KR20200076180A - Method of modifying the surface of hydrophobic bead with amphiphilic polymer - Google Patents

Method of modifying the surface of hydrophobic bead with amphiphilic polymer Download PDF

Info

Publication number
KR20200076180A
KR20200076180A KR1020180165036A KR20180165036A KR20200076180A KR 20200076180 A KR20200076180 A KR 20200076180A KR 1020180165036 A KR1020180165036 A KR 1020180165036A KR 20180165036 A KR20180165036 A KR 20180165036A KR 20200076180 A KR20200076180 A KR 20200076180A
Authority
KR
South Korea
Prior art keywords
group
hydrophobic
amphiphilic polymer
beads
hydrophobic beads
Prior art date
Application number
KR1020180165036A
Other languages
Korean (ko)
Other versions
KR102154264B1 (en
Inventor
성대경
나윤희
우지섭
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020180165036A priority Critical patent/KR102154264B1/en
Publication of KR20200076180A publication Critical patent/KR20200076180A/en
Application granted granted Critical
Publication of KR102154264B1 publication Critical patent/KR102154264B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • C08G81/025Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G71/00Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
    • C08G71/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate

Abstract

The present invention relates to a method of modifying hydrophobic bead surfaces using an amphiphilic polymer. More particularly, the present invention relates to a method of modifying hydrophobic bead surfaces using an amphiphilic polymer having a dodecyl group as an immobilizing group and a PEG group as a functional group for preparing hydrophobic beads with improved dispersion.

Description

양친매성 고분자를 이용한 소수성 비드의 표면 개질 방법{Method of modifying the surface of hydrophobic bead with amphiphilic polymer}Method of modifying the surface of hydrophobic bead with amphiphilic polymer

본 발명은 양친매성 고분자를 이용한 소수성 비드의 표면 개질 방법에 관한 것이다. 보다 구체적으로, 본 발명은 분산도가 향상된 소수성 비드를 제조하기 위한, 고정화기로서 도데실 그룹, 및 기능기로서 PEG 그룹을 갖는 양친매성 고분자를 이용한 소수성 비드의 표면 개질 방법에 관한 것이다.The present invention relates to a method for surface modification of hydrophobic beads using an amphiphilic polymer. More specifically, the present invention relates to a method for modifying the surface of a hydrophobic bead using an amphiphilic polymer having a dodecyl group as an immobilizing group and an PEG group as a functional group for producing a hydrophobic bead with improved dispersibility.

일반적으로 고분자 및 카본 계열의 비드의 경우 소수성의 특징으로 수용액 상에서 서로 뭉치는 응집 현상이 발생해 분산도가 떨어지는 단점이 있다. 분산도가 떨어지게 되면 고농도의 소수성 계열의 비드를 수용액 상에서 활용이 어려움이 있다. In general, polymer and carbon-based beads have the disadvantage of poor dispersion due to agglomeration of each other in an aqueous solution due to hydrophobic characteristics. When the degree of dispersion decreases, it is difficult to utilize a high-concentration hydrophobic-based bead in an aqueous solution.

표면개질은 고분자 및 카본 표면의 물리·화학적 특성을 변화시키는 일반적인 방법 중 하나로서 표면 특성을 변화시켜 새로운 기능을 부여하거나 표면의 성능을 향상시키기 위한 방법으로 사용되어 왔다. 일반적인 표면 개질 방법으로는, 예를 들면 세라믹 소재의 표면을 실란 커플링제로 처리하거나 플라즈마 중합 코팅 방법에 의해 세라믹 소재의 표면을 개질시키는 방법이 있다 (한국공개 특허 제2002-00074562호, 제2002-00022085호 및 제2006-0034906호, 문헌 [A. Ansarifar et al., International Journal of Adhesion & Adhesive, 9-22, 24 (2004)] 및 [A. Olah et al., Appl. Surf. Sci., In press (2004)] 참조). 그러나, 상기 방법들은 유기용제를 사용하기 때문에 환경오염을 유발하거나 처리공정이 복잡하고 처리시간이 길게 걸리는 등 제조공정상 비효율적이고, 표면처리 강도가 미약하며, 노화현상이 빠르게 발생한다는 단점이 있다.Surface modification is one of the general methods of changing the physical and chemical properties of polymer and carbon surfaces, and has been used as a method to change surface properties to impart new functions or improve surface performance. As a general surface modification method, for example, there is a method of treating the surface of a ceramic material with a silane coupling agent or modifying the surface of a ceramic material by a plasma polymerization coating method (Korean Patent Publication No. 2002-00074562, 2002- 00022085 and 2006-0034906, A. Ansarifar et al., International Journal of Adhesion & Adhesive, 9-22, 24 (2004) and A. Olah et al., Appl. Surf. Sci., In press (2004)]. However, since the above methods use organic solvents, they are inefficient in the manufacturing process, such as causing environmental pollution, complicated treatment process, and long processing time, the surface treatment strength is weak, and the aging phenomenon occurs quickly.

이에 본 발명자들은 소수성 비드, 예를 들면 폴리스티렌/폴리메틸메타크릴레이트(PS/PMMA)의 표면을 표면-반응성 부위(surface-anchoring group)로서 도데실 그룹(dodecyl group) 및 친수 특성 조절을 위한 기능성 그룹으로서 PEG 그룹(Polyethylene glycol moiety)을 갖는 양친매성 고분자를 이용하여 개질하는 경우 분산도가 향상될 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다. Accordingly, the present inventors have a hydrophobic bead, for example, a surface of a polystyrene/polymethyl methacrylate (PS/PMMA) as a surface-reactive site (surface-anchoring group), dodecyl group (functionality for controlling hydrophilic properties) When modified using an amphiphilic polymer having a PEG group (Polyethylene glycol moiety) as a group, it was confirmed that the dispersibility can be improved and the present invention has been completed.

본 발명은 i) 고정화기로서 도데실 그룹(dodecyl group), 및 ii) 기능기로서 PEG 그룹(Polyethylene glycol moiety)을 갖는 양친매성 고분자를 이용한 소수성 고분자의 표면 개질 방법을 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a method for surface modification of a hydrophobic polymer using an amphiphilic polymer having a dodecyl group as an immobilizing group and a PEG group (Polyethylene glycol moiety) as a functional group.

본 명세서에서 사용된 용어 “고정화기(anchoring group)”는 소수성 고분자 표면에 공유결합을 통해 고정화될 수 있는 물질을 의미한다. As used herein, the term “anchoring group” means a material that can be immobilized through a covalent bond to a hydrophobic polymer surface.

본 명세서에서 사용된 용어 “기능기(functional group)”는 소수성 고분자의 표면의 친수/소수 특성을 조절하기 위한 물질을 의미한다. The term “functional group” as used herein refers to a material for controlling the hydrophilic/hydrophobic properties of the surface of a hydrophobic polymer.

제1구현예에 따르면,According to the first embodiment,

A) 고정화기로서 도데실 그룹(dodecyl group), 및 A) a dodecyl group as an immobilizer, and

B) 기능기로서 PEG 그룹(Polyethylene glycol moiety)을 갖는 소수성 비드의 표면 개질을 위한 양친매성 고분자를 제공하고자 한다. B) It is intended to provide an amphiphilic polymer for surface modification of hydrophobic beads having a PEG group (Polyethylene glycol moiety) as a functional group.

본 발명에 따른 소수성 비드의 표면 개질을 위한 양친매성 고분자에 있어서, 상기 도데실 그룹 및 PEG 그룹의 몰비는 1:1인 것을 특징으로 한다. In the amphiphilic polymer for surface modification of the hydrophobic beads according to the present invention, the molar ratio of the dodecyl group and PEG group is characterized in that it is 1:1.

본 발명에 따른 소수성 비드의 표면 개질을 위한 양친매성 고분자에 있어서, 상기 소수성 비드는 풀러렌(Fullerene), PS/PMMA(polystyrene-polymethylmethacrylate), QD(Quantum dot), 산화철 자성입자, CNT(Carbon nanotube) 또는 그래핀인 것을 특징으로 한다. In the amphiphilic polymer for surface modification of the hydrophobic beads according to the present invention, the hydrophobic beads are fullerene, PS/PMMA (polystyrene-polymethylmethacrylate), QD (Quantum dot), magnetic iron oxide particles, carbon nanotube (CNT) Or graphene.

제2구현예에 따르면, According to the second embodiment,

a) 중합개시제, 고정화기로서 도데실 그룹(dodecyl group) 및 기능기로서 PEG 그룹(Polyethylene glycol moiety)을 유기용매에 용해시켜 갖는 양친매성 고분자를 제조하는 단계; 및a) preparing an amphiphilic polymer having a polymerization initiator, a dodecyl group as an immobilizer, and a polyethylene glycol moiety (PEG) as an functional group dissolved in an organic solvent; And

b) 소수성 비드의 표면을 단계 (a)에서 제조된 양친매성 고분자로 처리하는 단계를 포함하는 분산도 개선을 위한 소수성 비드의 표면 개질 방법을 제공하고자 한다. b) It is intended to provide a method for modifying the surface of a hydrophobic bead for improving the dispersion degree, comprising the step of treating the surface of the hydrophobic bead with the amphiphilic polymer prepared in step (a).

본 발명에 따른 분산도 개선을 위한 소수성 비드의 표면 개질 방법에 있어서, 상기 도데실 그룹 및 PEG 그룹의 몰비는 1:1인 것을 특징으로 한다. In the method for surface modification of hydrophobic beads for improving dispersion according to the present invention, the molar ratio of the dodecyl group and PEG group is 1:1.

본 발명에 따른 분산도 개선을 위한 소수성 비드의 표면 개질 방법에 있어서, 상기 단계 (b)에서 소수성 비드와 양친매성 고분자의 농도 비율은 4:1 내지 8:1인 것을 특징으로 한다. In the surface modification method of the hydrophobic beads for improving the dispersion degree according to the present invention, the concentration ratio of the hydrophobic beads and the amphiphilic polymer in step (b) is 4:1 to 8:1.

본 발명에 따른 분산도 개선을 위한 소수성 비드의 표면 개질 방법에 있어서, 상기 소수성 비드는 풀러렌(Fullerene), PS/PMMA(polystyrene-polymethylmethacrylate), QD(Quantum dot), 산화철 자성입자, CNT(Carbon nanotube) 또는 그래핀인 것을 특징으로 한다. In the surface modification method of the hydrophobic beads for improving the dispersion according to the present invention, the hydrophobic beads are fullerene, PS/PMMA (polystyrene-polymethylmethacrylate), QD (Quantum dot), magnetic iron oxide particles, CNT (Carbon nanotube) ) Or graphene.

본 발명에 따른 분산도 개선을 위한 소수성 비드의 표면 개질 방법에 있어서, 상기 중합개시제는 과황산칼륨(Potasium Persulfate, KPS), 과황산암모늄(Ammonium Persulfate, APS), 과황산나트륨(Sodium Persulfate, SPS), 아조이소부틸로나이트릴(Azoisobutylonitrile, AIBN) 및 벤조일페록사이드(Benzoil Peroxide, BPO)로 이루어진 군으로부터 선택되는 것을 특징으로 한다. In the surface modification method of the hydrophobic beads for improving the dispersion according to the present invention, the polymerization initiator is potassium persulfate (Potasium Persulfate, KPS), ammonium persulfate (Ammonium Persulfate, APS), sodium persulfate (SPS) , Azoisobutylonitrile (AIBN) and benzoyl peroxide (Benzoil Peroxide, BPO).

본 발명에 따른 분산도 개선을 위한 소수성 비드의 표면 개질 방법에 있어서, 상기 유기용매는 클로로포름, 클로로벤젠, 디클로로벤젠, 트리클로로벤젠, 테트라하이드로퓨란(THF), 디메틸포름아마이드(DMF), 디메틸아세트아마이드(DMAC), 디메틸술폭사이드(DMSO), 톨루엔 및 알코올계 용매로 이루어진 군으로부터 선택되는 것을 특징으로 한다. In the method for modifying the surface of a hydrophobic bead for improving the dispersion degree according to the present invention, the organic solvent is chloroform, chlorobenzene, dichlorobenzene, trichlorobenzene, tetrahydrofuran (THF), dimethylformamide (DMF), dimethylacetic acid It is characterized by being selected from the group consisting of amide (DMAC), dimethyl sulfoxide (DMSO), toluene and alcohol-based solvents.

도 1은 실시예 1에 따라 제조된 양친매성 고분자의 1H NMR 분광기 (500 MHz) 분석 결과를 나타낸다.
도 2는 실시예 2에 따라 제조된 양친매성 고분자의 GPC 분석 결과를 나타낸다.
도 3은 실시예 2에 따라 표면 처리된 PS/PMMA의 접촉각을 나타낸다.
Figure 1 shows the results of 1 H NMR spectroscopy (500 MHz) analysis of the amphipathic polymer prepared according to Example 1.
Figure 2 shows the results of GPC analysis of the amphipathic polymer prepared according to Example 2.
Figure 3 shows the contact angle of PS / PMMA surface-treated according to Example 2.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail through examples. It will be apparent to those skilled in the art that these examples are merely for more specifically describing the present invention, and the scope of the present invention is not limited to these examples.

<실시예><Example>

실시예 1.소수성 비드의 표면 개질용 양친매성 고분자의 합성Example 1 Synthesis of amphiphilic polymers for surface modification of hydrophobic beads

소수성 비드의 표면 개질을 위한 양친매성 고분자 Poly(PEGMA-r-DMA)를 제조하였다. DMA(5 mmol), PEGMA(5 mmol) 및 AIBN을 바이알(vial)안에 넣고 THF로 용해시킨 후, 혼합물에 30초간 아르곤 가스를 연속적으로 흘려보냄으로써 산소를 제거하였다. 그 다음, 바이알을 테프론이 부착된 뚜껑으로 밀봉하고, 중합반응을 70℃에서 24 시간 동안 수행하고, 고분자의 합성 유무를 1H NMR 분광기(400 MHz)로 확인하고(도 1), 합성된 고분자의 분자량을 GPC를 이용하여 분석하여 분자량 38888의 고분자가 합성되었음을 확인하였다(도 2). Amphiphilic polymer Poly(PEGMA-r-DMA) for surface modification of hydrophobic beads was prepared. After adding DMA (5 mmol), PEGMA (5 mmol) and AIBN into a vial and dissolving with THF, oxygen was removed by continuously flowing argon gas into the mixture for 30 seconds. Then, the vial was sealed with a Teflon-attached lid, and the polymerization reaction was performed at 70° C. for 24 hours, and the presence or absence of polymer synthesis was confirmed by a 1H NMR spectroscopy (400 MHz) (FIG. 1), and The molecular weight was analyzed using GPC to confirm that a polymer having a molecular weight of 38888 was synthesized (FIG. 2).

실시예 2. 본 발명에 따른 양친매성 고분자를 이용한 PS/PMMA 비드의 표면 개질Example 2. Surface modification of PS/PMMA beads using an amphipathic polymer according to the present invention

상기 실시예 1에서 제조한 양친매성 고분자와 PS/PMMA 비드의 증량비(g)를 하기의 표 1에 나타낸 바와 같이 달리하여 PS/PMMA 비드의 표면 개질을 수행하였다. 우선, 상기 실시예 1에서 제조된 양친매성 고분자 내의 THF 용매를 vacuum pump를 이용하여 제거하였다. THF가 제거된 고분자가 들어있는 바이알에 DIW와 마그네틱바를 넣어주고 입구를 막았다 30분간 stirring 한 후 바이알에 PS/PMMA bead를 첨가하였다. 다음으로 바이알을 Multi channel stirrer에 20시간 동안 PS bead : 500rpm, PMMA bead : 700~750rpm으로 Stirring하였다. Stirring 시킨 후 Washing 한 후 DIW를 제거하고 Petri Dish에 덜어내어 펼쳐 오븐에서 건조 시켰다. 건조 시킨 PS/PMMA bead를 Slide Glass에 양편테이프를 붙이고 그 위에 건조한 Bead들을 붙였다. 그 다음, 접촉각 측정기에 설치된 바늘을 이용하여 물방울을 형성하고 고분자 라이브러리의 각각을 실시예 1에서 제조한 양친매성 고분자로 코팅된 PS/PMMA bead에 dropping 시키고, dropping을 통해 발생한 물방울의 접촉각을 측정함으로서 표면의 효율성(친수성 또는 소수성)을 평가하였다. The increasing ratio (g) of the amphiphilic polymer and PS/PMMA beads prepared in Example 1 was varied as shown in Table 1 below to perform surface modification of the PS/PMMA beads. First, the THF solvent in the amphipathic polymer prepared in Example 1 was removed using a vacuum pump. DIW and a magnetic bar were placed in a vial containing the THF-removed polymer, and the entrance was blocked. After stirring for 30 minutes, PS/PMMA bead was added to the vial. Next, the vial was stirring in a multi channel stirrer for 20 hours at PS bead: 500 rpm and PMMA bead: 700-750 rpm. After Stirring and Washing, DIW was removed and taken out of Petri Dish and spread and dried in the oven. The dried PS/PMMA bead was attached to both sides of the slide glass, and dried beads were attached to it. Then, by using a needle installed in the contact angle measuring device to form a droplet and dropping each of the polymer library to the PS/PMMA bead coated with the amphiphilic polymer prepared in Example 1, and measuring the contact angle of the droplet generated through dropping The efficiency of the surface (hydrophilicity or hydrophobicity) was evaluated.

Group 1Group 1 Group 2Group 2 Group 3Group 3 Group 4Group 4 Group 5Group 5 bead : 고분자 bead: polymer 1:11:1 2:12:1 4:14:1 8:18:1 16:116:1

그 결과, PS/PMMA bead와 실시예 1에 따른 양친매성 고분자의 농도 비율 1:1 로 코팅한 경우 접촉각은 표면 개질 전 108.4°에서 81.69°로 감소하였다. PS/PMMA bead와 실시예 1에 따른 양친매성 고분자의 농도 비율이 2:1인 경우 80.03°, PS/PMMA bead와 실시예 1에 따른 양친매성 고분자의 농도 비율이 4:1이 경우 74.36°의 접촉각을 얻음으로써 농도에 따라 접촉각이 감소하는 경향을 나타내었다. 한편, PS/PMMA bead와 실시예 1에 따른 양친매성 고분자의 농도 비율이 8:1인 경우 첩촉각은 77.88°로 농도 비율이 4:1인 경우에 비해 조금 증가하였으며, PS/PMMA bead와 실시예 1에 따른 양친매성 고분자의 농도 비율이 16:1인 경우 첩촉각은 90.01°로 크게 증가하는 경향을 나타내었다. 따라서, PS/PMMA bead 와 실시예 1에 따른 양친매성 고분자의 농도 비율은 4:1 내지 8:1인 경우 접촉각이 가장 감소한다는 것이 확인되었다 (도 4). As a result, when the PS/PMMA bead and the amphiphilic polymer according to Example 1 were coated at a concentration ratio of 1:1, the contact angle decreased from 108.4° to 81.69° before surface modification. The concentration ratio of PS/PMMA bead and amphiphilic polymer according to Example 1 is 80.03° when the ratio is 2:1, and the concentration ratio of PS/PMMA bead and amphiphilic polymer according to Example 1 is 74.36° when concentration ratio is 4:1. By obtaining the contact angle, the tendency for the contact angle to decrease with concentration was shown. On the other hand, when the concentration ratio of the PS/PMMA bead and the amphiphilic polymer according to Example 1 is 8:1, the contact angle is 77.88°, which is slightly increased compared to the case where the concentration ratio is 4:1, and is carried out with the PS/PMMA bead. When the concentration ratio of the amphipathic polymer according to Example 1 is 16:1, the contact angle tends to increase significantly to 90.01°. Therefore, it was confirmed that the contact ratio was most reduced when the concentration ratio of the PS/PMMA bead and the amphipathic polymer according to Example 1 was 4:1 to 8:1 (FIG. 4).

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been focused on the preferred embodiments. Those skilled in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered in terms of explanation, not limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the equivalent range should be interpreted as being included in the present invention.

Claims (8)

A) 고정화기로서 도데실 그룹(dodecyl group), 및
B) 기능기로서 PEG 그룹(Polyethylene glycol moiety)을 갖는 소수성 비드의 표면 개질을 위한 양친매성 고분자.
A) a dodecyl group as an immobilizer, and
B) Amphiphilic polymer for surface modification of hydrophobic beads having a PEG group (Polyethylene glycol moiety) as a functional group.
제1항에 있어서,
상기 도데실 그룹 및 PEG 그룹의 몰비는 1:1인 것을 특징으로 하는 것인, 소수성 비드의 표면 개질을 위한 양친매성 고분자.
According to claim 1,
The molar ratio of the dodecyl group and the PEG group is 1:1, characterized in that the amphiphilic polymer for surface modification of the hydrophobic beads.
제1항에 있어서,
상기 소수성 비드는 풀러렌(Fullerene), PS/PMMA(polystyrene-polymethylmethacrylate), QD(Quantum dot), 산화철 자성입자, CNT(Carbon nanotube) 또는 그래핀인 것을 특징으로 하는 것인, 소수성 비드의 표면 개질을 위한 양친매성 고분자.
According to claim 1,
The hydrophobic beads are characterized in that they are fullerene, PS/PMMA (polystyrene-polymethylmethacrylate), QD (Quantum dot), magnetic iron oxide particles, CNT (Carbon nanotube), or graphene. For amphiphilic polymers.
a) 중합개시제, 고정화기로서 도데실 그룹(dodecyl group) 및 기능기로서 PEG 그룹(Polyethylene glycol moiety)을 유기용매에 용해시켜 갖는 양친매성 고분자를 제조하는 단계; 및
b) 소수성 비드의 표면을 단계 (a)에서 제조된 양친매성 고분자로 처리하는 단계를 포함하는 분산도 개선을 위한 소수성 비드의 표면 개질 방법.
a) preparing an amphiphilic polymer having a polymerization initiator, a dodecyl group as an immobilizer and a polyethylene glycol moiety (PEG) as an functional group dissolved in an organic solvent; And
b) A method of modifying the surface of a hydrophobic bead for improving dispersion, comprising treating the surface of the hydrophobic bead with an amphipathic polymer prepared in step (a).
제4항에 있어서,
상기 도데실 그룹 및 PEG 그룹의 몰비는 1:1인 것을 특징으로 하는 것인, 분산도 개선을 위한 소수성 비드의 표면 개질 방법.
According to claim 4,
The molar ratio of the dodecyl group and the PEG group is characterized in that the 1:1, the method of modifying the surface of the hydrophobic beads to improve the dispersion.
상기 단계 (b)에서 소수성 비드와 양친매성 고분자의 농도 비율은 4:1 내지 8:1인 것을 특징으로 하는 것인, 분산도 개선을 위한 소수성 비드의 표면 개질 방법.
In step (b), the concentration ratio of the hydrophobic beads and the amphiphilic polymer is characterized in that 4:1 to 8:1, surface modification method of the hydrophobic beads for improving dispersibility.
제4항에 있어서,
상기 중합개시제는 과황산칼륨(Potasium Persulfate, KPS), 과황산암모늄(Ammonium Persulfate, APS), 과황산나트륨(Sodium Persulfate, SPS), 아조이소부틸로나이트릴(Azoisobutylonitrile, AIBN) 및 벤조일페록사이드(Benzoil Peroxide, BPO)로 이루어진 군으로부터 선택되는 것을 특징으로 하는 것인, 분산도 개선을 위한 소수성 비드의 표면 개질 방법.
According to claim 4,
The polymerization initiator is potassium persulfate (KPS), ammonium persulfate (APS), sodium persulfate (SPS), azoisobutylonitrile (AIBN) and benzoyl peroxide (Benzoil Peroxide, BPO) characterized in that it is selected from the group consisting of, the surface modification method of the hydrophobic beads to improve the dispersion.
제4항에 있어서,
상기 유기용매는 클로로포름, 클로로벤젠, 디클로로벤젠, 트리클로로벤젠, 테트라하이드로퓨란(THF), 디메틸포름아마이드(DMF), 디메틸아세트아마이드(DMAC), 디메틸술폭사이드(DMSO), 톨루엔 및 알코올계 용매로 이루어진 군으로부터 선택되는 것을 특징으로 하는 것인, 분산도 개선을 위한 소수성 비드의 표면 개질 방법.
According to claim 4,
The organic solvent is chloroform, chlorobenzene, dichlorobenzene, trichlorobenzene, tetrahydrofuran (THF), dimethylformamide (DMF), dimethylacetamide (DMAC), dimethyl sulfoxide (DMSO), toluene and alcohol solvents Characterized in that it is selected from the group consisting of, the method of modifying the surface of the hydrophobic beads for improved dispersion.
KR1020180165036A 2018-12-19 2018-12-19 Method of modifying the surface of hydrophobic bead with amphiphilic polymer KR102154264B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180165036A KR102154264B1 (en) 2018-12-19 2018-12-19 Method of modifying the surface of hydrophobic bead with amphiphilic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180165036A KR102154264B1 (en) 2018-12-19 2018-12-19 Method of modifying the surface of hydrophobic bead with amphiphilic polymer

Publications (2)

Publication Number Publication Date
KR20200076180A true KR20200076180A (en) 2020-06-29
KR102154264B1 KR102154264B1 (en) 2020-09-09

Family

ID=71401054

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180165036A KR102154264B1 (en) 2018-12-19 2018-12-19 Method of modifying the surface of hydrophobic bead with amphiphilic polymer

Country Status (1)

Country Link
KR (1) KR102154264B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070088390A (en) * 2006-02-24 2007-08-29 (주)에이티젠 Process for preparing magnetic nanocomposite using amphiphilic compound
KR20090026060A (en) * 2007-09-07 2009-03-11 광주과학기술원 Multi-functional polymeric layers and its uses
JP2011102332A (en) * 2009-11-10 2011-05-26 Toray Ind Inc Amphiphilic polymer for forming water-soluble nanoparticle composite
KR20160142976A (en) * 2015-06-04 2016-12-14 건양대학교산학협력단 Method to prepare nontoxic fluorescent nano-particles coated hydrophilic silicon containing polymers complexed with Lanthanide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070088390A (en) * 2006-02-24 2007-08-29 (주)에이티젠 Process for preparing magnetic nanocomposite using amphiphilic compound
KR20090026060A (en) * 2007-09-07 2009-03-11 광주과학기술원 Multi-functional polymeric layers and its uses
JP2011102332A (en) * 2009-11-10 2011-05-26 Toray Ind Inc Amphiphilic polymer for forming water-soluble nanoparticle composite
KR20160142976A (en) * 2015-06-04 2016-12-14 건양대학교산학협력단 Method to prepare nontoxic fluorescent nano-particles coated hydrophilic silicon containing polymers complexed with Lanthanide

Also Published As

Publication number Publication date
KR102154264B1 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
Tan et al. Room temperature synthesis of poly (poly (ethylene glycol) methyl ether methacrylate)-based diblock copolymer nano-objects via Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA)
Liu et al. Synthesis, characterization, and multilayer assembly of pH sensitive graphene− polymer nanocomposites
JP5257708B2 (en) Nanocomposite and dispersion containing the same
Borase et al. Polypeptide core–shell silica nanoparticles with high grafting density by N-carboxyanhydride (NCA) ring opening polymerization as responsive materials and for bioconjugation
Ata et al. Polymer nano-hybrid material based on graphene oxide/POSS via surface initiated atom transfer radical polymerization (SI-ATRP): Its application in specialty hydrogel system
US20080234391A1 (en) Synthesis of Reversible Shell Crosslinked Nanostructures
JP2011526577A (en) Method for producing functionalized carbon nanomaterials
Ratcliffe et al. Cationic disulfide-functionalized worm gels
CN108299652B (en) Graphene nano material with high chiral selectivity and preparation and application thereof
Xue et al. Efficient cancer cell capturing SiNWAs prepared via surface-initiated SET-LRP and click chemistry
Li et al. Precise growth of polymer brushes on silica-based nanocomposites via visible-light-regulated controlled radical polymerization
Zheng et al. Narrow or monodisperse, physically cross-linked, and “living” spherical polymer particles by one-stage RAFT precipitation polymerization
Chen et al. Facile preparation of thermoresponsive fluorescent silica nanopaprticles based composites through the oxygen tolerance light-induced RAFT polymerization
Heng et al. Fabrication of silica nanoparticle based polymer nanocomposites via a combination of mussel inspired chemistry and SET-LRP
CN110627969A (en) Method for preparing self-repairing hydrogel by using Janus nano material
KR102154264B1 (en) Method of modifying the surface of hydrophobic bead with amphiphilic polymer
Omer-Mizrahi et al. Synthesis and characterization of uniform polyepoxide micrometer sized particles by redox graft polymerization of glycidyl methacylate on oxidized polystyrene and polydivinylbenzene microspheres for enzyme immobilization
CN106317714B (en) The low-temperature plasma modified processing method of nano-aluminium oxide
JP5467447B2 (en) Surface modifier, modified material modified with the surface modifier and dispersion of nanoparticles, and method for producing nanoparticles
Liu et al. Silica/polymer microspheres and hollow polymer microspheres as scaffolds for nitric oxide release in PBS buffer and bovine serum
CN110964145A (en) Magnetic polymer microsphere based on acetylacetone group and preparation method thereof
Chen et al. pH-modulated double LCST behaviors with diverse aggregation processes of random-copolymer grafted silica nanoparticles in aqueous solution
Liu et al. A novel strategy for enhancing propagation rate of polystyrene grown from silica nanoparticles or carbon nanotubes
Thomassin et al. Locating carbon nanotubes (CNTs) at the surface of polymer microspheres using poly (vinyl alcohol) grafted CNTs as dispersion co-stabilizers
CN108250353B (en) Extensible universal method for preparing multiple polymer single-chain nanoparticles in large scale

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant