KR20200060096A - MWCNTs와 시멘트의 결합을 통한 CNT 교착형 혼합시멘트 제조 방법 - Google Patents

MWCNTs와 시멘트의 결합을 통한 CNT 교착형 혼합시멘트 제조 방법 Download PDF

Info

Publication number
KR20200060096A
KR20200060096A KR1020180145628A KR20180145628A KR20200060096A KR 20200060096 A KR20200060096 A KR 20200060096A KR 1020180145628 A KR1020180145628 A KR 1020180145628A KR 20180145628 A KR20180145628 A KR 20180145628A KR 20200060096 A KR20200060096 A KR 20200060096A
Authority
KR
South Korea
Prior art keywords
mwcnts
cement
clinker
silo
cnt
Prior art date
Application number
KR1020180145628A
Other languages
English (en)
Inventor
김학영
Original Assignee
단국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 산학협력단 filed Critical 단국대학교 산학협력단
Priority to KR1020180145628A priority Critical patent/KR20200060096A/ko
Publication of KR20200060096A publication Critical patent/KR20200060096A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • C04B7/42Active ingredients added before, or during, the burning process
    • C04B7/421Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/28Mixtures thereof with other inorganic cementitious materials
    • C04B11/30Mixtures thereof with other inorganic cementitious materials with hydraulic cements, e.g. Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/48Clinker treatment
    • C04B7/52Grinding ; After-treatment of ground cement
    • C04B7/522After-treatment of ground cement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 (a) MWCNTs(Multi-Walled Carbon Nano Tubes) 처리부(100)에서 MWCNTs를 처리하는 단계; (b) 원료 사일로(210)에서, 상기 처리된 MWCNTs와 시멘트 원료가 블렌딩되는 단계; (c) 상기 블렌딩된 MWCNTs와 시멘트 원료가 예열기(220)에서 예열되고 소성기(230)에서 소성되어 시멘트 클링커가 생성된 후, 클링커 사일로(240)로 이송되는 단계; (d) 상기 클링커 사일로(240)에서 상기 시멘트 클링커에 석고가 추가되어 분쇄기(250)로 이송되는 단계; 및 (e) 상기 분쇄기(250)에서, 상기 석고가 추가된 시멘트 클링커가 분쇄된 후 시멘트 사일로(260)로 이송되는 단계를 포함하며, 상기 (a) 단계는, (a1) MWCNTs 전처리부(110)가 반데르발스 힘을 제거하도록 NMP(N-methyl-2-pyrrolidone) 용제와 레시틴(Lecithin surfactant)을 이용하여 MWCNTs를 전처리하는 단계; (a2) MWCNTs 환류적용부(120)가 상기 전처리된 MWCNTs에 환류법을 적용하도록 카르복실기(COOH)를 부여하는 단계; 및 (a3) MWCNTs 결정화부(130)에서 결정화 광물에 상기 카르복실기가 부여된 MWCNTs를 투입하여, 상기 MWCNTs를 처리하는 단계를 포함하는, CNT 교착형 혼합시멘트 제조 방법을 제공한다.

Description

MWCNTs와 시멘트의 결합을 통한 CNT 교착형 혼합시멘트 제조 방법{Method for manufacturing of carbon nanotubes blend cement using technology of agglutination between cement and multi-walled carbon nanotubes}
본 발명은 건설재료에 관한 것으로, 구체적으로 MWCNTs와 시멘트 클링커의 건식 결합을 통한 CNT 교착형 혼합시멘트 제조 방법에 관한 것이다.
건설재료로서 콘크리트는 전 세계에 걸쳐 연간 약 110억 톤 이상이 사용되고 있는 핵심재료로 평가된다. 그러나 콘크리트의 본질적인 취약점인 취성파괴와 이로 인한 낮은 파괴인성, 그리고 수축으로 인한 균열 등은 여전히 불가피한 단점으로 지적되고 있다.
탄소나노튜브(CNTs; Carbon Nano Tubes)는 탄소원자로만 이루어진 그래핀(graphene)막을 롤업(roll-up)하여 나노 규모의 직경을 갖는 튜브의 형태로 제조된 재료이다. 이는 단일막을 사용한 Single-Walled CNT(SWCNT)와 다중막을 사용한 Multi-Walled CNTs(MWCNTs)로 각각 구분되며, 관련 산업에서는 주로 MWCNTs가 활용되고 있다.
MWCNTs는 낮은 밀도(0.2∼1.33g/cm3)에도 불구, 약 1.0TPa의 탄성계수와 20∼60GPa 수준의 항복강도를 갖는 기계적 우월성을 이유로 콘크리트 등 시멘트 복합체의 미세 섬유보강재로서 각광을 받고 있다.
그러나, 압축강도 200MPa를 발휘할 수 있는 극초고강도 콘크리트를 생산하거나, 균열발생을 억제할 수 있는 MWCNTs 혼입 콘크리트의 제조를 위해서는 CNTs가 갖고 있는 엉킴 및 뭉침 현상에 대한 해결방안이 요구된다.
CNTs는 수성물질보다 유성물질과의 친화력이 큰 무극성 및 소수성(hydrophobic)을 지닌 물질이나, 물을 포함하는 재료 내에서는 입자들 간의 반데르발스 힘(Van der Waals force)이 작용되어 엉킴 및 뭉침 현상이 나타나게 된다(도 1의 좌측도면 참조). 더욱이, CNTs와 같은 나노 스케일 단계의 엉킴 현상은 육안으로는 확인이 불가할 뿐만 아니라 미세현미경 등의 장비를 이용할 경우에도 정량적 성능평가는 매우 곤란한 실정이다.
기존 연구에서는 주로 시멘트의 경화 이전단계인 재료의 혼합과정(fresh concrete)에서 아세톤이나 에탄올 등의 용제를 추가 혼입하는 기법과 혼합수에 계면활성제(surfactant)와 CNTs를 동시 혼입하는 기법, 그리고 물리적 외력인 초음파(sonication) 처리를 통해 나노 재료의 물성을 변화시키려는 등의 다양한 노력이 있어왔다.
그러나 CNTs의 분산효과 적용 후 경과시간 수분 내에 혼합수와 계면활성제 그리고 CNTs의 밀도 차이에 의한 침전현상이 나타났을 뿐만 아니라(도 1의 우측도면 참조), 여러 공정의 전처리 문제 및 CNTs의 과도한 혼입률(혼입량을 증가시킴으로서 분산문제를 해결하려 함)로 인해 경제성에 대한 한계를 드러냈다.
관련된 특허문헌을 검토한다.
한국특허공개 제10-2013-0083649호는 탄소나노튜브를 함유한 시멘트 복합재료의 제조방법과 이 시멘트 복합재료를 이용한 탄소나노튜브-시멘트 구조체의 제조방법을 개시한다. 구체적으로, 분산성능이 낮은 탄소나노튜브를 시멘트에 혼합하여 시멘트 복합재료를 제조하기 위해, 나노소재인 실리카퓸을 활용한 물리적인 분산 방법과, 탄소나노튜브와 실리카퓸과 시멘트를 혼합하여 건비빔된 혼합물에 물과 폴리카르복실산계 초유동화제를 첨가하는 방법을 제안한다.
한국특허공개 제10-2012-0139959호는 고밀도 나노 코팅 조성물을 제안한다. 이는, 무기질 재료에 소수성을 제공하여, 분산성, 방청성, 내한성, 기계적 강도, 내수성, 접착성, 신축성 및 압축성을 부여한 것으로, 폴리카르복실레이트 등의 군으로부터 선택되는 1종 이상을 총 중량비에 대해서 0.04∼2중량% 함유하는 방법을 제안한다.
일본특허공개 제2013-086275호는 시멘트 경화체 제조 방법을 개시한다. 탄소 나노튜브를 적합하게 분산시켜 시멘트 경화체를 고강도화하는 것을 가능하게 한 시멘트 경화체 제조 방법을 제공하기 위해, 시멘트와 탄소 나노튜브를 건식 조건에서 혼합하고, 응집 상태의 탄소 나노튜브를 해쇄하고, 시멘트 입자의 표면에 모사구슬과 같은 상태에서 부착시켜 복합 입자 상태의 혼합체를 형성하는 방법을 제안한다.
한국특허공개 제10-2013-0083649호 한국특허공개 제10-2012-0139959호 일본특허공개 제2013-086275호
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것이다.
구체적으로, 시멘트의 제조공정에서 MWCNTs를 시멘트 분말과 교착화시켜 MWCNTs 일체형 혼합시멘트를 제조함으로서 엉킴의 요인을 원천적으로 제거하는 방법을 제안하고자 한다.
특히, MWCNTs가 갖고 있던 엉킴 및 뭉침 현상을 방지하는 기술을 채택하여, 극초고강도 콘크리트를 생산하거나, 균열발생을 억제할 수 있는 CNT 교착형 혼합시멘트의 제조 방법을 제안하고자 한다.
상기와 같은 과제를 해결하기 위한 본 발명의 일 실시예는, (a) MWCNTs(Multi-Walled Carbon Nano Tubes) 처리부(100)에서 MWCNTs를 처리하는 단계; (b) 원료 사일로(210)에서, 상기 처리된 MWCNTs와 시멘트 원료가 블렌딩되는 단계; (c) 상기 블렌딩된 MWCNTs와 시멘트 원료가 예열기(220)에서 예열되고 소성기(230)에서 소성되어 시멘트 클링커가 생성된 후, 클링커 사일로(240)로 이송되는 단계; (d) 상기 클링커 사일로(240)에서 상기 시멘트 클링커에 석고가 추가되어 분쇄기(250)로 이송되는 단계; 및 (e) 상기 분쇄기(250)에서, 상기 석고가 추가된 시멘트 클링커가 분쇄된 후 시멘트 사일로(260)로 이송되는 단계를 포함하며, 상기 (a) 단계는, (a1) MWCNTs 전처리부(110)가 반데르발스 힘을 제거하도록 NMP(N-methyl-2-pyrrolidone) 용제와 레시틴(Lecithin surfactant)을 이용하여 MWCNTs를 전처리하는 단계; (a2) MWCNTs 환류적용부(120)가 상기 전처리된 MWCNTs에 환류법을 적용하도록 카르복실기(COOH)를 부여하는 단계; 및 (a3) MWCNTs 결정화부(130)에서 결정화 광물에 상기 카르복실기가 부여된 MWCNTs를 투입하여, 상기 MWCNTs를 처리하는 단계를 포함하는, CNT 교착형 혼합시멘트 제조 방법을 제공한다.
또한, 상기 (a3) 단계에서의 상기 결정화 광물은 카올리나이트(Kaolinite, Al2Si2O5(OH)4) 또는 멀라이트(Mullite, 3Al2O3SiO2)인 것이 바람직하다.
또한, 상기 (e) 단계 이후, (f) 검수장치(261)에 의한 것으로, MWCNTs의 전기 전도도를 활용한 시멘트 검수 단계를 더 포함하는 것이 바람직하다.
본 발명에 따른 방법에 따라, 엉킴 및 뭉침 현상이 방지되어, 극초고강도 콘크리트를 생산하거나, 균열발생을 억제할 수 있는 CNT 교착형 혼합시멘트의 제조가 가능하다. 이는, 적절한 용제를 활용한 분산 기법 및 광물 내 결정화 기술이 적용됨으써 가능하다.
특히, 이러한 방법으로 제조되는 CNT 교착형 혼합시멘트에 의하여, MWCNTs의 우수한 열전도율을 활용하여 중심부의 높은 온도를 표면으로 방열 가능한바, 매스콘크리트의 열안정화가 가능하다. 또한, MWCNTs의 높은 인장강도를 활용, 콘크리트의 낮은 파괴인성을 상쇄하는 균열저항 콘크리트 제조가 가능하다.
본 발명은 성능은 물론 경제성에서도 우수한 효과를 가져온다. MWCNTs 분산 효과 극대화로 재료의 혼입량이 저감되어 종래 기술 상의 CNTs 혼입량(1∼5wt.%) 대비 1/10~1/30 수준으로 저감이 가능하다. 또한, 이로 인하여 초기 균열 발생 확률이 15%저감된다면, 연간 20억 이상의 사회 경제적 비용절감이 가능하다.
한편, MWCNTs의 높은 전기전도성을 활용한 부재 내부의 모니터링 기술의 제공이 가능하다. 즉, 콘크리트 부재를 전도성 물질로 변환하여, 열화 및 균열발생에 관한 건전도 모니터링이 가능하다. 이를 통해, 품질이 낮은 CNT 교착형 혼합시멘트를 검수 단계에서 확인할 수 있어서, 품질 향상 및 균등화에 도움을 줄 수 있다.
도 1은 종래 기술에서 MWCNTs가 갖는 문제점을 설명하기 위해 촬영한 SEM 마이크로그래피를 도시한다.
도 2는 본 발명에 따른 방법을 설명하기 위한 다이어그램이다.
도 3은 본 발명에 따른 방법에서 환류법 적용을 설명하기 위한 다이어그램이다.
도 4는 본 발명에 따른 방법에서 결정화를 설명하기 위한 다이어그램이다.
도 5는 본 발명에 따른 방법에서 시멘트 매트릭스 내에서 MWCNTs가 크랙을 연결해주는 효과를 설명하기 위한 도면이다.
이하, 도면을 참조하여 본 발명을 보다 상세히 설명한다.
도 2는 본 발명에 따른 방법을 설명하기 위한 다이어그램이다.
일반적인 시멘트 제조 방법과 달리, MWCNTs 처리부(100)가 부가되어, 원료 사일로(210)에 MWCNTs를 처리하여 시멘트와의 건식 결합을 가능하게 한다. 특히, 일반적인 CNT 결합과 달리, 엉킴 및 뭉침 현상을 방지할 수 있다.
엉킴 및 뭉침 현상의 방지를 위해, 본 발명은 3단계에 걸친 MWCNTs 처리 방법을 제안한다.
먼저, 제 1 단계로서, MWCNTs 전처리부(110)가 반데르발스 힘을 제거하도록 NMP(N-methyl-2-pyrrolidone) 용제와 레시틴(Lecithin surfactant)을 이용하여 MWCNTs를 전처리한다.
MWCNTs에서 발생하는 엉킴 및 뭉침 현상은, 나노 규모에서 발생되는 입자들 간의 반데르발스 힘의 작용에 의한 것이다. 본 발명은, 메틸기의 N-methyl-2-pyrrolidone(NMP) 특수 용제 및 레시틴(Lecithin surfactant) 용제를 활용한다. 이를 이용하여, 나노 범위에서의 분산이 가능하며, 반데르발스 힘에 대항해 1년 이상 반영구적으로 분산이 유지될 수 있다.
다음, 제 2 단계로서, MWCNTs 환류적용부(120)가 상기 전처리된 MWCNTs에 환류법을 적용하도록 카르복실기(COOH)를 부여한다.
즉, MWCNTs 입자간 분산 작용을 위한 전처리 후에 MWCNTs와 시멘트 입자간 교착의 용이성을 위하여 MWCNTs 표면에 환류법(reflux)을 적용, 카르복실기(COOH) 구조를 갖는 그룹을 부여한다(도 3 참조). 카르복실기 기능이 부여된 CNTs 입자들은 시멘트의 주된 조성성분 즉, CaO, SiO2, Al2O3 등과 화학적으로 결합이 가능하다(도 4 참조). 결국 시멘트와 MWCNTs가 갖는 각각의 화학적 특성을 바탕으로 시멘트 제조 공정 중 소성 단계 직전에 MWCNTs를 투입함으로써, 시멘트 원재료들의 액상화 및 단계별 화학반응을 유도하여 시멘트 클링커와 MWCNTs 입자의 결속력을 유도하는 것이다.
다음, 제 3 단계로서, MWCNTs 결정화부(130)에서 결정화 광물에 상기 카르복실기가 부여된 MWCNTs를 투입한다.
시멘트의 소성 단계 직전에 직접 투입되는 MWCNTs는 시멘트 원재료들 사이 일부분에 국한되어 교착이 이루어지거나, MWCNTs가 일부 유실될 수 있는 등의 문제점이 발생할 수 있다. 이의 해결방안으로 본 발명에서는 고농도의 MWCNTs 입자를 카올리나이트(Kaolinite, Al2Si2O5(OH)4)나 멀라이트(Mullite, 3Al2O3SiO2)와 같이 시멘트의 원재료 광물에 비해 작은 크기의 광물 내에 결정화(crystallize)시킨다. 이렇게 결정화 된 광물을 시멘트 제조 공정 중 소성 전 단계에 투입할 시, 습식 단계인 시멘트 클링커 내 나노 범위에서의 고른 분포를 나타낼 수 있다.
이와 같은 방식으로, 시멘트에 혼입될 MWCNTs가 MWCNTs 처리부(100)에서 처리되어 준비된다.
한편, 종래 시멘트 제조 방법과 유사하게, 시멘트 원료는 분쇄기(201)에서 분쇄되고, 전기 집진기(202)에서 집진되어 준비된다.
이제, 원료 사일로(210)에는, 먼저 처리된 MWCNTs와 분쇄되고 집진된 시멘트 원료가 유입되어 건식으로 블렌딩된다.
다음, 블렌딩된 MWCNTs와 시멘트 원료는 예열기(220)에 투입되어 예열되고, 다음 소성기(230)에 투입되어 소성됨으로써 시멘트 클링커가 생성된다. 예열기(220)는 섭씨 850 내지 900도로 예열시킬 수 있다. 소성기(230)는 로터리 킬른(rotary kiln)일 수 있어서 섭씨 1050 내지 1450도에서 소성할 수 있다.
생성된 시멘트 클링커는 클링커 사일로(240)로 이송된다.
클링커 사일로(240)에서 이송된 시멘트 클링커에 석고가 추가되며, 이후 분쇄기(250)로 이송된다.
분쇄기(250)에서는, 석고가 추가된 시멘트 클링커가 분쇄된 후 시멘트 사일로(260)로 이송됨으로써 출하 준비가 완료된다.
이와 같은 방식으로 제조된 CNT 교착형 혼합시멘트는, 나노 규모에서 콘크리트 모체에서 발생한 다양한 균열발생 메커니즘(matrix crack)을 최저 스케일단위에서 제어할 수 있다. 도 5는 시멘트 매트릭스 내에서 MWCNTs가 크랙을 연결해주는 효과(crack-bridging)을 가져올 수 있음을 보여준다.
한편, 본 발명은 별도의 검수장치(261)를 제공한다. 특히, MWCNTs가 높은 전기 전도성을 가지므로, 본 발명에 따른 CNT 교착형 혼합시멘트를 이용한 콘크리트를 전도성 물질로 변환시킨다. 따라서, 전기 전도성을 활용한 다양한 시멘트 검수는 물론 콘크리트 부재의 검수가 가능하다.
따라서, 전기 전도성을 활용하는 다양한 방법이 검수장치(261)의 검수 방법으로서 사용될 수 있다. 예를 들어, 라만 분광법, X선 광전자를 활용한 배열 특성 시각화 기법 등이 사용될 수 있다.
이상, 본 명세서에는 본 발명을 당업자가 용이하게 이해하고 재현할 수 있도록 도면에 도시한 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당업자라면 본 발명의 실시예로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 보호범위는 특허청구범위에 의해서 정해져야 할 것이다.
100: MWCNTs 처리부
110: MWCNTs 환류적용부
120: MWCNTs 결정화부
201: 분쇄가
202: 전기 집진기
210: 원료 사일로
220: 예열기
230: 소성기
240: 클링커 사일로
250: 분쇄기
260: 시멘트 사일로
261: 검수 장치

Claims (3)

  1. (a) MWCNTs(Multi-Walled Carbon Nano Tubes) 처리부(100)에서 MWCNTs를 처리하는 단계;
    (b) 원료 사일로(210)에서, 상기 처리된 MWCNTs와 시멘트 원료가 블렌딩되는 단계;
    (c) 상기 블렌딩된 MWCNTs와 시멘트 원료가 예열기(220)에서 예열되고 소성기(230)에서 소성되어 시멘트 클링커가 생성된 후, 클링커 사일로(240)로 이송되는 단계;
    (d) 상기 클링커 사일로(240)에서 상기 시멘트 클링커에 석고가 추가되어 분쇄기(250)로 이송되는 단계; 및
    (e) 상기 분쇄기(250)에서, 상기 석고가 추가된 시멘트 클링커가 분쇄된 후 시멘트 사일로(260)로 이송되는 단계를 포함하며,
    상기 (a) 단계는
    (a1) MWCNTs 전처리부(110)가 반데르발스 힘을 제거하도록 NMP(N-methyl-2-pyrrolidone) 용제와 레시틴(Lecithin surfactant)을 이용하여 MWCNTs를 전처리하는 단계;
    (a2) MWCNTs 환류적용부(120)가 상기 전처리된 MWCNTs에 환류법을 적용하도록 카르복실기(COOH)를 부여하는 단계; 및
    (a3) MWCNTs 결정화부(130)에서 결정화 광물에 상기 카르복실기가 부여된 MWCNTs를 투입하여, 상기 MWCNTs를 처리하는 단계를 포함하는,
    CNT 교착형 혼합시멘트 제조 방법.
  2. 제 1 항에 있어서,
    상기 (a3) 단계에서의 상기 결정화 광물은 카올리나이트(Kaolinite, Al2Si2O5(OH)4) 또는 멀라이트(Mullite, 3Al2O3SiO2)인,
    CNT 교착형 혼합시멘트 제조 방법.
  3. 제 1 항에 있어서,
    상기 (e) 단계 이후,
    (f) 검수장치(261)에 의한 것으로, MWCNTs의 전기 전도도를 활용한 시멘트 검수 단계를 더 포함하는,
    CNT 교착형 혼합시멘트 제조 방법.
KR1020180145628A 2018-11-22 2018-11-22 MWCNTs와 시멘트의 결합을 통한 CNT 교착형 혼합시멘트 제조 방법 KR20200060096A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180145628A KR20200060096A (ko) 2018-11-22 2018-11-22 MWCNTs와 시멘트의 결합을 통한 CNT 교착형 혼합시멘트 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180145628A KR20200060096A (ko) 2018-11-22 2018-11-22 MWCNTs와 시멘트의 결합을 통한 CNT 교착형 혼합시멘트 제조 방법

Publications (1)

Publication Number Publication Date
KR20200060096A true KR20200060096A (ko) 2020-05-29

Family

ID=70911387

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180145628A KR20200060096A (ko) 2018-11-22 2018-11-22 MWCNTs와 시멘트의 결합을 통한 CNT 교착형 혼합시멘트 제조 방법

Country Status (1)

Country Link
KR (1) KR20200060096A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210067832A (ko) * 2019-11-29 2021-06-08 단국대학교 산학협력단 탄소나노튜브 교착 혼합시멘트 및 이의 제조방법
CN114907075A (zh) * 2022-06-02 2022-08-16 浙江大学 一种高阻尼羧基丁苯胶乳-碳纳米管水泥砂浆及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120139959A (ko) 2011-06-20 2012-12-28 이재환 고밀도 나노 코팅 조성물
JP2013086275A (ja) 2011-10-13 2013-05-13 Shimizu Corp セメント硬化体の製造方法及びセメント硬化体
KR20130083649A (ko) 2012-01-13 2013-07-23 한국과학기술원 탄소나노튜브를 함유한 시멘트 복합재료의 제조방법과 이 시멘트 복합재료를 이용한 탄소나노튜브-시멘트 구조체의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120139959A (ko) 2011-06-20 2012-12-28 이재환 고밀도 나노 코팅 조성물
JP2013086275A (ja) 2011-10-13 2013-05-13 Shimizu Corp セメント硬化体の製造方法及びセメント硬化体
KR20130083649A (ko) 2012-01-13 2013-07-23 한국과학기술원 탄소나노튜브를 함유한 시멘트 복합재료의 제조방법과 이 시멘트 복합재료를 이용한 탄소나노튜브-시멘트 구조체의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210067832A (ko) * 2019-11-29 2021-06-08 단국대학교 산학협력단 탄소나노튜브 교착 혼합시멘트 및 이의 제조방법
CN114907075A (zh) * 2022-06-02 2022-08-16 浙江大学 一种高阻尼羧基丁苯胶乳-碳纳米管水泥砂浆及其制备方法

Similar Documents

Publication Publication Date Title
Babak et al. Preparation and mechanical properties of graphene oxide: cement nanocomposites
Yoo et al. Nanomaterials in ultra-high-performance concrete (UHPC)–A review
Han et al. Nano-core effect in nano-engineered cementitious composites
Ramezani et al. Carbon nanotube reinforced cementitious composites: A comprehensive review
Rhee et al. Compressive strength sensitivity of cement mortar using rice husk-derived graphene with a high specific surface area
Kang et al. The characteristics of CNT/cement composites with acid‐treated MWCNTs
Saafi et al. Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites
Metaxa et al. Carbon nanofiber cementitious composites: effect of debulking procedure on dispersion and reinforcing efficiency
JP6502474B2 (ja) セメント及びアスファルト複合材中へのグラファイト酸化物の取り込み
Yan et al. Study of optimizing graphene oxide dispersion and properties of the resulting cement mortars
Bharj et al. Experimental study on compressive strength of cement-CNT composite paste
Yazdani et al. Carbon nano-tube and nano-fiber in cement mortar: effect of dosage rate and water-cement ratio
Yazdanbakhsh et al. Carbon nano filaments in cementitious materials: some issues on dispersion and interfacial bond
Ahmad et al. Microstructure-toughening relation in alumina based multiwall carbon nanotube ceramic composites
Singh et al. Influences of carbon nanofillers on mechanical performance of epoxy resin polymer
El-Feky et al. Effect of nano silica addition on enhancing the performance of cement composites reinforced with nano cellulose fibers.
Elkashef et al. Acid-treated carbon nanotubes and their effects on mortar strength
Devasena et al. Investigation on strength properties of graphene oxide concrete
Sharma et al. Enhanced mechanical performance of cement nanocomposite reinforced with graphene oxide synthesized from mechanically milled graphite and its comparison with carbon nanotubes reinforced nanocomposite
Kothiyal et al. Characterization of reactive graphene oxide synthesized from ball–milled graphite: its enhanced reinforcing effects on cement nanocomposites
Tyson Carbon nanotube and nanofiber reinforcement for improving the flexural strength and fracture toughness of Portland cement paste
KR20200060096A (ko) MWCNTs와 시멘트의 결합을 통한 CNT 교착형 혼합시멘트 제조 방법
KR102372277B1 (ko) 탄소나노튜브 교착 혼합시멘트 및 이의 제조방법
Kharissova et al. Recent trends of reinforcement of cement with carbon nanotubes and fibers
Bhatrola et al. Mechanical and electrical resistivity performance of Pozzolana Portland cement mortar admixed graphene oxide