KR20200064512A - Manufacturing Process of Aromatic Dicarboxylic Acids by Using a Cobalt/Manganese/Bromide Catalyst System Having Improved Oxidation Reaction Efficiency - Google Patents

Manufacturing Process of Aromatic Dicarboxylic Acids by Using a Cobalt/Manganese/Bromide Catalyst System Having Improved Oxidation Reaction Efficiency Download PDF

Info

Publication number
KR20200064512A
KR20200064512A KR1020180150709A KR20180150709A KR20200064512A KR 20200064512 A KR20200064512 A KR 20200064512A KR 1020180150709 A KR1020180150709 A KR 1020180150709A KR 20180150709 A KR20180150709 A KR 20180150709A KR 20200064512 A KR20200064512 A KR 20200064512A
Authority
KR
South Korea
Prior art keywords
catalyst
acetic acid
oxidation reaction
xylene
acid
Prior art date
Application number
KR1020180150709A
Other languages
Korean (ko)
Inventor
이헌욱
김온누리
최성환
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020180150709A priority Critical patent/KR20200064512A/en
Publication of KR20200064512A publication Critical patent/KR20200064512A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/50Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/241,3 - Benzenedicarboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a process for manufacturing aromatic dicarboxylic acids, such as isophthalic acid, by oxidizing xylene in the presence of a cobalt/manganese/bromide (CMB) catalyst system, and to a method of improving oxidation reaction efficiency of a catalyst by adding zirconium bromide as a bromine precursor in an activation process of a catalyst component recovered from a mother liquor of the oxidation reaction of xylene containing the CMB catalyst system.

Description

산화반응 효율이 개선된 코발트/망간/브롬(Cobalt/Manganese/Bromide, CMB) 촉매계를 이용한 방향족 디카복실산의 제조방법 {Manufacturing Process of Aromatic Dicarboxylic Acids by Using a Cobalt/Manganese/Bromide Catalyst System Having Improved Oxidation Reaction Efficiency}{Manufacturing Process of Aromatic Dicarboxylic Acids by Using a Cobalt/Manganese/Bromide Catalyst System Having Improved Oxidation Reaction> Cobalt/Manganese/Bromide (CMB) catalyst system with improved oxidation reaction efficiency Efficiency}

본 발명은 CMB(cobalt/manganese/bromide) 촉매계를 포함한 자일렌(xylene)의 산화반응 모액(mother liquor)으로부터 회수된 촉매의 재처리 방법에 관한 것이다. 보다 상세하게는, 본 발명은 상기 모액으로부터 회수된 촉매의 활성화 공정에서 새로운 브롬 전구체를 첨가함으로써 상기 촉매의 산화반응 효율을 개선시키는 방법에 관한 것이다.The present invention relates to a method for reprocessing a catalyst recovered from a mother liquor of an oxidation reaction of xylene including a CMB (cobalt/manganese/bromide) catalyst system. More specifically, the present invention relates to a method for improving the oxidation reaction efficiency of the catalyst by adding a new bromine precursor in the activation process of the catalyst recovered from the mother liquor.

CMB 촉매하에 아세트산 용액 중의 자일렌의 액상 산화반응을 통해 생산되는 방향족 디카복실산은 결정화를 통해 분리되며, 결정화를 통해 제거되지 않은 일부 테레프탈산 및/또는 이소프탈산을 포함하는 유기산 등은 산화반응 모액에 포함되어 공정으로 순환된다. 산화반응 공정의 운전성 및 반응성 향상을 위해 공정으로 순환되는 모액 중 일부가 폐기된다. 그런데, 폐기되는 모액 내에는 유용 성분인 촉매 성분이 포함되어 있어, 촉매회수공정을 통해 촉매 성분의 회수가 필요하다. 당업계에서 일반적으로 사용되는 촉매 회수 공정은 크게 3단계로 구성되는데, 첫 번째 공정은 산화반응 모액 내 잔류하는 유기산을 제거하는 공정이고, 두 번째 공정은 촉매 성분을 회수하는 공정이며, 세 번째 공정은 촉매 성분을 활성화시키는 공정이다.Aromatic dicarboxylic acids produced through liquid phase oxidation of xylene in acetic acid solution under CMB catalyst are separated through crystallization, and some terephthalic acid and/or organic acids containing isophthalic acid not removed through crystallization are included in the oxidation reaction mother liquor. It is circulated to the process. In order to improve the operability and reactivity of the oxidation reaction process, some of the mother liquor circulated to the process is discarded. However, since the catalyst component which is a useful component is contained in the mother liquor to be discarded, it is necessary to recover the catalyst component through a catalyst recovery process. The catalyst recovery process generally used in the art is largely composed of three steps, the first step is to remove the organic acid remaining in the oxidation reaction mother liquor, the second step is to recover the catalyst component, and the third step Is a process to activate the catalyst component.

촉매 성분을 활성화시키는 공정에 해당하는 아세트산조를 이용한 공정 시, 기존 촉매와 CMB 비율을 맞추기 위해 브롬의 추가가 필요하다. 브롬 추가를 위한 전구체로 종래 기술에서와 같이 브롬화수소를 사용할 수 있으나, 환경적으로 문제가 될 수 있어 다른 형태의 브롬 전구체에 대한 기술 개발이 필요하다. 아울러, 브롬 전구체에 따른 CMB 촉매의 산화반응 효율 개선도 필요한 실정이다.In the process using an acetic acid tank corresponding to the process of activating the catalyst component, bromine is needed to match the CMB ratio with the existing catalyst. As a precursor for adding bromine, hydrogen bromide may be used as in the prior art, but it may be an environmental problem, and thus it is necessary to develop a technique for another type of bromine precursor. In addition, there is a need to improve the oxidation reaction efficiency of the CMB catalyst according to the bromine precursor.

이와 관련하여, 대한민국 공개특허공보 제10-2002-0029214호는 파라 자일렌(p-xylene)을 산화시켜 테레프탈산(terephthalic aicd)을 제조함에 있어서 브롬의 전구체로 테트라브롬에탄과 브롬산을 혼합하여 제조한 복합 브롬 촉매를 이용하는 방법을 개시하고 있는데, 이 방법은 브롬 전구체 첨가 및 촉매 반응 활성 개선에 어려움이 있다. In this regard, Republic of Korea Patent Publication No. 10-2002-0029214 in the manufacture of terephthalic acid (terephthalic aicd) by oxidizing para-xylene (p-xylene) to prepare a mixture of tetrabromethane and bromic acid as a precursor of bromine A method of using a complex bromine catalyst is disclosed, which has difficulty in adding a bromine precursor and improving catalytic reaction activity.

또한, 대한민국 특허공보 제10-0507827호는 코발트 및(또는) 망간, 및 브롬과 같은 조촉매로 이루어지는 촉매계 적용을 통한 테레프탈산 제조를 개시하고 있는데, 브롬화수소산은 소량의 사용으로도 환경에 유해하며 부식성 브롬 기체가 형성된다. 또한, 소량의 탄화수소 화합물 첨가를 통한 브롬 산화 방지 시, 브롬에 의한 산화반응 활성 저하 문제가 있어 개선이 필요하다.In addition, Korean Patent Publication No. 10-0507827 discloses the production of terephthalic acid through the application of a catalyst system composed of cobalt and/or manganese, and a co-catalyst such as bromine. Hydrobromic acid is harmful to the environment and corrosive even with a small amount. Bromine gas is formed. In addition, when bromine oxidation is prevented by adding a small amount of a hydrocarbon compound, there is a problem of a decrease in oxidation reaction activity by bromine, and thus improvement is necessary.

대한민국 공개특허공보 제10-2002-0029214호 (2002.04.18)Republic of Korea Patent Publication No. 10-2002-0029214 (2002.04.18) 대한민국 특허공보 제10-0507827호 (2005.08.03)Republic of Korea Patent Publication No. 10-0507827 (2005.08.03)

본 발명의 목적은 방향족 디카복실산의 제조공정에서 산화반응 모액으로부터 회수된 촉매의 활성을 개선시키고자 하는 것이다.An object of the present invention is to improve the activity of the catalyst recovered from the oxidation reaction mother liquor in the production process of aromatic dicarboxylic acids.

상기 목적을 달성하기 위하여, 본 발명은 방향족 디카복실산의 제조공정에서 발생하는 산화반응 모액으로부터 촉매를 회수한 후 이를 자일렌의 산화반응 공정으로 재투입하는 과정에서 새로운 브롬 전구체를 첨가함으로써 상기 촉매의 산화반응 활성을 개선시키는 방법을 제공한다. In order to achieve the above object, the present invention is to recover the catalyst from the oxidation reaction mother liquor generated in the process for producing aromatic dicarboxylic acid, and then add a new bromine precursor in the process of re-injecting it into the xylene oxidation reaction process. It provides a method for improving the oxidation reaction activity.

구체적으로, 본 발명은 CMB(cobalt/manganese/bromide) 촉매계 존재하에 자일렌을 산화시켜 방향족 디카복실산, 예컨대 이소프탈산을 제조하는 방법으로서,Specifically, the present invention is a method for producing an aromatic dicarboxylic acid, such as isophthalic acid, by oxidizing xylene in the presence of a CMB (cobalt/manganese/bromide) catalyst system,

(1) CMB 촉매계를 포함한 산화반응 모액으로부터 유기산을 제거하는 단계;(1) removing an organic acid from an oxidation reaction mother liquor including a CMB catalyst system;

(2) (1)단계로부터의 잔여액에 침전제를 첨가하여 촉매 금속의 금속염 침전물을 수득하는 단계;(2) adding a precipitant to the residual liquid from step (1) to obtain a metal salt precipitate of catalyst metal;

(3) (2)단계로부터의 촉매 금속의 금속염 침전물을 아세트산 또는 아세트산 함유 용매에 용해시키고 브롬 전구체로서 지르코늄 브로마이드(ZrBr4)를 첨가하는 단계; 및(3) dissolving the metal salt precipitate of catalyst metal from step (2) in acetic acid or an acetic acid-containing solvent and adding zirconium bromide (ZrBr 4 ) as a bromine precursor; And

(4) (3)단계로부터의 용액을 자일렌의 산화반응 공정에 투입하는 단계를 포함하는, 방향족 디카복실산, 예컨대 이소프탈산의 제조방법을 제공한다.(4) A method for producing an aromatic dicarboxylic acid, such as isophthalic acid, is provided, comprising the step of introducing the solution from step (3) into the xylene oxidation reaction process.

본 발명의 방법에 따르면, 방향족 디카복실산의 제조공정에서 회수된 촉매의 활성화 단계에서 지르코늄 브로마이드(ZrBr4)를 첨가함으로써 촉매의 산화반응 효율이 개선된다.According to the method of the present invention, the oxidation reaction efficiency of the catalyst is improved by adding zirconium bromide (ZrBr 4 ) in the activation step of the catalyst recovered in the production process of aromatic dicarboxylic acid.

도 1은 본 발명의 일 실시양태인 방향족 디카복실산의 제조 공정에 사용되는 촉매 회수 장치, 촉매의 산화반응 활성화 장치 및 자일렌의 산화반응 장치를 개략적으로 도시한 것이다.FIG. 1 schematically shows a catalyst recovery device used in a process for producing an aromatic dicarboxylic acid, an oxidation reaction activation device for a catalyst, and an oxidation reaction device for xylene, which is an embodiment of the present invention.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시양태를 가질 수 있는 바, 특정 실시양태들을 예시하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태로 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.The present invention is intended to illustrate certain embodiments, as various transformations may be applied and various embodiments may be applied. However, this is not intended to limit the present invention to a specific embodiment, it should be understood to include all conversions, equivalents, or substitutes included in the spirit and scope of the present invention. In the description of the present invention, if it is determined that a detailed description of known technologies related to the present invention may obscure the subject matter of the present invention, the detailed description will be omitted.

통상 CMB(cobalt/manganese/bromide) 촉매하에 아세트산 용액 중의 자일렌(xylene)의 액상 산화 반응을 통해 방향족 디카복실산을 생산하는 공정에서, 생산된 방향족 디카복실산은 결정화조 및 진공필터를 거쳐 방향족 디카복실산과 모액으로 분리되고, 모액의 일부(60 내지 90%)는 방향족 디카복실산 제조 공정으로 재순환(recycle)되어 재사용된다. 한편, 모액의 나머지(10 내지 40%)는 촉매회수공정을 통해 모액 내 유기산이 제거되고 촉매 금속의 금속염 침전물이 수득되고 수득된 촉매 금속의 금속염 침전물은 산화반응 활성화 단계를 거쳐 자일렌 산화반응 공정으로 재투입된다. In the process of producing an aromatic dicarboxylic acid through a liquid oxidation reaction of xylene in an acetic acid solution under a CMB (cobalt/manganese/bromide) catalyst, the produced aromatic dicarboxylic acid is passed through a crystallization tank and a vacuum filter to produce an aromatic dicarboxylic acid. It is separated into a super mother liquor, and a part (60 to 90%) of the mother liquor is recycled to the aromatic dicarboxylic acid production process and reused. On the other hand, the remainder (10-40%) of the mother liquor is removed from the organic acid in the mother liquor through a catalyst recovery process, a metal salt precipitate of the catalyst metal is obtained, and the metal salt precipitate of the obtained catalyst metal undergoes an oxidation reaction activation step to undergo a xylene oxidation reaction process. Is re-entered.

일반적으로 촉매 금속의 금속염 침전물로부터 촉매의 산화반응 활성화를 시도하는 경우에는, 촉매 금속의 금속염 침전물을 아세트산에 용해시키는 과정이 수행되며, 코발트/망간/브롬 삼원계 촉매를 산화반응 촉매로 사용하는 공정에서는 기존 촉매와 CMB 비율을 맞추기 위해 브롬의 추가를 통한 비율 조정이 필요하다. 종래 기술분야에서는 브롬 전구체로서 브롬화수소가 많이 사용되었으나, 부식성 및 환경적인 문제가 있다.In general, when attempting to activate the oxidation reaction of a catalyst from a metal salt precipitate of a catalyst metal, a process of dissolving the metal salt precipitate of the catalyst metal in acetic acid is performed, and a process using a cobalt/manganese/bromine ternary catalyst as an oxidation reaction catalyst In order to adjust the CMB ratio with the existing catalyst, it is necessary to adjust the ratio through the addition of bromine. In the prior art, hydrogen bromide is often used as a bromine precursor, but there are corrosive and environmental problems.

본 발명에서는 새로운 브롬 전구체로서 지르코늄 브로마이드(ZrBr4)를 사용하여 코발트/망간/브롬 비율 조정 및 촉매의 산화반응 활성을 개선시키는 방법을 제공한다.In the present invention, a method for adjusting the cobalt/manganese/bromine ratio and improving the oxidation reaction activity of a catalyst using zirconium bromide (ZrBr 4 ) as a new bromine precursor is provided.

본 발명은 일 실시양태로 CMB(cobalt/manganese/bromide) 촉매계 존재하에 자일렌을 산화시켜 방향족 디카복실산, 예컨대 이소프탈산을 제조하는 방법으로서,In one embodiment, the present invention is a method for preparing an aromatic dicarboxylic acid, such as isophthalic acid, by oxidizing xylene in the presence of a CMB (cobalt/manganese/bromide) catalyst system.

(1) CMB 촉매계를 포함한 산화반응 모액으로부터 유기산을 제거하는 단계;(1) removing an organic acid from an oxidation reaction mother liquor including a CMB catalyst system;

(2) (1)단계로부터의 잔여액에 침전제를 첨가하여 촉매 금속의 금속염 침전물을 수득하는 단계;(2) adding a precipitant to the residual liquid from step (1) to obtain a metal salt precipitate of catalyst metal;

(3) (2)단계로부터의 촉매 금속의 금속염 침전물을 아세트산 또는 아세트산 함유 용매에 용해시키고 브롬 전구체로서 지르코늄 브로마이드(ZrBr4)를 첨가하는 단계; 및(3) dissolving the metal salt precipitate of catalyst metal from step (2) in acetic acid or an acetic acid-containing solvent and adding zirconium bromide (ZrBr 4 ) as a bromine precursor; And

(4) (3)단계로부터의 용액을 자일렌의 산화반응 공정에 투입하는 단계를 포함하는, 방향족 디카복실산, 예컨대 이소프탈산의 제조방법을 제공한다.(4) A method for producing an aromatic dicarboxylic acid, such as isophthalic acid, is provided, comprising the step of introducing the solution from step (3) into the xylene oxidation reaction process.

본 발명의 방법에서, 상기 산화반응 모액은 자일렌의 산화반응으로 생성된 테레프탈산 및/또는 이소프탈산과 유기산(total solid, TS) 및 촉매 성분을 포함한다. 상기 유기산은 석출되지 못한 일부 테레프탈산 및/또는 이소프탈산, 반응 중간생성물인 카복시벤즈알데히드, 톨루산, 벤조산 등을 포함한다.In the method of the present invention, the oxidation reaction mother liquor includes terephthalic acid and/or isophthalic acid and an organic acid (total solid, TS) and catalyst components produced by the oxidation reaction of xylene. The organic acid includes some terephthalic acid and/or isophthalic acid that cannot be precipitated, carboxybenzaldehyde, toluic acid, and benzoic acid, which are reaction intermediates.

본 발명의 방향족 디카복실산의 제조 공정은 산화반응 모액에 물을 첨가하여 1차적으로 유기산을 제거하는 고/액 여과 공정, 촉매 금속의 금속염 침전물의 회수 공정, 및 촉매 활성화 공정으로 구성된다.The manufacturing process of the aromatic dicarboxylic acid of the present invention comprises a solid/liquid filtration process in which organic acid is firstly removed by adding water to the oxidation reaction mother liquor, a process for recovering a metal salt precipitate of a catalyst metal, and a catalyst activation process.

본 발명은 또한 CMB 촉매계 존재하에 자일렌을 산화시켜 방향족 디카복실산, 예컨대 이소프탈산을 제조하는 본 발명에 따른 방법에 사용되는 장치로서,The invention is also an apparatus used in the process according to the invention to oxidize xylene in the presence of a CMB catalyst system to produce aromatic dicarboxylic acids, such as isophthalic acid,

CMB 촉매계를 포함한 산화반응 모액으로부터 유기산을 석출시켜 분리하는 여과기;A filter for separating and separating an organic acid from an oxidation reaction mother liquor including a CMB catalyst system;

촉매 금속의 금속염 침전물을 생성하는 탄산화조;A carbonation tank that produces a metal salt precipitate of the catalyst metal;

촉매 금속의 금속염 침전물을 용해시키기 위한 아세트산조; 및An acetic acid bath for dissolving a metal salt precipitate of the catalyst metal; And

아세트산조를 거친 용액과 자일렌의 혼합물이 CMB 촉매계 존재하에 산화되는 반응조를 포함하는 장치를 제공한다.A device comprising a reaction tank in which a mixture of xylene and a solution passed through an acetic acid bath is oxidized in the presence of a CMB catalyst system is provided.

촉매회수공정으로 주입되는 산화반응 모액은 산화반응으로부터 생성되거나 여러 화합물의 혼합으로 형성된 용액일 수 있다. 산화반응 모액 중의 유기산 함량은 1 내지 40중량% 수준이며, 촉매 성분은 0.1 내지 10중량% 수준이다.The oxidation reaction mother liquor injected into the catalyst recovery process may be a solution formed from an oxidation reaction or formed by mixing several compounds. The organic acid content in the oxidation reaction mother liquor is 1 to 40% by weight, and the catalyst component is 0.1 to 10% by weight.

본 발명의 일 실시양태를 도 1을 참조하여 설명하면, 증류에 의해 아세트산이 제거된 산화반응 모액에 물을 첨가하여 온도를 낮추어 유기산을 석출시켜 여과기(101)로 분리한 후 잔여액을 수득할 수 있다. 상기 아세트산의 증류는 100 내지 150℃, 바람직하게는 130℃ 내의 온도에서 수행된다. 제거된 아세트산은 용매 정제 공정을 거쳐 본 공정에 재순환된다.Referring to an embodiment of the present invention with reference to FIG. 1, water is added to an oxidation reaction mother liquor in which acetic acid has been removed by distillation to lower the temperature to precipitate an organic acid to separate with a filter 101 to obtain a residual liquid. Can be. The distillation of acetic acid is performed at a temperature within 100 to 150°C, preferably 130°C. The removed acetic acid is recycled to this process through a solvent purification process.

상기 잔여액은 탄산화조(102)에서 수산화나트륨, 탄산나트륨과 같은 침전제에 의해 촉매 금속의 금속염 형태로 침전된다. The residual liquid is precipitated in the form of a metal salt of the catalyst metal by a precipitating agent such as sodium hydroxide or sodium carbonate in the carbonation tank 102.

촉매 금속의 금속염 침전물은 아세트산조(103)에서 아세트산 또는 아세트산 함유 용매에 용해시킬 수 있고, 이때 산화반응에 사용되는 CMB 촉매의 조성을 맞추기 위해 지르코늄 브로마이드가 투입된다. 지르코늄 브로마이드가 투입된 상기 용액 중의 지르코늄 원자의 농도는 자일렌과 아세트산 또는 아세트산 함유 용매의 중량을 기준으로 10 내지 1000ppm일 수 있다.The metal salt precipitate of the catalyst metal can be dissolved in acetic acid or an acetic acid-containing solvent in the acetic acid bath 103, and zirconium bromide is added to adjust the composition of the CMB catalyst used in the oxidation reaction. The concentration of zirconium atoms in the solution in which zirconium bromide is added is that of xylene and acetic acid or acetic acid-containing solvent. It may be 10 to 1000ppm based on weight.

상기 용해 반응은 100 내지 115℃, 바람직하게는 100 내지 110℃, 예컨대 100 내지 105℃에서 1 내지 4시간 동안, 예컨대 2 내지 3시간 동안 수행할 수 있다.The dissolution reaction may be performed at 100 to 115°C, preferably 100 to 110°C, such as 100 to 105°C for 1 to 4 hours, such as 2 to 3 hours.

지르코늄 브로마이드가 첨가된 상기 용액은 반응조(104)의 자일렌 산화반응 공정으로 투입될 수 있다. 상기 산화반응은 CMB 촉매계 존재하에 불활성 기체 중 10 내지 95부피%의 산소를 포함하는 분위기에서 아세트산 또는 아세트산 함유 용매 중에서 150 내지 220℃, 예컨대 170 내지 210℃의 온도 및 10 내지 50bar, 예컨대 15 내지 35bar의 압력하에서 10 내지 170분 동안 수행할 수 있다.The solution to which zirconium bromide is added may be introduced into the xylene oxidation reaction process of the reactor 104. The oxidation reaction is acetic acid or acetic acid-containing solvent in an atmosphere containing 10 to 95% by volume of oxygen in an inert gas in the presence of a CMB catalyst system It can be carried out for 10 to 170 minutes under a temperature of 150 to 220 ℃, such as 170 to 210 ℃ and a pressure of 10 to 50bar, such as 15 to 35bar.

일 실시양태에서, 상기 아세트산 함유 용매는 아세트산과 물의 혼합 용매일 수 있으며, 이때 물의 함량은 용매의 전체 중량의 약 10중량%일 수 있다.In one embodiment, the acetic acid-containing solvent may be a mixed solvent of acetic acid and water, wherein the water content may be about 10% by weight of the total weight of the solvent.

반응조(104)에서의 자일렌의 산화반응 공정에서 CMB 촉매계에 포함된 코발트 원자 및 망간 원자의 농도는 각각 자일렌과 아세트산 또는 아세트산 함유 용매의 중량을 기준으로 10 내지 2500ppm일 수 있다. 또한, 반응조(104)에서의 자일렌의 산화반응 공정에서 CMB 촉매계에 포함된 브롬 원자의 농도는 자일렌과 아세트산 또는 아세트산 함유 용매의 중량을 기준으로 10 내지 4000ppm일 수 있다.The concentration of cobalt atoms and manganese atoms included in the CMB catalyst system in the xylene oxidation reaction process in the reactor 104 may be 10 to 2500 ppm based on the weight of the xylene and acetic acid or acetic acid-containing solvent, respectively. In addition, the concentration of the bromine atom included in the CMB catalyst system in the oxidation reaction process of xylene in the reaction tank 104 may be 10 to 4000 ppm based on the weight of xylene and acetic acid or an acetic acid-containing solvent.

본 발명의 방법에서, 상기 자일렌의 산화반응 공정으로부터의 반응물을 40℃ 아래로 냉각시키고, 물을 상기 반응물 부피의 8 내지 12배의 부피로 첨가한 다음, 5 내지 15℃에서 12시간 내지 36시간 동안 냉각시켜 고형물을 수득하고 이를 건조시킬 수 있다.In the method of the present invention, the reactant from the oxidation reaction process of xylene is cooled down to 40°C, water is added in a volume of 8 to 12 times the volume of the reactant, and then 12 to 36 hours at 5 to 15°C. Cooling for an hour gives a solid which can be dried.

본 발명의 방법에서, 방향족 디카복실산 제조공정에 사용되는 CMB 촉매계는 코발트 및 망간 화합물인 중금속 화합물과 브롬 화합물로 이루어진 것이다. 상기 코발트 및 망간 화합물의 구체예로는 아세트산코발트, 수산화코발트, 불화코발트, 염화코발트, 브롬화코발트, 요오드화코발트, 탄산코발트, 아세트산망간, 수산화망간, 불화망간, 염화망간, 브롬화망간, 요오드화망간, 탄산망간 등을 들 수 있다. 상기 브롬 화합물은 반응계에서 아세트산에 용해되어 브롬화물 이온을 발생하는 것이면 어떠한 것이라도 사용가능하고, 예를 들면, 지르코늄 브로마이드, 브롬화나트륨, 브롬화코발트 등의 무기 브롬 화합물, 브로모아세트산, 테트라브롬에탄 등의 유기 브롬 화합물을 들 수 있다. In the method of the present invention, the CMB catalyst system used in the aromatic dicarboxylic acid production process is composed of a heavy metal compound and a bromine compound, which are cobalt and manganese compounds. Specific examples of the cobalt and manganese compounds include cobalt acetate, cobalt hydroxide, cobalt fluoride, cobalt chloride, cobalt bromide, cobalt iodide, cobalt carbonate, manganese acetate, manganese hydroxide, manganese fluoride, manganese chloride, manganese bromide, and manganese iodide. And manganese. The bromine compound can be used as long as it is dissolved in acetic acid in the reaction system to generate bromide ions. For example, inorganic bromine compounds such as zirconium bromide, sodium bromide and cobalt bromide, bromoacetic acid, tetrabromethane, etc. And an organic bromine compound.

실시예Example

이하, 본 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 본 발명의 예시로서 제시된 것으로 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 실시예에 의해 본 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.Hereinafter, the operation and effects of the invention will be described in more detail through specific examples of the present invention. However, this is provided as an example of the present invention, and the present invention may be implemented in various different forms, and the scope of the present invention is not limited in any sense by examples.

실시예 1Example 1

본 실시예에서는 도 1에 나타낸 장치를 이용하였다.In this embodiment, the apparatus shown in Fig. 1 is used.

m-자일렌(380mL, JUNSEI, 98.5%)을 용매로서 아세트산(1000mL, 삼전순약, 99.5%)과 혼합한 후 코발트/망간/브롬(몰비 1/1/2) 촉매 존재하에 공기 중에서 액상 산화시켰다. 생성된 이소프탈산을 반응 혼합물로부터 분리하고, 반응 모액을 증류기(100)에서 증류시켜 아세트산을 분리하였다. 수득된 슬러리에 물을 첨가하여 유기산을 석출한 후 여과기(101)를 통해 석출된 유기산과 잔여액을 분리하였다. 분리된 잔여액에 수산화나트륨 및 탄산나트륨 농도가 10 내지 50질량%인 용액을 잔여액의 pH가 9 내지 11이 되도록 첨가하고 탄산화조(102)에 통과시켜 촉매 금속의 금속염 침전물(0.7g)을 수득하였다. m-xylene (380 mL, JUNSEI, 98.5%) was mixed with acetic acid (1000 mL, Samjeon Pure, 99.5%) as a solvent, and then liquid oxidized in air in the presence of a cobalt/manganese/bromine (molar ratio 1/1/2) catalyst. . The resulting isophthalic acid was separated from the reaction mixture, and the reaction mother liquor was distilled in a distiller 100 to separate acetic acid. After adding water to the obtained slurry to precipitate an organic acid, the organic acid precipitated through the filter 101 and the residual liquid were separated. To the separated residual solution, a solution having a sodium hydroxide and sodium carbonate concentration of 10 to 50% by mass was added so that the pH of the residual solution was 9 to 11 and passed through a carbonation tank 102 to obtain a metal salt precipitate of catalyst metal (0.7 g). Did.

수득한 촉매 금속의 금속염 침전물을, 아세트산과 물의 혼합 용매(100mL, 물의 함량은 혼합 용매 전체 중량의 10중량%)를 포함하는 아세트산조(103)에 넣고, 온도를 102℃로 유지하였다. 상기 아세트산조(103)에 지르코늄 브로마이드를 지르코늄 원자의 농도가 자일렌과 상기 용매의 중량을 기준으로 14ppm이 되도록 첨가하고 3시간 동안 교반하였다.The metal salt precipitate of the obtained catalyst metal was placed in an acetic acid bath 103 containing a mixed solvent of acetic acid and water (100 mL, the water content being 10% by weight of the total weight of the mixed solvent), and the temperature was maintained at 102°C. Zirconium bromide was added to the acetic acid bath 103 so that the concentration of zirconium atoms was 14 ppm based on the weight of xylene and the solvent and stirred for 3 hours.

아세트산조(103)를 거친 용액을 공기 도입부를 갖춘 3780mL 티타늄 소재 반응조(104)에 투입하고, 여기에 m-자일렌 380mL, 아세트산과 물의 혼합 용매(1000mL, 물의 함량은 혼합 용매 전체 중량의 10중량%)를 첨가하였다. 반응조(104) 내 CMB 촉매계에 포함된 코발트 원자, 망간 원자 및 브롬 원자의 농도는 자일렌과 상기 용매의 중량을 기준으로 각각 200ppm, 200ppm 및 400ppm이었다.The solution passed through the acetic acid tank 103 is put into a 3780 mL titanium material reaction tank 104 equipped with an air introduction part, and m-xylene 380 mL, a mixed solvent of acetic acid and water (1000 mL, water content is 10 weight of the total weight of the mixed solvent) %). The concentrations of the cobalt atom, manganese atom and bromine atom included in the CMB catalyst system in the reactor 104 were 200 ppm, 200 ppm, and 400 ppm, respectively, based on the weight of xylene and the solvent.

반응조(104)의 온도를 170℃, 압력을 30bar, 교반속도를 500rpm으로 설정하여, m-자일렌 혼합물을 150분간 반응시켰다. 반응 종료 후, 반응 생성물을 30℃까지 냉각시켜 슬러리 형태의 생성물을 회수하였다. 상기 슬러리에 이의 10배 부피의 물을 첨가하고 10℃에서 1일 동안 냉각시킨 후, 고형 성분을 건조시켜 이소프탈산(IPA)(450g)을 회수하였다. 이때, 부산물의 농도는 고성능 액체 크로마토그래피(HPLC 1200 series, Agilent Technologies社)로 측정하였다. 측정된 부산물 농도를 아래 표 1에 나타냈다.The temperature of the reaction tank 104 was set to 170° C., the pressure to 30 bar, and the stirring speed to 500 rpm, and the m-xylene mixture was reacted for 150 minutes. After the reaction was completed, the reaction product was cooled to 30°C to recover the slurry product. After adding 10 times its volume to the slurry and cooling at 10° C. for 1 day, the solid component was dried to recover isophthalic acid (IPA) (450 g). At this time, the concentration of by-products was measured by high performance liquid chromatography (HPLC 1200 series, Agilent Technologies). The measured by-product concentration is shown in Table 1 below.

비교예 1Comparative Example 1

지르코늄 브로마이드를 첨가하지 않는 것을 제외하고는, 상기 실시예 1과 동일한 과정을 통해 이소프탈산(IPA)(380g)을 회수하고 부산물 농도를 측정하였다. 측정된 부산물 농도를 아래 표 1에 나타냈다.Except for not adding zirconium bromide, isophthalic acid (IPA) (380 g) was recovered and the by-product concentration was measured through the same procedure as in Example 1. The measured by-product concentration is shown in Table 1 below.

비교예 2Comparative Example 2

지르코늄 브로마이드를 지르코늄 원자의 농도가 실시예 1에서 언급된 자일렌과 용매의 중량을 기준으로 14ppm이 되도록 반응조(104)에 첨가하는 것을 제외하고는, 상기 실시예 1과 동일한 과정을 통해 이소프탈산(IPA)(400g)을 회수하고 부산물 농도를 측정하였다. 측정된 부산물 농도를 아래 표 1에 나타냈다.Except that zirconium bromide is added to the reaction vessel 104 so that the concentration of zirconium atoms is 14 ppm based on the weight of the xylene and solvent mentioned in Example 1, isophthalic acid ( IPA) (400 g) was recovered and the by-product concentration was measured. Table 1 shows the measured by-product concentration.

촉매량 (ppm)Catalyst amount (ppm) 부산물 농도 (ppm)By-product concentration (ppm) CoCo MnMn BrBr ZrZr ZrBr4
투입위치
ZrBr 4
Input position
3-CBA3-CBA m-Tolm-Tol BABA
실시예 1Example 1 200200 200200 400400 1414 아세트산조
(103)
Acetic acid bath
(103)
3232 00 181181
비교예 1Comparative Example 1 200200 200200 400400 00 투입 안함No input 568568 243243 252252 비교예 2Comparative Example 2 200200 200200 400400 1414 반응조(104)Reactor (104) 479479 255255 245245

주) 3-CBA: 3-카복시벤즈알데히드, m-Tol: m-톨루산(m-toluic acid), BA: 벤조산)Note) 3-CBA: 3-carboxybenzaldehyde, m-Tol: m-toluic acid, BA: benzoic acid)

상기 표 1에 나타낸 바와 같이, 지르코늄 브로마이드를 아세트산조(103)에 첨가한 실시예 1에 따른 생성물 중 3-카복시벤즈알데히드 및 벤조산의 농도는 각각 32ppm 및 181ppm으로 부산물의 함량이 매우 적었으며 m-톨루산은 생성되지 않았다. As shown in Table 1, the concentrations of 3-carboxybenzaldehyde and benzoic acid in the product according to Example 1 in which zirconium bromide was added to the acetic acid bath 103 were 32 ppm and 181 ppm, respectively, and the content of by-products was very small and m-tolu No acid was produced.

이에 반하여, 지르코늄 브로마이드를 첨가하지 않은 비교예 1에서는 568ppm의 3-카복시벤즈알데히드, 243ppm의 m-톨루산 및 252ppm의 벤조산이 부산물로서 발생하였고, 지르코늄 브로마이드를 아세트산조가 아닌 반응조(104)에 투입하여 촉매 활성화 과정을 수행하지 않은 비교예 2에서는 479ppm의 3-카복시벤즈알데히드, 255ppm의 m-톨루산 및 245ppm의 벤조산이 부산물로서 발생하여, 실시예 1에 비해 부산물의 함량이 많았다. 또한, 비교예 2는 비교예 1에 비해 부산물인 m-톨루산의 농도가 크게 증가하였다. On the other hand, in Comparative Example 1 in which zirconium bromide was not added, 568 ppm of 3-carboxybenzaldehyde, 243 ppm of m-toluic acid, and 252 ppm of benzoic acid were generated as by-products, and zirconium bromide was introduced into the reaction tank 104 rather than the acetic acid bath to catalyze the catalyst. In Comparative Example 2 in which the activation process was not performed, 479 ppm of 3-carboxybenzaldehyde, 255 ppm of m-toluic acid, and 245 ppm of benzoic acid were generated as by-products, and the content of by-products was higher than in Example 1. In addition, Comparative Example 2 significantly increased the concentration of m-toluic acid as a by-product compared to Comparative Example 1.

위의 내용을 근거로 할 때, 본 발명의 방법은 높은 순도의 이소프탈산을 제공할 수 있으며, 이에 따라 불순물 제거를 위한 추가적인 정제 과정이 필요하지 않아서 공정의 효율성과 경제성 측면에서 매우 유리하다.Based on the above, the method of the present invention can provide a high purity isophthalic acid, and thus, an additional purification process for removing impurities is not required, which is very advantageous in terms of process efficiency and economy.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Since the specific parts of the present invention have been described in detail above, it is obvious to those skilled in the art that this specific technique is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

100: 증류기 101: 여과기 102: 탄산화조 103: 아세트산조 104: 반응조100: distiller 101: filter 102: carbonation tank 103: acetic acid bath 104: reaction tank

Claims (7)

CMB(cobalt/manganese/bromide) 촉매계 존재하에 자일렌을 산화시켜 이소프탈산을 제조하는 방법으로서,
(1) CMB 촉매계를 포함한 산화반응 모액(mother liquor)으로부터 유기산을 제거하는 단계;
(2) (1)단계로부터의 잔여액에 침전제를 첨가하여 촉매 금속의 금속염 침전물을 수득하는 단계;
(3) (2)단계로부터의 촉매 금속의 금속염 침전물을 아세트산에 용해시키고 브롬 전구체로서 지르코늄 브로마이드(ZrBr4)를 첨가하는 단계; 및
(4) (3)단계로부터의 용액을 자일렌의 산화 반응 단계에 투입하는 단계를 포함하는, 이소프탈산의 제조방법.
A method for preparing isophthalic acid by oxidizing xylene in the presence of a CMB (cobalt/manganese/bromide) catalyst system,
(1) removing an organic acid from an oxidation reaction mother liquor including a CMB catalyst system;
(2) adding a precipitant to the residual liquid from step (1) to obtain a metal salt precipitate of catalyst metal;
(3) dissolving the metal salt precipitate of catalyst metal from step (2) in acetic acid and adding zirconium bromide (ZrBr 4 ) as a bromine precursor; And
(4) A method for producing isophthalic acid, comprising the step of introducing the solution from step (3) into the xylene oxidation reaction step.
제1항에 있어서, (3)단계는 100 내지 115℃의 온도에서 1 내지 4시간 동안 수행되는 것인, 이소프탈산의 제조방법. The method of claim 1, wherein step (3) is performed for 1 to 4 hours at a temperature of 100 to 115°C. 제1항에 있어서, (4)단계는 CMB 촉매계 존재하에 불활성 기체 중 10 내지 95부피%의 산소를 포함하는 분위기에서 아세트산 중에서 150 내지 220℃의 온도 및 10 내지 50bar의 압력에서 수행되는 것인, 이소프탈산의 제조방법.The method according to claim 1, wherein step (4) is carried out at a temperature of 150 to 220° C. in acetic acid and a pressure of 10 to 50 bar in acetic acid in an atmosphere containing 10 to 95 vol% oxygen in an inert gas in the presence of a CMB catalyst system. Method for producing isophthalic acid. 제1항 또는 제3항에 있어서, (4)단계에서 CMB 촉매계에 포함된 코발트 원자 및 망간 원자의 농도는 각각 자일렌과 아세트산의 중량을 기준으로 10 내지 2500ppm인 것인, 이소프탈산의 제조방법.The concentration of cobalt atom and manganese atom in the CMB catalyst system in step (4) is that of xylene and acetic acid, respectively. Method of producing isophthalic acid, which is 10 to 2500 ppm based on weight. 제1항에 있어서, (3)단계로부터의 용액에 포함된 지르코늄 원자의 농도는 자일렌과 아세트산의 중량을 기준으로 10 내지 1000ppm인 것인, 이소프탈산의 제조방법.The concentration of zirconium atoms in the solution from step (3) is that of xylene and acetic acid. Method of producing isophthalic acid, which is 10 to 1000 ppm based on weight. 제1항 또는 제3항에 있어서, (4)단계에서 CMB 촉매계에 포함된 브롬 원자의 농도는 자일렌과 아세트산의 중량을 기준으로 10 내지 4000ppm인 것인, 이소프탈산의 제조방법.The concentration of bromine atom in the CMB catalyst system in step (4) is that of xylene and acetic acid. Method of producing isophthalic acid, which is 10 to 4000 ppm based on weight. 제1항에 따르는 이소프탈산의 제조방법에 사용되는 장치로서,
CMB 촉매계를 포함한 산화반응 모액으로부터 유기산을 석출시켜 분리하는 여과기;
촉매 금속의 금속염 침전물을 생성하는 탄산화조;
촉매 금속의 금속염 침전물을 용해시키기 위한 아세트산조; 및
아세트산조를 거친 용액과 자일렌의 혼합물이 산화되는 반응조를 포함하는 장치.
An apparatus used in the method for producing isophthalic acid according to claim 1,
A filter for separating and separating an organic acid from an oxidation reaction mother liquor including a CMB catalyst system;
A carbonation tank that produces a metal salt precipitate of the catalyst metal;
An acetic acid bath for dissolving a metal salt precipitate of the catalyst metal; And
A device comprising a reaction tank in which a mixture of xylene and a solution passed through an acetic acid bath is oxidized.
KR1020180150709A 2018-11-29 2018-11-29 Manufacturing Process of Aromatic Dicarboxylic Acids by Using a Cobalt/Manganese/Bromide Catalyst System Having Improved Oxidation Reaction Efficiency KR20200064512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180150709A KR20200064512A (en) 2018-11-29 2018-11-29 Manufacturing Process of Aromatic Dicarboxylic Acids by Using a Cobalt/Manganese/Bromide Catalyst System Having Improved Oxidation Reaction Efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180150709A KR20200064512A (en) 2018-11-29 2018-11-29 Manufacturing Process of Aromatic Dicarboxylic Acids by Using a Cobalt/Manganese/Bromide Catalyst System Having Improved Oxidation Reaction Efficiency

Publications (1)

Publication Number Publication Date
KR20200064512A true KR20200064512A (en) 2020-06-08

Family

ID=71090172

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180150709A KR20200064512A (en) 2018-11-29 2018-11-29 Manufacturing Process of Aromatic Dicarboxylic Acids by Using a Cobalt/Manganese/Bromide Catalyst System Having Improved Oxidation Reaction Efficiency

Country Status (1)

Country Link
KR (1) KR20200064512A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020029214A (en) 2000-10-12 2002-04-18 조 정 래 The Preparation method of high purity terephthalic acid with composition of mult-bromic catalytic system
KR100507827B1 (en) 1996-11-18 2005-08-10 이 아이 듀폰 디 네모아 앤드 캄파니 Production of Aromatic Carboxylic Acids and Recovery of Co/Mn Catalyst from Ash

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507827B1 (en) 1996-11-18 2005-08-10 이 아이 듀폰 디 네모아 앤드 캄파니 Production of Aromatic Carboxylic Acids and Recovery of Co/Mn Catalyst from Ash
KR20020029214A (en) 2000-10-12 2002-04-18 조 정 래 The Preparation method of high purity terephthalic acid with composition of mult-bromic catalytic system

Similar Documents

Publication Publication Date Title
US8884054B2 (en) Process for oxidizing alkyl aromatic compounds
US9266809B2 (en) Process for producing terephthalic acid
US9045407B2 (en) Mixtures used in oxidizing alkyl aromatic compounds
KR100947754B1 (en) Purification of carboxylic acids by complexation with selective solvents
US8835678B2 (en) Solid terephthalic acid composition
US8933266B2 (en) Process for producing terephthalic acid
TWI503308B (en) Process for producing terephthalic acid
US20150094486A1 (en) Active ionic liquid mixtures for oxidizing alkylaromatic compounds
TW201329034A (en) Process for oxidizing alkyl-aromatic compounds
KR20200064512A (en) Manufacturing Process of Aromatic Dicarboxylic Acids by Using a Cobalt/Manganese/Bromide Catalyst System Having Improved Oxidation Reaction Efficiency
TW201326109A (en) Process for producing terephthalic acid
TWI503309B (en) Process for oxidizing impurities in crude terephthalic acid
US9150485B2 (en) Process for controlling reaction and crystallization solvent composition in process for production of aromatic carboxylic acid
JPH0532586A (en) Production of 2,6-naphthalenedicarboxylic acid
KR20200061616A (en) Method for Recovering Metal Catalysts Comprising Cobalt and Manganese
JPH09124548A (en) Production of alkylbenzoic acid
KR20140052064A (en) Process for oxidizing alkyl-aromatic compounds
US20150099898A1 (en) Process for removing amide impurities in aromatic carboxylic acids
TW201516029A (en) Process for producing terephthalic acid
JP4367591B2 (en) Production of pyromellitic acid
JPS61194048A (en) Production of 2,3-naphthalenedicarboxylic acid
JP2003221379A (en) Method for producing 3,3',4,4'-diphenylsulfone- tetracarboxylic acid
TW201326104A (en) Process for oxidizing alkyl aromatic compounds
KR20100078443A (en) Preparation method of benzene dicarboxylic acid