KR20200065723A - Preparation method of dibenzylamine - Google Patents

Preparation method of dibenzylamine Download PDF

Info

Publication number
KR20200065723A
KR20200065723A KR1020180152456A KR20180152456A KR20200065723A KR 20200065723 A KR20200065723 A KR 20200065723A KR 1020180152456 A KR1020180152456 A KR 1020180152456A KR 20180152456 A KR20180152456 A KR 20180152456A KR 20200065723 A KR20200065723 A KR 20200065723A
Authority
KR
South Korea
Prior art keywords
compound
catalyst
weight
parts
sio
Prior art date
Application number
KR1020180152456A
Other languages
Korean (ko)
Inventor
김경준
이재연
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020180152456A priority Critical patent/KR20200065723A/en
Publication of KR20200065723A publication Critical patent/KR20200065723A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • C07C209/70Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/27Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/04Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/06Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton
    • C07C251/08Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton being acyclic

Abstract

The present invention relates to a catalyst for a reductive amination reaction and a method for preparing a secondary amine compound using the same. According to the present invention, it is possible to prepare a secondary amine compound having high symmetry with a high yield, which undergoes self-condensation through the reductive amination reaction by using a primary amine compound and hydrogen without using alcohol as a reaction raw material.

Description

다이벤질아민의 제조방법 {PREPARATION METHOD OF DIBENZYLAMINE}Manufacturing method of dibenzylamine {PREPARATION METHOD OF DIBENZYLAMINE}

본 발명은 환원성 아민화 반응용 촉매를 사용하여 다이벤질아민 화합물을 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing a dibenzylamine compound using a catalyst for a reductive amination reaction.

환원성 아민화(reductive amination)는, 본 발명이 속하는 기술분야(이하 '당업계'라 함)에 알려진 바와 같이, 수소와 촉매가 존재하는 환원조건 하에서 지방족 알칸 유도체의 아민화 반응을 통해 아민기가 도입된 지방족 알칸 유도체를 얻는 방법 중 하나이다. 이러한 환원성 아민화는 폴리에테르아민과 같은 다양한 종류의 아민 화합물을 제조하는데 이용되고 있다.Reductive amination, as known in the art to which the present invention pertains (hereinafter referred to as'the art'), introduces an amine group through the amination reaction of an aliphatic alkane derivative under reducing conditions in which hydrogen and a catalyst are present. It is one of the methods to obtain an aliphatic alkane derivative. This reductive amination is used to prepare various types of amine compounds such as polyetheramines.

기존의 2차 폴리에테르아민 제조는 원료인 알코올을 탈수소화(dehydrogenation)하여 알데하이드로 전환시킨 후 1차 아민과 반응시켜 제조하는 것이 일반적이나, 대칭적인 2차 폴리에테르아민을 제조하기 어렵다는 단점이 있다. 또, 다이벤질아민을 제조하는 종래 기술은 백금과 같은 귀금속을 촉매로 사용되어 고비용의 문제가 있었다. Existing secondary polyetheramine production is generally produced by dehydrogenation of alcohol as a raw material and conversion to aldehyde, followed by reaction with primary amine, but it is difficult to produce symmetrical secondary polyetheramine. . In addition, the prior art for producing dibenzylamine has a problem of high cost because a precious metal such as platinum is used as a catalyst.

이에, 본 발명자들은 알코올을 사용하지 않고도 환원성 아민화 반응용 촉매를 사용하여 우수한 아민 수율로 다이벤질아민을 제조하는 방법을 개발하였다.Accordingly, the present inventors have developed a method for preparing dibenzylamine with excellent amine yield using a catalyst for a reductive amination reaction without using alcohol.

유럽 특허 제0 644 177호European Patent No. 0 644 177

문헌 [Wei He, et al. Chem. Eur. J. 2011, 17, 13308-13317] Wei He, et al. Chem. Eur. J. 2011, 17, 13308-13317]

본 발명은 알코올을 반응원료로 사용하지 않고 1차 아민 화합물로서 벤질아민을 사용하여 2차 아민 화합물인 다이벤질아민을 제조하는 방법을 제공한다.The present invention provides a method of preparing dibenzylamine, a secondary amine compound, using benzylamine as a primary amine compound without using alcohol as a reaction raw material.

본 발명은,The present invention,

(A) 1차 아민 화합물인 벤질아민을 탈수소화 반응시켜 1차 이민 화합물인 벤질이민을 생성하는 단계;(A) dehydrogenation reaction of the primary amine compound benzylamine to produce the primary imine compound benzylimine;

(B) 상기 벤질이민을 1차 아민 화합물인 벤질아민과 반응시켜 2차 이민 화합물을 생성하는 단계; 및(B) reacting the benzylimine with a primary amine compound, benzylamine, to produce a secondary imine compound; And

(C) 상기 2차 이민 화합물을, 코발트(Co) 화합물 및 이트륨(Y) 화합물 및 팔라듐(Pd) 화합물이 담지체 상에 담지된 환원성 아민화 반응용 촉매의 존재 하에, 수소와 접촉시켜 다이벤질아민을 생성하는 단계를 포함하는, 다이벤질아민의 제조방법을 제공한다.(C) Dibenzyl by contacting the secondary imine compound with hydrogen in the presence of a catalyst for a reductive amination reaction in which a cobalt (Co) compound, a yttrium (Y) compound, and a palladium (Pd) compound are supported on a carrier. It provides a method for producing dibenzylamine, comprising the step of producing an amine.

본 발명에 따르면 알코올을 반응원료로 사용하지 않고 1차 아민 화합물인 벤질아민 및 수소를 사용하여 환원성 아민화 반응을 통해 자기 축합(self-condensation)된 다이벤질아민을 높은 아민 전환율 및 수율로 제조할 수 있다.According to the present invention, dibenzylamine which is self-condensation through a reductive amination reaction using a primary amine compound benzylamine and hydrogen without using alcohol as a reaction raw material can be prepared with high amine conversion and yield. Can be.

본 발명은 코발트(Co) 화합물 및 이트륨(Y) 화합물 및 팔라듐(Pd) 화합물이 담지체 상에 담지된 환원성 아민화 반응용 촉매의 존재 하에 1차 아민 화합물로서 벤질아민을 사용하여 2차 아민 화합물인 다이벤질아민을 제조하는 방법을 제공한다.The present invention is a secondary amine compound using benzylamine as a primary amine compound in the presence of a catalyst for a reductive amination reaction in which a cobalt (Co) compound, a yttrium (Y) compound, and a palladium (Pd) compound are supported on a carrier. It provides a method for producing phosphorus dibenzylamine.

일반적으로 환원성 아민화 반응에는 구리(Cu)-니켈(Ni)계 촉매, 니켈(Ni)-레늄(Re)계 촉매, 코발트(Co)-니켈(Ni)-구리(Cu)계 촉매 등이 사용되어 왔으며, 이와 함께 크롬(Cr), 티타늄(Ti), 지르코늄(Zr), 아연(Zn), 몰리브덴(Mo) 등의 금속 원소를 조합하여 촉매 활성을 향상시키고자 하는 많은 시도들이 있었다.In general, copper (Cu)-nickel (Ni)-based catalysts, nickel (Ni)-rhenium (Re)-based catalysts, and cobalt (Co)-nickel (Ni)-copper (Cu)-based catalysts are used for the reductive amination reaction. There have been many attempts to improve the catalytic activity by combining metal elements such as chromium (Cr), titanium (Ti), zirconium (Zr), zinc (Zn), and molybdenum (Mo).

그러나, 전술한 이전의 촉매들은 환원성 아민화 반응의 중간에 생성되는 수분에 의해 활성을 쉽게 잃게 되어 아민 전환율이 급격히 떨어지는 문제점이 있었다. However, the catalysts described above have a problem in that amine conversion rate is drastically reduced because the catalyst easily loses activity due to moisture generated in the middle of the reductive amination reaction.

그에 비하여, 본 발명의 일 구현예에 따른 담지 촉매는 코발트(Co) 화합물, 이트륨(Y) 화합물 및 팔라듐(Pd) 화합물을 활성성분으로 포함하는 것으로서, 환원성 아민화에 동반되는 탈수소화 및 수소화 반응의 밸런스를 적절히 유지할 수 있다.On the other hand, the supported catalyst according to one embodiment of the present invention includes a cobalt (Co) compound, a yttrium (Y) compound, and a palladium (Pd) compound as active ingredients, and dehydrogenation and hydrogenation reactions accompanying reductive amination. The balance of can be properly maintained.

또한, 본 발명의 일 구현예에 따른 담지 촉매는 코발트(Co) 화합물, 이트륨(Y) 화합물 및 팔라듐(Pd) 화합물을 활성성분으로 포함함에 따라, 이들의 상승 작용에 의해 환원성 아민화 반응에 동반되는 탈수소화(dehydrogenation) 및 수소화(hydrogenation) 반응에 있어서도 보다 안정적인 밸런스를 유지할 수 있다. 그리고, 상기 활성성분이 담지되는 담체를 포함함에 따라, 활성 성분의 함량을 낮출 수 있으면서도 동등한 반응성을 확보할 수 있고, 촉매의 취급이 용이한 장점이 있다.In addition, the supported catalyst according to an embodiment of the present invention includes a cobalt (Co) compound, a yttrium (Y) compound, and a palladium (Pd) compound as active ingredients, and is accompanied by a reductive amination reaction by their synergistic action. In the dehydrogenation and hydrogenation reaction, a more stable balance can be maintained. And, by including the carrier on which the active ingredient is supported, it is possible to lower the content of the active ingredient while ensuring equal reactivity, and has the advantage of easy handling of the catalyst.

본 발명의 일 구현예에 따르면, 상기 담지 촉매는 코발트 산화물(CoO), 이트륨 산화물(Y2O3), 및 팔라듐 산화물(PdO)을 포함하는 것일 수 있다. 상기 촉매는 소성 과정 CoO-Y2O3-PdO의 조성을 가질 수 있으며, 촉매 환원 조건을 거쳐 (Co 금속)-(이트륨 금속 또는 이트륨 산화물)-(Pd 금속)을 포함하는 조성을 나타낼 수 있다. 이와 같이 산화물 형태 또는 금속 형태의 활성 성분들이 환원성 아민화 반응에 촉매로써 이용될 수 있고, 수분의 영향을 거의 받지 않는 특성을 가지고 있다. 또한, 상기 팔라듐(Pd)은 코발트(Co) 및 이트륨(Y)과의 상승 작용에 의해 촉매의 엑티베이션 과정에서 촉매 환원이 보다 원활하게 이루어질 수 있도록 하여, 최종적으로 아민 전환율을 더욱 향상시킬 수 있다.According to an embodiment of the present invention, the supported catalyst may include cobalt oxide (CoO), yttrium oxide (Y 2 O 3 ), and palladium oxide (PdO). The catalyst may have a composition of the calcination process CoO-Y 2 O 3 -PdO, and may exhibit a composition including (Co metal)-(yttrium metal or yttrium oxide)-(Pd metal) through catalytic reduction conditions. As such, the active components in the form of oxides or metals can be used as a catalyst in the reductive amination reaction, and have properties that are hardly affected by moisture. In addition, the palladium (Pd) by cobalt (Co) and yttrium (Y) by synergistic action to enable the catalyst reduction during the activation process of the catalyst to be made more smoothly, can finally further improve the amine conversion rate .

특히, 본 발명에 따르면, 상기 촉매는 코발트 100 중량부를 기준으로 이트륨 산화물 0.05 내지 30 중량부 및 팔라듐 0.01 내지 5 중량부를 포함할 수 있고; 또는 팔라듐 0.01 내지 4 중량부; 또는 팔라듐 0.02 내지 3 중량부를 포함할 수 있다. 즉, 코발트, 이트륨 및 팔라듐의 상승작용에 의한 효과가 충분히 발현될 수 있도록 하면서도, 이들의 함량비에 따른 촉매 활성의 향상 정도 등을 감안하여, 상기 촉매는 전술한 함량비의 활성성분을 포함하는 것이 유리하다.In particular, according to the present invention, the catalyst may include 0.05 to 30 parts by weight of yttrium oxide and 0.01 to 5 parts by weight of palladium based on 100 parts by weight of cobalt; Or 0.01 to 4 parts by weight of palladium; Or 0.02 to 3 parts by weight of palladium. That is, while allowing the synergistic effect of cobalt, yttrium, and palladium to be sufficiently expressed, in view of the degree of improvement in catalytic activity according to their content ratio, the catalyst includes the active ingredients in the aforementioned content ratio It is advantageous.

한편, 본 발명에 따른 환원성 아민화 반응용 담지 촉매는 전술한 활성성분이 담지되는 담체를 포함한다.Meanwhile, the supported catalyst for the reductive amination reaction according to the present invention includes a carrier on which the above-described active ingredient is supported.

즉, 상기 촉매는 소정의 담체 상에 코발트(Co) 화합물, 이트륨(Y) 화합물 및 팔라듐(Pd) 화합물을 포함하는 활성성분이 담지된 촉매일 수 있다. 이와 같이, 활성성분이 담체 상에 담지된 촉매는 활성성분의 비표면적을 넓게 확보할 수 있어, 상대적으로 적은 양의 활성성분으로도 동등한 효과를 얻을 수 있다.That is, the catalyst may be a catalyst in which an active component including a cobalt (Co) compound, a yttrium (Y) compound, and a palladium (Pd) compound is supported on a predetermined carrier. As described above, the catalyst in which the active ingredient is supported on the carrier can secure a wide specific surface area of the active ingredient, so that an equal effect can be obtained even with a relatively small amount of the active ingredient.

여기서, 상기 담체로는 전술한 활성성분의 활성에 악영향을 미치지 않는 것이라면, 당업계에 공지된 통상의 성분이 사용될 수 있다. 다만, 본 발명의 일 실시예에 따르면, 상기 담체는 SiO2, Al2O3, MgO, MgCl2, CaCl2, ZrO2, TiO2, B2O3, CaO, ZnO, BaO, ThO2, SiO2-Al2O3, SiO2-MgO, SiO2-TiO2, SiO2-V2O5, SiO2-CrO2O3, SiO2-TiO2-MgO, Molecular sieve 13X, 보오크사이트, 제올라이트, starch, cyclodextrine 또는 합성고분자일 수 있다.Here, as the carrier, as long as it does not adversely affect the activity of the above-described active ingredient, conventional ingredients known in the art may be used. However, according to an embodiment of the present invention, the carrier is SiO 2 , Al 2 O 3 , MgO, MgCl 2 , CaCl 2 , ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 , SiO 2 -Al 2 O 3 , SiO 2 -MgO, SiO 2 -TiO 2 , SiO 2 -V 2 O 5 , SiO 2 -CrO 2 O 3 , SiO 2 -TiO 2 -MgO, Molecular sieve 13X, Bauxite , Zeolite, starch, cyclodextrine or synthetic polymers.

상기와 같은 담체에 전술한 활성성분을 담지시키는 방법은 수분이 제거된(dehydrated) 담체에 활성성분을 직접 담지시키는 방법, 또는 활성성분과 담체를 혼합하여 침강법으로 담지시킨 후 소성하는 방법 등 당업계에 공지된 통상의 담지 방법이 적용될 수 있다.The method of supporting the above-described active ingredient on the carrier as described above is a method of directly supporting the active ingredient on a dehydrated carrier, or a method of mixing the active ingredient and the carrier to support it by sedimentation, followed by firing. Conventional loading methods known in the industry can be applied.

이때, 상기 담체 상에 담지되는 활성성분의 함량은 최소한도의 활성이 발현될 수 있는 정도 이상의 범위와, 담체 도입에 따른 활성성분의 사용량 감량 효과 등을 감안하여 결정될 수 있으므로, 특별히 제한되지 않는다. 다만, 바람직하게는, 상기 활성성분은 담체 100 중량부를 기준으로 1 중량부 이상, 또는 1 내지 200 중량부, 또는 10 내지 150 중량부로 포함될 수 있다. 여기서, 상기 담체 100 중량부를 기준으로 활성성분이 100 중량부로 포함될 경우를 '활성성분이 50 중량%로 담지되었다'라고 표현할 수 있다.At this time, the content of the active ingredient supported on the carrier may be determined in consideration of a range over which the minimum activity can be expressed and the effect of reducing the amount of the active ingredient used according to the introduction of the carrier, and is not particularly limited. However, preferably, the active ingredient may be included in 1 part by weight or more, or 1 to 200 parts by weight, or 10 to 150 parts by weight based on 100 parts by weight of the carrier. Here, when the active ingredient is included in 100 parts by weight based on 100 parts by weight of the carrier, it can be expressed as'the active ingredient is supported at 50% by weight'.

이 밖에도, 상기 촉매는 전술한 활성성분의 활성도를 보다 더 향상시킬 수 있는 조촉매 화합물을 더욱 포함할 수 있다. 상기 조촉매 화합물은 전술한 담체 상에 함께 담지될 수 있으며, 당업계에 공지된 통상의 조촉매 화합물들이 특별한 제한없이 채택될 수 있다.In addition, the catalyst may further include a cocatalyst compound that can further improve the activity of the above-described active ingredient. The co-catalyst compound may be carried together on the above-described carrier, and conventional co-catalyst compounds known in the art may be employed without particular limitation.

한편, 상기 촉매는 당업계에 알려진 통상의 방법에 따라 제조될 수 있으므로, 그 제조 방법의 구체적인 내용 또한 특별히 제한되지 않는다.On the other hand, the catalyst can be prepared according to a conventional method known in the art, so the details of the manufacturing method are also not particularly limited.

다만, 본 발명에 따르면, 침강법(precipitation method) 등을 통해 전술한 활성성분들을 포함하는 촉매가 제조될 수 있다. 비제한적인 예로, 코발트 질산염(cobalt nitrate)과 이트륨 질산염(yittrium nitrate)을 물에 녹인 후, 소정의 담체를 첨가하고, 여기에 탄산나트륨 수용액(sodium carbonate solution)을 첨가하여 코발트 산화물 및 이트륨 산화물을 포함하는 염이 담체 상에 담지된 침전이 얻어질 수 있고, 침전된 염을 세척, 건조, 및 소성하는 방법으로 일 구현예의 촉매가 제조될 수 있다. 나아가, 상기 소성 과정을 거친 촉매에 팔라듐 질산염(palladium nitrate)을 녹인 물을 첨가하여 혼합하고, 이를 고온 건조시키는 방법으로 다른 구현예의 촉매가 제조될 수 있다.However, according to the present invention, a catalyst including the above-described active ingredients may be prepared through a precipitation method or the like. As a non-limiting example, after dissolving cobalt nitrate and yttrium nitrate in water, a predetermined carrier is added, and a sodium carbonate solution is added thereto to include cobalt oxide and yttrium oxide. Precipitation in which the salt is supported on the carrier can be obtained, and the catalyst of one embodiment can be prepared by washing, drying, and calcining the precipitated salt. Furthermore, a catalyst of another embodiment may be prepared by adding and mixing water with a mixture of palladium nitrate dissolved in the catalyst that has undergone the calcination process, and drying it at a high temperature.

이와 같은 본 발명에 따른 촉매는 말단에 아미노기를 갖는 1차 아민 화합물인 벤질아민의 환원성 아민화를 통한 2차 아민 화합물인 다이벤질아민의 제조에 사용될 수 있다.The catalyst according to the present invention can be used for the preparation of dibenzylamine, a secondary amine compound through reductive amination of benzylamine, a primary amine compound having an amino group at the terminal.

한편, 본 발명의 다른 구현예에 따르면, 전술한 환원성 아민화 반응용 촉매의 존재 하에, 1차 아민 화합물인 벤질아민을 수소와 접촉시켜 환원성 아민화 반응을 통해 자기 축합(self-condensation)된 2차 아민 화합물인 다이벤질아민을 제조하는 방법이 제공된다.Meanwhile, according to another embodiment of the present invention, in the presence of the catalyst for the reductive amination reaction described above, the primary amine compound, benzylamine, is contacted with hydrogen to undergo self-condensation through a reductive amination reaction. A method for preparing the diamineamine, a secondary amine compound, is provided.

환원성 아민화 반응의 일 예를 들면, 말단에 아미노(-NH2)기를 갖는 1차 아민 화합물은 하기와 같은 3단계의 반응 메커니즘을 거치게 된다.For example, in the reductive amination reaction, a primary amine compound having an amino (-NH 2 ) group at the terminal undergoes a three-step reaction mechanism.

[반응 메커니즘][Reaction mechanism]

단계 1: 1차 아민 화합물을 탈수소화하여 1차 이민 화합물을 생성하는 단계Step 1: Dehydrogenating the primary amine compound to produce a primary imine compound

Figure pat00001
Figure pat00001

단계 2: 단계 1에서 생성된 1차 이민 화합물을 1차 아민 화합물과 반응시켜 대응하는 2차 이민 화합물을 생성하는 단계Step 2: reacting the primary imine compound produced in step 1 with the primary amine compound to produce the corresponding secondary imine compound

Figure pat00002
Figure pat00002

단계 3: 단계 2에서 생성된 2차 이민 화합물을 수소와 반응시켜 2차 아민 화합물을 생성하는 단계Step 3: reacting the secondary imine compound produced in step 2 with hydrogen to produce a secondary amine compound

Figure pat00003
Figure pat00003

상기 반응 메커니즘에서 1차 아민 화합물은 탈수소화 반응을 통하여 1차 이민 화합물로 전환되고, 상기 1차 이민 화합물을 1차 아민 화합물과 반응시켜 대응하는 2차 이민 화합물을 생성하고, 상기 2차 이민 화합물을 수소와 반응시켜 2차 아민 화합물을 형성할 수 있다. In the reaction mechanism, a primary amine compound is converted to a primary imine compound through a dehydrogenation reaction, and the primary imine compound is reacted with a primary amine compound to generate a corresponding secondary imine compound, and the secondary imine compound Can react with hydrogen to form a secondary amine compound.

본 발명의 일 구현예에 따르면, 상기 반응식에서 R은 치환되거나 치환되지 않은 페닐일 수 있다.According to an embodiment of the present invention, R in the above scheme may be substituted or unsubstituted phenyl.

본 발명의 일 구현예에 따르면, 1차 아민 화합물인 벤질아민은 탈수소화 반응을 통하여 1차 이민 화합물인 벤질이민으로 전환되고, 상기 벤질이민은 1차 아민 화합물인 벤질아민과 반응시켜 대응하는 2차 이민 화합물을 생성하면서 NH3를 발생시킨다. 상기 2차 이민 화합물을 수소와 반응시켜 2차 아민 화합물인 다이벤질아민을 형성할 수 있다.According to an embodiment of the present invention, the primary amine compound benzylamine is converted to the primary imine compound benzylimine through a dehydrogenation reaction, and the benzylimine reacts with the primary amine compound benzylamine to correspond to 2 It generates NH 3 while producing secondary imine compounds. The secondary imine compound may be reacted with hydrogen to form dibenzylamine, which is a secondary amine compound.

본 발명에 따른 2차 아민 화합물의 제조방법에서 반응물의 중량비는 일련의 반응이 충분히 이루어질 수 있는 범위 내에서 반응 효율 등을 고려하여 결정될 수 있으므로 특별히 한정되지 않는다. The weight ratio of the reactants in the method for preparing the secondary amine compound according to the present invention is not particularly limited because it can be determined in consideration of reaction efficiency and the like within a range in which a series of reactions can be sufficiently performed.

다만, 본 발명에 따르면, 상기 제조방법은 상기 1차 아민 화합물 100 중량부에 대해, 수소는 0.05 내지 5 중량부 또는 0.1 내지 3 중량부 또는 0.1 내지 2 중량부의 존재 하에 수행되는 것이 반응 효율의 향상 측면에서 유리할 수 있다.However, according to the present invention, the preparation method is carried out in the presence of 0.05 to 5 parts by weight or 0.1 to 3 parts by weight or 0.1 to 2 parts by weight of hydrogen relative to 100 parts by weight of the primary amine compound to improve the reaction efficiency. It can be advantageous in terms.

본 발명의 일 구현예에 따르면, 상기 제조방법은 벤질아민 100 중량부에 대해, 수소 0.01 내지 5 중량부 또는 0.1 내지 3 중량부 또는 0.1 내지 2 중량부의 존재 하에 수행될 수 있다.According to one embodiment of the present invention, the preparation method may be carried out in the presence of 0.01 to 5 parts by weight of hydrogen or 0.1 to 3 parts by weight or 0.1 to 2 parts by weight based on 100 parts by weight of benzylamine.

또한, 본 발명에 따른 제조방법에서 각 단계는 20℃ 내지 350℃의 온도 및 1 bar 내지 30 bar(100 kPa 내지 3,000 kPa)의 압력 하에서, 또는 50℃ 내지 200℃의 온도 및 1 bar 내지 20 bar의 압력 하에서; 또는 100℃ 내지 150℃의 온도 및 1 bar 내지 10 bar의 압력 하에서 수행되는 것이, 반응 효율의 향상 측면에서 유리할 수 있다.In addition, in the manufacturing method according to the present invention, each step is performed at a temperature of 20°C to 350°C and a pressure of 1 bar to 30 bar (100 kPa to 3,000 kPa), or a temperature of 50°C to 200°C and 1 bar to 20 bar Under the pressure of; Or it may be advantageous in terms of improving the reaction efficiency, to be performed under a temperature of 100°C to 150°C and a pressure of 1 bar to 10 bar.

한편, 본 발명에 따른 다이벤질아민의 제조 방법은 전술한 단계들 이외에도, 상기 각 단계의 이전 또는 이후에 당업계에 공지된 통상적인 단계를 더욱 포함하여 수행될 수 있다.Meanwhile, the method for preparing dibenzylamine according to the present invention may be performed in addition to the above-described steps, further including conventional steps known in the art before or after each step.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나, 본 발명은 여러 가지 다양한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art to which the present invention pertains can easily practice. However, the present invention can be implemented in many different forms and is not limited to the embodiments described herein.

우선, 하기와 같은 방법으로 실시예의 촉매와 비교예의 촉매를 제조하였고(제조예 1, 비교 제조예 1 및 2), 각각의 촉매를 사용하여 다이벤질아민 화합물을 제조하였다(실시예 1 및 2, 비교예 1 및 2).First, catalysts of Examples and Comparative Examples were prepared by the following method (Preparation Example 1, Comparative Preparation Examples 1 and 2), and dibenzylamine compounds were prepared using the respective catalysts (Examples 1 and 2, Comparative Examples 1 and 2).

그리고, 실시예 및 비교예의 내용을 요약하여 하기 표 1에 나타내었다.And, the contents of Examples and Comparative Examples are summarized in Table 1 below.

이때, '2차 아민 수율'은 출발물질인 벤질아민 유도체가 환원성 아민화를 통해 다이벤질아민으로 전환된 비율(중량비)을 의미한다.At this time,'secondary amine yield' means the ratio (weight ratio) of the starting material, benzylamine derivative, converted to dibenzylamine through reductive amination.

제조예 1 , 비교 제조예 1 및 2 Preparation Example 1, Comparative Preparation Examples 1 and 2 촉매의 제조Preparation of catalyst

상온 하에서, 표 1에 기재된 투입 금속 화합물을 물 400 g에 녹인 후, Molecular sieve 13X를 담지체로 투여한다. 탄산나트륨(sodium carbonate) 15 wt% 수용액을 0.08 ml/s의 속도로 주입하는 방법으로 침강법(precipitation method)을 실시하였다.Under normal temperature, the charged metal compound shown in Table 1 was dissolved in 400 g of water, and then Molecular sieve 13X was administered as a carrier. Precipitation was performed by injecting a 15 wt% aqueous solution of sodium carbonate at a rate of 0.08 ml/s.

1 시간이 경과된 후, 생성된 염(salt)을 500 ml 증류수를 이용하여 수 차례 세척 및 여과하였고, 110℃에서 15 시간 동안 건조하였다.After 1 hour, the resulting salt was washed and filtered several times using 500 ml distilled water, and dried at 110° C. for 15 hours.

이와 같이 건조된 염을 소성로에 투입하였고, 소성로의 온도를 300℃/hr로 600℃까지 승온시켜 600℃ 및 공기 분위기 하에서 4 시간 동안 소성 시키는 방법으로 촉매를 얻었다. 이 촉매를 수소 분위기 하에서 600℃ 및 H2 유속 100cc/min으로 처리하여 Cobalt가 metal state로 되도록 환원시켜 촉매를 수득하였다. 이에 따라, 제조예 1에서 Co-Y2O3-Pd/Molecular sieve 13X 촉매 (Co 8.9168 중량부에 대하여, Y2O3 0.1706 중량부 및 Pd 0.0224 중량부 함유), 비교 제조예 1에서 Co/Molecular sieve 13X 촉매, 비교 제조예 2에서 Co-Y2O3/Molecular sieve 13X 촉매 (Co 8.9168 중량부에 대하여, Y2O3 0.1706 중량부 함유)를 각각 제조하였다.The dried salt was added to the kiln, and the temperature of the kiln was raised to 600° C. at 300° C./hr to obtain a catalyst by baking at 600° C. and air for 4 hours. The catalyst was treated under hydrogen atmosphere at 600°C and H 2 flow rate of 100 cc/min to reduce the Cobalt to a metal state to obtain a catalyst. Accordingly, Co-Y 2 O 3 -Pd/Molecular sieve 13X catalyst in Preparation Example 1 (containing 0.1706 parts by weight of Y 2 O 3 and 0.0224 parts by weight of Pd, based on 8.9168 parts by weight of Co), Co/ in Comparative Preparation Example 1 In the Molecular sieve 13X catalyst, in Comparative Preparation Example 2, Co-Y 2 O 3 /Molecular sieve 13X catalyst (containing 0.1706 parts by weight of Y 2 O 3 relative to 8.9168 parts by weight of Co) was prepared.

Figure pat00004
Figure pat00004

실시예 1 및 2, 비교예 1 및 2Examples 1 and 2, Comparative Examples 1 and 2

다이벤질아민(2차 아민)의 제조Preparation of dibenzylamine (secondary amine)

용량 200ml의 배치 반응기(batch reactor)에 표 2에 기재된 촉매 2.5g과 1차 아민 화합물인 벤질아민 50 g을 투입하였다. 이어서, 상기 반응기 내에 산소를 제거하기 위해 질소로 5 차례 퍼지(purge)를 실시하였고, 수소를 상온에서 1 bar 주입하였다. 그 후 하기 표 1에 기재된 반응온도, 반응압력 및 반응시간 하에서 반응시키는 방법으로 2차 아민 화합물인 다이벤질아민 49 g (실시예 1), 36.1 g (실시예 2), 17.6 g (비교예 1), 27.8 g (비교예 2)을 얻었다. 각 실시예와 비교예에 대한 2차 아민 수율은 표 2에 나타내었다.In a batch reactor having a capacity of 200 ml, 2.5 g of the catalysts described in Table 2 and 50 g of benzylamines, which are primary amine compounds, were added. Subsequently, in order to remove oxygen in the reactor, nitrogen was purged five times, and hydrogen was injected at 1 bar at room temperature. Subsequently, as a method of reacting under the reaction temperature, reaction pressure, and reaction time shown in Table 1 below, the secondary amine compound, dibenzylamine 49 g (Example 1), 36.1 g (Example 2), 17.6 g (Comparative Example 1) ) And 27.8 g (Comparative Example 2). The secondary amine yield for each Example and Comparative Example is shown in Table 2.

Figure pat00005
Figure pat00005

상기 실시예 및 비교예를 통해 알 수 있는 바와 같이, 비교 제조예 1 또는 비교 제조예 2의 촉매를 사용한 비교예 1 및 비교예 2의 제조방법은 아민 수율이 각각 35.2% 및 55.6%로 낮게 나타났다. 그에 비하여, 제조예 1의 촉매를 사용한 실시예 1 및 2의 제조방법은 높은 아민 수율을 나타내었다. 특히, 실시예 2를 통해 알 수 있는 바와 같이, 본 발명에 따른 촉매를 사용하는 경우 98.0%의 높은 아민 수율을 나타내었다.As can be seen from the above Examples and Comparative Examples, the production methods of Comparative Examples 1 and 2 using the catalysts of Comparative Preparation Example 1 or Comparative Preparation Example 2 showed low amine yields of 35.2% and 55.6%, respectively. . In contrast, the preparation methods of Examples 1 and 2 using the catalyst of Preparation Example 1 showed high amine yield. In particular, as can be seen through Example 2, when using the catalyst according to the present invention showed a high amine yield of 98.0%.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Since the specific parts of the present invention have been described in detail above, it is obvious to those skilled in the art that this specific technique is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (4)

(A) 1차 아민 화합물인 벤질아민을 탈수소화 반응시켜 1차 이민 화합물인 벤질이민을 생성하는 단계;
(B) 상기 벤질이민을 1차 아민 화합물인 벤질아민과 반응시켜 2차 이민 화합물을 생성하는 단계; 및
(C) 상기 2차 이민 화합물을, 코발트(Co) 화합물 및 이트륨(Y) 화합물 및 팔라듐(Pd) 화합물이 담지체 상에 담지된 환원성 아민화 반응용 촉매의 존재 하에, 수소와 접촉시켜 다이벤질아민을 생성하는 단계를 포함하는, 다이벤질아민의 제조방법.
(A) dehydrogenation reaction of the primary amine compound benzylamine to produce the primary imine compound benzylimine;
(B) reacting the benzylimine with a primary amine compound, benzylamine, to produce a secondary imine compound; And
(C) Dibenzyl by contacting the secondary imine compound with hydrogen in the presence of a catalyst for a reductive amination reaction in which a cobalt (Co) compound, a yttrium (Y) compound, and a palladium (Pd) compound are supported on a carrier. A method of producing dibenzylamine comprising the step of producing an amine.
제1항에 있어서, 상기 환원성 아민화 반응용 촉매는 코발트 100 중량부를 기준으로, 이트륨 산화물 0.05 내지 30 중량부 및 팔라듐 0.01 내지 5 중량부를 포함하는 것인, 다이벤질아민의 제조방법.The method of claim 1, wherein the catalyst for the reductive amination reaction comprises 0.05 to 30 parts by weight of yttrium oxide and 0.01 to 5 parts by weight of palladium, based on 100 parts by weight of cobalt. 제1항에 있어서, 상기 담지체는 SiO2, Al2O3, MgO, MgCl2, CaCl2, ZrO2, TiO2, B2O3, CaO, ZnO, BaO, ThO2, SiO2-Al2O3, SiO2-MgO, SiO2-TiO2, SiO2-V2O5, SiO2-CrO2O3, SiO2-TiO2-MgO, Molecular sieve 13X, 보오크사이트, 제올라이트, 전분(starch), 사이클로덱스트린(cyclodextrine) 또는 합성고분자로 이루어진 군에서 선택되는 것인, 다이벤질아민의 제조방법.According to claim 1, wherein the carrier is SiO 2 , Al 2 O 3 , MgO, MgCl 2 , CaCl 2 , ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 , SiO 2 -Al 2 O 3 , SiO 2 -MgO, SiO 2 -TiO 2 , SiO 2 -V 2 O 5 , SiO 2 -CrO 2 O 3 , SiO 2 -TiO 2 -MgO, Molecular sieve 13X, bauxite, zeolite, starch (starch), cyclodextrin (cyclodextrine) or is selected from the group consisting of synthetic polymers, a method for producing dibenzylamine. 제1항에 있어서, 상기 각 단계에서 반응물의 중량비는, 상기 벤질아민 100 중량부에 대해 수소 0.01내지 5 중량부인 것인, 다이벤질아민의 제조방법.The method according to claim 1, wherein the weight ratio of the reactants in each step is 0.01 to 5 parts by weight of hydrogen relative to 100 parts by weight of the benzylamine.
KR1020180152456A 2018-11-30 2018-11-30 Preparation method of dibenzylamine KR20200065723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180152456A KR20200065723A (en) 2018-11-30 2018-11-30 Preparation method of dibenzylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180152456A KR20200065723A (en) 2018-11-30 2018-11-30 Preparation method of dibenzylamine

Publications (1)

Publication Number Publication Date
KR20200065723A true KR20200065723A (en) 2020-06-09

Family

ID=71082172

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180152456A KR20200065723A (en) 2018-11-30 2018-11-30 Preparation method of dibenzylamine

Country Status (1)

Country Link
KR (1) KR20200065723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220075644A (en) * 2020-11-30 2022-06-08 롯데케미칼 주식회사 Method for preparation of morpholine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644177A1 (en) 1993-09-20 1995-03-22 Dsm N.V. Process for the preparation of dibenzylamine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644177A1 (en) 1993-09-20 1995-03-22 Dsm N.V. Process for the preparation of dibenzylamine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
문헌 [Wei He, et al. Chem. Eur. J. 2011, 17, 13308-13317]

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220075644A (en) * 2020-11-30 2022-06-08 롯데케미칼 주식회사 Method for preparation of morpholine

Similar Documents

Publication Publication Date Title
US9725560B2 (en) Catalyst for reductive amination-reaction and uses thereof
US7468342B2 (en) Catalysts and process for producing aromatic amines
JP4979877B2 (en) Process for the production of diethylenetriamine and higher polyethylene polyamines
KR20200065723A (en) Preparation method of dibenzylamine
KR101439431B1 (en) Cobalt-yittrium based supported catalyst for reductive amination reaction and preparation method of polyetheramine compound using the catalyst
CN114433089B (en) Titanium-containing catalyst with ammoniation function and preparation method and application thereof
JP5038700B2 (en) Method for producing fat nitrogen-containing compound
EP2749351B1 (en) A catalyst for reductive amination-reaction and uses thereof
KR20200065957A (en) Preparation method of secondary polyetheramine
KR20090034772A (en) Catalyst
KR102322050B1 (en) Preparation method of secondary and tertiary polyetheramine compound
KR102315753B1 (en) Preparation method of secondary and tertiary polyetheramine compound
US7507863B2 (en) Process for producing nitrogen-containing compounds
KR101671943B1 (en) Catalyst for reductive-amination reaction and uses thtereof
KR102622834B1 (en) Method for preparation of morpholine
KR20090020367A (en) Catalyst for alkylation of phenol and a method for producing o-cresol and 2,6-xylenol by using the catalyst
JP2020514255A (en) Method for producing ethanolamine and / or ethyleneamine
KR101426409B1 (en) Cobalt-yittrium based catalyst for reductive amination reaction and preparation method of polyetheramine compound using the catalyst
KR100738232B1 (en) Method of preparing mixed metal oxide catalyst and method of producing long chain aliphatic tertiary amine using the catalyst
KR20210061040A (en) Preparation method of ethylenediamine
KR20210061041A (en) Preparation method of ethylenediamine
KR20220074603A (en) Method for preparation of primary amine
JP4182324B2 (en) Production method of aromatic amine production catalyst
KR101611585B1 (en) Supported catalyst for reductive amination reaction and preparation method of polyetheramine compound using the catalyst
JPH0532593A (en) Production of ethyleneamine