Any one selected from (Pd), aluminum (Al), molybdenum (Mo), silver (Ag), titanium (Ti), titanium nitride (TiN), ruthenium (Ru), iridium (Ir) or copper (Cu) It is preferred that the tungsten oxide is tungsten trioxide (WO 3 ) doped with carbon having a nanostructure.

또한, 상기 탄소나노튜브를 적층시키는 단계는, 탄소나노튜브 용액을 사용하여 lift-off 방법으로 수행될 수 있으며, 상기 어닐링은 400 ~ 950℃의 온도에서 수행될 수 있다.In addition, the step of laminating the carbon nanotubes may be performed by a lift-off method using a carbon nanotube solution, and the annealing may be performed at a temperature of 400 to 950°C.

본 발명에 따른 가스 센서는 나노 구조를 갖는 탄소가 도핑된 텅스텐 산화물을 감지물질로 포함하고 있어, 극미량의 유해가스를 상온에서도 안정적으로 감지할 수 있을 뿐만 아니라 반응 및 응답 속도가 우수하다.The gas sensor according to the present invention includes a nano-structured carbon-doped tungsten oxide as a sensing material, so it is possible to stably detect even a very small amount of harmful gas at room temperature and has excellent reaction and response speed.

또한, 본 발명에 따른 가스 센서는 히터를 사용하지 않고, 상온에서 유해가스를 감지할 수 있으므로 소비전력을 최소화할 수 있다. In addition, since the gas sensor according to the present invention does not use a heater and can detect harmful gas at room temperature, power consumption can be minimized.

도 1은 본 발명의 일 실시예에 따른 가스 센서의 구조를 도식적으로 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 가스 센서의 제조 과정을 도식적으로 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른 탄소가 도핑된 텅스텐 산화물의 밴드 갭 사이에 인트라 밴드가 생기는 메커니즘을 나타내는 모식도이다.
도 4는 본 발명의 일 실시예에 따른 탄소가 도핑된 텅스텐 산화물을 SEM으로 관찰한 이미지이다.
도 5는 본 발명의 일 실시예에 따른 탄소가 도핑된 텅스텐 산화물의 XRD 분석 결과이다.
도 6은 본 발명의 일 실시예에 따른 탄소가 도핑된 텅스텐 산화물의 XPS 분석 결과이다(insert는 C1s peak를 확대한 사진).
도 7은 본 발명의 일 실시예에 따른 가스 센서의 감지 성능을 나타낸 그래프이다.
1 schematically shows the structure of a gas sensor according to an embodiment of the present invention.
Figure 2 schematically shows the manufacturing process of the gas sensor according to an embodiment of the present invention.
3 is a schematic view showing a mechanism in which an intra band occurs between band gaps of tungsten oxide doped with carbon according to an embodiment of the present invention.
FIG. 4 is an SEM image of carbon-doped tungsten oxide according to an embodiment of the present invention.
5 is an XRD analysis result of tungsten oxide doped with carbon according to an embodiment of the present invention.
6 is an XPS analysis result of a carbon-doped tungsten oxide according to an embodiment of the present invention (insert is an enlarged photo of C1s peak).
7 is a graph showing the detection performance of the gas sensor according to an embodiment of the present invention.

이하에서는 본 발명의 실시예와 도면을 참조하여 본 발명을 좀 더 상세히 설명한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것을 뿐, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 이 기술분야에서 통상의 지식을 가지는 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to examples and drawings of the present invention. These examples are only provided by way of example to illustrate the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples. will be.

또한, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니 되며, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 함을 밝혀둔다.In addition, it should be noted that the terms or words used in the specification and claims should not be interpreted as being limited to ordinary or dictionary meanings, but should be interpreted as meanings and concepts consistent with the technical spirit of the present invention.

도면에서 제안된 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. 그리고 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In order to clearly describe the proposed invention in the drawings, parts irrelevant to the description are omitted, and like reference numerals are assigned to similar parts throughout the specification. And when a part is said to "include" a certain component, this means that other components may be further included instead of excluding other components unless specifically stated otherwise.

도 1에는 본 발명의 탄소가 도핑된 텅스텐 산화물의 제조 방법을 통해 제조된 가스 센서의 구조가 도시되어 있다.1 shows a structure of a gas sensor manufactured through a method of manufacturing a carbon-doped tungsten oxide of the present invention.

본 발명의 일 실시예에 따른 가스 센서는 기판(10); 상기 기판(10) 상에 적층된 텅스텐 산화물(110); 및 상기 텅스텐 산화물(110) 상에 형성되는 전극(120);을 포함한다.A gas sensor according to an embodiment of the present invention includes a substrate 10; Tungsten oxide 110 stacked on the substrate 10; And an electrode 120 formed on the tungsten oxide 110.

상기 기판(10)에 사용되는 재료로서 실리콘(Si), GaAs, InP, InGaAs, 산화규소(SiO2), 유리(glass), 사파이어(Al2O3) 등이 사용될 수 있으나, 이에 한정되는 것은 아니다. 바람직하게는 상기 기판(10)은 실리콘 산화막(SiO2)이 표면에 형성된 실리콘 기판일 수 있다.As the material used for the substrate 10, silicon (Si), GaAs, InP, InGaAs, silicon oxide (SiO 2 ), glass, sapphire (Al 2 O 3 ), and the like may be used, but are not limited thereto. no. Preferably, the substrate 10 may be a silicon substrate on which a silicon oxide film (SiO 2 ) is formed.

본 발명에서는 감지물질로서 텅스텐 산화물(110)을 사용하는데, 상기 텅스텐 산화물(110)은 나노 구조를 갖는 탄소가 도핑된 삼산화텅스텐(WO3)인 것이 바람직하다. 이와 같이 탄소가 도핑된 삼산화텅스텐(WO3)으로 나노 구조를 갖는 삼산화텅스텐(WO3)을 감지물질로 사용하는 경우에는, 기존의 텅스텐 산화물을 감지물질로 사용하는 경우보다 감도(sensitivity)가 매우 좋아 상온에서도 극미량의 유해가스를 검출할 수 있으며, 반응 및 응답 속도가 우수하다.In the present invention, tungsten oxide 110 is used as a sensing material, and the tungsten oxide 110 is preferably carbon-doped tungsten trioxide (WO 3 ) having a nano structure. When using tungsten trioxide (WO 3 ) having a nanostructure as a sensing material, such as carbon-doped tungsten trioxide (WO 3 ), sensitivity is much higher than when using a conventional tungsten oxide as a sensing material. Okay, even at room temperature, it can detect very small amounts of harmful gases, and has excellent reaction and response speed.

상기 전극(120)은 소스 전극 및 드레인 전극일 수 있다. 상기 전극(120)의 재질로는 금(Au), 백금(Pt), 팔라듐(Pd), 알루미늄(Al), 몰르브덴(Mo), 은(Ag), 티타늄(Ti), 티탄나이트라이드(TiN), 루테늄(Ru), 이리듐(Ir) 또는 구리(Cu) 등과 같은 금속이 사용될 수 있다. The electrode 120 may be a source electrode and a drain electrode. The material of the electrode 120 is gold (Au), platinum (Pt), palladium (Pd), aluminum (Al), molybdenum (Mo), silver (Ag), titanium (Ti), titanium nitride (TiN) ), ruthenium (Ru), iridium (Ir) or copper (Cu).

이러한 전극(120)은 공지의 금속 증착 방법(예를 들어, 화학기상증착, evaporation, 전해도금 등)의 방법을 통해서 텅스텐 산화물(110)이 적층된 기판(10) 상에 형성될 수 있으며, 형성된 전극들은 적절한 패터닝 공정(포토리소그래피 혹은 애칭 공정 등)을 통해서 서로 이격 되도록 형성될 수 있다.The electrode 120 may be formed on the substrate 10 on which the tungsten oxide 110 is laminated through a method of a known metal deposition method (for example, chemical vapor deposition, evaporation, electroplating, etc.), and is formed. The electrodes can be formed to be spaced apart from each other through an appropriate patterning process (such as a photolithography or nicking process).

도 2는 본 발명의 탄소가 도핑된 텅스텐 산화물을 포함하는 가스 센서의 제조 과정을 단계별로 도시한 것으로, lift-off 공정을 통해 기판(10)상에 탄소나노튜브층(310)을 형성한다(S100).FIG. 2 is a step-by-step diagram showing a manufacturing process of a gas sensor including a carbon-doped tungsten oxide of the present invention, and a carbon nanotube layer 310 is formed on a substrate 10 through a lift-off process ( S100).

구체적으로, 포토리소그래피(photolithography) 방법을 통해 기판(10)상에 포토레지스트 패턴(210)을 형성하고(S100-1), 포토레지스트 패턴(210)이 형성된 기판(10)에 탄소나노튜브 용액을 도포한 후, 포토레지스트 패턴(210)을 제거하여 탄소나노튜브층(310)을 형성할 수 있다(S100-2).Specifically, a photoresist pattern 210 is formed on the substrate 10 through a photolithography method (S100-1), and a carbon nanotube solution is applied to the substrate 10 on which the photoresist pattern 210 is formed. After coating, the photoresist pattern 210 may be removed to form the carbon nanotube layer 310 (S100-2).

이때, 기판(10)으로는 실리콘(Si), GaAs, InP, InGaAs, 유리(glass), 사파이어(Al2O3) 등의 재질로 된 기판을 사용할 수 있으나, 도 2에 도시된 것과 같이, 실리콘 산화막(SiO2)이 표면에 형성된 실리콘 기판(SiO2/Si substrate)을 사용하는 것이 바람직하다.At this time, the substrate 10 may be a substrate made of a material such as silicon (Si), GaAs, InP, InGaAs, glass, sapphire (Al 2 O 3 ), as shown in FIG. 2, It is preferable to use a silicon substrate (SiO 2 /Si substrate) on which a silicon oxide film (SiO 2 ) is formed.

상기 탄소나노튜브 용액은 유기용매에 탄소나노튜브를 고르게 분산시킨 것으로, 상기 유기용매로는 dichlorobenzene(DCB), ortho-dichlorobenzene(o-DCB), N-methyl-2-pyrrolidinone(NMP), hexamethylphosphoramide(HMPA), monochlorobenzene(MCB), N,Ndimethylformamide(DMF), dichloroethane(DCE), isopropyl alcohol(IPA), ethanol, chloroform 및 toluene 중에서 선택된 어느 하나 이상의 용매를 사용할 수 있다. 또한, 용액에 초음파를 조사함으로써 용액 중에 탄소나노튜브가 고르게 분산되도록 할 수 있다.The carbon nanotube solution is a dispersion of carbon nanotubes evenly in an organic solvent. Examples of the organic solvent include dichlorobenzene (DCB), ortho-dichlorobenzene (o-DCB), N-methyl-2-pyrrolidinone (NMP), and hexamethylphosphoramide ( Any one or more solvents selected from HMPA), monochlorobenzene (MCB), N,Ndimethylformamide (DMF), dichloroethane (DCE), isopropyl alcohol (IPA), ethanol, chloroform and toluene can be used. In addition, carbon nanotubes can be evenly dispersed in the solution by irradiating the solution with ultrasonic waves.

탄소나노튜브 용액 중 탄소나노튜브의 농도는 0.5 ~ 2㎎/㎖ 일 수 있다. 농도가 0.5㎎/㎖ 보다 낮은 경우에는 탄소나노튜브의 양이 너무 적어 기판(10)상에 탄소나노튜브층(310)이 제대로 형성될 수 없고, 농도가 2㎎/㎖ 보다 높은 경우에는 탄소나노튜브를 분산시키는데 시간이 오래 걸리며 탄소나노튜브를 필요 이상으로 소모하게 되어 제조원가가 상승한다.The concentration of carbon nanotubes in the carbon nanotube solution may be 0.5 to 2 mg/ml. When the concentration is lower than 0.5mg/ml, the amount of carbon nanotubes is too small to form the carbon nanotube layer 310 on the substrate 10 properly, and when the concentration is higher than 2mg/ml, the carbon nanotubes It takes a long time to disperse the tube and consumes more carbon nanotubes than necessary, increasing manufacturing cost.

이 후, 탄소나노튜브층(310)이 형성된 기판(10)을 텅스텐 클로라이드(WCl6) 용액에 침지(dipping)하여 텅스텐이 코팅된 탄소나노튜브 템플릿(410)을 형성한다(S200). 텅스텐 클로라이드(WCl6) 용액에 침치하는 총 시간은 30분에서 24시간일 수 있다. 침지 시간이 30분 미만인 경우에는 텅스텐이 탄소나노튜브에 충분히 코팅될 수 없고, 침지 시간이 24시간 초과인 경우에는 공정시간이 길어져 생산성이 저하된다.Thereafter, the substrate 10 on which the carbon nanotube layer 310 is formed is immersed in a tungsten chloride (WCl 6 ) solution to form a tungsten-coated carbon nanotube template 410 (S200). The total time of immersion in the tungsten chloride (WCl 6 ) solution can be from 30 minutes to 24 hours. When the immersion time is less than 30 minutes, tungsten cannot be sufficiently coated on the carbon nanotubes, and when the immersion time is more than 24 hours, the process time becomes longer and productivity decreases.

텅스텐이 코팅된 탄소나노튜브 템플릿(410)이 형성된 기판을 어닐링하여 탄소나노튜브를 제거하고 탄소가 도핑된 텅스텐 산화물(110)을 형성한다(S300). 이와 같이 합성된 탄소가 도핑된 텅스텐 산화물(110)은 나노 구조를 갖는 삼산화텅스텐(WO3)일 수 있다.By annealing the substrate on which the tungsten-coated carbon nanotube template 410 is formed, the carbon nanotubes are removed and the carbon-doped tungsten oxide 110 is formed (S300). The synthesized carbon-doped tungsten oxide 110 may be tungsten trioxide (WO 3 ) having a nano structure.

나노 구조를 갖는 탄소가 도핑된 삼산화텅스텐(WO3)은, 도 3에 도시된 것과 같이, 밴드 갭 사이에 인트라 밴드가 형성된다. 이러한 인트라 밴드로 인해, 탄소가 도핑된 텅스텐 산화물을 감지물질로 사용하는 본 발명의 가스 센서는, NO2, NO 등과 같은 유해가스가 극미량만 있어도 반응할 수 있어 감도(sensitivity)가 매우 좋으며, 반응 및 응답 속도가 우수하다.In the carbon-doped tungsten trioxide (WO 3 ) having a nano structure, an intra band is formed between band gaps, as shown in FIG. 3. Due to this intra band, the gas sensor of the present invention, which uses tungsten oxide doped with carbon as a sensing material, can react even if only a very small amount of harmful gas such as NO 2 , NO, etc. is present, so the sensitivity is very good and the reaction And the response speed is excellent.

상기 어닐링은 400 ~ 950℃의 온도에서 수행되는 것이 바람직하다. 상기 범위를 벗어나 온도가 400℃ 미만일 경우에는 탄소나노튜브가 제거되지 않고 탄소가 도핑된 텅스텐 산화물(110)이 잘 형성되지 않으며, 온도가 950℃를 초과 하는 경우에는 공정시간이 길어지고 제조비용이 상승한다.The annealing is preferably carried out at a temperature of 400 ~ 950 ℃. If the temperature is outside the above range and the temperature is less than 400°C, the carbon nanotubes are not removed and the carbon-doped tungsten oxide 110 is not well formed, and when the temperature exceeds 950°C, the process time becomes longer and the manufacturing cost increases. Rises.

기판(10) 상에 탄소가 도핑된 텅스텐 산화물(110)이 형성된 후, 기판(10) 상에 전극 물질을 형성하고 패터닝 함으로써 탄소가 도핑된 텅스텐 산화물(110) 상에 전극(120)을 형성한다(S400). 구체적으로 공지의 금속 증착 방법(예를 들어, 화학기상증착, evaporation, 전해도금 등)의 방법을 통해 전극 물질을 기판(10)상에 형성할 수 있으며, 기판(10)상에 형성된 전극 물질은 적절한 패터닝 공정(포토리소그래피 혹은 애칭 공정 등)을 거쳐 탄소가 도핑된 텅스텐 산화물(110) 상에 전극(120)으로 형성될 수 있다.After the carbon-doped tungsten oxide 110 is formed on the substrate 10, the electrode 120 is formed on the carbon-doped tungsten oxide 110 by forming and patterning an electrode material on the substrate 10. (S400). Specifically, the electrode material may be formed on the substrate 10 through a method of a known metal deposition method (for example, chemical vapor deposition, evaporation, electroplating, etc.), and the electrode material formed on the substrate 10 may be The electrode 120 may be formed on the carbon-doped tungsten oxide 110 through an appropriate patterning process (such as photolithography or nicking).

[[ 실시예Example ]]

앞서 살펴본 본 발명의 탄소가 도핑된 텅스텐 산화물을 포함하는 가스 센서를 제작하였다.A gas sensor including the carbon-doped tungsten oxide of the present invention as described above was manufactured.

실리콘 산화막이 표면에 형성된 실리콘 기판(SiO2/Si substrate) 위에 lift-off 공정을 통해 탄소나노튜브층을 형성하였다. 이때 사용된 탄소나노튜브 용액은 상용화된 multi-wall CNT 용액을 사용하였으며, 유기용매인 DMF를 사용하여 1.5㎎/㎖의 농도로 희석하여 사용하였다.A carbon nanotube layer was formed through a lift-off process on a silicon substrate (SiO 2 /Si substrate) on which a silicon oxide film was formed. The carbon nanotube solution used was a commercially available multi-wall CNT solution, and was diluted with a concentration of 1.5 mg/ml using DMF, an organic solvent.

탄소나노튜브층이 형성된 기판을 텅스텐 클로라이드(WCl6) 용액에 12시간 침지(dipping)하여 텅스텐이 코팅된 탄소나노튜브 템플릿을 형성하였다. 그 후, 침지 처리된 기판을 급속열처리로(Rapid Thermal Annealing furnace) 내의 챔버에 장착하고 600℃까지 1분 동안 고속으로 승온하여 6시간 동안 유지시킨 후, 상온까지 노냉시켜 기판 상에 탄소가 도핑된 삼산화텅스텐(WO3)을 합성하였다.The substrate on which the carbon nanotube layer was formed was immersed in a tungsten chloride (WCl 6 ) solution for 12 hours to form a tungsten-coated carbon nanotube template. Thereafter, the immersed substrate was mounted in a chamber in a Rapid Thermal Annealing furnace and heated at high speed to 600° C. for 1 minute to maintain it for 6 hours, followed by furnace cooling to room temperature to carbon-doped onto the substrate. Tungsten trioxide (WO 3 ) was synthesized.

이 후, 통상의 포토리소그래피 공정을 통해 어닐링 된 기판 위에 소스 전극과 드레인 전극을 형성하여 가스센서를 제작하였다. 이때, 소스 전극 및 드레인 전극으로는 금(Au)를 사용하였다.Subsequently, a gas sensor was manufactured by forming a source electrode and a drain electrode on the annealed substrate through a conventional photolithography process. At this time, gold (Au) was used as the source electrode and the drain electrode.

[[ 실험예Experimental Example 1: 텅스텐 산화물의 성분 분석 및 탄소 도핑 여부 확인] 1: Tungsten oxide composition analysis and carbon doping confirmation]

실시예에 따라 제조된 텅스텐 산화물의 탄소 도핑 여부를 확인하기 위해, 어닐링 전의 탄소나노튜브 템플릿과 어닐링을 통해 합성된 텅스텐 산화물을 주사 전자 현미경(SEM)을 통해 관찰하고 그 결과를 도 4에 나타내었다. 도 4(a)는 어닐링 전의 탄소나노튜브 템플릿을 관찰한 결과이며, 도 4(b)는 어닐링 후 합성된 텅스텐 산화물을 관찰한 결과이다. 도 4에서 확인 되듯이, 어닐링 처리를 통해 탄소나노튜브는 제거되고 탄소가 도핑된 텅스텐 산화물이 나노 구조를 갖는 형태로 합성된 것을 확인할 수 있었다.In order to confirm whether carbon doping of the tungsten oxide prepared according to the embodiment was performed, the tungsten oxide synthesized through the annealing and the carbon nanotube template before annealing was observed through a scanning electron microscope (SEM) and the results are shown in FIG. 4. . Figure 4 (a) is a result of observing the carbon nanotube template before annealing, Figure 4 (b) is a result of observing the synthesized tungsten oxide after annealing. As shown in FIG. 4, it was confirmed that the carbon nanotubes were removed through the annealing treatment, and the carbon-doped tungsten oxide was synthesized in a form having a nano structure.

실시예에 따라 제조된 텅스텐 산화물의 성분을 분석 하기 위해 XRD(X-ray Diffraction) 및 XPS(X-ray photoelectron spectroscopy) 분석을 진행하였으며, 그 결과를 도 5 및 도 6에 나타내었다.To analyze the components of the tungsten oxide prepared according to the examples, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyzes were performed, and the results are shown in FIGS. 5 and 6.

도 5는 XRD 분석 결과로, 도 5에 나타난 peak들은 기존의 삼산화텅스텐 (WO3)에서 나오는 peak들과 일치하므로, 실시예에 따라 합성된 물질이 삼산화텅스텐(WO3)임을 확인할 수 있었다. 또한, 도 6은 XPS 분석 결과로, 도 6에 나타난 C1s peak를 통해 실시예에 따라 제조된 삼산화텅스텐(WO3)에 탄소가 도핑 되었음을 확인할 수 있었다.5 is shown in the peak in the XRD analysis results, Figure 5, were found to be conventional tungsten trioxide (WO 3), so matching the peak, the composite material according to an embodiment of tungsten trioxide (WO 3) coming out. Also, FIG. 6 shows XPS analysis results, and it was confirmed that carbon was doped into tungsten trioxide (WO 3 ) prepared according to an example through the C1s peak shown in FIG. 6.

[[ 실험예Experimental Example 2: 가스 센서의 성능 확인] 2: Check the performance of the gas sensor]

실시예에 따라 제조된 가스 센서를 전류전원공급기(keithley 2400)에 연결한 다음, 이산화질소(NO2) 가스를 유량조절기(mass flow controller)를 이용하여 흘려주고 일정한 직류전원의 인가와 동시에 가스 센서에 흐르는 저항변화를 측정하고 그 결과를 도 7에 나타내었다. 모든 측정은 상온(25℃)에서 실시하였으며, 센서의 감도(response)는 하기 식 (1)에 의해 계산되었다.The gas sensor manufactured according to the embodiment is connected to a current power supply (keithley 2400), and then nitrogen dioxide (NO 2 ) gas is flowed using a mass flow controller and simultaneously applied to a gas sensor. The change in resistance flowing was measured and the results are shown in FIG. 7. All measurements were performed at room temperature (25°C), and the sensitivity of the sensor was calculated by the following equation (1).

Response = Rg/Ra … (1)Response = R g /R a … (One)

식(1)에서 Ra는 이산화질소(NO2) 가스가 없는 경우의 초기 저항값, Rg는 이산화질소(NO2) 가스가 있는 경우의 저항값을 나타낸다.In equation (1), R a represents the initial resistance value in the absence of nitrogen dioxide (NO 2 ) gas, and R g represents the resistance value in the presence of nitrogen dioxide (NO 2 ) gas.

도 7에서 확인 되듯이, 본 발명의 가스 센서는 상온(25℃)에서도 안정적인 이산화질소(NO2) 감지성능을 나타내었으며, 특히 1ppm 이하의 매우 낮은 농도의 이산화질소(NO2) 까지도 상온에서 감지할 수 있음을 확인할 수 있었다.As can be seen in FIG. 7, the gas sensor of the present invention exhibited stable nitrogen dioxide (NO 2 ) detection performance even at room temperature (25° C.), and even very low concentrations of nitrogen dioxide (NO 2 ) below 1 ppm can be detected at room temperature. It was confirmed that there was.

본 명세서에서는 본 발명자들이 수행한 다양한 실시예 가운데 몇 개의 예만을 들어 설명하는 것이나 본 발명의 기술적 사상은 이에 한정되거나 제한되지 않고, 이 기술분야에서 통상의 지식을 가진 자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.In the present specification, only a few examples are described among various embodiments performed by the present inventors, but the technical spirit of the present invention is not limited to or limited thereto, and is modified and modified by a person skilled in the art. Of course it can be.

10: 기판 110: 텅스텐 산화물
120: 전극 210: 포토레지스트 패턴
310: 탄소나노튜브층 410: 탄소나노튜브 템플릿
10: substrate 110: tungsten oxide
120: electrode 210: photoresist pattern
310: carbon nanotube layer 410: carbon nanotube template

Claims (10)

기판;
상기 기판 상에 형성된 텅스텐 산화물; 및
상기 텅스텐 산화물 상에 형성되는 전극;을 포함하며,
상기 텅스텐 산화물은 탄소가 도핑된 것인, 가스 센서.
Board;
Tungsten oxide formed on the substrate; And
It includes; an electrode formed on the tungsten oxide;
The tungsten oxide is a carbon doped gas sensor.
제1항에 있어서,
상기 기판은, 실리콘(Si), 산화규소(SiO2), 유리(glass) 및 사피이어(Al2O3)로 이루어진 군에서 선택되는 것을 특징으로 하는, 가스 센서
According to claim 1,
The substrate is selected from the group consisting of silicon (Si), silicon oxide (SiO 2 ), glass (glass) and sapphire (Al 2 O 3 ), gas sensor
제1항에 있어서,
상기 텅스텐 산화물은, 나노 구조를 갖는 탄소가 도핑된 삼산화텅스텐(WO3)인 것을 특징으로 하는, 가스 센서.
According to claim 1,
The tungsten oxide is characterized in that the carbon-doped tungsten trioxide (WO 3 ) having a nanostructure, gas sensor.
제1항에 있어서,
상기 전극은, 금(Au), 백금(Pt), 팔라듐(Pd), 알루미늄(Al), 몰르브덴(Mo), 은(Ag), 티타늄(Ti), 티탄나이트라이드(TiN), 루테늄(Ru), 이리듐(Ir) 또는 구리(Cu) 중에서 선택되는 어느 하나 이상인 것을 특징으로 하는, 가스 센서
According to claim 1,
The electrode is gold (Au), platinum (Pt), palladium (Pd), aluminum (Al), molybdenum (Mo), silver (Ag), titanium (Ti), titanium nitride (TiN), ruthenium (Ru) ), iridium (Ir) or copper (Cu), characterized in that at least one selected from, gas sensor
기판 상에 탄소나노튜브층을 적층시키는 단계;
탄소나노튜브층이 적층된 기판을 텅스텐 클로라이드(WCl6)용액에 침지시켜 텅스텐이 코팅된 탄소나노튜브 템플릿을 형성하는 단계;
텅스텐이 코팅된 탄소나노튜브 템플릿이 형성된 기판을 어닐링하여 탄소가 도핑된 텅스텐 산화물을 형성하는 단계; 및
상기 탄소가 도핑된 텅스텐 산화물 상에 전극을 형성하는 단계;를 포함하는 가스 센서의 제조방법.
Depositing a carbon nanotube layer on the substrate;
Forming a tungsten-coated carbon nanotube template by immersing the substrate in which the carbon nanotube layer is stacked in a tungsten chloride (WCl 6 ) solution;
Annealing the substrate on which the tungsten-coated carbon nanotube template is formed to form tungsten oxide doped with carbon; And
And forming an electrode on the carbon-doped tungsten oxide.
제5항에 있어서,
상기 기판은, 실리콘(Si), 산화규소(SiO2), 유리(glass) 및 사파이어(Al2O3)로 이루어진 군에서 선택되는 것을 특징으로 하는, 가스 센서의 제조방법
The method of claim 5,
The substrate is selected from the group consisting of silicon (Si), silicon oxide (SiO 2 ), glass (glass) and sapphire (Al 2 O 3 ), a method for manufacturing a gas sensor
제5항에 있어서,
상기 텅스텐 산화물은, 나노 구조를 갖는 탄소가 도핑된 삼산화텅스텐(WO3)것을 특징으로 하는, 가스 센서의 제조방법.
The method of claim 5,
The tungsten oxide is a method of manufacturing a gas sensor, characterized in that tungsten trioxide (WO 3 ) doped with carbon having a nano structure.
제5항에 있어서,
상기 탄소나노튜브를 적층시키는 단계는, 탄소나노튜브 용액을 사용하여 lift-off 방법으로 수행되는 것을 특징으로 하는, 가스 센서의 제조방법.
The method of claim 5,
The step of stacking the carbon nanotubes is characterized in that it is performed by a lift-off method using a carbon nanotube solution, a method of manufacturing a gas sensor.
제5항에 있어서,
상기 어닐링은, 400 ~ 950℃의 온도에서 수행되는 것을 특징으로 하는, 가스 센서의 제조방법.
The method of claim 5,
The annealing, characterized in that is performed at a temperature of 400 ~ 950 ℃, the manufacturing method of the gas sensor.
제5항에 있어서,
상기 전극은 금(Au), 백금(Pt), 팔라듐(Pd), 알루미늄(Al), 몰르브덴(Mo), 은(Ag), 티타늄(Ti), 티탄나이트라이드(TiN), 루테늄(Ru), 이리듐(Ir) 또는 구리(Cu) 중에서 선택되는 어느 하나 이상을 포함하는, 가스 센서의 제조방법.
The method of claim 5,
The electrode is gold (Au), platinum (Pt), palladium (Pd), aluminum (Al), molybdenum (Mo), silver (Ag), titanium (Ti), titanium nitride (TiN), ruthenium (Ru) , Iridium (Ir) or copper (Cu), any one or more selected from the method of manufacturing a gas sensor.
KR1020190001132A 2019-01-04 2019-01-04 A Gas sensor containing Carbon-doped Tungsten Oxide nanomaterials and Preparation Method Thereof KR102176988B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190001132A KR102176988B1 (en) 2019-01-04 2019-01-04 A Gas sensor containing Carbon-doped Tungsten Oxide nanomaterials and Preparation Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190001132A KR102176988B1 (en) 2019-01-04 2019-01-04 A Gas sensor containing Carbon-doped Tungsten Oxide nanomaterials and Preparation Method Thereof

Publications (2)

Publication Number Publication Date
KR20200085065A true KR20200085065A (en) 2020-07-14
KR102176988B1 KR102176988B1 (en) 2020-11-10

Family

ID=71526759

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190001132A KR102176988B1 (en) 2019-01-04 2019-01-04 A Gas sensor containing Carbon-doped Tungsten Oxide nanomaterials and Preparation Method Thereof

Country Status (1)

Country Link
KR (1) KR102176988B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220134846A (en) * 2021-03-26 2022-10-06 성균관대학교산학협력단 Gas sensor containing metal fluoride hydroxide
KR20220153761A (en) * 2021-05-12 2022-11-21 연세대학교 산학협력단 Co-doped WO3 nanoplates and gas sensor using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150134487A (en) * 2014-05-21 2015-12-02 서울대학교산학협력단 Fabrication method of NO2 gas sensor based on tungsten(VI) oxide nanonodule-decorated hybrid carbon nanofibers
KR20170008065A (en) * 2015-07-13 2017-01-23 울산대학교 산학협력단 A Flexible nitrogen dioxide gas sensor based on WO3 NPs decorated CNT GO hybrides and Method for manufacturing of the flexible nitrogen dioxide gas sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150134487A (en) * 2014-05-21 2015-12-02 서울대학교산학협력단 Fabrication method of NO2 gas sensor based on tungsten(VI) oxide nanonodule-decorated hybrid carbon nanofibers
KR101620824B1 (en) * 2014-05-21 2016-05-13 서울대학교산학협력단 Fabrication method of NO2 gas sensor based on tungsten(VI) oxide nanonodule-decorated hybrid carbon nanofibers
KR20170008065A (en) * 2015-07-13 2017-01-23 울산대학교 산학협력단 A Flexible nitrogen dioxide gas sensor based on WO3 NPs decorated CNT GO hybrides and Method for manufacturing of the flexible nitrogen dioxide gas sensor
KR101702438B1 (en) * 2015-07-13 2017-02-06 울산대학교 산학협력단 A Flexible nitrogen dioxide gas sensor based on WO3 NPs decorated CNT GO hybrides and Method for manufacturing of the flexible nitrogen dioxide gas sensor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C Balazsi 등, sensors and actuators B, 2008, 133권, 페이지 151-155.(2008.12.31.)* *
Carbon doped tungsten oxide nanorods NO2 sensor prepared by glancing angle RF sputtering, Sensors and Actuators B: Chemical, Vol.181, May 2013, p.388-394
D.G. Rickerby 등, sensors and actuators B, 2000, 69권, 페이지 314-319.(2000.12.31.)* *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220134846A (en) * 2021-03-26 2022-10-06 성균관대학교산학협력단 Gas sensor containing metal fluoride hydroxide
KR20220153761A (en) * 2021-05-12 2022-11-21 연세대학교 산학협력단 Co-doped WO3 nanoplates and gas sensor using the same

Also Published As

Publication number Publication date
KR102176988B1 (en) 2020-11-10

Similar Documents

Publication Publication Date Title
Şennik et al. The effect of Pd on the H2 and VOC sensing properties of TiO2 nanorods
US10782275B2 (en) Semiconductor hydrogen sensor and manufacturing method thereof
US20170082574A1 (en) Gas sensor and method of fabricating the same
Abdelhalim et al. Metallic nanoparticles functionalizing carbon nanotube networks for gas sensing applications
Jung et al. Fast-response room temperature hydrogen gas sensors using platinum-coated spin-capable carbon nanotubes
Ding et al. Aerosol assisted chemical vapour deposition of nanostructured ZnO thin films for NO2 and ethanol monitoring
KR101519971B1 (en) Gas sensor and method for manufacturing the same
US20050045477A1 (en) Gas sensor and manufacturing method thereof
US8052855B2 (en) Carbon nanotube gas sensor and method of manufacturing the same
KR101847507B1 (en) Sensors for detecting hydrogen peroxide and method for fabricating the same
KR102176988B1 (en) A Gas sensor containing Carbon-doped Tungsten Oxide nanomaterials and Preparation Method Thereof
Dhall et al. Room temperature hydrogen gas sensing properties of Pt sputtered F-MWCNTs/SnO2 network
Pauporte et al. Al‐Doped ZnO nanowires by electrochemical deposition for selective VOC nanosensor and nanophotodetector
KR20120016444A (en) Conducting polymer and carbon nanotubes composite based gas sensor fabrication method thereof
Ratan et al. Fabrication and characterization of titanium dioxide based Pd/TiO 2/Si MOS sensor for hydrogen gas
Khalilian et al. Formation of well-packed TiO 2 nanoparticles on multiwall carbon nanotubes using CVD method to fabricate high sensitive gas sensors
Kabitakis et al. A Low‐Power CuSCN Hydrogen Sensor Operating Reversibly at Room Temperature
Tian et al. Optimal Pt mesoporous layer modified nanocomposite film with highly sensitive detection of ethanol at low temperature
KR101957460B1 (en) Peroxide detecting sensor, peroxide detecting device comprising the same, and method for manufacturing the same
Yan et al. Fabrication of multiwall carbon nanotube sheet based hydrogen sensor on a stacking multi-layer structure
Szuber et al. On the correlation between morphology and gas sensing properties of RGTO SnO2 thin films
Wang et al. Synthesis of In 2 O 3 nanowires and their gas sensing properties
Adamyan et al. Study of hydrogen peroxide vapors sensors based on carbon nanotubes coated with tin oxide nanoparticles
Maity et al. Room Temperature Acetone Sensing Performance of rGO-ZnO Nanotubes Binary Hybrid Structure
Shobin et al. Optically transparent, electrically conducting single walled carbon nanotubes random networks for room temperature ammonia vapor sensing

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant