KR20200060183A - Silver nano wire ink - Google Patents

Silver nano wire ink Download PDF

Info

Publication number
KR20200060183A
KR20200060183A KR1020190009176A KR20190009176A KR20200060183A KR 20200060183 A KR20200060183 A KR 20200060183A KR 1020190009176 A KR1020190009176 A KR 1020190009176A KR 20190009176 A KR20190009176 A KR 20190009176A KR 20200060183 A KR20200060183 A KR 20200060183A
Authority
KR
South Korea
Prior art keywords
silver
ink
silver nanowire
tpu
solvent
Prior art date
Application number
KR1020190009176A
Other languages
Korean (ko)
Inventor
전관구
Original Assignee
주식회사 이큐브머티리얼즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이큐브머티리얼즈 filed Critical 주식회사 이큐브머티리얼즈
Priority to KR1020190009176A priority Critical patent/KR20200060183A/en
Publication of KR20200060183A publication Critical patent/KR20200060183A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • B01F11/02
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/53Mixing liquids with solids using driven stirrers
    • B01F3/1221
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B22F1/0007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks

Abstract

The present invention relates to a silver nano-wire ink and, more specifically, to a silver nano-wire manufacturing method, which suppresses the formation of silver nanoparticles, and is improved to increase an output of silver nano-wires according to smooth dispersion, that is, a yield by minimizing the phenomenon of aggregation during the production of the silver nano-wires. The silver nano-wires manufactured by the manufacturing method are recovered, dispersed in an NMP solution, and precipitated, and a thermoplastic polyurethane binder is mixed and stirred in the precipitate to manufacture the silver nano-wire ink.

Description

은나노 와이어 잉크{Silver nano wire ink}Silver nano wire ink

본 발명은 은나노 와이어 잉크에 관한 것으로, 보다 상세하게는 은나노 와이어를 극성 솔벤트를 이용해 분산후 침전시키고, 침전물에 바인더 및 용매를 가해 혼합교반하여 제조되는 은나노 와이어 잉크에 관한 것이다.The present invention relates to a silver nanowire ink, and more particularly, to a silver nanowire ink prepared by dispersing the silver nanowires using a polar solvent and then mixing and stirring the precipitate with a binder and a solvent.

금속 나노 와이어는 은, 구리, 백금 등이 있지만 대표적인 재질은 은나노 와이어이다.Metal nanowires include silver, copper, and platinum, but the typical material is silver nanowires.

은나노 와이어는 2002년 발표된 이후로 많은 학교, 연구기관, 회사에서 연구되어 왔으며, 가장 활발한 연구분야는 투명전극에 사용되는 전도성 소재이다. Silver nanowires have been studied in many schools, research institutes, and companies since their release in 2002, and the most active research field is conductive materials used in transparent electrodes.

은나노 와이어는 일반적으로 직경 30~300nm, 길이 5~100um를 이루어서 듬성듬성 투명한 필름 위에 펼치면 전기전도성도 있고, 가시광은 투과되는 투명전도성 필름이 된다.Silver nanowires generally have a diameter of 30 to 300 nm and a length of 5 to 100 um to spread on a transparent film with a thin film and have electrical conductivity, and visible light becomes a transparent conductive film that is transmitted.

은나노 와이어는 그 외에도 폴리우레탄 필름이나 실리콘 위에 코팅되어 유연전극으로도 개발되고 있으며, 천에 코팅되어 전도성 천으로도 개발되고 있다.In addition, silver nanowires are developed as flexible electrodes coated on polyurethane films or silicones, and are also developed as conductive cloths coated on fabrics.

은나노 와이어 네트워크는 전기전도성이 우수하고, 공기중에서 산화되지 않으며, 반복굽힘에 잘 끊어지지 않고, 열전달 성능이 우수하다는 장점을 가졌지만 적합한 응용처를 찾지 못하여 실생활에 유용하게 사용되지는 못하고 있다.The silver nano wire network has the advantage of being excellent in electrical conductivity, not oxidizing in the air, not easily broken by repeated bending, and excellent in heat transfer performance, but it has not been found to be suitable for practical use because it cannot find a suitable application.

가장 큰 이유는 가격이 비싸기 때문인데, 비싼 가격을 넘어서는 사용의 편리함이나 장점을 주지 못하는 것도 상용화가 늦어지는 이유다.The main reason is that the price is high, but it is also the reason that commercialization is delayed because it does not give convenience or advantage of use beyond the expensive price.

그리고, 은나노 와이어의 제조방법으로 에틸렌글리콜 등의 폴리올 용매에 은 화합물을 용해시켜 할로겐 화합물과 보호제인 PVP(폴리비닐피롤리돈) 존재하에서 용매인 폴리올의 환원력을 이용하여 선상 형상의 금속 은을 석출시키는 수법이 하기한 [선행기술문헌]에서 밝힌 바와 같이 알려져 있다.Then, the silver nano-wire is prepared by dissolving the silver compound in a polyol solvent such as ethylene glycol to precipitate a linear metallic silver by using the reducing power of the solvent polyol in the presence of a halogen compound and a protective agent PVP (polyvinylpyrrolidone). The method of prescribing is known as stated in the [Prior Art Document] described below.

그런데, 이들 방법은 은나노 파티클 형성량이 커지는 단점이 있어 이로 인해 은나노 와이어가 생성되는 도중에 뭉치면서 침전되고, 재분산이 불가해 짐으로써 은나노 와이어의 생산량, 즉 수율이 떨어지는 단점이 있어 왔다.However, these methods have a disadvantage in that the formation amount of silver nanoparticles is large, and as a result, the production of silver nanowires, i.e., yields, has been deteriorated due to precipitation during the production of silver nanowires and aggregation and re-dispersion.

미국 공개특허 US 2005-0056118(2005.03.17.), 'Methods of nanostructure formation and shape selection'US Patent Publication No. 2005-0056118 (2005.03.17.), 'Methods of nanostructure formation and shape selection' 미국 공개특허 US 2008-0003130(2008.01.03.), 'Methods for production of silver nanostructures'United States Published Patent US 2008-0003130 (2008.01.03.), 'Methods for production of silver nanostructures' 국내 공개특허 제10-2016-0129895호(2016.11.09.), '은나노 와이어의 제조 방법 및 은나노 와이어 및 이를 사용한 잉크'Domestic Publication No. 10-2016-0129895 (2016.11.09.), 'Method of manufacturing silver nanowire and silver nanowire and ink using the same' 국내 등록특허 제10-1693486호(2017.01.02.), '은나노와이어를 포함한 코팅액 조성물, 그를 이용한 전도성 박막 및 그의 제조 방법'Domestic registered patent No. 10-1693486 (2017.01.02.), 'Coating solution composition including silver nanowire, conductive thin film using the same and method for manufacturing the same'

본 발명은 상술한 바와 같은 종래 기술상의 제반 문제점들을 감안하여 이를 해결하고자 창출된 것으로, 은나노 파티클 형성을 억제하고, 이를 통해 은나노 와이어가 생성되는 도중에 뭉치는 현상을 최소화시킴으로써 원활한 분산에 따른 은나노 와이어의 생산량, 즉 수율을 증대시킬 수 있도록 개선된 은나노 와이어 제조방법에 의해 제조된 은나노 와이어를 NMP 용액에 분산시키고, 침전시켜 침전물에 열가소성 폴리 우레탄 바인더를 혼합교반하여 제조하는 은나노 와이어 잉크를 제공하기 위한 것이다.The present invention was created to solve the above-mentioned problems in consideration of various problems in the prior art, and suppresses the formation of silver nanoparticles, thereby minimizing the agglomeration during the production of silver nanowires, thereby reducing the silver nanowires according to the smooth dispersion. The present invention is to provide a silver nanowire ink prepared by mixing and stirring a thermoplastic polyurethane binder in a precipitate by dispersing and precipitating the silver nanowire produced by the improved silver nanowire manufacturing method to increase the production amount, that is, the yield. .

본 발명은 상기한 목적을 달성하기 위한 수단으로, The present invention is a means for achieving the above object,

은나노 와이어를 NMP 용액에 분산시키고, 침전시켜 침전물에 열가소성 폴리 우레탄 바인더를 혼합교반하여 잉크로 제조하는 은나노 와이어 잉크를 제공한다.A silver nanowire ink is prepared by dispersing a silver nanowire in an NMP solution, sedimenting, and mixing and stirring a thermoplastic polyurethane binder in a precipitate to form an ink.

또한, 상기 은나노 와이어 잉크는, 은나노 와이어 40-60중량%와; 바인더 8-12중량% 및 나머지 용매로 조성된 것을 특징으로 한다.In addition, the silver nano-wire ink, 40-60% by weight of the silver nano-wire; It is characterized by being composed of 8-12% by weight of the binder and the remaining solvent.

상기 은나노 와이어는, The silver nano wire,

폴리올과 소포제를 이용하여 환원액을 만드는 환원액 준비단계; 만들어진 환원액에 캡핑제와 계면활성제 및 촉매제를 첨가하여 반응액을 만드는 반응액 준비단계; 질산은을 용매에 녹여 은 소스 용액을 만드는 은 소스 준비단계; 준비된 은 소스 용액을 반응액에 일정속도로 주입하여 은나노 와이어를 만드는 은나노 와이어 생성단계;를 수행하여 은나노 와이어를 합성하고,A reducing solution preparation step for producing a reducing solution using a polyol and an antifoaming agent; A reaction solution preparation step of adding a capping agent, a surfactant, and a catalyst to the reduced solution to make a reaction solution; A silver source preparation step of preparing a silver source solution by dissolving silver nitrate in a solvent; Synthesizing the silver nanowires by performing a silver nanowire generation step of making a silver nanowire by injecting the prepared silver source solution into the reaction solution at a constant rate,

상기 은나노 와이어 생성단계에서 상기 은소스 용액의 주입 완료후, 냉각하면서 자연침전시키고, 침전물을 원심분리하여 은나노 와이어를 회수하는 회수단계;를 수행하여 회수된 은나노 와이어인 것을 특징으로 한다.After the injection of the silver source solution is completed in the silver nanowire generation step, the precipitate is spontaneously spontaneously cooled, and a recovery step of centrifuging the precipitate to recover the silver nanowire; it is characterized in that the silver nanowire recovered by performing.

이때, 상기 폴리올은 용매로서 에틸렌글리콜, 글리세롤, 디에틸렌글리콜, 프로필렌글리콜, 디프로필렌글리콜 중 하나 또는 둘 이상의 조합인 것에도 특징이 있다.At this time, the polyol is also characterized in that it is one or a combination of two or more of ethylene glycol, glycerol, diethylene glycol, propylene glycol, dipropylene glycol as a solvent.

또한, 상기 소포제는 솔벤트인 NMP(N-Methyl-2-pyrrolidone), 세틸 알콜(Cetyl alcohol), 스테아릴 알콜(stearyl alcohol)중 어느 하나를 사용하는 것에도 그 특징이 있다.In addition, the anti-foaming agent is characterized by using any one of solvent NMP (N-Methyl-2-pyrrolidone), cetyl alcohol (Cetyl alcohol), stearyl alcohol (stearyl alcohol).

또한, 상기 환원액 준비단계는 에틸렌글리콜과 글리세롤을 7:3의 부피비로 혼합하는 제1과정과; 상기 제1과정에서 혼합된 혼합액에 소포제를 10-20 부피% 첨가하는 제2과정과; 제2과정을 통해 만들어진 혼합액을 120℃로 가열하여 환원액을 만드는 제3과정으로 이루어진 것에도 그 특징이 있다.In addition, the reducing liquid preparation step includes a first process of mixing ethylene glycol and glycerol in a volume ratio of 7: 3; A second process of adding 10-20% by volume of an antifoaming agent to the mixed solution mixed in the first process; It is also characterized by the fact that it consists of a third process that produces a reducing solution by heating the mixed solution made through the second process to 120 ° C.

또한, 상기 반응액 준비단계는 상기 환원액에 캡핑제를 환원액 10ℓ를 기준으로 300-400g 투입하는 제1스텝과; 상기 제1스텝 후 캡핑제가 투입된 환원액에 계면활성제를 환원액 10ℓ를 기준으로 15-40g 투입하는 제2스텝과; 제2스텝 후 계면활성제가 투입된 환원액에 촉매제를 환원액 10ℓ를 기준으로 0.05-0.2g 첨가하는 제3스텝과; 제3스텝 후 교반하여 첨가물이 모두 녹도록 150-160℃까지 가열하여 반응액을 만드는 제4스텝;을 포함하는 것에도 그 특징이 있다.In addition, the reaction solution preparation step includes a first step of introducing a capping agent into the reducing solution 300-400 g based on 10 l of the reducing solution; A second step in which 15-40 g of a surfactant is added to the reducing solution in which the capping agent is added after the first step, based on 10 liters of the reducing solution; A third step in which 0.05-0.2 g of a catalyst is added to the reducing solution containing the surfactant after the second step, based on 10 liters of the reducing solution; It is also characterized by including a third step; a fourth step of stirring to heat the mixture to 150-160 ° C. so that all the additives are dissolved by stirring.

또한, 상기 은 소스 준비단계는 은 소스가 되는 질산은을 에틸렌글리콜에 1:6의 중량비로 섞어 녹인 후 60℃까지 예열하는 단계이고; 상기 은나노 와이어 생성단계는 준비된 은 소스 액을 일정한 속도로 30분간 반응액에 주입하여 은나노 와이어를 생성하는 단계;인 것에도 그 특징이 있다.In addition, the silver source preparation step is a step of preheating to 60 ° C. after dissolving silver nitrate serving as a silver source in ethylene glycol in a weight ratio of 1: 6; The step of generating silver nanowires is a step of injecting the prepared silver source liquid into the reaction solution at a constant rate for 30 minutes to generate silver nanowires.

또한, 본 발명은 상기의 방법으로 제조된 은나노 와이어 40-60중량%와; 바인더 8-12중량% 및 나머지 용매로 조성된 것을 특징으로 하는 은나노 와이어 잉크도 제공한다.In addition, the present invention is 40 to 60% by weight of silver nanowires produced by the above method; Also provided is a silver nanowire ink characterized in that it is composed of 8-12% by weight of the binder and the remaining solvent.

이때, 상기 바인더는 TPU(열가소성 폴리우레탄)인 것에도 그 특징이 있다.At this time, the binder is also characterized by being TPU (thermoplastic polyurethane).

또한, 상기 용매로는 알코올류 또는 물과 섞이는 극성 솔벤트가 사용되며; 상기 알코올류는 아세톤, 에탄올, 메탄올 중 하나이고, 물과 섞이는 극성 솔벤트는 NMP인 것에도 그 특징이 있다.In addition, a polar solvent mixed with alcohols or water is used as the solvent; The alcohol is one of acetone, ethanol, and methanol, and the polar solvent mixed with water is also characterized by being NMP.

또한, 상기 은나노 와이어와 TPU는 4:1-6:1의 중량비를 이루고, NMP가 TPU의 200% 이상 함유되게 특정된 것에도 그 특징이 있다.In addition, the silver nanowire and the TPU form a weight ratio of 4: 1-6: 1, and the NMP is also characterized by being specified to contain more than 200% of the TPU.

또한, 상기 TPU의 굽힘과 접힘 특성을 더 높이도록 상기 TPU에 폴리이미드, 노볼락수지, 아크릴계, 셀룰로스계, 메타크릴계, 스티렌계, 비닐아세테이트계 수지를 TPU 100중량부에 대해 5-10중량부 더 첨가한 것에도 그 특징이 있다.In addition, the polyimide, novolak resin, acrylic, cellulose, methacrylic, styrene, and vinyl acetate resins are added to the TPU in an amount of 5-10 weights to further increase the bending and folding characteristics of the TPU. It is also characterized by adding more parts.

또한, 상기 TPU에 부틸카비톨, 터피놀, 코코졸, 메틸 실리케이트, 크실렌, 1,4-부탄디아민(BDA), 에테르, 글리콜에테르, 아세테이트, 텍산올, 파인오일, 동록유, 부틸카비톨아세테이트 중에서 선택된 하나를 TPU 100중량부에 대해 5-10중량부 더 첨가하여 잉크를 인쇄할 때 건조되는 것을 방지하는 것에도 그 특징이 있다.In addition, butyl carbitol, terpinol, cocosol, methyl silicate, xylene, 1,4-butanediamine (BDA), ether, glycol ether, acetate, texanol, pine oil, green oil, butyl carbitol acetate in the TPU Another feature is that 5-10 parts by weight is added to 100 parts by weight of TPU to prevent drying when ink is printed.

또한, 본 발명은 인쇄용 베이스 천에 100메쉬의 스크린프린트 마스크를 올려 놓고 은나노 와이어 40-60중량%와, 바인더 8-12중량% 및 나머지 용매로 조성된 은나노 와이어 잉크를 이용하여 패턴 인쇄하는 단계; 패턴 인쇄된 베이스 천을 130-150℃의 온도에서 건조하는 단계; 건조 후 드러난 은나노 와이어 열선에 대해 핫멜트필름으로 덮어 절연하는 단계;를 포함하는 것을 특징으로 하는 은나노 와이어 잉크를 이용한 유연성 전극 제조방법도 제공한다.In addition, the present invention is a step of printing a pattern using a silver nanowire ink composed of 40-60% by weight of a silver nanowire, 8-12% by weight of a binder, and the remaining solvent after placing a 100 mesh screen print mask on the base fabric for printing; Drying the pattern printed base cloth at a temperature of 130-150 ° C; Also provided is a method of manufacturing a flexible electrode using silver nanowire ink, comprising: insulating the nanowire wire exposed after drying with a hot melt film.

이때, 상기 베이스 천은 TPU 천 혹은 TPU가 일정두께로 코팅된 천을 사용하는 것에도 그 특징이 있다.At this time, the base fabric is also characterized by using a TPU fabric or a fabric coated with a certain thickness of TPU.

또한, 상기 패턴 인쇄는 'ㄷ'형상의 열선을 여러개로 분리 구성하는 패턴을 사용하고; 상기 핫멜트필름에 TPU 성분이 함유되게 하되, 핫멜트필름에 포함되는 TPU 함량은 핫멜트 100중량부에 대해 5-10중량부를 유지하는 것에도 그 특징이 있다.In addition, the pattern printing uses a pattern for separating the 'c'-shaped heating wire into several; The TPU component is contained in the hot melt film, but the TPU content in the hot melt film is also characterized by maintaining 5-10 parts by weight relative to 100 parts by weight of the hot melt.

본 발명에 따르면, 다음과 같은 효과를 얻을 수 있다.According to the present invention, the following effects can be obtained.

첫째, 은나노 와이어 합성시 파티클 생성을 억제함으로써 은나노 와이어의 수득율을 증대시킬 수 있다.First, it is possible to increase the yield of the silver nano-wire by suppressing the generation of particles when synthesizing the silver nano-wire.

둘째, 유연하고 전기전도성이 우수한 은나노 와이어 잉크를 만들 수 있다.Second, it is possible to make a silver nanowire ink that is flexible and has excellent electrical conductivity.

세째, 유연한 전극으로 활용하여 세탁견뢰도가 우수하고, 통전성이 양호한 발열체로 제품화될 수 있다.Third, it can be commercialized as a heating element that has excellent washing fastness and good electrical conductivity by utilizing it as a flexible electrode.

네째, 타이즈와 같은 밀착의류에 인쇄하여 신축성 센서로도 활용할 수 있다.Fourth, it can be used as a stretch sensor by printing on tight clothing such as tights.

다섯째, 전도성 폴리머를 대체하여 전선으로 사용이 가능하다.Fifth, it can be used as a wire by replacing the conductive polymer.

도 1은 본 발명에 의한 은나노 와이어 제조 공정 설명도이다.
도 2는 본 발명에 의한 은나노 와이어 제조방법의 환원액 준비단계 설명도이다.
도 3은 본 발명에 의한 은나노 와이어 제조방법의 반응액 준비단계 설명도이다.
도 4는 본 발명에 의한 은나노 와이어 잉크 제조방법 설명도이다.
도 5는 본 발명에 의한 은나노 와이어 회수방법 설명도이다.
도 6은 본 발명에 의한 은나노 와이어 잉크를 이용한 유연성 전극 제조방법 설명도이다.
도 7은 본 발명에 의한 유연성 전극 패턴 예시도이다.
도 8은 본 발명에 의한 유연성 전극 패턴에 전선 부착 예시도이다.
도 9는 본 발명에 의한 유연성 전극 패턴의 발열 시험 사진 예시도이다.
1 is an explanatory view of a silver nanowire manufacturing process according to the present invention.
2 is an explanatory diagram of a preparation step of a reducing solution of the method for manufacturing a silver nanowire according to the present invention.
3 is an explanatory diagram of the reaction solution preparation step of the method of manufacturing a silver nanowire according to the present invention.
4 is an explanatory diagram of a method of manufacturing a silver nanowire ink according to the present invention.
5 is an explanatory diagram of a method for recovering silver nanowires according to the present invention.
6 is an explanatory diagram of a method for manufacturing a flexible electrode using silver nanowire ink according to the present invention.
7 is an exemplary view of a flexible electrode pattern according to the present invention.
8 is an exemplary view of attaching electric wires to the flexible electrode pattern according to the present invention.
9 is an exemplary view of a heat test of a flexible electrode pattern according to the present invention.

이하에서는, 첨부도면을 참고하여 본 발명에 따른 바람직한 실시예를 보다 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

본 발명 설명에 앞서, 이하의 특정한 구조 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있으며, 본 명세서에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니된다.Prior to the description of the present invention, the following specific structures or functional descriptions are merely exemplified for the purpose of illustrating the embodiments according to the concept of the present invention, and the embodiments according to the concept of the present invention may be implemented in various forms, It should not be construed as being limited to the embodiments described herein.

또한, 본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로, 특정 실시예들은 도면에 예시하고 본 명세서에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시예들을 특정한 개시 형태에 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경물, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.In addition, embodiments according to the concept of the present invention can be applied to various changes and may have various forms, so specific embodiments will be illustrated in the drawings and described in detail herein. However, this is not intended to limit the embodiments according to the concept of the present invention to a specific disclosure form, and it should be understood that it includes all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.

도 1은 본 발명에 의한 은나노 와이어 제조 공정 설명도이다.1 is an explanatory view of a silver nanowire manufacturing process according to the present invention.

먼저, 본 발명에 따른 은나노 와이어 제조방법에 대하여 도1을 참조하여 설명한다. 은나노 와이어 제조는 은나노 와이어를 합성하는 방법이라고 보면 된다.First, a method of manufacturing a silver nanowire according to the present invention will be described with reference to FIG. 1. The production of silver nanowires can be considered as a method of synthesizing silver nanowires.

은나노 와이어의 합성은 환원력이 있는 폴리올을 용매로 하여 질산은을 일정 온도로 가열함으로써 이루어진다.The synthesis of silver nanowires is accomplished by heating silver nitrate to a constant temperature using a reducing polyol as a solvent.

이때, 폴리올은 용매로서 에틸렌글리콜, 글리세롤, 디에틸렌글리콜, 프로필렌글리콜, 디프로필렌글리콜 등이 될 수 있으며 환원제로 사용된다.At this time, the polyol may be ethylene glycol, glycerol, diethylene glycol, propylene glycol, dipropylene glycol, etc. as a solvent, and is used as a reducing agent.

또한, 은 소스는 질산은, 아세트산은, 산화은, 염화은 등이 사용될 수 있으나, 용매인 폴리올에 대한 용해성과 비용 등을 고려할 때 질산은이 가장 바람직하다.In addition, silver nitrate, silver acetate, silver oxide, silver chloride, and the like may be used as the silver source, but silver nitrate is most preferable when considering solubility and cost for the polyol as a solvent.

여기에서, 본 발명은 반응속도 조절을 통해 불순물인 은나노파티클의 생성을 최대한 억제하도록 하며, 이를 위해 캡핑제 및 할로겐 화합물을 더 첨가할 수 있고, 또한 환원온도를 더 높일 수 있다.Here, the present invention is to suppress the production of silver nanoparticles, which are impurities, through control of the reaction rate, and for this purpose, a capping agent and a halogen compound may be further added, and the reduction temperature may be further increased.

보다 구체적으로, 본 발명에 따른 은나노 와이어 제조방법을 도 1을 참조하여 설명한다.More specifically, a method of manufacturing silver nanowires according to the present invention will be described with reference to FIG. 1.

폴리올과 소포제를 이용하여 환원액을 만드는 환원액 준비단계(S10)와; 만들어진 환원액에 캡핑제와 계면활성제 및 촉매제를 첨가하여 반응액을 만드는 반응액 준비단계(S20)와; 질산은을 용매에 녹여 은 소스 용액을 만드는 은 소스 준비단계(S30)와; 준비된 은 소스 용액을 반응액에 일정속도로 주입하여 은나노 와이어를 만드는 은나노 와이어 생성단계(S40);를 포함한다.A reducing solution preparation step (S10) for producing a reducing solution using a polyol and an antifoaming agent; A reaction solution preparation step (S20) of adding a capping agent, a surfactant, and a catalyst to the reduced solution to make a reaction solution; A silver source preparation step (S30) in which silver nitrate is dissolved in a solvent to make a silver source solution; Includes a silver nano-wire generation step (S40) to make a silver nano-wire by injecting the prepared silver source solution at a constant rate into the reaction solution.

상기 은나노 와이어 생성단계(S40)에서 은소스 용액의 주입이 완료되면, 반응통을 소정시간동안 냉각시키면서 자연 침전시키고, 침전물을 원심분리하여 은나노와이어를 회수하는 은나노와이어 회수단계(S50);를 더 포함한다.When the injection of the silver source solution is completed in the silver nanowire generation step (S40), the reaction vessel is naturally precipitated while cooling for a predetermined time, and the silver nanowire recovery step (S50) of recovering the silver nanowire by centrifuging the precipitate; Includes.

도 2는 본 발명에 의한 은나노 와이어 제조방법의 환원액 준비단계 설명도이다. 2 is an explanatory diagram of a preparation step of a reducing solution of the method for manufacturing a silver nanowire according to the present invention.

도 2를 참조하여 환원액 준비단계(S10)를 설명한다.The reducing liquid preparation step (S10) will be described with reference to FIG. 2.

여기에서, 환원액 준비단계(S10)는, 에틸렌글리콜과 글리세롤을 7:3의 부피비로 혼합하는 제1과정(S11)과; 상기 제1과정(S11)에서 혼합된 혼합액에 소포제를 10-20 부피% 첨가하는 제2과정(S12)과; 제2과정(S12)을 통해 만들어진 혼합액을 120℃로 가열하여 환원액을 만드는 제3과정(S13)으로 이루어진다.Here, the reducing solution preparation step (S10) comprises: a first process (S11) of mixing ethylene glycol and glycerol in a volume ratio of 7: 3; A second process (S12) in which 10-20% by volume of an antifoaming agent is added to the mixed solution mixed in the first process (S11); It consists of a third process (S13) to create a reducing solution by heating the mixed solution made through the second process (S12) to 120 ℃.

이때, 상기 제1과정(S11)에서 에틸렌글리콜과 글리세롤을 7:3의 부피비로 혼합하는 이유는, 글리세롤이 비점이 높아 기화량을 줄일 수 있기 때문에 기존 대비 적은 양을 사용하고도 동일한 효과를 낼 수 있기 때문이다.At this time, the reason for mixing the ethylene glycol and glycerol in a volume ratio of 7: 3 in the first step (S11), because the glycerol has a high boiling point, it is possible to reduce the amount of vaporization, so the same effect can be achieved even if a small amount is used. Because it can.

그리고, 상기 제2과정(S12)에서 사용되는 소포제는, 기화점이 높은 알코올류를 사용하여 후술되는 캡핑제에 의해 생기는 거품을 줄여 질산가스의 방출을 원활하게 함으로써 은나노 파티클의 생성을 줄이면서 은나노 와이어의 수율을 증대시키기 위한 것이다.In addition, the antifoaming agent used in the second process (S12) reduces the bubbles generated by the capping agent described later using alcohols having a high vaporization point to smoothly release nitric acid gas, thereby reducing the generation of silver nanoparticles while reducing the generation of silver nanoparticles. To increase the yield of.

이러한 소포제로는 일종의 솔벤트인 NMP(N-Methyl-2-pyrrolidone), 세틸 알콜(Cetyl alcohol), 스테아릴 알콜(stearyl alcohol)중 어느 하나를 사용한다.As such an antifoaming agent, any one of a solvent, N-Methyl-2-pyrrolidone (NMP), Cetyl alcohol, and stearyl alcohol is used.

또한, 상기 제3과정(S13)에서 혼합액을 120℃까지 승온하는 이유는 이후 진행되는 반응액 생성을 촉진하면서 환원능력을 증대시키기 위함이다.In addition, the reason for raising the mixed solution to 120 ° C. in the third process (S13) is to increase the reduction ability while promoting the generation of the reaction solution.

도 3은 본 발명에 의한 은나노 와이어 제조방법의 반응액 준비단계 설명도이다. 3 is an explanatory diagram of the reaction solution preparation step of the method of manufacturing a silver nanowire according to the present invention.

도 3을 참조하여 반응액 준비단계를 설명한다.The reaction solution preparation step will be described with reference to FIG. 3.

한편, 반응액 준비단계(S20)는, 상기 환원액에 캡핑제를 환원액 10L를 기준으로 300-400g 투입하는 제1스텝(S21)과; 상기 제1스텝(S21) 후 캡핑제가 투입된 환원액에 계면활성제를 환원액 10L를 기준으로 15-40g 투입하는 제2스텝(S22)과; 제2스텝(S22) 후 계면활성제가 투입된 환원액에 촉매제를 환원액 10L를 기준으로 0.05-0.2g 첨가하는 제3스텝(S23)과; 제3스텝(S23) 후 교반하여 첨가물이 모두 녹도록 150-160℃까지 가열하여 반응액을 만드는 제4스텝(S24);을 포함한다.On the other hand, the reaction solution preparation step (S20), the first step (S21) for introducing a capping agent in the reducing solution 300-400g based on 10L of the reducing solution; A second step (S22) in which 15-40 g of a surfactant is added to the reducing solution in which the capping agent is added after the first step (S21) based on 10L of the reducing solution; A third step (S23) in which 0.05-0.2 g of a catalyst is added to the reducing solution to which the surfactant is added after the second step (S22) based on 10 L of the reducing solution; And a third step (S23) followed by stirring to heat the mixture to 150-160 ° C. so that all of the additives are dissolved, thereby forming a reaction solution.

이때, 상기 제1스텝(S21)에서 사용되는 캡핑제는, 환원반응을 통해 생성되는 나노물질, 즉 은나노 와이어 표면을 감싸 적정 크기로 성장하도록 성장을 억제하면서 액상 매체로의 분산성을 유지시키기 위한 것이다.At this time, the capping agent used in the first step (S21) is to maintain the dispersibility into a liquid medium while suppressing growth to grow to an appropriate size by wrapping the surface of a nanomaterial, that is, a silver nanowire, produced through a reduction reaction. will be.

이러한 캡핑제로는, 폴리비닐피놀리돈 또는 폴리비닐피놀리돈 코폴리머 또는 폴리비닐 아세테이트(Polyvinyl acetate)가 될 수 있다.The capping agent may be polyvinyl pinolidone or polyvinyl pinolidone copolymer or polyvinyl acetate.

또한, 상기 제2스텝(S22)에서 사용되는 계면활성제는, 은나노 와이어의 길이가 길어지는 것을 막아 적정 길이를 갖도록 유도하며, 과량 투입시에는 짧은 은나노 와이어와 은나노 파티클 생성을 촉진하게 되므로 상기와 같은 양으로 한정하여 첨가되어야 한다.In addition, the surfactant used in the second step (S22) prevents the length of the silver nanowires from becoming longer and induces them to have an appropriate length, and when excessively supplied, the short silver nanowires and silver nanoparticles are promoted. It should be added in a limited amount.

이와 같은 계면활성제로는 코카마이드(Cocamide) DEA, 코카마이드 TEA, 코카마이드 MEA 중 어느 하나를 사용할 수 있다.As such a surfactant, any one of Cocamide DEA, Cocamide TEA, and Cocamide MEA can be used.

아울러, 상기 제3스텝(S23)에서 사용되는 촉매제는, AgCl, KBr, NaCl 등 용해 가능한 할로겐 원소를 포함하는 물질로서 은나노 와이어 생성을 위한 시드(Seed)가 된다.In addition, the catalyst used in the third step (S23) is a material containing a soluble halogen element such as AgCl, KBr, NaCl, and becomes a seed for silver nanowire production.

그리고, 은 소스 준비단계(S30)는, 은 소스가 되는 질산은을 에틸렌글리콜에 1:6의 중량비로 섞어 녹인 후 60℃까지 예열하는 단계이다.And, the silver source preparation step (S30) is a step of pre-heating to 60 ° C. after dissolving silver nitrate serving as a silver source in ethylene glycol in a weight ratio of 1: 6.

이때, 예열하는 이유는 반응성을 높여 환원 촉진을 위한 것이다.At this time, the reason for preheating is to promote reduction by increasing reactivity.

또한, 은나노 와이어 생성단계(S40)는, 준비된 은 소스 액을 일정한 속도로 30분간 반응액에 주입하여 은나노 와이어를 생성하는 단계이다.In addition, the silver nanowire generation step (S40) is a step of generating a silver nanowire by injecting the prepared silver source liquid into the reaction solution at a constant rate for 30 minutes.

여기에서, 주입속도를 30분으로 유지하는 것은 종래 주입속도 대비 2배 이상 빠른 속도이다. 기존 상부에서 떨어뜨리는 주입 방식과 달리 파이프를 반응액 하부까지 완전히 침지시킨 상태에서 주입하는 방식을 채택한다. 즉, 반응액의 하부에서 은소스 액을 주입하여 주입후 확산이 빨라지게 하는 방식이다. 때문에, 주입속도를 높일 수 있게 된 것이다.Here, maintaining the injection rate at 30 minutes is twice as fast as the conventional injection rate. Unlike the injection method that is dropped from the top, the method is adopted in which the pipe is completely immersed to the bottom of the reaction solution. That is, it is a method of injecting a silver source liquid from the bottom of the reaction solution to accelerate diffusion after injection. Therefore, it is possible to increase the injection speed.

이는 종래와 같은 상부 주입식의 경우는 상부에서 거품이 형성되기 때문에 반응 속도를 떨어뜨리고 불순물인 은나노 파티클 형성량을 급격히 늘리는 원인이 된다.In the case of the conventional top injection type, bubbles are formed at the top, which causes a decrease in the reaction rate and a rapid increase in the amount of silver nanoparticles as impurities.

하지만, 본 발명의 경우에는 침지된 상태에서 소포되면서 주입되기 때문에 거품 발생이 거의 없어 불순물인 은나노 파티클 형성이 현저히 줄어 들고, 상대적으로 반응속도도 빨라진다.However, in the case of the present invention, since it is injected while being defoamed in a immersed state, there is almost no foaming, so that formation of silver nanoparticles, which are impurities, is significantly reduced, and the reaction rate is relatively high.

다만, 너무 빠른 주입속도에서는 은나노 와이어 생성 속도가 너무 빨라서 직경이 굵어지는 단점이 생길 수 있고, 4시간이 넘는 너무 느린 주입속도에서는 은나노 와이어간 뭉침이 발생하여 교반에도 불구하고 침전되는 경우가 발생하며, 이와 같이 뭉쳐서 침전된 은나노 와이어는 재분산이 불가하여 폐기되어야 하므로 상기와 같은 조건을 유지하는 것이 특히 중요하다.However, if the injection speed is too fast, the silver nanowire generation rate is too fast, which may result in a large diameter, and at the injection rate that is too slow for more than 4 hours, aggregation occurs between the silver nanowires, causing sedimentation despite stirring. , It is particularly important to maintain the above conditions, since the silver nanowires precipitated as a result of this aggregation cannot be redispersed and must be discarded.

덧붙여, 적정한 주입량은 은소스 용액이 반응액 기준 23 부피%에 해당할 때 까지이다. 이를 테면, 반응액이 1리터일 경우 은소스 용액을 30분간 나누어 일정속도로 주입할 최종양은 230밀리리터가 되도록 이를 30분간 균일한 속도로 주입한다는 의미이다.In addition, the appropriate injection amount is until the silver source solution corresponds to 23% by volume based on the reaction solution. For example, when the reaction solution is 1 liter, it means that the silver sauce solution is divided into 30 minutes and injected at a constant rate so that the final amount to be injected at a constant rate is 230 milliliters.

이와 같이, 본 발명에 따른 은나노 와이어 제조방법은 제조과정에서 첨가되는 소포제, 계면활성제의 함량 변화에 따라 은나노 와이어의 생성량, 불순물인 은나노 파티클의 생성 등과 긴밀한 관련이 있으므로 이하에서는 이에 대해 실시예 형태로 살펴보기로 한다.As described above, the method of manufacturing silver nanowires according to the present invention is closely related to the amount of silver nanowires produced according to the content of the antifoaming agent and surfactant added during production, and the production of silver nanoparticles as impurities. Let's take a look.

[실시예 1] 소포제의 적정 여부 확인[Example 1] Confirmation of the appropriateness of the antifoaming agent

소포제의 사용량에 따른 은나노 와이어의 생성변화를 확인하기 위해 적정범위와 그 범위를 벗어난 예를 이하 설명의 [비교예 1,2]를 통해 상호 비교하였다.In order to confirm the production change of the silver nanowire according to the amount of the antifoaming agent, an example outside the appropriate range and the range was compared with each other through [Comparative Example 1,2] of the following description.

여기에서, 소포제로는 NMP를 사용하였다.Here, NMP was used as an antifoaming agent.

예컨대, 에틸렌글리콜 7L와 글리세롤 3L, NMP(N-Methyl-2-pyrrolidone) 1.4L를 혼합한 환원액을 120℃로 교반하며 가열한다. 이어, 환원액에 폴리비닐피놀리돈 350g과 코카마이드 DEA 20g과 NaCl 0.1g을 넣고 모두 녹을 때까지 교반한다. 이후, 모두 녹으면 반응액을 150~160℃로 올린다. 그런 다음, 질산은 500g을 에틸렌글리콜 3L에 60℃로 녹인 후 30분간에 걸쳐 일정한 속도로 반응액에 주입한다.For example, a reducing solution of 7 L of ethylene glycol, 3 L of glycerol, and 1.4 L of NMP (N-Methyl-2-pyrrolidone) is heated while stirring at 120 ° C. Subsequently, 350 g of polyvinylpinolidone, 20 g of cocamide DEA and 0.1 g of NaCl were added to the reducing solution, and the mixture was stirred until all dissolved. Thereafter, when all of them are dissolved, the reaction solution is raised to 150 to 160 ° C. Then, 500 g of silver nitrate is dissolved in 3 L of ethylene glycol at 60 ° C. and then injected into the reaction solution at a constant rate over 30 minutes.

이렇게 하여 생성된 은나노 와이어는 아래 전자현미경 사진과 같았다.The silver nanowire produced in this way was as shown in the electron micrograph below.

Figure pat00001
Figure pat00001

확인 결과, 은나노 와이어의 평균 직경은 100nm, 평균 길이는 6.5㎛였으며, 은나노 파티클 생성이 기존 보다 많이 억제되었고(단, 감압하면 더 억제할 수 있음), 은나노 와이어가 반듯 반듯하여 전기전도성 향상에 매우 유리함을 확인하였다.As a result of the confirmation, the average diameter of the silver nanowire was 100 nm and the average length was 6.5 µm, and the generation of silver nanoparticles was suppressed more than before (however, it can be further suppressed by reducing the pressure), and the silver nanowires were straight to improve electric conductivity. It was confirmed that it is advantageous.

[비교예 1][Comparative Example 1]

실시예 1과 동일하게 하되, NMP의 함량을 0.6L로 본 발명 범주보다 충분히 낮게 하였으며, 이렇게 하여 생성된 은나노 와이어의 전자현미경 사진은 아래와 같았다.The same as in Example 1, but the content of NMP was 0.6L, which was sufficiently lower than the scope of the present invention, and the electron micrograph of the silver nanowire thus produced was as follows.

Figure pat00002
Figure pat00002

확인 결과, 은나노 와이어의 길이가 4㎛ 이하로 짧아졌으며, 입자처럼 짧은 것들, 즉 은나노 파티클이 많이 생겨났음을 확인할 수 있었다.As a result of the confirmation, it was confirmed that the length of the silver nanowire was shortened to 4 µm or less, and that many short nanoparticles, such as particles, were formed.

이는 상부에서 질산가스 및 기화된 폴리올 용액과 폴리비닐피놀리돈에 의한 거품이 계속 생성되어 잔류하면서 질산가스의 방출이 늦어지기 때문에 생긴 것으로 예상되며, 질산가스는 캡핑제의 역할을 방해하여 은나노 와이어의 길이를 줄이고, 은나도 파티클을 다량으로 생성하는 것으로 추론된다.This is expected to occur because nitrate gas and vaporized polyol solution and bubbles by polyvinyl pinolidone are continuously generated and remain, thereby slowing the release of nitric acid gas. It is inferred to reduce the length of and silver particles to generate a large amount of particles.

[비교예 2][Comparative Example 2]

실시예 1과 동일하게 하되, NMP의 함량을 3L로 본 발명 범주보다 충분히 과하게 많이 넣었으며, 이렇게 하여 생성된 은나노 와이어의 전자현미경 사진은 아래와 같았다.The same procedure as in Example 1, but the content of NMP was 3L and was added excessively more than the scope of the present invention, and the electron micrograph of the silver nanowire thus produced was as follows.

Figure pat00003
Figure pat00003

확인결과, NMP를 과다하게 넣게 되면 환원반응을 방해하여 은나노 와이어를 굵게 생성하는 문제를 야기함을 확인할 수 있었다. 즉, NMP는 환원력이 없는 아미드계 용매이고 폴리올 용액과 잘 섞여서 폴리올 용액의 환원력을 떨어뜨리기 때문에 NMP가 과다하게 첨가되면 질산은의 일부가 환원되지 못하고 잔류하는 현상과 함게 환원이 원활하지 못하여 은나노 와이어의 굵기가 현저히 커지고 동시에 은나노 파티클도 함께 증가하는 것을 확인할 수 있었다.As a result of the check, it was confirmed that excessively adding NMP interferes with the reduction reaction and causes a problem of producing silver nanowires in bold. That is, NMP is an amide-based solvent without reducing power and is well mixed with the polyol solution to reduce the reducing power of the polyol solution. Therefore, when NMP is added excessively, part of the silver nitrate cannot be reduced and the reduction cannot be performed smoothly with the phenomenon of remaining. It was confirmed that the thickness increased significantly and the silver nanoparticles increased at the same time.

따라서, NMP와 같은 소포제의 첨가량을 특정 범위로 제한하여 질산은의 환원반응을 정밀하게 관리하는 것은 본 발명에서 매우 중요한 요소가 된다.Therefore, it is very important in the present invention to precisely control the reduction reaction of silver nitrate by limiting the amount of the antifoaming agent such as NMP to a specific range.

이러한 성분들의 관리는 비단 소포제에 국한되는 것은 아니다.The management of these ingredients is not limited to silk defoamers.

[실시예 2] 계면활성제의 적정 여부 확인[Example 2] Check whether the surfactant is appropriate

계면활성제의 사용량에 따른 은나노 와이어의 생성변화를 확인하기 위해 적정범위와 그 범위를 벗어난 예를 이하 설명의 [비교예 3,4]를 통해 상호 비교하였다.In order to confirm the production change of silver nanowires according to the amount of the surfactant used, an appropriate range and an example outside the range were compared with each other through [Comparative Examples 3 and 4] in the following description.

여기에서, 계면활성제는 코카마이드 DEA를 사용하였다.Here, as the surfactant, cocamide DEA was used.

예컨대, 실시예 1과 동일하게 하되, 계면활성제인 코카마이드 DEA를 적정 범위의 중간값인 27.5g을 첨가 사용하는 것만 달리 하였다.For example, in the same manner as in Example 1, the surfactant cocaramide DEA was changed only by adding 27.5 g, which is an intermediate value in an appropriate range.

이렇게 하여 생성된 은나노 와이어는 아래 전자현미경 사진과 앞서 설명한 실시예 1의 사진과 대동소이 하였다.The silver nanowire thus produced was roughly the same as the electron micrograph below and the photo of Example 1 described above.

[비교예 3][Comparative Example 3]

비교를 위해, 실시예 2와 동일하게 하되, 계면활성제인 코카마이드 DEA를 아예 첨가하지 않고 은나노 와이어 생성을 진행하였다.For comparison, the same procedure as in Example 2 was performed, and silver nanowires were produced without adding cocarmide DEA, which is a surfactant.

이렇게 하여 생성된 은나노 와이어는 아래 전자현미경 사진과 같았다.The silver nanowire produced in this way was as shown in the electron micrograph below.

Figure pat00004
Figure pat00004

확인 결과, 은나노 와이어가 잘 형성되기는 했으나 길이가 수십 ㎛로서 원하는 것보다 훨씬 길어 투명전극 제조에는 유리하지만 은나노 와이어 잉크 제조시에는 뭉치면서 균일 분산액을 얻지 못하기 때문에 좋지 않다.As a result of the confirmation, although silver nanowires were well formed, the length was several tens of µm, which was much longer than desired, which is advantageous for transparent electrode production, but is not good because it does not obtain a uniform dispersion liquid during the production of silver nanowire ink.

[비교예 4][Comparative Example 4]

비교를 위해, 실시예 2와 동일하게 하되, 계면활성제인 코카마이드 DEA를 120g으로 과량 첨가하여 은나노 와이어 생성을 진행하였다.For comparison, the same procedure as in Example 2 was performed, but the excess of surfactant, cocarmide DEA, was added at 120 g to generate silver nanowires.

이렇게 하여 생성된 은나노 와이어는 아래 전자현미경 사진과 같았다.The silver nanowire produced in this way was as shown in the electron micrograph below.

Figure pat00005
Figure pat00005

확인 결과, 은나노 와이어 생성량이 현저히 줄고, 은나노 와이어의 굵기가 굵어 졌으며, 입자들이 크게 증가함을 확인하였다. 이는 코카마이드 DEA가 캡핑제의 역할을 과도하게 차단했기 때문인 것으로 보인다.As a result of the confirmation, it was confirmed that the amount of silver nanowire production was significantly reduced, the thickness of the silver nanowire was thickened, and the particles were significantly increased. This seems to be because cocamide DEA has excessively blocked the role of the capping agent.

한편, 질산은의 환원과정에서 질산가스가 생성되는데, 이 질산가스의 방출을 빨리 진행시키면 그 만큼 은나노 와이어 생성량을 늘릴 수 있다. 즉, 반응기의 내부 압력을 낮추면 그 만큼 질산가스의 방출을 빨리 진행시킬 수 있어 소포제를 사용하지 않고도 은나노 파티클을 억제하면서 은나노 와이어 생성은 늘릴 수 있다.On the other hand, nitric acid gas is generated in the process of reducing silver nitrate. If the nitric acid gas is released quickly, the amount of silver nanowire production can be increased. That is, when the internal pressure of the reactor is lowered, the release of nitric acid gas can be accelerated as much as possible, so that the production of silver nanowires can be increased while suppressing silver nanoparticles without using an antifoaming agent.

이와 같이 반응기의 내부 압력과 은나노 와이어의 생성량 사이의 관계를 확인하기 위해 소포제 없이 감압을 진행한 경우와 감압하지 않는 경우를 나누어 테스트하였다.In this way, in order to confirm the relationship between the internal pressure of the reactor and the amount of silver nanowires produced, a test was conducted by dividing the case of depressurization without defoamer and the case of no decompression.

[실시예 3] 소포제 비사용시 감압 영향 확인[Example 3] Decompression effect when no antifoaming agent was used

실시예 1과 동일하게 진행하되, 소포제를 사용하지 않고 질산은 용액을 주입하기 전에 반응기에 팬을 달아 상압(1014mbar)에서 950mbar로 떨어 뜨린 후 질산은 용액을 주입하였다.Proceeding in the same manner as in Example 1, without using an antifoaming agent, a pan was placed in a reactor before injection of the silver nitrate solution, and then dropped to 950 mbar at normal pressure (1014 mbar) and then the silver nitrate solution was injected.

그 결과, 하기한 전자현미경 사진에서와 같이 은나노 파티클은 억제되면서 평균 직경 80-150nm, 평균 길이 5-15㎛를 갖는 은나노 와이어 생성이 현저히 증가하였다.As a result, silver nanoparticles having an average diameter of 80-150 nm and an average length of 5-15 µm were significantly increased while silver nanoparticles were suppressed as in the following electron micrograph.

Figure pat00006
Figure pat00006

[비교예 5][Comparative Example 5]

감압 영향을 비교하기 위해, 실시예 3과 동일하게 하되 감압하지 아니하고 상압으로 유지하였다.In order to compare the effect of reduced pressure, the same procedure as in Example 3 was carried out, but the pressure was maintained at normal pressure.

그 결과, 하기한 전자현미경 사진에서와 같이, 은나노 파티클의 생성이 많아지면서 상대적으로 은나노 와이어의 생성은 줄어 들었다.As a result, as shown in the following electron micrograph, the generation of silver nanoparticles increases and the production of silver nanowires decreases relatively.

Figure pat00007
Figure pat00007

덧붙여, 질산은 용액의 주입 위치에 따른 은나노 파티클 생성 여부를 확인하기 위해 본 발명에 따른 하부주입식과 종래 상부 주입식을 비교하였다.In addition, in order to confirm whether silver nanoparticles are generated according to the injection position of the silver nitrate solution, the lower injection type according to the present invention and the conventional upper injection type were compared.

[실시예 4][Example 4]

실시예 1과 동일하게 하되, 질산은 용액을 주입할 때 반응액 높이의 1/5 이하에서 주입하도록 하였다.In the same manner as in Example 1, when the silver nitrate solution was injected, the reaction solution was injected at 1/5 or less of the height of the reaction solution.

주입 결과, 하기 전자현미경 사진에서와 같이 은나노 파티클 생성이 현저히 줄었음을 확인할 수 있었다.As a result of the injection, it was confirmed that silver nanoparticle generation was significantly reduced as in the following electron micrograph.

Figure pat00008
Figure pat00008

[비교예 6][Comparative Example 6]

실시예 1과 동일하게 하되, 반응액 표면으로부터 10cm 높이에서 낙하방식으로 질산은 용액을 주입한 결과, 하기와 같이 은나노 파티클이 급속히 다량 형성되는 것을 확인할 수 있었다.The same procedure as in Example 1, but as a result of injecting the silver nitrate solution in a dropping manner at a height of 10 cm from the surface of the reaction solution, it was confirmed that a large amount of silver nanoparticles was formed as follows.

Figure pat00009
Figure pat00009

이와 같은 비교를 통해 질산은 용액을 주입하는 방식도 은나노 와이어 생성과 상당히 밀접한 관련성이 있음을 확인할 수 있었다.Through this comparison, it was confirmed that the method of injecting the silver nitrate solution was also closely related to the production of silver nanowires.

상기와 같이 은소스 용액을 반응통의 하부 주입 방식으로 일정속도로 주입하여 은나노 와이어 합성이 완료되면, 반응통을 4시간 이상 냉각하면서 자연 침전시키고, 침전물을 원심분리하여 은나노 와이어를 회수하는 것이다.As described above, when silver nanowire synthesis is completed by injecting a silver source solution at a constant rate using the lower injection method of the reaction vessel, the reaction vessel is naturally precipitated while cooling for 4 hours or more, and the precipitate is centrifuged to recover the silver nanowire.

다른 한편, 이렇게 합성된 은나노 와이어는 회수된 후 은나노 와이어 잉크로 제조될 수 있다.On the other hand, the silver nanowires thus synthesized can be produced with silver nanowire ink after being recovered.

본 발명에 따른 은나노 와이어 잉크는 상술한 은나노 와이어 제조방법에 따라 제조된 은나노 와이어 40-60중량%와, 바인더 8-12중량% 및 나머지 용매로 조성된다.The silver nanowire ink according to the present invention is composed of 40-60% by weight of the silver nanowires prepared according to the above-described silver nanowire manufacturing method, 8-12% by weight of the binder, and the remaining solvent.

이때, 상기 바인더는 TPU(열가소성 폴리우레탄)가 될 수 있으며, 상기 용매로는 알코올류 또는 물과 섞이는 극성 솔벤트가 사용될 수 있다.In this case, the binder may be TPU (thermoplastic polyurethane), and a polar solvent mixed with alcohol or water may be used as the solvent.

여기에서, TPU는 고무와 같이 잘 늘어나면서 용제에 녹는 소재여서 접히거나 구겨져도 성능을 유지하는 특성을 갖고 있기 때문에 잉크에 가장 적합한 바인더가 된다. 또한, 알코올류는 아세톤, 에탄올, 메탄올 등이 될 수 있으며, 물과 섞이는 극성 솔벤트는 앞서 설명한 NMP가 바람직하다.Here, TPU is a material that is soluble in a solvent while being stretched well, such as rubber, and thus has the property of maintaining performance even when folded or crumpled, so it is the most suitable binder for ink. In addition, alcohols may be acetone, ethanol, methanol, and the like, and the polar solvent mixed with water is preferably NMP described above.

NMP는 분산성이 매우 좋기 때문에 최상의 회수율을 유지할 수 있기 때문이다.This is because NMP has a very good dispersibility and can maintain the best recovery rate.

덧붙여, 안정적인 은나노 와이어 잉크 제조를 위해 상기 은나노 와이어와 TPU는 4:1-6:1의 중량비를 이루고, NMP가 TPU의 200% 이상 함유되게 특정할 수 있다.In addition, for the production of stable silver nanowire ink, the silver nanowire and the TPU may have a weight ratio of 4: 1-6: 1, and NMP may be specified to be contained in 200% or more of the TPU.

뿐만 아니라, 본 발명에서는 TPU의 굽힘과 접힘 특성을 더 높이도록 상기 TPU에 폴리이미드, 노볼락수지, 아크릴계, 셀룰로스계, 메타크릴계, 스티렌계, 비닐아세테이트계 수지를 TPU 100중량부에 대해 5-10중량부 더 첨가할 수 있다.In addition, in the present invention, polyimide, novolak resin, acrylic, cellulose, methacrylic, styrene, and vinyl acetate resins are added to 100 parts by weight of TPU to increase the bending and folding characteristics of TPU. -10 parts by weight can be added.

또한, 잉크를 인쇄할 때 건조되는 것을 방지하기 위해, 상기 TPU에 부틸카비톨, 터피놀, 코코졸, 메틸 실리케이트, 크실렌, 1,4-부탄디아민(BDA), 에테르, 글리콜에테르, 아세테이트, 텍산올, 파인오일, 동록유, 부틸카비톨아세테이트 중에서 선택된 하나를 TPU 100중량부에 대해 5-10중량부 더 첨가할 수 있다.In addition, in order to prevent drying when printing the ink, butylcarbitol, terpinol, cocosol, methyl silicate, xylene, 1,4-butanediamine (BDA), ether, glycol ether, acetate, tec in the TPU 5-10 parts by weight may be added to 100 parts by weight of TPU, one selected from acidol, pine oil, green tea oil, and butyl carbitol acetate.

그러면, 이러한 은나노 와이어 잉크를 제조하는 방법에 대하여 보충 설명하기로 한다.Then, a method of manufacturing such a silver nanowire ink will be described in detail.

도 4는 본 발명에 의한 은나노 와이어 잉크 제조방법 설명도이다.4 is an explanatory diagram of a method of manufacturing a silver nanowire ink according to the present invention.

본 발명에 따른 은나노 와이어 잉크 제조방법은,Silver nano wire ink manufacturing method according to the present invention,

질산은을 반응액에 주입하여 은나노 와이어가 생성되면 이를 회수하는 단계(S50)와; 회수된 은나노 와이어를 극성 솔벤트인 NMP에 분산시키는 단계(S60)와; 분산액을 필터링하여 잉크화가 어려운 알갱이를 걸러내는 필터링 단계(S70)와; 필터링된 액을 2시간 이상 침전시켜 침전물을 얻는 단계(S80)와; 침전물에 바인더 및 용매를 가하고 혼합 교반하여 잉크를 만드는 단계(S90);로 이루어진다.Injecting silver nitrate into the reaction solution to recover the silver nanowires (S50); Dispersing the recovered silver nanowires in NMP, which is a polar solvent (S60); A filtering step (S70) of filtering the dispersion to filter grains that are difficult to ink; Separating the filtered solution for 2 hours or more to obtain a precipitate (S80); It consists of; adding a binder and a solvent to the precipitate and mixing and stirring to make ink (S90).

여기에서, 회수단계(S50)를 통해 얻어야 하는 은나노 와이어는 목표로 하는 적정한 은나노 와이어의 평균 직경이 80-150nm, 평균 길이 5-15㎛(직경과 길이의 비가 1:50-1:200 사이가 바람직함)를 갖는 은나노 와이어가 다량으로 생성되도록 은나노 와이어 제조가 이루어지도록 함이 중요하다.Here, the silver nanowire to be obtained through the recovery step (S50) has an average diameter of a suitable silver nanowire targeted at 80-150nm, an average length of 5-15㎛ (ratio of diameter and length is between 1: 50-1: 200) It is important that the production of silver nanowires is performed so that a large amount of silver nanowires having the desired properties are produced.

이때, 은나노 와이어의 평균 직경과 평균 길이를 상기와 같이 한정하는 이유는 그 이하가 되면 전기전도도가 나빠지고, 그 이상이 되면 휘는 성질이 커져 뭉치게 되므로 분산이 잘 안되기 때문이다. 그렇게 되면 굽힘에 견디지 못하게 된다.At this time, the reason for limiting the average diameter and the average length of the silver nanowires as described above is that the electrical conductivity deteriorates when it is less than that, and when it is more than that, the warpage property becomes large and clumps, so that dispersion is difficult. If you do, you will not be able to withstand bending.

또한, 직경이 작게 되면 길이도 짧아지게 되므로 짧은 길이에서는 전기전도성이 떨어지고 접힘을 견디지 못하기 때문에 효용성이 없다.In addition, the smaller the diameter, the shorter the length, so the shorter the length, the lower the electrical conductivity, and is not useful because it cannot withstand folding.

때문에, 가장 바람직한 직경과 길이는 아래 전자현미경 사진과 같다.Therefore, the most preferable diameter and length are as shown in the electron micrograph below.

Figure pat00010
Figure pat00010

도 5는 본 발명에 의한 은나노 와이어 회수방법 설명도이다.5 is an explanatory diagram of a silver nanowire recovery method according to the present invention.

그럼, 회수단계(S50)에 대하여 설명한다. Then, the recovery step (S50) will be described.

상기 회수단계(S50)는 질산은 용액이 주입되면서 반응하여 은나노 와이어가 생성되는 반응통을 주입 완료 후 최소 4시간 이상 냉각하면서 자연침전시키고 30℃ 이하로 냉각하는 침전과정(S51); 부유된 상부물은 버리고 침전물을 회수하는 과정(S52); 회수된 침전물을 원심분리하는 과정(S53);으로 이루어진다.The recovery step (S50) is a silver nitrate solution is reacted while being injected, a precipitation process (S51) of cooling and cooling to 30 ° C. or less while allowing natural reaction by cooling at least 4 hours after completion of the injection of a reaction tube in which silver nanowires are formed; Discarding the suspended upper water and recovering the precipitate (S52); It consists of; centrifuging the recovered precipitate (S53);

아울러, 상기 분산단계(S60)는, 회수된 은나노 와이어를 극성 솔벤트인 NMP에 분산시키는 단계로서, 양자는 1:1의 중량비로 혼합시킨 상태에서 2000-3600rpm의 고속믹서를 통해 수백 ㎛ 크기로 잘게 부수면서 초음파 분산기나 공자전 믹서를 통해 눈에 알갱이가 보이지 않도록 분산시키는 것을 포함한다.In addition, the dispersing step (S60) is a step of dispersing the recovered silver nanowires in NMP, which is a polar solvent, both of which are finely chopped to several hundreds of micrometers through a high-speed mixer of 2000-3600rpm in a mixed state at a weight ratio of 1: 1. It involves crushing and dispersing the particles so that they are not visible through the ultrasonic disperser or rotating mixer.

그리고, 상기 필터링 단계(S70)는, 분산용액을 50메쉬 필터를 통해 통과시켜 잉크화가 어려운 크기의 알갱이만 걸러내고 분산상태가 양호한 부분만 따로 얻은 단계이다.In addition, the filtering step (S70) is a step in which the dispersion solution is passed through a 50 mesh filter to filter out only the grains having a size that is difficult to ink and to obtain only a portion having a good dispersion state.

또한, 상기 침전물 얻는 단계(S80)는, 분산상태가 양호한 부분을 2시간 이상 침전시켜 맑은 상층액과 침전물로 분리시키는 단계로서, 상층액은 모아 다음 분산때 재사용하며, 침전물은 회수하여 잉크 제조시 조성물로 사용한다.In addition, the step of obtaining the precipitate (S80) is a step of separating a portion having a good dispersion state for 2 hours or more into a clear supernatant and a precipitate, and the supernatant is collected and reused during the next dispersion. Used as a composition.

이때, 은은 비중이 9로서 아무리 작은 크기라도 침전이 가능하기 때문에 침전분리하는 방식을 사용한다.At this time, silver has a specific gravity of 9, so it is possible to settle even at a small size.

뿐만 아니라, 잉크를 만드는 단계(S90)는 회수된 침전물, 즉 은나노 와이어와 바인더 및 용매를 이용하여 앞서 설명한 은나노 와이어 잉크 조성물을 갖도록 혼합 교반하여 잉크를 만드는 단계이다.In addition, the step of making ink (S90) is a step of mixing and stirring to have the silver nanowire ink composition described above using the recovered precipitate, that is, a silver nanowire, a binder, and a solvent to make ink.

또다른 한편, 본 발명은 이와 같이 제조된 은나노 와이어 잉크를 이용하여 유연성 전극을 만드는 방법도 제공한다.On the other hand, the present invention also provides a method of making a flexible electrode using the silver nanowire ink thus manufactured.

도 6은 본 발명에 의한 은나노 와이어 잉크를 이용한 유연성 전극 제조방법 설명도이다.6 is an explanatory diagram of a method for manufacturing a flexible electrode using silver nanowire ink according to the present invention.

본 발명에 따른 유연성 전극 제조방법은 인쇄용 베이스 천에 100메쉬의 스크린프린트 마스크를 올려 놓고 은나노 와이어 잉크를 이용하여 패턴 인쇄하는 단계(S110)와; 패턴 인쇄된 베이스 천을 130-150℃의 온도에서 건조하는 단계(S120)와; 은나노 와이어 패턴의 전극부에 전선을 부착하는 단계(S130)와; 건조 후 드러난 은나노 와이어 열선에 대해 핫멜트필름으로 덮어 절연하는 단계(S140);를 포함한다.The method for manufacturing a flexible electrode according to the present invention comprises the steps of placing a screen print mask of 100 mesh on a base cloth for printing and printing a pattern using silver nanowire ink (S110); Drying the pattern printed base cloth at a temperature of 130-150 ° C. (S120); Attaching a wire to the electrode portion of the silver nanowire pattern (S130); And covering the exposed silver nanowires after drying with a hot melt film (S140).

이때, 상기 베이스 천은 TPU 천 혹은 TPU가 일정두께로 코팅된 천을 사용함이 바람직하다.At this time, the base fabric is preferably a TPU cloth or a cloth coated with a certain thickness of TPU.

이것은 은나노 와이어 잉크의 바인더로 TPU를 사용하고 있기 때문에 상호 강한 접착성을 발휘하면서 접히는 제품의 특성을 충분히 유지시킬 수 있기 때문이다.This is because TPU is used as a binder for silver nanowire ink, so that the properties of the folded product can be sufficiently maintained while exerting strong adhesion to each other.

또한, 패턴 인쇄 후 건조온도를 상기와 같이 높여 건조하는 이유는 혹여라도 미량의 미분산분에 대한 분산 완료를 유도하기 위함이다.In addition, the reason for drying by increasing the drying temperature as described above after pattern printing is to induce the completion of dispersion for a very small amount of finely dispersed matter.

뿐만 아니라, 패턴 인쇄는 'ㄷ'형상의 열선을 여러개로 분리 구성하는 패턴이 바람직하다.In addition, the pattern printing is preferably a pattern consisting of several 'c' shaped heating wires.

이것은 전극 부분을 한 쪽으로 모아서 전선 부착을 쉽게 하기 위함이며, 전극부의 사용량을 최소화하기 위함이기도 하다.This is to facilitate the attachment of the wire by collecting the electrode parts to one side, and also to minimize the amount of use of the electrode parts.

또한, 열선을 여러개로 나누는 이유는 하나의 열선으로 만들 경우 부분 손상시 전류가 나머지로 집중되어 과열현상과 화상이 발생될 수 있기 때문에 이를 방지하기 위한 것이다.In addition, the reason for dividing the heating wire into multiple ones is to prevent this, because when a single heating wire is formed, the current is concentrated to the rest in case of partial damage, and overheating and burns may occur.

아울러, 절연을 위해 핫멜트필름으로 드러난 은나노 와이어 열선을 덮을 때에도 핫멜트필름에 TPU 성분이 함유되게 하여 접착력을 좋게 하고 굽힘 특성을 유지할 수 있도록 함이 바람직하다. 이 경우, 핫멜트필름에 포함되는 TPU 함량은 핫멜트 100중량부에 대해 5-10중량부를 유지함이 바람직하다.In addition, it is preferable that the TPU component is contained in the hot melt film so as to improve adhesion and maintain bending characteristics even when covering the silver nanowire heating wire exposed with the hot melt film for insulation. In this case, the TPU content included in the hot melt film is preferably maintained at 5-10 parts by weight relative to 100 parts by weight of the hot melt.

도 7은 본 발명에 의한 유연성 전극 패턴 예시도이다.7 is an exemplary view of a flexible electrode pattern according to the present invention.

이와 같이 구성된 유연한 전극의 패턴 구성예는 도 7에 도시된 바와 같다. 도 7에 도시된 바와 같이 "ㄷ" 자형 패턴을 일정한 간격으로 복수 열선 배열로 형성하고, 양단부를 각각 전극부로 통합한 형태이다.An example of the pattern configuration of the flexible electrode configured as described above is as illustrated in FIG. 7. As illustrated in FIG. 7, a “c” -shaped pattern is formed in a plurality of hot wire arrays at regular intervals, and both ends are integrated into electrode portions.

도 8은 본 발명에 의한 유연성 전극 패턴에 전선 부착 예시도이다.8 is an exemplary view of attaching electric wires to the flexible electrode pattern according to the present invention.

전선 부착단계는, 전선도 일반 전선을 사용할 경우 두껍고 유연성이 떨어지며, 세탁이 안되는 문제가 있어서 특별히 제작하였다. The wire attachment step was specially made because the wires are also thick and inflexible when using ordinary wires, and there is a problem in that they cannot be washed.

전선 소재는 은도금 구리선 7가닥을 모은 연선을 사용한다. 연선이 굽힘에 강하기 때문이며, 꼭 은도금 구리선을 사용하는 이유는 세탁 시 혹시 침투할 수도 있는 물에 의한 부식을 막고, 은나노와이어와 접촉저항을 최소화시키기 위해서이다. 도 8에 도시된 바와 같이, 패턴의 각 전극부에 은도금 구리선 7가닥을 모은 연선을 접촉면적이 최대가 되게 부착한다, The wire material is a twisted pair of 7 strands of silver-plated copper wire. This is because the stranded wire is resistant to bending, and the reason for using the silver-plated copper wire is to prevent corrosion by water that may be penetrated during washing and to minimize contact resistance with silver nanowires. As shown in Fig. 8, the contact area is maximized by attaching stranded wires of 7 strands of silver-plated copper wire to each electrode portion of the pattern.

도 9는 본 발명에 의한 유연성 전극 패턴의 발열 시험 사진 예시도이다.9 is an exemplary view of a photo of a heating test of a flexible electrode pattern according to the present invention.

또한, 상기 인쇄면에 절연층으로 300um 천을 접합한 후 유연한 전극에 5V, 2A의 전기를 공급하여 열을 발생시킨 예는 도 9에 도시된 바와 같다. 도 9에 도시된 바와 같이, 열이 퍼지며 균등한 발열 상태를 유지함을 확인할 수 있었다.In addition, an example in which heat was generated by supplying electricity of 5V and 2A to a flexible electrode after bonding a 300um cloth to the printed surface as an insulating layer is shown in FIG. 9. As shown in FIG. 9, it was confirmed that heat spreads and maintains an even heating state.

전선은 PU 등 방수코팅(폴리우레탄계와 아크릴계, 폴리실록산계가 대표적임)이 된 폴리에스터 천의 코팅 면을 마주보게하고 그 사이에 전선을 배치하고 접착제로 붙이는 방법이다. 방수코팅 폴리에스터 천은 두께 100um 내외를 사용하는 것이 좋다.The electric wire is a method of facing the coated surface of a polyester cloth that has become a waterproof coating such as PU (polyurethane-based, acrylic-based, and polysiloxane-based) and placing the electric wire therebetween and attaching it with adhesive. It is recommended to use a waterproof coating polyester cloth with a thickness of about 100um.

은나노와이어 인쇄 전극과 전선부의 접촉은 일반적으로 아일렛을 통한 접합을 하지만, 본 발명에서는 은나노와이어 전극을 선형으로 인쇄하고 은도금구리선을 선형을 따라 깔아서 접촉면적의 최대화시켜서 접촉의 안정성을 높였다. (열선, 전극, 전선 들은 접합부에서 불량이 가장 많다.)The contact between the silver nanowire printed electrode and the electric wire portion is generally bonded through an eyelet, but in the present invention, the silver nanowire electrode is printed linearly and the silver-plated copper wire is laid linearly to maximize the contact area to increase the contact stability. (Heat wires, electrodes, and wires have the most defects at the junction.)

적층 구조는 폴리에스터 천 - PU방수코팅 - 은나노와이어 인쇄 - 은도금구리선 - TPU가 들어간 접착제-PU방수코팅 - 폴리에스터 천의 순서로 제작된다. 적층된 은나노와이어 인쇄면과 은도금구리선이 잦은 세탁에 떨어지는 것을 방지하기 위하여 외부에서 전선 배열 방향을 따라 지그재그형 박음질을 해준다. 박음질 여부에 따라 세탁 가능한 횟수가 2배 이상 올라간다.The laminated structure is produced in the order of polyester fabric-PU waterproof coating-silver nanowire printing-silver plated copper wire-adhesive containing TPU-PU waterproof coating-polyester fabric. Laminated silver nanowire printing surface and silver-plated copper wire are zigzag-stitched along the wire arrangement direction from the outside to prevent falling into frequent washing. The number of washable times increases more than 2 times depending on whether the lock is sewn.

전선과 커넥터 연결부는 금도금 리벳을 사용하여 고정한다. 세탁에 의한 부식방지와 접촉저항 감소의 목적으로 일반적인 금도금 리벳이다.The wire and connector connections are secured using gold-plated rivets. It is a general gold-plated rivet for the purpose of preventing corrosion by washing and reducing contact resistance.

한편, 유연한 전극에 대한 신축성을 확인하기 위해 TPU 필름에 은나노 와이어 잉크를 10㎛의 두께로 코팅, 건조한 후 길이 10cm, 폭 3cm로 잘랐다.On the other hand, in order to check the elasticity of the flexible electrode, a silver nanowire ink was coated on a TPU film to a thickness of 10 μm, dried, and cut into a length of 10 cm and a width of 3 cm.

이때, 초기 저항은 10옴이었다.At this time, the initial resistance was 10 ohms.

이 상태에서 길이방향으로 150% 신축했을 때 저항은 300옴까지 올라갔으며, 당기는 힘을 빼면 필름은 원상태로 돌아왔다.In this state, when stretched 150% in the longitudinal direction, the resistance rose to 300 ohms, and the film returned to its original state when the pulling force was subtracted.

이와 같이 신축에 의해 저항이 변하는 것을 확인함으로써 의류나 신체의 관절부에 부착하여 움직임을 감지하는 신축성 센서이면서 전극으로서의 활용성도 충분히 확인되었다.Thus, by confirming that the resistance is changed by stretching, it was confirmed that the applicability as an electrode while being a stretch sensor that senses movement by attaching it to clothing or a joint of a body.

그 외에도 본 발명은 얇은 발열체가 필요한 제품들, 이를 테면 발열자켓, 발열조끼, 발열 허리밴드, 발열복대, 발열 무릎보호대, 발열깔창, 발열넥워머, 발열장갑, 발열내의, 발열바지 등에 활용될 수 있을 것이다.In addition to this, the present invention can be used for products requiring a thin heating element, such as a heating jacket, a heating vest, a heating waistband, a heating bag, a heating knee protector, a heating insole, a heating neck warmer, heating gloves, heating underwear, heating pants, etc. There will be.

Claims (7)

폴리올과 소포제를 이용하여 환원액을 만드는 환원액 준비단계;
만들어진 환원액에 캡핑제와 계면활성제 및 촉매제를 첨가하여 반응액을 만드는 반응액 준비단계;
질산은을 용매에 녹여 은 소스 용액을 만드는 은 소스 준비단계;
준비된 은 소스 용액을 반응액에 일정속도로 주입하여 은나노 와이어를 만드는 은나노 와이어 생성단계;
상기 은나노 와이어 생성단계에서 은소스 액의 주입 완료후, 냉각하면서 자연침전시키고, 침전물을 원심분리하여 은나노 와이어를 회수하는 회수단계와;
회수된 은나노 와이어를 극성 솔벤트인 NMP에 분산시키는 단계와;
분산액을 필터링하여 잉크화가 어려운 알갱이를 걸러내는 필터링 단계와;
필터링된 액을 2시간 이상 침전시켜 침전물을 얻는 단계와;
침전물에 바인더 및 용매를 가하고 혼합 교반하여 잉크를 만드는 단계;
를 포함하는 은나노 와이어 잉크 제조방법에 의해 제조되되,
상기 환원액 준비단계의 폴리올은, 용매로서 에틸렌글리콜, 글리세롤, 디에틸렌글리콜, 프로필렌글리콜, 디프로필렌글리콜 중 하나 또는 둘 이상의 조합인 용매를 사용하고,
상기 환원액 준비단계의 소포제는, 솔벤트인 NMP(N-Methyl-2-pyrrolidone), 세틸 알콜(Cetyl alcohol), 스테아릴 알콜(stearyl alcohol)중 어느 하나를 사용하며,
상기 계면활성제로는, 코카마이드(Cocamide) DEA, 코카마이드 TEA, 코카마이드 MEA 중 하나 이상을 포함하는
것을 특징으로 하는 은나노 와이어 잉크.
A reducing solution preparation step for producing a reducing solution using a polyol and an antifoaming agent;
A reaction solution preparation step of adding a capping agent, a surfactant and a catalyst to the reduced solution to make a reaction solution;
A silver source preparation step of preparing a silver source solution by dissolving silver nitrate in a solvent;
A silver nanowire generation step of injecting the prepared silver source solution into the reaction solution at a constant rate to make a silver nanowire;
After the completion of the injection of the silver source liquid in the silver nano-wire generation step, and spontaneously precipitated while cooling, and recovering the silver nano-wire by centrifuging the precipitate;
Dispersing the recovered silver nanowires in polar solvent, NMP;
A filtering step of filtering the dispersion to filter grains that are difficult to ink;
Sedimenting the filtered solution for 2 hours or more to obtain a precipitate;
Adding a binder and a solvent to the precipitate and mixing and stirring to make ink;
Is manufactured by a method of manufacturing a silver nano-wire ink containing,
As the solvent for preparing the reducing solution, a solvent that is one or a combination of two or more of ethylene glycol, glycerol, diethylene glycol, propylene glycol, and dipropylene glycol is used as a solvent,
The anti-foaming agent in the preparation of the reducing solution may be any one of N-Methyl-2-pyrrolidone (NMP), Cetyl alcohol, and stearyl alcohol.
The surfactant includes at least one of cocamide DEA, cocamide TEA, and cocamide MEA.
Silver nano wire ink, characterized in that.
청구항 1에 있어서,
상기 잉크를 만드는 단계에서 사용되는 바인더는 TPU(열가소성 폴리우레탄)인 것을 특징으로 하는 은나노 와이어 잉크.
The method according to claim 1,
The binder used in the making of the ink is silver nanowire ink, characterized in that TPU (thermoplastic polyurethane).
청구항 1에 있어서,
상기 잉크를 만드는 단계에서 사용되는 용매로는 알코올류 또는 물과 섞이는 극성 솔벤트가 사용되며; 상기 알코올류는 아세톤, 에탄올, 메탄올 중 하나이고, 물과 섞이는 극성 솔벤트는 NMP인 것을 특징으로 하는 은나노 와이어 잉크.
The method according to claim 1,
As a solvent used in the making of the ink, a polar solvent mixed with alcohol or water is used; The alcohol is one of acetone, ethanol, and methanol, and the polar solvent mixed with water is silver nanowire ink, characterized in that NMP.
청구항 1에 있어서,
상기 잉크를 만드는 단계는,
상기 은나노 와이어와 바인더인 TPU는 4:1-6:1의 중량비를 이루고, 용매인 NMP가 TPU의 200% 이상 함유되게 특정된 것을 특징으로 하는 은나노 와이어 잉크.
The method according to claim 1,
The step of making the ink,
The silver nanowire and the binder TPU is a 4: 1-6: 1 weight ratio, the solvent is NMP silver nanowire ink characterized in that it is specified to contain more than 200% of the TPU.
청구항 4에 있어서,
상기 TPU의 굽힘과 접힘 특성을 더 높이도록 상기 TPU에 폴리이미드, 노볼락수지, 아크릴계, 셀룰로스계, 메타크릴계, 스티렌계, 비닐아세테이트계 수지를 TPU 100중량부에 대해 5-10중량부 더 첨가한 것을 특징으로 하는 은나노 와이어 잉크.
The method according to claim 4,
5-10 parts by weight of polyimide, novolak resin, acrylic, cellulose-based, methacryl-based, styrene-based, and vinyl acetate-based resins are added to the TPU to 100 parts by weight of the TPU to further increase the bending and folding characteristics of the TPU. Silver nanowire ink characterized by being added.
청구항 4에 있어서,
상기 TPU에 부틸카비톨, 터피놀, 코코졸, 메틸 실리케이트, 크실렌, 1,4-부탄디아민(BDA), 에테르, 글리콜에테르, 아세테이트, 텍산올, 파인오일, 동록유, 부틸카비톨아세테이트 중에서 선택된 하나를 TPU 100중량부에 대해 5-10중량부 더 첨가하여 잉크를 인쇄할 때 건조되는 것을 방지하는 것을 특징으로 하는 은나노 와이어 잉크.
The method according to claim 4,
The TPU is selected from butyl carbitol, terpinol, cocosol, methyl silicate, xylene, 1,4-butanediamine (BDA), ether, glycol ether, acetate, texanol, pine oil, green tea oil, and butyl carbitol acetate. Silver nanowire ink, characterized in that to add 5-10 parts by weight to 100 parts by weight of TPU to prevent drying when printing ink.
청구항 1에 있어서,
상기 은나노 와이어 잉크는, 은나노 와이어 40-60중량%와; 바인더 8-12중량% 및 나머지 용매로 조성된 것을 특징으로 은나노 와이어 잉크.
The method according to claim 1,
The silver nanowire ink, 40-60% by weight of the silver nanowire; Silver nano-wire ink, characterized in that composed of 8-12% by weight of the binder and the remaining solvent.
KR1020190009176A 2019-01-24 2019-01-24 Silver nano wire ink KR20200060183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190009176A KR20200060183A (en) 2019-01-24 2019-01-24 Silver nano wire ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190009176A KR20200060183A (en) 2019-01-24 2019-01-24 Silver nano wire ink

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020180145498A Division KR102210660B1 (en) 2018-11-22 2018-11-22 Silver nano wire ink and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20200060183A true KR20200060183A (en) 2020-05-29

Family

ID=70912072

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190009176A KR20200060183A (en) 2019-01-24 2019-01-24 Silver nano wire ink

Country Status (1)

Country Link
KR (1) KR20200060183A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160129895A (en) 2014-03-07 2016-11-09 도와 홀딩스 가부시끼가이샤 Method for producing silver nanowires, silver nanowires and ink using same
KR101693486B1 (en) 2014-03-11 2017-01-09 전자부품연구원 Coating solution having silver nano wire, conductive thin film and manufacturing thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160129895A (en) 2014-03-07 2016-11-09 도와 홀딩스 가부시끼가이샤 Method for producing silver nanowires, silver nanowires and ink using same
KR101693486B1 (en) 2014-03-11 2017-01-09 전자부품연구원 Coating solution having silver nano wire, conductive thin film and manufacturing thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
미국 공개특허 US 2005-0056118(2005.03.17.), 'Methods of nanostructure formation and shape selection'
미국 공개특허 US 2008-0003130(2008.01.03.), 'Methods for production of silver nanostructures'

Similar Documents

Publication Publication Date Title
EP2837716B1 (en) Graphene fiber and preparation method therefor
US8486310B2 (en) Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
KR102297023B1 (en) Ferromagnetic metal nanowire dispersion and method for manufacturing same
CN103945967B (en) For the paste composition and the solaode using the paste composition of the front electrode of solaode
TW201044612A (en) Solar battery and production method thereof
CN106128555A (en) A kind of high connductivity crystal silicon solar batteries front electrode silver slurry and preparation method thereof
WO2018098852A1 (en) Low-temperature curable nano-metal ink, preparation method therefor and application thereof
TWI484017B (en) Method for preparing a conductive paste
KR20160133711A (en) Method for preparation of high concentrated carbon nanotube/graphene dispersion
WO2012138186A2 (en) Silver paste composition for forming an electrode, and method for preparing same
JP5996666B2 (en) Phosphorus-doped nickel nanoparticles and method for producing the same
CN111889694B (en) Synthesis of one-dimensional silver nano material and method for preparing conductive ink
Fang et al. Cu@ Ni core–shell nanoparticles prepared via an injection approach with enhanced oxidation resistance for the fabrication of conductive films
KR20200060020A (en) Silver nano wire ink manufacturing method
KR20200060029A (en) Silver nano wire ink
KR20200060001A (en) Silver nano wire manufacturing method
JP2014034697A (en) Method for producing copper fine particle, conductive paste and method for producing conductive paste
KR20200060183A (en) Silver nano wire ink
KR20200060032A (en) Silver nano wire ink
KR20200060042A (en) Silver nano wire ink
KR20200060005A (en) Silver nano wire ink manufacturing method
KR20200060048A (en) Manufacturing Method of Flexible Electrode Using Silver Nano Wire Ink
KR20200059997A (en) Silver nano wire
KR20200060012A (en) Silver nano wire ink manufacturing method
KR20200060182A (en) Silver nano wire manufacturing method