KR20200079073A - Method For Making The Highly Sensitive Material - Google Patents

Method For Making The Highly Sensitive Material Download PDF

Info

Publication number
KR20200079073A
KR20200079073A KR1020180168587A KR20180168587A KR20200079073A KR 20200079073 A KR20200079073 A KR 20200079073A KR 1020180168587 A KR1020180168587 A KR 1020180168587A KR 20180168587 A KR20180168587 A KR 20180168587A KR 20200079073 A KR20200079073 A KR 20200079073A
Authority
KR
South Korea
Prior art keywords
catalyst
composite
semiconducting oxide
tio
oxide
Prior art date
Application number
KR1020180168587A
Other languages
Korean (ko)
Other versions
KR102140931B1 (en
Inventor
전명표
황진아
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020180168587A priority Critical patent/KR102140931B1/en
Publication of KR20200079073A publication Critical patent/KR20200079073A/en
Application granted granted Critical
Publication of KR102140931B1 publication Critical patent/KR102140931B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to a method of manufacturing a highly sensitive composite sensing material capable of detecting harmful gases in the atmosphere with high selectivity and high sensitivity, wherein the method comprises: a composite nanotube manufacturing step of manufacturing a composite nanotube powder composed of carbon material-TiO2; a step of manufacturing a catalyst-loaded semiconducting oxide in which a catalyst is mounted on a semiconducting oxide; and a step of mixing and dispersing the composite nanotube powder and the semiconducting oxide loaded with a catalyst.

Description

고감도 복합감지소재 제조방법{Method For Making The Highly Sensitive Material}Method for Making The Highly Sensitive Material

본 발명은 감지소재 제조방법에 관한 것으로, 더욱 상세하게는 대기질 유해가스를 높은 선택성을 가지고 고감도로 감지할 수 있는 고감도 복합감지소재 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a sensing material, and more particularly, to a method of manufacturing a high-sensitivity composite sensing material capable of detecting high-sensitivity air quality harmful gases with high selectivity.

산업의 성장과 함께 유해 공기질을 고감도, 고선택성을 가지고 측정할 수 있는 가스센서를 개발하는 것이 절실히 필요하다. SnO2, ZnO, InO2, TiO2 등의 반도성 세라믹 나노입자를 사용한 가스센서는 제조가 용이하고, 소형화 및 높은 신뢰성 등으로 현재 가장 광범위하게 사용되고 있다. With the growth of the industry, it is urgently needed to develop a gas sensor that can measure harmful air quality with high sensitivity and high selectivity. Gas sensors using semiconducting ceramic nanoparticles such as SnO 2 , ZnO, InO 2 and TiO 2 are easy to manufacture and are currently most widely used due to their compactness and high reliability.

그러나, 한가지의 반도성 산화물로 구성된 가스센서는 비슷한 특성을 갖는 유해가스에 대해 선택성(감지하려는 가스만을 감지할 수 있는 선택성)이 낮으며, 가스감지 특성도 낮은 단점을 갖는다. However, a gas sensor composed of one semiconducting oxide has the disadvantages of low selectivity (selectivity that can detect only the gas to be detected) for noxious gases having similar characteristics, and low gas detection characteristics.

대한민국 공개특허 10-2018-0119215호Republic of Korea Patent Publication 10-2018-0119215

본 발명은 상기와 같은 과제를 해결하기 위한 것으로, 대기질 유해가스를 높은 선택성을 가지고 고감도로 감지할 수 있는 고감도 복합감지소재 제조방법을 제공하는 것을 해결하고자 하는 과제로 한다.The present invention is intended to solve the above problems, and to solve the problem of providing a method of manufacturing a high-sensitivity composite sensing material capable of detecting high-sensitivity air quality harmful gases with high selectivity.

상기와 같은 과제를 해결하기 위한 본 발명의 제1과제의 해결 수단은,Solving means of the first task of the present invention for solving the above problems,

탄소물질-TiO2로 이루어진 복합나노튜브 분말을 제조하는 복합나노튜브 제조 단계와;A composite nanotube manufacturing step of preparing a composite nanotube powder made of carbon material-TiO 2 ;

반도성 산화물에 촉매가 탑재된 촉매 탑재 반도성 산화물을 제조하는 촉매 탑재 반도성 산화물 제조 단계 및;A catalyst-mounted semiconducting oxide production step of producing a catalyst-mounted semiconductive oxide on which the catalyst is mounted on the semiconducting oxide;

복합나노튜브 분말과 촉매 탑재 반도성 산화물을 혼합 분산하는 혼합분산 단계Mixing and dispersing step of mixing and dispersing the composite nanotube powder and the catalyst-mounted semiconducting oxide

를 포함하는 것을 특징으로 한다.It characterized in that it comprises.

또한, 본 발명의 제2과제의 해결 수단은,In addition, the solution of the second task of the present invention,

제1과제의 해결 수단에 있어서,In the solution of the first task,

상기 복합나노튜브의 탄소물질은 탄소나노튜브, 그래핀, 흑연, 탄소섬유 중 어느 하나 인 것을 특징으로 한다.Carbon material of the composite nanotube is characterized in that any one of carbon nanotubes, graphene, graphite, carbon fiber.

또한, 본 발명의 제3과제의 해결 수단은,In addition, the solution of the third task of the present invention,

제1과제의 해결 수단에 있어서,In the solution of the first task,

상기 탄소물질-TiO2은, 탄소물질 : TiO2 나노튜브 = 0~20 : 100~80 의 중량비로 이루어지는 것을 특징으로 한다.The carbon material is -TiO 2, the carbon material: characterized by comprising a weight ratio of 100 ~ 80: TiO 2 = 0-20 nanotubes.

또한, 본 발명의 제4과제의 해결 수단은,In addition, the solution of the fourth task of the present invention,

제1과제의 해결 수단에 있어서,In the solution of the first task,

상기 촉매 탑재 반도성 산화물의 촉매는 Au, Pd, Pt 중 어느 하나 인 것을 특징으로 한다.The catalyst-based semiconducting oxide catalyst is characterized in that it is one of Au, Pd, and Pt.

또한, 본 발명의 제5과제의 해결 수단은,In addition, the solution of the fifth task of the present invention,

제1과제의 해결 수단에 있어서,In the solution of the first task,

상기 촉매 탑재 반도성 산화물의 반도성 산화물은 In2O3, ZnO, SnO2, TiO2, Cr2O3, WO3, MnO2 중 어느 하나 인 것을 특징으로 한다.The semiconducting oxide of the catalyst-mounted semiconducting oxide is characterized in that it is any one of In 2 O 3 , ZnO, SnO 2 , TiO 2 , Cr2O 3 , WO 3 , and MnO 2 .

또한, 본 발명의 제6과제의 해결 수단은,In addition, the solution of the sixth task of the present invention,

제1 내지 제5과제의 해결 수단 중 어느 한 과제의 해결 수단 있어서,In the solution of any one of the solutions of the first to fifth tasks,

상기 복합나노튜브 분말과, 촉매 탑재 반도성 산화물은 8~3 : 92~97 의 중량비로 혼합되는 것을 특징으로 한다.The composite nanotube powder and the catalyst-based semiconducting oxide are characterized by being mixed in a weight ratio of 8 to 3:92 to 97.

또한, 본 발명의 제7과제의 해결 수단은,In addition, the solution of the seventh task of the present invention,

제6과제의 해결 수단에 있어서,In the solution of the sixth task,

상기 촉매 탑재 반도성 산화물의 촉매는 Au이고,The catalyst for the semiconductive oxide loaded with catalyst is Au,

상기 복합나노튜브 분말과, 촉매 탑재 반도성 산화물은 3 : 97 의 중량비로 혼합되는 것을 특징으로 한다.The composite nanotube powder and the catalyst-containing semiconducting oxide are characterized by being mixed in a weight ratio of 3:97.

또한, 본 발명의 제8과제의 해결 수단은,In addition, the solution means of the eighth subject of the present invention,

제6과제의 해결 수단에 있어서,In the solution of the sixth task,

상기 촉매 탑재 반도성 산화물의 반도성 산화물 입자 크기는 10nm ~ 50nm 이고, 촉매 탑재 반도성 산화물의 촉매 입자 크기는 5nm ~ 10nm 인 것을 특징으로 한다.The semiconducting oxide particle size of the catalyst-mounted semiconducting oxide is 10 nm to 50 nm, and the catalytic particle size of the semiconducting semiconducting oxide is 5 nm to 10 nm.

또한, 본 발명의 제9과제의 해결 수단은,In addition, the solution of the ninth task of the present invention,

제1과제의 해결 수단에 있어서,In the solution of the first task,

상기 복합나노튜브 제조 단계에서, TiO2 0.45중량%와, 탄소물질 0.05중량%와, 증류수 70중량% 및, NaOH 29.5중량%를 115℃서 24시간 동안 교반 및 혼합한 후, 혼합물을 증류수를 이용하여 세착하되 세척된 증류수의 전기 전도도가 5uS/cm 이하가 될 때까지 반복적으로 세척하며, 세척물을 원심분리 하여, 복합나노튜브 분말이 제조되고,In the step of manufacturing the composite nanotube, after stirring and mixing 0.45% by weight of TiO 2 , 0.05% by weight of carbon material, 70% by weight of distilled water, and 29.5% by weight of NaOH at 115° C. for 24 hours, the mixture is used with distilled water. Washing, but repeatedly washing until the electrical conductivity of the washed distilled water is 5 uS/cm or less, and centrifuging the washing material to produce a composite nanotube powder,

상기 촉매 탑재 반도성 산화물 제조 단계에서, In(NO3)3·xH2O 0.1M과 증류수를 혼합 교반하고, 교반물에 증류수 40ml를 첨가하여 100℃까지 가열한 후 100℃에서 10시간 동안 반응시킨 후 상온까지 냉각하며, 냉각물을 원심분리후 얻어진 반응물을 100℃에서 10시간 건조하여 In(OH)3를 얻은 후에, In(OH)3 0.2g을 증류수 40g에 분산 시킨 후 HAuCl4 또는 H2PdCl4 또는 H2PtCl6 0.01M 2ml를 투입하고 NaBH4를 0.01M을 투입시켜 2시간 동안 반응시키며, 상기 2시간 동안 반응한 반응물을 에탄올로 세척한 후 원심분리하여, 100℃에서 10시간 건조시킨 후에 300℃에서 2시간 열처리하여, 촉매 탑재 반도성 산화물이 제조되는 것을 특징으로 한다.In the catalyst-mounted semiconducting oxide production step, In(NO 3 ) 3 ·xH 2 O 0.1M and distilled water are mixed and stirred, 40 ml of distilled water is added to the stirred material, heated to 100° C., and reacted at 100° C. for 10 hours. after cooled to room temperature, after which, by cooling the reaction product obtained after centrifugation was dried at 100 10 sigan obtained in (OH) 3, in ( OH) was dispersed for 3 0.2g in 40g distilled water HAuCl 4 or H 2 PdCl4 or H 2 PtCl 6 0.01M 2ml was added and NaBH 4 was added at 0.01M to react for 2 hours, and the reactants reacted for 2 hours were washed with ethanol and centrifuged to dry at 100°C for 10 hours. After heat treatment for 2 hours at 300 ℃, it is characterized in that a semiconducting oxide with a catalyst is prepared.

본 발명은 서로 다른 금속산화물들의 상호작용을 통해 나노입자 내의 전자구조를 변화시켜, 다양한 가스에 대한 선택성 및 감지성을 향상시킨다.The present invention changes the electronic structure in nanoparticles through the interaction of different metal oxides, thereby improving selectivity and sensitivity to various gases.

특히, 본 발명은 일산화탄소(CO), 톨루엔과 같은 유해 가스에 대해 저농도 상태에서 고감도로 감지할 수 있어, 다양한 안전 산업 분야에 효과적으로 적용될 수 있다.Particularly, the present invention can detect harmful gases such as carbon monoxide (CO) and toluene with high sensitivity at low concentrations, and thus can be effectively applied to various safety industries.

또한, 본 발명은 전기 전도도가 우수한 CNT의 함량을 조절하여 복합감지소재의 저항을 낮출수 있으며, 촉매 탑재 반도성 산화물(산화물 나노감지입자)를 CNT-TiO2 코어쉘 나노튜브 표면에 균일하게 부착하여 나노섬유 기반의 우수 복합감지소재를 제조할 수 있다.In addition, the present invention can lower the resistance of the composite sensing material by adjusting the content of CNTs having excellent electrical conductivity, and uniformly attach the catalyst-mounted semiconducting oxide (oxide nano-sensing particles) to the surface of the CNT-TiO 2 core shell nanotube. By doing so, an excellent composite sensing material based on nanofibers can be produced.

도 1은 본 발명에 따른 고감도 복합감지소재 제조방법에서 CNT-TiO2 코어쉘 복합나노튜브 (CT)의 제조공정도이고,
도 2는 본 발명에 따른 고감도 복합감지소재 제조방법에서 Au-In2O3 나노입자의 제조공정도이고,
도 3은 탄소나노튜브-TiO2 코어쉘 나노튜브 (CT)와 Au-In2O3로 이루어진 복합감지소재의 FE-SEM 미세구조이고,
도 4는 탄소나노튜브-TiO2 코어쉘 나노튜브 (CT)와 Au-In2O3로 이루어진 복합감지소재의 CO 가스에 대한 감도측정 그래프이다.
1 is a manufacturing process diagram of a CNT-TiO 2 core shell composite nanotube (CT) in a method for manufacturing a high-sensitivity composite sensing material according to the present invention,
2 is a manufacturing process diagram of Au-In 2 O 3 nanoparticles in the method of manufacturing a high-sensitivity composite sensing material according to the present invention,
3 is a FE-SEM microstructure of a composite sensing material composed of carbon nanotube-TiO 2 core shell nanotube (CT) and Au-In 2 O 3 ,
FIG. 4 is a graph of sensitivity measurement for CO gas of a composite sensing material composed of carbon nanotube-TiO 2 core shell nanotube (CT) and Au-In 2 O 3 .

이하, 본 발명에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.Hereinafter, the present invention will be described in detail so that those skilled in the art to which the present invention pertains can easily practice.

도 1은 본 발명에 따른 고감도 복합감지소재 제조방법에서 CNT-TiO2 코어쉘 복합나노튜브 (CT)의 제조공정도이고, 도 2는 본 발명에 따른 고감도 복합감지소재 제조방법에서 Au-In2O3 나노입자의 제조공정도로서, 도 1 내지 도 2를 참조하여 본 발명에 따른 고감도 복합감지소재 제조방법을 설명하면 다음과 같다.1 is a manufacturing process diagram of a CNT-TiO 2 core shell composite nanotube (CT) in a method for manufacturing a high-sensitivity composite sensing material according to the present invention, and FIG. 2 is Au-In 2 O in a method for manufacturing a high-sensitivity composite sensing material according to the present invention 3 As a manufacturing process diagram of nanoparticles, a method of manufacturing a high-sensitivity composite sensing material according to the present invention will be described with reference to FIGS. 1 to 2 as follows.

복합나노튜브 제조 단계Composite nanotube manufacturing steps

탄소물질-TiO2로 이루어진 복합나노튜브 분말을 제조한다.A composite nanotube powder made of carbon material-TiO 2 is prepared.

예를 들어, 복합감지소재의 기지상인 탄소나노튜브-TiO2 코어쉘 나노튜브 (CT)는 다음의 과정을 통해 제조된다. For example, the carbon nanotube-TiO 2 core shell nanotube (CT), which is the base phase of the composite sensing material, is prepared through the following process.

CNT-TiO2 코어쉘 복합나노튜브(CT)의 제조는 도 1에서 보여지며 다음과 같다. Preparation of CNT-TiO 2 core shell composite nanotube (CT) is shown in FIG. 1 as follows.

TiO2 0.45wt%, 탄소나노튜브(Carbon Nanotube) 0.05 wt%, 증류수 70 wt%, NaOH 29.5 wt%을 리플럭스를 통하여 교반하고, 115℃에서 24시간 동안 혼합 한 후 증류수(물)를 이용하여 샘플을 세척하며, 세척된 증류수(물)의 전기 전도도가 5uS/cm 이하가 될 때까지 반복적으로 세척하고 3500 rpm에서 5분간 원심분리를 실시한다. TiO 2 0.45wt%, carbon nanotube (Carbon Nanotube) 0.05wt%, distilled water 70wt%, NaOH 29.5wt% was stirred through reflux, mixed at 115℃ for 24 hours and then distilled water (water) was used. The sample is washed, washed repeatedly until the electrical conductivity of the washed distilled water (water) is 5 uS/cm or less, and centrifugation is performed at 3500 rpm for 5 minutes.

이후, 상기 세척된 샘플을 냉동시키고, 냉동된 샘플은 동결 건조기를 통하여 건조한다. 그리고 상기 샘플은 에탄올과 1:40 wt%비율로 희석하여 분산 시킨다.Thereafter, the washed sample is frozen, and the frozen sample is dried through a freeze dryer. And the sample is diluted and dispersed in a 1:40 wt% ratio with ethanol.

한편, 본 발명에서 복합나노튜브(탄소물질-TiO2) 는 탄소물질 : TiO2 나노튜브 = 0~50 : 100~50 의 중량비로 이루어지고, 바람직하게는 탄소물질 : TiO2 나노튜브 = 0~20 : 100~80 의 중량비로 이루어지는 것이 바람직하다. Meanwhile, in the present invention, the composite nanotube (carbon material-TiO 2 ) Is composed of a carbon material: TiO 2 nanotubes = 0 to 50: 100 to 50 weight ratio, preferably carbon material: TiO 2 nanotubes = 0 to 20: 100 to 80 weight ratio.

또한, 본 발명에서 복합나노튜브의 탄소물질은 탄소나노튜브, 그래핀, 흑연, 탄소섬유 중 어느 하나일 수 있다.In addition, the carbon material of the composite nanotube in the present invention may be any one of carbon nanotubes, graphene, graphite, and carbon fibers.

촉매 탑재 반도성 산화물 제조 단계Catalyst-mounted semiconducting oxide production step

반도성 산화물에 촉매가 탑재된 촉매 탑재 반도성 산화물(예를 들어 Au-In2O3)을 제조한다.A catalyst-mounted semiconducting oxide (for example, Au-In 2 O 3 ) in which a catalyst is mounted on a semiconductive oxide is prepared.

Au-In2O3 나노입자의 제조공정도는 도 2에서 보여지며 다음과 같다.The manufacturing process diagram of Au-In 2 O 3 nanoparticles is shown in FIG. 2 as follows.

출발원료로 Indium(III) nitrate hydrate (In(NO3)3·xH2O) 및 HMTA (hexamethylentetramine), 용매로 증류수를 사용하여, 합성한다. It is synthesized using Indium(III) nitrate hydrate (In(NO 3 ) 3 ·xH 2 O) and HMTA (hexamethylentetramine) as a starting material and distilled water as a solvent.

50ml 3구 플라스크에 Indium(III) nitrate hydrate (In(NO3)3·xH2O) 0.1M과 증류수를 넣어 스터링 한 후 증류수 40ml를 첨가하여 100℃까지 가열한다. After adding 0.1M of Indium(III) nitrate hydrate (In(NO 3 ) 3 ·xH 2 O) and distilled water to a 50ml 3-neck flask, stir and add 40ml of distilled water and heat it to 100℃.

그리고, 리플럭스를 이용하여 100℃에서 10시간 동안 반응시킨 후에 상온까지 냉각시킨다. Then, after reacting at 100°C for 10 hours using reflux, it is cooled to room temperature.

이후, 3500 rpm에서 20분간 원심분리하여 얻어진 반응물을 100℃에서 10시간 건조하여 In(OH)3를 얻는다. Thereafter, the reactant obtained by centrifugation at 3500 rpm for 20 minutes is dried at 100° C. for 10 hours to obtain In(OH) 3 .

이렇게 합성된 In(OH)3 0.2g을 증류수 40g에 분산 시킨 후 gold chloride (HAuCl4) 0.01M 2ml를 투입하며, 이어서 NaBH4를 0.01M을 투입시킨 후에 2시간 동안 반응시킨 후에 에탄올로 세척하고 3500 rpm에서 5분간 원심분리한다. After dispersing 0.2 g of In(OH) 3 thus synthesized in 40 g of distilled water, 2 ml of gold chloride (HAuCl 4 ) 0.01M is added, followed by addition of 0.01 M of NaBH 4 , followed by reaction for 2 hours, followed by washing with ethanol. Centrifuge for 5 minutes at 3500 rpm.

이후, 100℃에서 10시간 건조시킨 후에 300℃에서 2시간 열처리하여 Au-In2O3 나노입자를 얻는다.Then, after drying at 100°C for 10 hours, heat treatment at 300°C for 2 hours to obtain Au-In 2 O 3 nanoparticles.

한편, Au-In2O3와 동일한 합성방법으로 H2PdCl4와 H2PtCl6 를 이용하여 Pd-In2O3와 Pt-In2O3를 각각 합성할 수 있다.Meanwhile, Pd-In 2 O 3 and Pt-In 2 O 3 may be synthesized using H 2 PdCl 4 and H 2 PtCl 6 in the same synthesis method as Au-In 2 O 3 .

또한, 본 발명에서 상기 촉매 탑재 반도성 산화물의 반도성 산화물은 ZnO, SnO2, TiO2, Cr2O3, WO3, MnO2 중 어느 하나일 수 있다.In addition, the semiconductive oxide of the catalyst-mounted semiconducting oxide in the present invention may be any one of ZnO, SnO 2 , TiO 2 , Cr2O 3 , WO 3 and MnO 2 .

그리고, 본 발명에서 촉매 탑재 반도성 산화물의 반도성 산화물 입자 크기는 5nm ~ 100nm이되, 바람직하게는 10nm ~50nm가 바람직하며, 촉매 탑재 반도성 산화물의 촉매 입자 크기는 1nm ~30nm이되, 바람직하게는 5nm ~10nm가 바람직하다.In addition, in the present invention, the semiconducting oxide particle size of the catalyst-mounted semiconducting oxide is 5 nm to 100 nm, preferably 10 nm to 50 nm, and the catalytic particle size of the semiconducting semiconducting oxide is 1 nm to 30 nm, preferably 5 nm to 10 nm is preferred.

혼합분산 단계Mixed dispersion stage

상기 제조된 복합나노튜브 분말과 상기 제조된 촉매 탑재 반도성 산화물을 혼합 분산한다.The prepared composite nanotube powder and the prepared catalyst-mounted semiconducting oxide are mixed and dispersed.

이어서 바람직한 실시예를 통하여 본 발명을 상세하게 설명하기로 한다. 실시예의 구체적인 예시는 본 발명을 설명하기 위한 것으로, 이에 한정되는 것이 아니고, 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하며, 이 또한 본 발명의 범위에 속하는 것은 당연하다.Next, the present invention will be described in detail through preferred embodiments. Specific examples of the embodiments are intended to illustrate the present invention, but are not limited thereto, and can be implemented in various ways within the scope of the claims and the detailed description of the invention, and this also belongs to the scope of the present invention. Of course it is.

[실시예 1][Example 1]

우선, 다음과 같은 공정을 통해 CNT-TiO2 코어쉘 복합나노튜브(CT)를 제조한다.First, a CNT-TiO 2 core shell composite nanotube (CT) is manufactured through the following process.

TiO2 0.45wt%, 탄소나노튜브(Carbon Nanotube) 0.05 wt%, 증류수 70 wt%, NaOH 29.5 wt%을 리플럭스를 통하여 교반하고, 115℃에서 24시간 동안 혼합 한 후 증류수(물)를 이용하여 샘플을 세척하며, 세척된 증류수(물)의 전기 전도도가 5uS/cm 이하가 될 때까지 반복적으로 세척하고 3500 rpm에서 5분간 원심분리를 실시한다. TiO 2 0.45wt%, carbon nanotube (Carbon Nanotube) 0.05wt%, distilled water 70wt%, NaOH 29.5wt% was stirred through reflux, mixed at 115℃ for 24 hours and then distilled water (water) was used. The sample is washed, washed repeatedly until the electrical conductivity of the washed distilled water (water) is 5 uS/cm or less, and centrifugation is performed at 3500 rpm for 5 minutes.

이후, 상기 세척된 샘플을 냉동시키고, 냉동된 샘플은 동결 건조기를 통하여 건조한다. 그리고 상기 샘플은 에탄올과 1:40 wt%비율로 희석하여 분산 시켜 CNT-TiO2 코어쉘 복합나노튜브(CT)를 제조한다.Thereafter, the washed sample is frozen, and the frozen sample is dried through a freeze dryer. In addition, the sample was diluted with ethanol at a ratio of 1:40 wt% and dispersed to prepare CNT-TiO 2 core shell composite nanotube (CT).

또한, 다음과 같은 공정을 통해 Au-In2O3 나노입자를 제조한다.In addition, Au-In 2 O 3 nanoparticles are prepared through the following process.

출발원료로 Indium(III) nitrate hydrate (In(NO3)3·xH2O) 및 HMTA (hexamethylentetramine), 용매로 증류수를 사용하여, 합성한다. It is synthesized using Indium(III) nitrate hydrate (In(NO 3 ) 3 ·xH 2 O) and HMTA (hexamethylentetramine) as a starting material and distilled water as a solvent.

50ml 3구 플라스크에 Indium(III) nitrate hydrate (In(NO3)3·xH2O) 0.1M과 증류수를 넣어 스터링 한 후 증류수 40ml를 첨가하여 100℃까지 가열한다. After adding 0.1M of Indium(III) nitrate hydrate (In(NO 3 ) 3 ·xH 2 O) and distilled water to a 50ml 3-neck flask, stir and add 40ml of distilled water and heat it to 100℃.

그리고, 리플럭스를 이용하여 100℃에서 10시간 동안 반응시킨 후에 상온까지 냉각시킨다. Then, after reacting at 100°C for 10 hours using reflux, it is cooled to room temperature.

이후, 3500 rpm에서 20분간 원심분리하여 얻어진 반응물을 100℃에서 10시간 건조하여 In(OH)3를 얻는다. Thereafter, the reactant obtained by centrifugation at 3500 rpm for 20 minutes is dried at 100° C. for 10 hours to obtain In(OH) 3 .

이렇게 합성된 In(OH)3 0.2g을 증류수 40g에 분산 시킨 후 gold chloride (HAuCl4) 0.01M 2ml를 투입하며, 이어서 NaBH4를 0.01M을 투입시킨 후에 2시간 동안 반응시킨 후에 에탄올로 세척하고 3500 rpm에서 5분간 원심분리한다. After dispersing 0.2 g of In(OH) 3 thus synthesized in 40 g of distilled water, 2 ml of gold chloride (HAuCl 4 ) 0.01M is added, followed by addition of 0.01 M of NaBH 4 , followed by reaction for 2 hours, followed by washing with ethanol. Centrifuge for 5 minutes at 3500 rpm.

이후, 100℃에서 10시간 건조시킨 후에 300℃에서 2시간 열처리하여 Au-In2O3 나노입자를 얻는다. Then, after drying at 100°C for 10 hours, heat treatment at 300°C for 2 hours to obtain Au-In 2 O 3 nanoparticles.

Au-In2O3 나노입자와 탄소나노튜브-TiO2 코어쉘 나노튜브(CT)를 97:3의 중량비로 혼합한 후 에탄올에 희석하여 분산시킴으로써, Au/In2O3@3CT를 제조한다.After mixing Au-In 2 O 3 nanoparticles and carbon nanotube-TiO 2 core shell nanotubes (CT) in a weight ratio of 97:3, diluting and dispersing them in ethanol to prepare Au/In 2 O 3 @3CT. .

계속해서, 에탄올에 분산된 복합감지소재를 측정용 기판에 도포 후 80℃에서 용매를 휘발시켜 측정용 가스센서 샘플을 제조한다.Subsequently, after applying the composite sensing material dispersed in ethanol to the substrate for measurement, a solvent gas was evaporated at 80°C to prepare a gas sensor sample for measurement.

[실시예 2][Example 2]

Au-In2O3 나노입자와, 탄소나노튜브-TiO2 코어쉘 나노튜브(CT)가 95:5의 중량비로 혼합되는 것 외에는 실시예 1과 동일한 공정을 거쳐, Au/In2O3@5CT가 제조된다.The Au-In 2 O 3 nanoparticles and the carbon nanotube-TiO 2 core shell nanotube (CT) were subjected to the same process as in Example 1, except that they were mixed at a weight ratio of 95:5, Au/In 2 O 3 @ 5CT is manufactured.

[실시예 3] [Example 3]

Au-In2O3 나노입자와, 탄소나노튜브-TiO2 코어쉘 나노튜브(CT)가 92:8의 중량비로 혼합되는 것 외에는 실시예 1과 동일한 공정을 거쳐, Au/In2O3@8CT가 제조된다.The Au-In 2 O 3 nanoparticles and the carbon nanotube-TiO 2 core shell nanotube (CT) were subjected to the same process as in Example 1, except that they were mixed at a weight ratio of 92:8, and Au/In 2 O 3 @ 8CT is manufactured.

[실시예 4][Example 4]

촉매로 Au 대신 Pd가 사용되고, Pd-In2O3 나노입자와, 탄소나노튜브-TiO2 코어쉘 나노튜브(CT)가 97:3의 중량비로 혼합되는 것 외에는 실시예 1과 동일한 공정을 거쳐, Pd/In2O3@3CT가 제조된다.Pd is used instead of Au as a catalyst, and Pd-In 2 O 3 nanoparticles and carbon nanotube-TiO 2 core-shell nanotubes (CT) are mixed in a weight ratio of 97:3 through the same process as in Example 1. , Pd/In 2 O 3 @3CT is prepared.

[실시예 5][Example 5]

촉매로 Au 대신 Pt가 사용되고, Pt-In2O3 나노입자와, 탄소나노튜브-TiO2 코어쉘 나노튜브(CT)가 97:3의 중량비로 혼합되는 것 외에는 실시예 1과 동일한 공정을 거쳐, Pt/In2O3@3CT가 제조된다.Pt is used instead of Au as a catalyst, and Pt-In 2 O 3 nanoparticles and carbon nanotube-TiO 2 core shell nanotubes (CT) are mixed in a weight ratio of 97:3 through the same process as in Example 1. , Pt/In 2 O 3 @3CT is prepared.

[비교예 1][Comparative Example 1]

Au-In2O3 나노입자와, 탄소나노튜브-TiO2 코어쉘 나노튜브(CT)가 100:0의 중량비로 혼합되는 것 외에는 실시예 1과 동일한 공정을 거쳐, Au/In2O3가 제조된다.Au/In 2 O 3 nanoparticles and carbon nanotubes-TiO 2 core shell nanotubes (CT) were subjected to the same process as in Example 1, except that they were mixed in a weight ratio of 100:0, and Au/In 2 O 3 was added. Is manufactured.

[비교예 2][Comparative Example 2]

촉매로 Au 대신 Pd가 사용되고, Pd-In2O3 나노입자와, 탄소나노튜브-TiO2 코어쉘 나노튜브(CT)가 100:0의 중량비로 혼합되는 것 외에는 비교예 1과 동일한 공정을 거쳐, Pd/In2O3가 제조된다.Pd is used instead of Au as a catalyst, and the same process as in Comparative Example 1 is performed except that Pd-In 2 O 3 nanoparticles and carbon nanotube-TiO 2 core shell nanotubes (CT) are mixed in a weight ratio of 100:0. , Pd/In 2 O 3 is prepared.

[비교예 3][Comparative Example 3]

촉매로 Au 대신 Pt가 사용되고, Pt-In2O3 나노입자와, 탄소나노튜브-TiO2 코어쉘 나노튜브(CT)가 100:0의 중량비로 혼합되는 것 외에는 비교예 1과 동일한 공정을 거쳐, Pt/In2O3가 제조된다.Pt is used instead of Au as a catalyst, and Pt-In 2 O 3 nanoparticles and carbon nanotube-TiO 2 core shell nanotubes (CT) are mixed in a weight ratio of 100:0, followed by the same process as Comparative Example 1. , Pt/In 2 O 3 is prepared.

[실험예 1][Experimental Example 1]

아래의 표 1은 복합감지소재의 1ppm CO가스에 대한 100℃에서 측정한 CO가스 감지특성을 나타낸다. 즉, CO(일산화탄소) 가스에 대한 복합감지소재의 감지특성은 CO 1ppm 농도의 표준가스을 주입하며 100oC에서 저항 값을 기록하여 측정하였다. 이때 측정 시작과 동시에 일정한 시간동안 순수 공기를 흘려 저항 값이 안정된 것을 확인 후 1ppm의 CO 가스를 흘려주었으며, 일정 시간이 지난 후에는 다시 순수공기를 흘려 가스 센서의 감도, 반응성, 회복성을 저항 값의 변화에 따라 관찰하였다. 또한 도 3은 탄소나노튜브-TiO2 코어쉘 나노튜브 (CT)와 Au-In2O3로 이루어진 복합감지소재의 FE-SEM 미세구조이고, 도 4는 탄소나노튜브-TiO2 코어쉘 나노튜브 (CT)와 Au-In2O3로 이루어진 복합감지소재의 CO 가스에 대한 감도측정 그래프이다.Table 1 below shows the CO gas detection characteristics measured at 100°C for 1 ppm CO gas of the composite sensing material. That is, the sensing characteristic of the composite sensing material for CO (carbon monoxide) gas was measured by injecting a standard gas with a concentration of 1 ppm CO and recording the resistance at 100 o C. At this time, after confirming that the resistance value was stable by flowing pure air for a certain period of time at the same time as the measurement started, 1 ppm of CO gas was flowed, and after a certain period of time, pure air was again flowed to measure the sensitivity, reactivity, and recovery of the gas sensor. It was observed according to the change. In addition, Figure 3 is a carbon nanotube-TiO 2 core shell nanotube (CT) and FE-SEM microstructure of a composite sensing material consisting of Au-In 2 O 3 , Figure 4 is a carbon nanotube-TiO 2 core shell nanotube (CT) and Au-In 2 O 3 is a graph of sensitivity measurement for CO gas in a composite sensing material.

시편Psalter 조성(wt.%)Composition (wt.%) CO가스(1ppm)CO gas (1ppm) In2O3 In 2 O 3 CTCT 촉매catalyst 감도Sensitivity 반응속도Reaction rate 회복속도Recovery speed 비교예 1Comparative Example 1 Au-In2O3 Au-In 2 O 3 100100 00 AuAu 1.41.4 20s20s 330s330s 비교예 2Comparative Example 2 Pd-In2O3 Pd-In 2 O 3 100100 00 PdPd 1.11.1 27s27s 365s365s 비교예 3Comparative Example 3 Pt-In2O3 Pt-In 2 O 3 100100 00 PtPt 1.01.0 36s36s 380s380s 실시예 1Example 1 Au-In2O3@3CTAu-In 2 O 3 @3CT 9797 33 AuAu 2.12.1 9s9s 280s280s 실시예 2Example 2 Au-In2O3@5CTAu-In 2 O 3 @5CT 9595 55 AuAu 1.81.8 16s16s 300s300s 실시예 3Example 3 Au-In2O3@8CTAu-In 2 O 3 @8CT 9292 88 AuAu 1.61.6 18s18s 310s310s 실시예 4Example 4 Pd-In2O3@3CTPd-In 2 O 3 @3CT 9797 33 PdPd 1.41.4 19s19s 330s330s 실시예 5Example 5 Pt-In2O3@3CTPt-In 2 O 3 @3CT 9797 33 PtPt 1.31.3 22s22s 340s340s

아래의 표 2는 복합감지소재의 1ppm 톨루엔 가스에 대한 250℃에서 측정한 톨루엔 가스 감지특성을 나타낸다. 즉, 톨루엔 가스에 대한 복합감지소재의 감지특성은 톨루엔 1ppm 농도의 표준가스을 주입하며 250oC에서 저항 값을 기록하여 측정하였다. 이때 측정 시작과 동시에 일정한 시간동안 순수 공기를 흘려 저항 값이 안정된 것을 확인 후 1ppm의 톨루엔 가스를 흘려주었으며, 일정 시간이 지난 후에는 다시 순수공기를 흘려 가스 센서의 감도, 반응성, 회복성을 저항 값의 변화에 따라 관찰하였다. 또한 도 3은 탄소나노튜브-TiO2 코어쉘 나노튜브 (CT)와 Au-In2O3로 이루어진 복합감지소재의 FE-SEM 미세구조이고, 도 4는 탄소나노튜브-TiO2 코어쉘 나노튜브 (CT)와 Au-In2O3로 이루어진 복합감지소재의 CO 가스에 대한 감도측정 그래프이다.Table 2 below shows the toluene gas detection characteristics measured at 250°C for 1 ppm toluene gas of the composite sensing material. That is, the sensing characteristic of the composite sensing material for toluene gas was measured by injecting a standard gas with a concentration of 1 ppm of toluene and recording the resistance at 250 o C. At this time, after confirming that the resistance value was stable by flowing pure air for a certain period of time at the same time as the start of the measurement, 1 ppm of toluene gas was flowed. It was observed according to the change. In addition, Figure 3 is a carbon nanotube-TiO 2 core shell nanotube (CT) and FE-SEM microstructure of a composite sensing material consisting of Au-In 2 O 3 , Figure 4 is a carbon nanotube-TiO 2 core shell nanotube (CT) and Au-In 2 O 3 is a graph of sensitivity measurement for CO gas in a composite sensing material.

시편Psalter 조성(wt.%)Composition (wt.%) 톨루엔(1ppm)Toluene (1ppm) In2O3 In 2 O 3 CTCT 촉매catalyst 감도Sensitivity 반응속도Reaction rate 회복속도Recovery speed 비교예 1Comparative Example 1 Au-In2O3 Au-In 2 O 3 100100 00 AuAu 2.72.7 25s25s 320s320s 비교예 2Comparative Example 2 Pd-In2O3 Pd-In 2 O 3 100100 00 PdPd 1.21.2 35s35s 330s330s 비교예 3Comparative Example 3 Pt-In2O3 Pt-In 2 O 3 100100 00 PtPt 1.11.1 35s35s 340s340s 실시예 1Example 1 Au-In2O3@3CTAu-In 2 O 3 @3CT 9797 33 AuAu 3.63.6 12s12s 250s250s 실시예 2Example 2 Au-In2O3@5CTAu-In 2 O 3 @5CT 9595 55 AuAu 3.23.2 18s18s 280s280s 실시예 3Example 3 Au-In2O3@8CTAu-In 2 O 3 @8CT 9292 88 AuAu 2.32.3 21s21s 310s310s 실시예 4Example 4 Pd-In2O3@3CTPd-In 2 O 3 @3CT 9797 33 PdPd 1.61.6 27s27s 310s310s 실시예 5Example 5 Pt-In2O3@3CTPt-In 2 O 3 @3CT 9797 33 PtPt 1.51.5 22s22s 320s320s

표 1, 2에서 실시예 1 내지 3과, 비교예 1을 살펴보면, Au-In2O3 나노입자와 CT의 비율이 92~97 : 8~3 의 중량비로 혼합될 시, 복합감지소재의 CO가스, 톨루엔에 대한 감도, 반응속도, 회복속도가 우수한 것을 알 수 있다.Looking at Examples 1 to 3 and Comparative Example 1 in Tables 1 and 2, when the ratio of Au-In 2 O 3 nanoparticles and CT is mixed in a weight ratio of 92 to 97: 8 to 3, CO of the composite sensing material It can be seen that the sensitivity to gas and toluene, the reaction rate, and the recovery rate are excellent.

또한, 표 1,2에서 실시예 4,5와 비교예 2,3을 살펴보면, 촉매가 Au에서 Pd,Pt로 바뀌더라도, 복합감지소재의 CO가스, 톨루엔에 대한 감도, 반응속도, 회복속도가 우수한 것을 알 수 있다.In addition, looking at Examples 4 and 5 and Comparative Examples 2 and 3 in Tables 1 and 2, even if the catalyst is changed from Au to Pd, Pt, the sensitivity, reaction rate, and recovery rate of CO gas and toluene of the composite sensing material You can see that it is excellent.

특히, 실시예 1의 경우, 복합감지소재의 CO가스, 톨루엔에 대한 감도, 반응속도, 회복속도가 매우 우수한 것을 알 수 있다. In particular, in the case of Example 1, it can be seen that the sensitivity, reaction rate, and recovery rate of CO gas and toluene of the composite sensing material are very excellent.

이와 더불어, 도 3,4를 살펴보면, 본 발명에 따른 복합감지소재가 우수한 물성을 나타내는 것을 알 수 있다. In addition, referring to FIGS. 3 and 4, it can be seen that the composite sensing material according to the present invention exhibits excellent physical properties.

상술한 바와 같은 본 발명은 서로 다른 금속산화물들의 상호작용을 통해 나노입자 내의 전자구조를 변화시켜, 다양한 가스에 대한 선택성 및 감지성을 향상시킨다.The present invention as described above changes the electronic structure in the nanoparticles through the interaction of different metal oxides, thereby improving selectivity and sensitivity to various gases.

특히, 본 발명은 일산화탄소(CO), 톨루엔과 같은 유해 가스에 대해 저농도 상태에서 고감도로 감지할 수 있어, 다양한 안전 산업 분야에 효과적으로 적용될 수 있다.Particularly, the present invention can detect harmful gases such as carbon monoxide (CO) and toluene with high sensitivity at low concentrations, and thus can be effectively applied to various safety industries.

또한, 본 발명은 전기 전도도가 우수한 CNT의 함량을 조절하여 복합감지소재의 저항을 낮출수 있으며, 촉매 탑재 반도성 산화물(산화물 나노감지입자)를 CNT-TiO2 코어쉘 나노튜브 표면에 균일하게 부착하여 나노섬유 기반의 우수 복합감지소재를 제조할 수 있다.In addition, the present invention can lower the resistance of the composite sensing material by adjusting the content of CNTs having excellent electrical conductivity, and uniformly attach the catalyst-mounted semiconducting oxide (oxide nano-sensing particles) to the surface of the CNT-TiO 2 core shell nanotube. By doing so, it is possible to manufacture an excellent composite sensing material based on nanofibers.

한편, 본 발명의 제조방법에 따라 제조된 복합감지소재는 CO 및 포름알데히드 가스의 반도체식 가스센서용 감지소재로 이용할 수 있으며, 이외에도 다양한 가스의 감지소재로 이용할 수 있다.Meanwhile, the composite sensing material manufactured according to the manufacturing method of the present invention can be used as a sensing material for a semiconductor type gas sensor of CO and formaldehyde gas, and can be used as a sensing material for various gases.

Claims (9)

탄소물질-TiO2로 이루어진 복합나노튜브 분말을 제조하는 복합나노튜브 제조 단계와;
반도성 산화물에 촉매가 탑재된 촉매 탑재 반도성 산화물을 제조하는 촉매 탑재 반도성 산화물 제조 단계 및;
복합나노튜브 분말과 촉매 탑재 반도성 산화물을 혼합 분산하는 혼합분산 단계
를 포함하는 것을 특징으로 하는 고감도 복합감지소재 제조방법.
A composite nanotube manufacturing step of preparing a composite nanotube powder made of carbon material-TiO 2 ;
A catalyst-mounted semiconducting oxide production step of producing a catalyst-mounted semiconducting oxide on which the catalyst is mounted on the semiconducting oxide;
Mixing and dispersing step of mixing and dispersing the composite nanotube powder and the catalyst-mounted semiconducting oxide
High sensitivity composite sensing material manufacturing method comprising a.
제1항에 있어서,
상기 복합나노튜브의 탄소물질은 탄소나노튜브, 그래핀, 흑연, 탄소섬유 중 어느 하나 인 것을 특징으로 하는 고감도 복합감지소재 제조방법.
According to claim 1,
Carbon material of the composite nanotube is a method of manufacturing a high-sensitivity composite sensing material, characterized in that any one of carbon nanotubes, graphene, graphite, and carbon fibers.
제1항에 있어서,
상기 탄소물질-TiO2은, 탄소물질 : TiO2 나노튜브 = 0~20 : 100~80 의 중량비로 이루어지는 것을 특징으로 하는 고감도 복합감지소재 제조방법.
According to claim 1,
The carbon material is -TiO 2, carbon materials: TiO 2 nanotubes = 0-20: high sensitivity which comprises in a weight ratio of 100 to 80 composite material detection method.
제1항에 있어서,
상기 촉매 탑재 반도성 산화물의 촉매는 Au, Pd, Pt 중 어느 하나 인 것을 특징으로 하는 고감도 복합감지소재 제조방법.
According to claim 1,
The catalyst-based semiconducting oxide catalyst is one of Au, Pd, and Pt.
제1항에 있어서,
상기 촉매 탑재 반도성 산화물의 반도성 산화물은 In2O3, ZnO, SnO2, TiO2, Cr2O3, WO3, MnO2 중 어느 하나 인 것을 특징으로 하는 고감도 복합감지소재 제조방법.
According to claim 1,
The semiconductive oxide of the catalyst-mounted semiconducting oxide is one of In 2 O 3 , ZnO, SnO 2 , TiO 2 , Cr2O 3 , WO 3 , and MnO 2 .
제1항 내지 제5항 중 어느 한 항에 있어서,
상기 복합나노튜브 분말과, 촉매 탑재 반도성 산화물은 8~3 : 92~97 의 중량비로 혼합되는 것을 특징으로 하는 고감도 복합감지소재 제조방법.
The method according to any one of claims 1 to 5,
The composite nanotube powder and the catalyst-based semiconducting oxide are mixed in a weight ratio of 8 to 3: 92 to 97.
제6항에 있어서,
상기 촉매 탑재 반도성 산화물의 촉매는 Au이고,
상기 복합나노튜브 분말과, 촉매 탑재 반도성 산화물은 3 : 97 의 중량비로 혼합되는 것을 특징으로 하는 고감도 복합감지소재 제조방법.
The method of claim 6,
The catalyst for the semiconductive oxide loaded with catalyst is Au,
The composite nanotube powder and the catalyst-based semiconducting oxide are mixed in a weight ratio of 3:97.
제6항에 있어서,
상기 촉매 탑재 반도성 산화물의 반도성 산화물 입자 크기는 10nm ~ 50nm 이고, 촉매 탑재 반도성 산화물의 촉매 입자 크기는 5nm ~ 10nm 인 것을 특징으로 하는 고감도 복합감지소재 제조방법.
The method of claim 6,
Method of manufacturing a high-sensitivity composite sensing material, characterized in that the semi-conductive oxide particle size of the catalyst-mounted semiconducting oxide is 10 nm to 50 nm, and the catalyst particle size of the semi-conductive semi-conducting oxide is 5 nm to 10 nm.
제1항에 있어서,
상기 복합나노튜브 제조 단계에서, TiO2 0.45중량%와, 탄소물질 0.05중량%와, 증류수 70중량% 및, NaOH 29.5중량%를 115℃서 24시간 동안 교반 및 혼합한 후, 혼합물을 증류수를 이용하여 세착하되 세척된 증류수의 전기 전도도가 5uS/cm 이하가 될 때까지 반복적으로 세척하며, 세척물을 원심분리 하여, 복합나노튜브 분말이 제조되고,
상기 촉매 탑재 반도성 산화물 제조 단계에서, In(NO3)3·xH2O 0.1M과 증류수를 혼합 교반하고, 교반물에 증류수 40ml를 첨가하여 100℃까지 가열한 후 100℃에서 10시간 동안 반응시킨 후 상온까지 냉각하며, 냉각물을 원심분리후 얻어진 반응물을 100℃에서 10시간 건조하여 In(OH)3를 얻은 후에, In(OH)3 0.2g을 증류수 40g에 분산 시킨 후 HAuCl4 또는 H2PdCl4 또는 H2PtCl6 0.01M 2ml를 투입하고 NaBH4를 0.01M을 투입시켜 2시간 동안 반응시키며, 상기 2시간 동안 반응한 반응물을 에탄올로 세척한 후 원심분리하여, 100℃에서 10시간 건조시킨 후에 300℃에서 2시간 열처리하여, 촉매 탑재 반도성 산화물이 제조되는 것을 특징으로 하는 복합감지소재 제조방법.
According to claim 1,
In the step of manufacturing the composite nanotube, after stirring and mixing 0.45% by weight of TiO 2 , 0.05% by weight of carbon material, 70% by weight of distilled water, and 29.5% by weight of NaOH at 115° C. for 24 hours, the mixture is used with distilled water. Washing, but repeatedly washing until the electrical conductivity of the washed distilled water is 5 uS/cm or less, and centrifuging the washing material to produce a composite nanotube powder,
In the catalyst-mounted semiconducting oxide production step, In(NO 3 ) 3 ·xH 2 O 0.1M and distilled water are mixed and stirred, 40 ml of distilled water is added to the stirred material, heated to 100° C., and reacted at 100° C. for 10 hours. after cooled to room temperature, after which, by cooling the reaction product obtained after centrifugation was dried at 100 ℃ 10 sigan obtained in (OH) 3, in ( OH) was dispersed for 3 0.2g in 40g distilled water HAuCl 4 or H 2 PdCl4 or H 2 PtCl 6 0.01M 2ml was added and NaBH 4 was added at 0.01M to react for 2 hours, and the reactants reacted for 2 hours were washed with ethanol and centrifuged to dry at 100°C for 10 hours. After heat treatment at 300° C. for 2 hours, a composite sensing material manufacturing method characterized in that a semiconducting oxide loaded with a catalyst is produced.
KR1020180168587A 2018-12-24 2018-12-24 Method For Making The Highly Sensitive Material KR102140931B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180168587A KR102140931B1 (en) 2018-12-24 2018-12-24 Method For Making The Highly Sensitive Material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180168587A KR102140931B1 (en) 2018-12-24 2018-12-24 Method For Making The Highly Sensitive Material

Publications (2)

Publication Number Publication Date
KR20200079073A true KR20200079073A (en) 2020-07-02
KR102140931B1 KR102140931B1 (en) 2020-08-04

Family

ID=71599617

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180168587A KR102140931B1 (en) 2018-12-24 2018-12-24 Method For Making The Highly Sensitive Material

Country Status (1)

Country Link
KR (1) KR102140931B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180119215A (en) 2017-04-25 2018-11-02 한국세라믹기술원 Manufacturing method of gas sensor with integrated gas sensing materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180119215A (en) 2017-04-25 2018-11-02 한국세라믹기술원 Manufacturing method of gas sensor with integrated gas sensing materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
인용발명 : Sensors 2018, 18, 3443* *

Also Published As

Publication number Publication date
KR102140931B1 (en) 2020-08-04

Similar Documents

Publication Publication Date Title
Mounasamy et al. Vanadium oxide nanostructures for chemiresistive gas and vapour sensing: a review on state of the art
Liu et al. Amino acid-assisted one-pot assembly of Au, Pt nanoparticles onto one-dimensional ZnO microrods
Huang et al. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites
Lei et al. Emerging single atom catalysts in gas sensors
Ma et al. Enhanced formaldehyde sensing performance at ppb level with Pt-doped nanosheet-assembled In2O3 hollow microspheres
Aroutiounian Metal oxide gas sensors decorated with carbon nanotubes
Raghu et al. Nanostructured palladium modified graphitic carbon nitride–high performance room temperature hydrogen sensor
Nasresfahani et al. Improvement of the carbon monoxide gas sensing properties of polyaniline in the presence of gold nanoparticles at room temperature
Anajafi et al. Acetone sensing behavior of p-SmFeO3/n-ZnO nanocomposite synthesized by thermal treatment method
Debataraja et al. High performance carbon monoxide sensor based on nano composite of SnO 2-graphene
Jońca et al. Organometallic Synthesis of CuO Nanoparticles: Application in Low‐Temperature CO Detection
WO2010044935A2 (en) Sensitive materials for gas sensing and method of making same
Wang et al. Humidity-insensitive NO2 sensors based on SnO2/rGO composites
Li et al. Zn-doped In 2 O 3 hollow spheres: mild solution reaction synthesis and enhanced Cl 2 sensing performance
Aroutiounian Gas sensors based on functionalized carbon nanotubes
Hannon et al. Room temperature carbon nanotube based sensor for carbon monoxide detection
Gupta Chatterjee et al. Near room temperature sensing of nitric oxide using SnO 2/Ni-decorated natural cellulosic graphene nanohybrid film
Hou et al. Enhanced triethylamine-sensing properties of hierarchical molybdenum trioxide nanostructures derived by oxidizing molybdenum disulfide nanosheets
Shen et al. Highly sensitive ethanol gas sensor based on In 2 O 3 spheres
Wang et al. An isopropanol sensor based on MOF-derived NiO/NiCoxFe2− xO4 porous nanocube with improved response and selectivity
Li et al. Ultrasensitive sensing performances to sub-ppb level acetone for Pd-functionalized SmFeO 3 packed powder sensors
Li et al. Dual functionalized Ni substitution in shuttle-like In2O3 enabling high sensitivity NH3 detection
Wang et al. Synthesis of Au/SnO 2 composites and their sensing properties toward n-butanol
Rahaman et al. Size‐Selective Silver‐Induced Evolution of Mn3O4− Ag Nanocomposites for Effective Ethanol Sensing
KR102140931B1 (en) Method For Making The Highly Sensitive Material

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant