KR20200056095A - Method for preparing nano-sulfur, positive electrode active material for lithium secondary battery including the nano-sulfur prepared therefrom and lithium secondary battery including the positive electrode material - Google Patents

Method for preparing nano-sulfur, positive electrode active material for lithium secondary battery including the nano-sulfur prepared therefrom and lithium secondary battery including the positive electrode material Download PDF

Info

Publication number
KR20200056095A
KR20200056095A KR1020180140002A KR20180140002A KR20200056095A KR 20200056095 A KR20200056095 A KR 20200056095A KR 1020180140002 A KR1020180140002 A KR 1020180140002A KR 20180140002 A KR20180140002 A KR 20180140002A KR 20200056095 A KR20200056095 A KR 20200056095A
Authority
KR
South Korea
Prior art keywords
sulfur
positive electrode
nano
secondary battery
lithium secondary
Prior art date
Application number
KR1020180140002A
Other languages
Korean (ko)
Inventor
문정미
박은경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020180140002A priority Critical patent/KR20200056095A/en
Publication of KR20200056095A publication Critical patent/KR20200056095A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/0237Converting into particles, e.g. by granulation, milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

Disclosed are: a method for preparing nano-sulfur, which can increase reactivity and suppress elution of polysulfide by pulverizing sulfur particles to a nano size so that sulfur particles are evenly supported in a positive electrode; a positive electrode active material for a lithium secondary battery containing the nano-sulfur prepared therefrom; and a lithium secondary battery including the same. The method for preparing the nano-sulfur includes the steps of: (a) mixing sulfur and a solvent to prepare a sulfur mixture; and (b) pulverizing the sulfur particles contained in the sulfur mixture in a pulverizing device by adding a dispersant after supplying beads to the prepared sulfur mixture.

Description

나노 황의 제조방법, 이로부터 제조된 나노 황을 포함하는 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지{Method for preparing nano-sulfur, positive electrode active material for lithium secondary battery including the nano-sulfur prepared therefrom and lithium secondary battery including the positive electrode material}Method for preparing nano-sulfur, positive electrode active material for lithium secondary battery containing nano-sulfur prepared therefrom and lithium secondary battery comprising the same {Method for preparing nano-sulfur, positive electrode active material for lithium secondary battery including the nano-sulfur prepared therefrom and lithium secondary battery including the positive electrode material}

본 발명은 나노 황의 제조방법, 이로부터 제조된 나노 황을 포함하는 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것으로서, 더욱 상세하게는, 양극 내에 황 입자가 고르게 담지되도록 황 입자를 나노 크기로 분쇄함으로써 반응성을 높이고 폴리설파이드의 용출을 억제시킬 수 있는, 나노 황의 제조방법, 이로부터 제조된 나노 황을 포함하는 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a method for manufacturing nano-sulfur, a positive electrode active material for a lithium secondary battery containing nano-sulfur prepared therefrom, and a lithium secondary battery comprising the same, and more specifically, nano-particles of sulfur so that sulfur particles are evenly supported in the positive electrode. The present invention relates to a method for preparing nanosulfur, a cathode active material for a lithium secondary battery containing nanosulfur prepared therefrom, and a lithium secondary battery comprising the same, which can increase reactivity and suppress elution of polysulfide by crushing to size.

에너지 저장 기술에 대한 관심이 갈수록 높아짐에 따라, 휴대폰, 태블릿(tablet), 랩탑(laptop) 및 캠코더, 나아가서는 전기 자동차(EV) 및 하이브리드 전기 자동차(HEV)의 에너지까지 적용분야가 확대되면서, 전기화학소자에 대한 연구 및 개발이 점차 증대되고 있다. 전기화학소자는 이러한 측면에서 가장 주목을 받고 있는 분야이고, 그 중에서도 충방전이 가능한 리튬-황 전지와 같은 리튬계 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비 에너지를 향상시키기 위하여, 새로운 전극과 전지의 설계에 대한 연구개발로 이어지고 있다.As interest in energy storage technology increases, the application fields of mobile phones, tablets, laptops and camcorders, and even electric vehicles (EVs) and hybrid electric vehicles (HEVs) are expanding. Research and development of chemical devices is gradually increasing. The electrochemical device is the field that is receiving the most attention in this aspect, and among them, the development of a lithium-based secondary battery such as a lithium-sulfur battery capable of charging and discharging has become a focus of attention, and recently, in developing such a battery, capacity In order to improve the density and specific energy, it has led to research and development on the design of new electrodes and cells.

이와 같은 전기화학소자 또는 리튬 이차전지 가운데 리튬-황(Li-S) 전지는 높은 에너지 밀도를 가져, 리튬이온전지를 대체할 수 있는 차세대 이차전지로 각광 받고 있다. 이와 같은 리튬-황 전지 내에서는, 방전 시 황의 환원 반응과 리튬 메탈의 산화반응이 일어나며, 이 때, 황은 고리 구조의 S8로부터 선형 구조의 리튬 폴리설파이드(Li2S2, Li2S4, Li2S6, Li2S8)를 형성하게 되는데, 이러한 리튬-황 전지는 폴리설파이드(Polysulfide, PS)가 완전히 Li2S로 환원되기까지 단계적 방전 전압을 나타내는 것이 특징이다.Among these electrochemical devices or lithium secondary batteries, lithium-sulfur (Li-S) batteries have a high energy density and are in the spotlight as next-generation secondary batteries that can replace lithium-ion batteries. In such a lithium-sulfur battery, a reduction reaction of sulfur and an oxidation reaction of lithium metal occur during discharging, where sulfur is a lithium polysulfide having a linear structure from S 8 (Li 2 S 2 , Li 2 S 4 , Li 2 S 6 and Li 2 S 8 ) are formed, and this lithium-sulfur battery exhibits a step-by-step discharge voltage until polysulfide (PS) is completely reduced to Li 2 S.

한편, 리튬-황 전지의 양극은 황 자체만으로는 비전도성이기 때문에, 전도성 카본 및 고분자와 복합체를 제조하여 사용하고 있다. 하지만, 리튬-황 전지는 최종 반응 생성물인 Li2S 가 황 원자에 비해 부피가 증가하면서 전극 구조를 변화시키고, 중간 생성물인 폴리설파이드는 전해질에 쉽게 용해되기 때문에, 방전 반응 중에 지속적으로 녹아나오며 양극 활물질의 양이 감소한다. 결국, 전지 퇴화가 가속되어 전지의 장기적 안정성을 확보할 수 없게 된다. 이를 해결하기 위하여, 황-탄소 복합체 양극에서 탄소를 조절하거나, 황의 크기 및 상태 등을 조절함으로써, 황을 양극 내에 고르게 담지하여 반응성을 향상시키고 폴리설파이드의 용출을 억제하는 연구가 진행중이지만, 아직까지 뚜렷한 효과를 나타내지는 못하고 있는 실정이다.On the other hand, since the positive electrode of the lithium-sulfur battery is non-conductive by itself, it is used to prepare a composite with a conductive carbon and a polymer. However, in the lithium-sulfur battery, since the final reaction product Li 2 S increases in volume compared to the sulfur atom, the electrode structure changes, and the polysulfide, an intermediate product, is easily dissolved in the electrolyte, so it is continuously dissolved during the discharge reaction and the anode The amount of active material decreases. As a result, battery degradation is accelerated, so that long-term stability of the battery cannot be secured. In order to solve this, by adjusting the carbon in the sulfur-carbon composite anode, or by adjusting the size and state of sulfur, etc., research is ongoing to improve the reactivity and suppress the dissolution of polysulfide by evenly supporting sulfur in the anode. There is no clear effect.

따라서, 본 발명의 목적은, 양극 내에 황 입자가 고르게 담지되도록 황 입자를 나노 크기로 분쇄함으로써 반응성을 높이고 폴리설파이드의 용출을 억제시킬 수 있는, 나노 황의 제조방법, 이로부터 제조된 나노 황을 포함하는 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지를 제공하는 것이다.Therefore, the object of the present invention is to improve the reactivity and suppress the elution of polysulfide by crushing the sulfur particles to a nano size so that the sulfur particles are evenly supported in the anode, a method of manufacturing nano sulfur, including nano sulfur prepared therefrom To provide a positive electrode active material for a lithium secondary battery and a lithium secondary battery comprising the same.

상기 목적을 달성하기 위하여, 본 발명은, (a) 황 및 용매를 혼합하여 황 혼합액을 제조하는 단계; 및 (b) 상기 제조된 황 혼합액에 비즈(beads)를 공급한 후, 분산제를 첨가하며 분쇄 장치로 황 혼합액에 포함된 황 입자를 분쇄시키는 단계;를 포함하는 나노 황의 제조 방법을 제공한다.In order to achieve the above object, the present invention, (a) preparing a sulfur mixture by mixing sulfur and a solvent; And (b) after supplying beads to the prepared sulfur mixture, adding a dispersant and pulverizing the sulfur particles contained in the sulfur mixture with a crushing device.

또한, 본 발명은, 상기 나노 황의 제조 방법에 의해 제조되는 나노 황; 및 상기 나노 황이 담지되도록 표면에 기공이 형성된 탄소 구조체;를 포함하는 리튬 이차전지용 양극 활물질을 제공한다.In addition, the present invention, nano-sulfur prepared by the method of manufacturing the nano-sulfur; And it provides a positive electrode active material for a lithium secondary battery comprising a; carbon structure with pores formed on the surface to support the nano-sulfur.

또한, 본 발명은, 상기 리튬 이차전지용 양극 활물질을 포함하는 양극; 음극; 상기 양극과 음극의 사이에 개재되는 전해질; 및 분리막;을 포함하는 리튬 이차전지를 제공한다.In addition, the present invention, the positive electrode containing the positive electrode active material for the lithium secondary battery; cathode; An electrolyte interposed between the positive electrode and the negative electrode; And a separator; provides a lithium secondary battery comprising a.

본 발명에 따른 나노 황의 제조방법, 이로부터 제조된 나노 황을 포함하는 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지에 의하면, 양극 내에 황 입자가 고르게 담지되도록 황 입자를 나노 크기로 분쇄함으로써 반응성을 높이고 폴리설파이드의 용출을 억제시킬 수 있는 장점이 있다. 또한, 본 발명에 따른 나노 황의 제조방법은, 밀링 에너지가 커 단시간 분쇄가 가능하다는 장점도 가지고 있다.According to the method of manufacturing nano-sulfur according to the present invention, a positive electrode active material for a lithium secondary battery comprising nano-sulfur prepared therefrom and a lithium secondary battery comprising the same, reactive by pulverizing the sulfur particles to a nano size so that the sulfur particles are evenly supported in the positive electrode And has the advantage of suppressing the dissolution of polysulfide. In addition, the manufacturing method of nano-sulfur according to the present invention has the advantage that the milling energy is large, so that short-time grinding is possible.

도 1은 본 발명의 일 실시예 및 비교예에 따라 분쇄 제조된 황 혼합액 내 황 입자의 입도를 나타낸 그래프이다.
도 2는 본 발명의 일 실시예에 따라 분쇄 제조된 나노 황 혼합액(a) 및 분산제를 사용하지 않고 분쇄 제조된 황 혼합액(b)의 이미지이다.
도 3은 본 발명의 일 실시예 및 비교예에 따라 제조된 리튬-황 전지의 방전 용량 유지율을 보여주는 그래프이다.
1 is a graph showing the particle size of sulfur particles in a sulfur mixture prepared by grinding according to an embodiment and a comparative example of the present invention.
FIG. 2 is an image of a nano-sulfur mixture (a) pulverized according to an embodiment of the present invention and a sulfur mixture (b) pulverized without using a dispersant.
3 is a graph showing a discharge capacity retention rate of a lithium-sulfur battery prepared according to an embodiment and a comparative example of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 나노 황의 제조방법은, (a) 황 및 용매를 혼합하여 황 혼합액을 제조하는 단계 및 (b) 상기 제조된 황 혼합액에 비즈(beads)를 공급한 후, 분산제를 첨가하며 분쇄 장치로 황 혼합액에 포함된 황 입자를 분쇄시키는 단계를 포함한다.The manufacturing method of nano-sulfur according to the present invention comprises: (a) mixing sulfur and a solvent to prepare a sulfur mixture, and (b) supplying beads to the prepared sulfur mixture, then adding a dispersant and grinding device And pulverizing the sulfur particles contained in the sulfur mixture.

본 발명에 따라 나노 황을 제조하기 위해서는, 먼저, 황 및 용매를 혼합하여(또는, 황을 용매에 분산시켜) 황 혼합액을 제조하여야 한다(step a). 상기 (a) 단계에서 사용되는 황(sulfur) 입자는 파우더 성상으로 이루어진 것일 수 있으나, 본 발명에 적용 가능한 크기 및 황 입자의 제공이 가능한 성상이라면 특별한 제한은 없다. 또한, 상기 (a) 단계에서 사용되는 황 입자의 평균입도는 1 내지 1,000 ㎛, 바람직하게는 10 내지 200 ㎛일 수 있다.In order to prepare nano-sulfur according to the present invention, first, a sulfur mixture must be prepared by mixing sulfur or a solvent (or dispersing sulfur in a solvent) (step a). The sulfur particles used in the step (a) may be made of a powdery property, but there is no particular limitation as long as it is a size applicable to the present invention and a property capable of providing sulfur particles. In addition, the average particle size of the sulfur particles used in the step (a) may be 1 to 1,000 μm, preferably 10 to 200 μm.

이와 같은 황(입자)은 무를 뿐만 아니라 열(heat)을 가할 시 녹는 성질을 가지고 있기 때문에, 용매와 혼합할 경우 분쇄 과정에서 뭉침 현상이 방지되고 보다 작은 입자로의 분쇄가 가능하다(즉, 용매를 이용한 습식 분쇄(wet milling)). 이와 같이 황 입자와 혼합 사용되는 용매로는, 상기의 효과를 발현시킬 수 있는 것이라면 특별한 제한이 없으나 유기용매가 바람직하다.Since such sulfur (particles) has a property of melting upon addition of heat as well as melting, when mixing with a solvent, agglomeration is prevented in the grinding process and grinding into smaller particles is possible (ie, solvent) Wet milling using (wet milling). As a solvent used in combination with sulfur particles, there is no particular limitation as long as it can express the above effects, but an organic solvent is preferred.

상기 유기용매로는 메탄올, 에탄올, 1-프로판올, 이소프로필알코올(IPA) 등의 알코올계 화합물, 벤젠, 디클로로벤젠, 톨루엔, 자일렌 등의 벤젠계 화합물, 디메틸포름아미드(dimethylformamide, DMF), 테트라하이드로퓨란(Tetrahydrofuran, THF), N-메틸피롤리돈(N-methyl pyrrolidone, NMP) 및 이들의 혼합물을 예시할 수 있고, 이 중에서도 알코올계 용매의 사용이 바람직하다. 이때, 2종 이상의 유기용매를 혼합 사용하는 경우, 그 혼합 비율에 있어서는 특별한 제한이 없다.Examples of the organic solvent include alcohol compounds such as methanol, ethanol, 1-propanol, and isopropyl alcohol (IPA), benzene compounds such as benzene, dichlorobenzene, toluene, and xylene, dimethylformamide (DMF), and tetra Hydrofuran (Tetrahydrofuran, THF), N-methyl pyrrolidone (NMP) and mixtures thereof can be exemplified, and among these, use of an alcohol-based solvent is preferred. At this time, when two or more organic solvents are mixed and used, there is no particular limitation on the mixing ratio.

상기 황의 함량은 상기 용매 100 중량부에 대하여 0.5 내지 30 중량부, 바람직하게는 5 내지 20 중량부로서, 상기 황의 함량이 상기 용매 100 중량부에 대하여 0.5 중량부 미만이면, 용매를 사용함으로써 얻어질 수 있는 효과, 즉, 분쇄 과정에서의 황 입자 간 뭉침 현상 방지 및 보다 작은 황 입자로의 분쇄 효과가 미미할 수 있고, 30 중량부를 초과할 경우에는, 분쇄 과정이 원활하지 않아 입자 사이즈 분포가 불균일해지는 문제가 발생할 우려가 있다.The content of the sulfur is 0.5 to 30 parts by weight, preferably 5 to 20 parts by weight with respect to 100 parts by weight of the solvent, if the content of the sulfur is less than 0.5 parts by weight with respect to 100 parts by weight of the solvent, it can be obtained by using a solvent A possible effect, that is, the prevention of agglomeration between sulfur particles in the grinding process and the grinding effect to smaller sulfur particles may be insignificant, and when it exceeds 30 parts by weight, the grinding process is not smooth, resulting in non-uniform particle size distribution There is a risk of problems.

그밖에, 상기 (a) 단계에서 황과 용매를 혼합하는 공정은 0 내지 40 ℃, 바람직하게는 20 내지 25 ℃의 온도 하에서 1 내지 48 시간, 바람직하게는 4 내지 24 시간 동안 수행될 수 있다.In addition, the process of mixing sulfur and the solvent in the step (a) may be performed for 1 to 48 hours, preferably 4 to 24 hours, at a temperature of 0 to 40 ° C, preferably 20 to 25 ° C.

다음으로, 상기와 같이 황 혼합액을 제조한 후에는, 황 혼합액에 비즈를 공급한 후, 분산제를 첨가하며 분쇄 장치로 황 혼합액에 포함된 황 입자를 분쇄시켜야 한다(step b). 상기 비즈(beads, 또는 볼(ball)는 분쇄 장치 내에 구비되어 상기 황 혼합액에 포함된 황 입자를 분쇄시키기 위한(또는, 황 입자의 크기를 줄이기 위한) 것으로서, 입자를 분쇄시키는데 사용되는 통상의 것일 수 있다.Next, after preparing the sulfur mixture, as described above, after supplying the beads to the sulfur mixture, a dispersant is added and the sulfur particles contained in the sulfur mixture must be crushed by a pulverizing device (step b). The beads (beads, or ball (ball)) is provided in the grinding device to pulverize the sulfur particles contained in the sulfur mixture (or, to reduce the size of the sulfur particles), it is a common one used to crush particles Can be.

상기 비즈의 재질은 유리, 금속, 지르코니아 등의 금속 산화물, 합성수지 또는 목재 등일 수 있고, 이 중 반응물인 황과의 반응성이 가장 적은 지르코니아를 비즈로 적용하는 것이 바람직하다. 또한, 상기 비즈의 평균 입경은 10 mm 이하, 바람직하게는 5 mm 이하, 더욱 바람직하게는 0.1 내지 2 mm일 수 있는 등, 상기 비즈의 평균 입경이 작을수록 황 입자를 분쇄시키는 효과가 커진다. 따라서, 상기 비즈의 평균 입경이 10 mm를 초과하는 경우에는 황 입자에 대한 분쇄 정도가 미미해질 수 있다. 그밖에, 상기 비즈는 상기 황 혼합액 100 중량부에 대하여 10 내지 100 중량부, 바람직하게는 20 내지 50 중량부로 사용될 수 있으며, 목적으로 하는 황 입자의 분쇄 정도에 따라 다양하게 가변될 수 있다.The material of the beads may be a metal oxide such as glass, metal, zirconia, synthetic resin, or wood, and among them, it is preferable to apply zirconia having the least reactivity with sulfur as a reactant as beads. In addition, the smaller the average particle diameter of the beads, such as the average particle diameter of the beads may be 10 mm or less, preferably 5 mm or less, and more preferably 0.1 to 2 mm, the greater the effect of pulverizing the sulfur particles. Therefore, when the average particle diameter of the beads exceeds 10 mm, the degree of pulverization for sulfur particles may be negligible. In addition, the beads may be used in an amount of 10 to 100 parts by weight, preferably 20 to 50 parts by weight with respect to 100 parts by weight of the sulfur mixture, and may be variously varied depending on the degree of grinding of the target sulfur particles.

상기 분쇄 장치는 상기 비즈를 이용하여 황 입자를 제어 분쇄하기 위한(또는, 황 입자의 크기를 줄이기 위한) 것으로서, 밀링(milling) 에너지가 큰 것일수록 황 입자에 대한 분쇄 효과가 더 커지고, 분쇄에 소요되는 시간을 단축시킬 수 있다. 상기 분쇄 장치로는 오비탈 쉐이커(orbital shaker), 3-롤 밀(3-roll mill), 제트 밀(jet mill) 등, 입자의 분쇄에 사용되는 통상적인 분쇄 장치들을 예시할 수 있으나, 밀링 에너지가 가장 크고 오비탈 형태로 회전하는 오비탈 쉐이커를 이용하는 것이 바람직하다.The pulverizing apparatus is for controlling and pulverizing sulfur particles using the beads (or reducing the size of sulfur particles), the greater the milling energy, the greater the crushing effect for sulfur particles, and The time required can be shortened. The crushing device may be exemplified by conventional crushing devices used for pulverizing particles, such as an orbital shaker, a 3-roll mill, a jet mill, etc. It is desirable to use an orbital shaker that is the largest and orbital.

이와 같은 분쇄 장치, 특히, 오비탈 쉐이커의 회전 속도는 100 내지 1,000 rpm일 수 있고, 이를 이용한 분쇄 공정은 0 내지 40 ℃, 바람직하게는 20 내지 25 ℃의 온도 하에서 1 내지 48 시간, 바람직하게는 6 내지 24 시간, 더욱 바람직하게는 10 내지 15 시간 동안 수행될 수 있다.The rotation speed of such a pulverizing apparatus, in particular, an orbital shaker, may be 100 to 1,000 rpm, and the pulverization process using the pulverization process is 1 to 48 hours under a temperature of 0 to 40 ° C, preferably 20 to 25 ° C, preferably 6 To 24 hours, more preferably 10 to 15 hours.

한편, 본 발명에 있어, 상기 분쇄 공정에는 상기 황 입자를 나노 크기까지 줄일 수 있는 분산제가 사용된다. 상기 분산제는 비즈가 투입된 황 혼합액에 미리 첨가시킬 수도 있고, 분쇄 장치로 황 입자를 분쇄시키는 동시에 첨가시킬 수도 있는 등, 상기 분산제를 첨가하여 그로 인한 효과를 나타낼 수만 있다면, 상기 분산제의 첨가 시점에는 특별한 제한이 없다. 상기 분산제로는 폴리아크릴레이트계 화합물, 폴리아민계 화합물, 폴리우레탄계 화합물 및 이들의 혼합물을 예시할 수 있고, 이 중 황 입자의 크기를 나노미터 크기까지 줄일 수 있는 폴리아크릴레이트계 화합물을 분산제로 적용하는 것이 바람직하며, 상기 폴리아크릴레이트계 화합물로는 폴리아크릴릭애씨드, 폴리아크릴아미드, 폴리메틸메타크릴레이트 및 이들의 혼합물 등을 예시할 수 있다. 한편, 이와 같은 분산제의 중량평균분자량(Mw)은 100,000 이하, 바람직하게는 50,000 이하일 수 있다.Meanwhile, in the present invention, a dispersant capable of reducing the sulfur particles to a nano size is used in the grinding process. The dispersant may be added in advance to the sulfur mixture in which beads are added, or may be added at the same time as pulverizing sulfur particles with a pulverizing device. no limits. As the dispersant, a polyacrylate-based compound, a polyamine-based compound, a polyurethane-based compound, and a mixture thereof can be exemplified, and among them, a polyacrylate-based compound capable of reducing the size of sulfur particles to a nanometer size is applied as a dispersant. Preferably, the polyacrylate-based compound may be exemplified by polyacrylic acid, polyacrylamide, polymethyl methacrylate, and mixtures thereof. Meanwhile, the weight average molecular weight (Mw) of the dispersing agent may be 100,000 or less, preferably 50,000 or less.

상기 분산제의 사용 함량은 상기 황 혼합액 100 중량부에 대하여 0.1 내지 30 중량부, 바람직하게는 1 내지 10 중량부로서, 상기 분산제의 함량이 상기 황 혼합액 100 중량부에 대하여 0.1 중량부 미만이면 황 입자의 분쇄 정도가 미미할 수 있고, 30 중량부를 초과할 경우에는 분산제를 사용함으로써 얻어질 수 있는 효과가 저하되거나, 전지 제조 후의 구동 시 오히려 저항으로 작용하는 문제가 발생할 수 있다.The content of the dispersant is 0.1 to 30 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the sulfur mixture, and sulfur particles when the content of the dispersant is less than 0.1 parts by weight with respect to 100 parts by weight of the sulfur mixture The degree of crushing may be insignificant, and when it exceeds 30 parts by weight, an effect that can be obtained by using a dispersant may be lowered, or a problem that acts as a resistance rather than when driving after battery manufacturing may occur.

이상과 같은 공정에 의해 제조되는 나노 황 입자의 평균입도는 1,000 nm 미만, 바람직하게는 200 nm 이하, 더욱 바람직하게는 100 nm 이하로서, 본 발명에 따라 용매 및 분산제를 분쇄 공정에 적용하게 되면, 상기와 같이 나노 크기의 황을 얻을 수 있는 장점이 있다.The average particle size of the nano-sulfur particles prepared by the above process is less than 1,000 nm, preferably 200 nm or less, and more preferably 100 nm or less. When a solvent and a dispersant are applied to the grinding process according to the present invention, As described above, there is an advantage of obtaining nano-sized sulfur.

다음으로, 본 발명에 따른 리튬 이차전지용 양극 활물질에 대하여 설명한다. 상기 리튬 이차전지용 양극 활물질은, 상기 나노 황의 제조 방법에 의해 제조되는 나노 황 및 상기 나노 황이 담지되도록 표면에 기공이 형성된 탄소 구조체를 포함한다.Next, the positive electrode active material for a lithium secondary battery according to the present invention will be described. The positive electrode active material for a lithium secondary battery includes nano-sulfur prepared by the manufacturing method of nano-sulfur and a carbon structure having pores formed on a surface to support the nano-sulfur.

상기 나노 황에 대해서는 전술한 바를 준용하고, 상기 탄소 구조체는 탄소나노튜브(carbon nanotube, CNT), 그래핀(graphene) 및 그래핀 옥사이드(graphene oxide, GO) 등, 특정 가스를 공급하거나 열처리 시 표면에 기공이 형성되는 탄소계 화합물이라면 특별한 제한 없이 적용될 수 있다.The above applies to the nano-sulfur, and the carbon structure is a surface when a specific gas is supplied or heat-treated, such as carbon nanotube (CNT), graphene and graphene oxide (GO). Carbon-based compounds in which pores are formed can be applied without particular limitation.

마지막으로, 상기 리튬 이차전지용 양극 활물질을 포함하는 리튬 이차전지에 대하여 설명하면, 상기 리튬 이차전지는, 상기 리튬 이차전지용 양극 활물질을 포함하는 양극, 음극, 상기 양극과 음극의 사이에 개재되는 전해질 및 분리막을 포함한다. 상기 양극 활물질의 함량은 상기 양극 100 중량부에 대하여 50 내지 90 중량부, 바람직하게는 60 내지 80 중량부일 수 있다. 상기 양극 활물질의 함량이 양극 전체 중량 100 중량부에 대하여 50 중량부 미만이면 양극 활물질에 의한 전지의 전기화학적 특성이 저하되고, 90 중량부를 초과하면 바인더 및 도전재와 같은 추가적인 구성 성분이 소량으로 포함될 수 있어 효율적인 전지의 제조가 어려울 수 있다. 한편, 상기 리튬 이차전지는 리튬-황 전지, 리튬 메탈전지 또는 리튬 공기전지일 수 있다.Finally, when describing a lithium secondary battery including the positive electrode active material for the lithium secondary battery, the lithium secondary battery includes an anode, a negative electrode, and an electrolyte interposed between the positive electrode and the negative electrode, including the positive electrode active material for the lithium secondary battery, and And a separator. The content of the positive electrode active material may be 50 to 90 parts by weight, preferably 60 to 80 parts by weight based on 100 parts by weight of the positive electrode. If the content of the positive electrode active material is less than 50 parts by weight relative to 100 parts by weight of the total positive electrode, the electrochemical properties of the battery by the positive electrode active material is lowered, and if it exceeds 90 parts by weight, additional components such as binders and conductive materials are included in a small amount. It can be difficult to produce an efficient battery. Meanwhile, the lithium secondary battery may be a lithium-sulfur battery, a lithium metal battery or a lithium air battery.

그밖에, 상기 양극 활물질을 제외한 양극의 제반 구성, 음극, 전해질 및 분리막은 당업계에서 사용하는 통상의 것일 수 있으며, 이하, 이들에 대한 구체적인 설명을 하도록 한다.In addition, the overall configuration of the positive electrode except for the positive electrode active material, the negative electrode, the electrolyte, and the separator may be conventional ones used in the art, and will be described below in detail.

본 발명의 리튬 이차전지에 포함되는 양극은, 전술한 양극 활물질 이외에 바인더 및 도전재 등을 더 포함한다. 상기 바인더는 양극 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분으로서, 예컨대, 폴리비닐리덴플루오라이드(PVdF), 폴리비닐리덴플루오라이드-폴리헥사플루오로프로필렌 공중합체(PVdF/HFP), 폴리비닐아세테이트, 폴리비닐알코올, 폴리비닐에테르, 폴리에틸렌, 폴리에틸렌옥사이드, 알킬화 폴리에틸렌옥사이드, 폴리프로필렌, 폴리메틸(메트)아크릴레이트, 폴리에틸(메트)아크릴레이트, 폴리테트라플루오로에틸렌(PTFE), 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리비닐피롤리돈, 스티렌-부타디엔 고무, 아크릴로니트릴-부타디엔 고무, 에틸렌-프로필렌-디엔 모노머(EPDM) 고무, 술폰화 EPDM 고무, 스틸렌-부틸렌 고무, 불소 고무, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 및 이들의 혼합물로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.The positive electrode included in the lithium secondary battery of the present invention further includes a binder and a conductive material in addition to the positive electrode active material described above. The binder is a component that assists in the binding of the positive electrode active material and the conductive material and the like to the current collector, for example, polyvinylidene fluoride (PVdF), polyvinylidene fluoride-polyhexafluoropropylene copolymer (PVdF / HFP), polyvinyl acetate, polyvinyl alcohol, polyvinyl ether, polyethylene, polyethylene oxide, alkylated polyethylene oxide, polypropylene, polymethyl (meth) acrylate, polyethyl (meth) acrylate, polytetrafluoroethylene (PTFE) ), Polyvinylchloride, polyacrylonitrile, polyvinylpyridine, polyvinylpyrrolidone, styrene-butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene-diene monomer (EPDM) rubber, sulfonated EPDM rubber, styrene -Butylene rubber, fluorine rubber, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, and mixtures thereof, and one or more selected from the group consisting of these can be used, but must be It is not limited to this.

상기 바인더는 통상적으로 양극 총 중량 100 중량부를 기준으로 1 내지 50 중량부, 바람직하게는 3 내지 15 중량부 첨가된다. 상기 바인더의 함량이 1 중량부 미만이면 양극 활물질과 집전체와의 접착력이 불충분해질 수 있고, 50 중량부를 초과하면 접착력은 향상되지만 그만큼 양극 활물질의 함량이 감소하여 전지 용량이 낮아질 수 있다.The binder is usually 1 to 50 parts by weight, preferably 3 to 15 parts by weight, based on 100 parts by weight of the total positive electrode. If the content of the binder is less than 1 part by weight, the adhesive force between the positive electrode active material and the current collector may be insufficient, and if it exceeds 50 parts by weight, the adhesive strength is improved, but the content of the positive electrode active material is reduced so that the battery capacity may be lowered.

상기 양극에 포함되는 도전재는 리튬 이차전지의 내부 환경에서 부반응을 유발하지 않고 당해 전지에 화학적 변화를 유발하지 않으면서 우수한 전기전도성을 가지는 것이라면 특별히 제한되지 않으며, 대표적으로는 흑연 또는 도전성 탄소를 사용할 수 있으며, 예컨대, 천연 흑연, 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 뎅카 블랙, 써멀 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 결정구조가 그라펜이나 그라파이트인 탄소계 물질; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화 아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 산화물; 및 폴리페닐렌 유도체 등의 도전성 고분자;를 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.The conductive material included in the positive electrode is not particularly limited as long as it has excellent electrical conductivity without causing a side reaction in the internal environment of the lithium secondary battery and does not cause a chemical change in the battery, and typically graphite or conductive carbon can be used. Graphite, such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, ketjen black, denka black, thermal black, channel black, furnace black, lamp black, and summer black; A carbon-based material having a crystal structure of graphene or graphite; Conductive fibers such as carbon fibers and metal fibers; Carbon fluoride; Metal powders such as aluminum and nickel powders; Conductive whiskey such as zinc oxide and potassium titanate; Conductive oxides such as titanium oxide; And conductive polymers, such as polyphenylene derivatives; may be used alone or in combination of two or more, but is not limited thereto.

상기 도전재는 통상적으로 양극 전체 중량 100 중량부를 기준으로 0.5 내지 50 중량부, 바람직하게는 1 내지 30 중량부로 첨가된다. 도전재의 함량이 0.5 중량부 미만으로 너무 적으면 전기전도성 향상 효과를 기대하기 어렵거나 전지의 전기화학적 특성이 저하될 수 있으며, 도전재의 함량이 50 중량부를 초과하여 너무 많으면 상대적으로 양극 활물질의 양이 적어져 용량 및 에너지 밀도가 저하될 수 있다. 양극에 도전재를 포함시키는 방법은 크게 제한되지 않으며, 양극 활물질에의 코팅 등 당분야에 공지된 통상적인 방법을 사용할 수 있다. 또한, 필요에 따라, 양극 활물질에 도전성의 제2 피복층이 부가됨으로 인해 상기와 같은 도전재의 첨가를 대신할 수도 있다.The conductive material is usually added in 0.5 to 50 parts by weight, preferably 1 to 30 parts by weight based on 100 parts by weight of the total weight of the positive electrode. If the content of the conductive material is less than 0.5 part by weight, it is difficult to expect an effect of improving the electrical conductivity or the electrochemical properties of the battery may be deteriorated. If the content of the conductive material exceeds 50 parts by weight, the amount of the positive electrode active material is relatively Less, the capacity and energy density may decrease. The method of including the conductive material in the positive electrode is not particularly limited, and a conventional method known in the art, such as coating on a positive electrode active material, can be used. In addition, if necessary, the addition of a conductive material as described above may be substituted because a conductive second coating layer is added to the positive electrode active material.

또한, 양극에는 그 팽창을 억제하는 성분으로서 충진제가 선택적으로 첨가될 수 있다. 이러한 충진제는 당해 전지에 화학적 변화를 유발하지 않으면서 전극의 팽창을 억제할 수 있는 것이라면 특별히 제한되는 것은 아니며, 예컨대, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소 섬유 등의 섬유상 물질; 등을 사용할 수 있다.Further, a filler may be selectively added to the positive electrode as a component that inhibits its expansion. The filler is not particularly limited as long as it can suppress the expansion of the electrode without causing a chemical change in the battery, and for example, olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fiber and carbon fiber; Etc. can be used.

상기 양극 활물질, 바인더 및 도전재 등을 분산매(용매)에 분산, 혼합시켜 슬러리를 만들고, 이를 양극 집전체 상에 도포한 후 건조 및 압연함으로써, 본 발명의 양극을 제조할 수 있다. 상기 분산매로는 NMP(N-methyl-2-pyrrolidone), DMF(Dimethyl formamide), DMSO(Dimethyl sulfoxide), 에탄올, 이소프로판올, 물 및 이들의 혼합물을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.The positive electrode of the present invention can be prepared by dispersing and mixing the positive electrode active material, binder, and conductive material in a dispersion medium (solvent) to form a slurry, and then applying it on a positive electrode current collector, followed by drying and rolling. As the dispersion medium, NMP (N-methyl-2-pyrrolidone), DMF (Dimethyl formamide), DMSO (Dimethyl sulfoxide), ethanol, isopropanol, water, and mixtures thereof may be used, but are not limited thereto.

상기 양극 집전체로는 백금(Pt), 금(Au), 팔라듐(Pd), 이리듐(Ir), 은(Ag), 루테늄(Ru), 니켈(Ni), 스테인리스스틸(STS), 알루미늄(Al), 몰리브데늄(Mo), 크롬(Cr), 카본(C), 티타늄(Ti), 텅스텐(W), ITO(In doped SnO2), FTO(F doped SnO2), 및 이들의 합금과, 알루미늄(Al) 또는 스테인리스스틸의 표면에 카본(C), 니켈(Ni), 티타늄(Ti) 또는 은(Ag)을 표면 처리한 것 등을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 양극 집전체의 형태는 호일, 필름, 시트, 펀칭된 것, 다공질체, 발포체 등의 형태일 수 있다.The positive electrode current collector includes platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), silver (Ag), ruthenium (Ru), nickel (Ni), stainless steel (STS), aluminum (Al ), Molybdenum (Mo), chromium (Cr), carbon (C), titanium (Ti), tungsten (W), ITO (In doped SnO 2 ), FTO (F doped SnO 2 ), and alloys thereof , Surface treatment of carbon (C), nickel (Ni), titanium (Ti) or silver (Ag) on the surface of aluminum (Al) or stainless steel may be used, but is not limited thereto. The positive electrode current collector may be in the form of foil, film, sheet, punched, porous body, foam, or the like.

상기 음극은 해당 기술 분야에 알려진 통상적인 방법에 따라 제조할 수 있다. 예를 들어, 음극 활물질, 도전재, 바인더, 필요에 따라 충진제 등을 분산매(용매)에 분산, 혼합시켜 슬러리를 만들고, 이를 음극 집전체 상에 도포한 후 건조 및 압연하여 음극을 제조할 수 있다. 상기 음극 활물질로는 리튬 금속이나 리튬 합금(예컨대, 리튬과 알루미늄, 아연, 비스무스, 카드뮴, 안티몬, 실리콘, 납, 주석, 갈륨 또는 인듐 등과 같은 금속과의 합금)를 사용할 수 있다. 상기 음극 집전체로는 백금(Pt), 금(Au), 팔라듐(Pd), 이리듐(Ir), 은(Ag), 루테늄(Ru), 니켈(Ni), 스테인리스스틸(STS), 구리(Cu), 몰리브데늄(Mo), 크롬(Cr), 카본(C), 티타늄(Ti), 텅스텐(W), ITO(In doped SnO2), FTO(F doped SnO2), 및 이들의 합금과, 구리(Cu) 또는 스테인리스 스틸의 표면에 카본(C), 니켈(Ni), 티타늄(Ti) 또는 은(Ag)을 표면 처리한 것 등을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 음극 집전체의 형태는 호일, 필름, 시트, 펀칭된 것, 다공질체, 발포체 등의 형태일 수 있다.The cathode may be manufactured according to a conventional method known in the art. For example, a negative electrode active material, a conductive material, a binder, and a filler, if necessary, can be dispersed and mixed in a dispersion medium (solvent) to make a slurry, and then coated on a negative electrode current collector, followed by drying and rolling to produce a negative electrode. . As the negative electrode active material, a lithium metal or a lithium alloy (eg, an alloy of lithium and a metal such as aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium, or indium) may be used. Examples of the negative electrode current collector include platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), silver (Ag), ruthenium (Ru), nickel (Ni), stainless steel (STS), and copper (Cu) ), Molybdenum (Mo), chromium (Cr), carbon (C), titanium (Ti), tungsten (W), ITO (In doped SnO 2 ), FTO (F doped SnO 2 ), and alloys thereof , Surface treatment of copper (Cu) or stainless steel with carbon (C), nickel (Ni), titanium (Ti), or silver (Ag) may be used, but is not limited thereto. The shape of the negative electrode current collector may be in the form of foil, film, sheet, punched, porous body, foam, or the like.

상기 분리막은 양극과 음극 사이에 개재되어 이들 사이의 단락을 방지하고 리튬이온의 이동 통로를 제공하는 역할을 한다. 상기 분리막으로는 폴리에틸렌, 폴리프로필렌과 같은 올레핀계 폴리머, 유리섬유 등을 시트, 다중막, 미세다공성 필름, 직포 및 부직포 등의 형태로 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 한편 전해질로서 폴리머 등의 고체 전해질(예컨대, 유기 고체 전해질, 무기 고체 전해질 등)이 사용되는 경우에는 상기 고체 전해질이 분리막을 겸할 수도 있다. 구체적으로는, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막을 사용한다. 분리막의 기공 직경은 일반적으로 0.01 내지 10 ㎛, 두께는 일반적으로 5 내지 300 ㎛ 범위일 수 있다.The separator is interposed between the positive electrode and the negative electrode to prevent a short circuit between them and serves to provide a passage for lithium ions. As the separator, olefin-based polymers such as polyethylene and polypropylene, glass fibers, and the like can be used in the form of sheets, multi-layer membranes, microporous films, woven fabrics, and non-woven fabrics, but are not limited thereto. On the other hand, when a solid electrolyte such as a polymer (eg, organic solid electrolyte, inorganic solid electrolyte, etc.) is used as the electrolyte, the solid electrolyte may also serve as a separator. Specifically, an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the separator may generally range from 0.01 to 10 μm, and the thickness may generally range from 5 to 300 μm.

상기 전해질 또는 전해액으로는 비수계 전해액(비수계 유기 용매)으로서 카보네이트, 에스테르, 에테르 또는 케톤을 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 예를 들어, 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸에틸 카보네이트, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, γ-부틸로락톤, n-메틸 아세테이트, n-에틸 아세테이트, n-프로필 아세테이트, 인산 트리에스테르, 디부틸 에테르, N-메틸-2-피롤리디논, 1,2-디메톡시 에탄, 테트라히드록시 프랑(Franc), 2-메틸 테트라하이드로푸란과 같은 테트라하이드로푸란 유도체, 디메틸설폭시드, 포름아미드, 디메틸포름아미드, 디옥소런 및 그 유도체, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산 메틸, 트리메톡시 메탄, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기 용매가 사용될 수 있으나, 반드시 이에 한정되는 것은 아니다.As the electrolyte or electrolyte, a carbonate, ester, ether, or ketone may be used alone or in combination of two or more as a non-aqueous electrolyte (non-aqueous organic solvent), but is not limited thereto. For example, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, methylethyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butylolactone, n-methyl acetate, n- Such as ethyl acetate, n-propyl acetate, phosphoric acid triester, dibutyl ether, N-methyl-2-pyrrolidinone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran Tetrahydrofuran derivatives, dimethylsulfoxide, formamide, dimethylformamide, dioxron and its derivatives, acetonitrile, nitromethane, methyl formate, methyl acetate, trimethoxymethane, sulfolane, methyl sulfolane, 1,3 -Aprotic organic solvents such as dimethyl-2-imidazolidinone, methyl propionate, and ethyl propionate may be used, but are not limited thereto.

상기 전해액에는 리튬염을 더 첨가하여 사용할 수 있으며(이른바, 리튬염 함유 비수계 전해액), 상기 리튬염으로는 비수계 전해액에 용해되기 좋은 공지의 것, 예를 들어 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiPF3(CF2CF3)3, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등을 들 수 있으나, 반드시 이에 한정되는 것은 아니다. 상기 (비수계) 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 필요에 따라서는, 불연성을 부여하기 위해 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온보존 특성을 향상시키기 위해 이산화탄산 가스를 더 포함시킬 수도 있다.A lithium salt may be further added to the electrolyte solution (so-called lithium salt-containing non-aqueous electrolyte solution), and the lithium salt is a well-known one that is soluble in a non-aqueous electrolyte solution, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiPF 3 (CF 2 CF 3 ) 3 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lower aliphatic lithium carboxylate, lithium 4-phenyl borate, imide, and the like, but are not limited thereto. The (non-aqueous) electrolytic solution is for the purpose of improving charge / discharge characteristics, flame retardancy, etc., for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide , Nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride, etc. can be added It might be. If necessary, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included to impart non-flammability, or carbon dioxide gas may be further included to improve high temperature storage characteristics.

본 발명의 리튬 이차전지는 당 분야의 통상적인 방법에 따라 제조할 수 있다. 예를 들어, 양극과 음극 사이에 다공성의 분리막을 넣고, 비수 전해액을 투입함으로써 제조할 수 있다. 본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지 셀에 적용됨은 물론, 중대형 디바이스의 전원인 전지모듈의 단위전지로 특히 적합하게 사용될 수 있다. 이러한 측면에서, 본 발명은 또한 상기 리튬 이차전지 2개 이상이 전기적으로 연결(직렬 또는 병렬)되어 포함된 전지모듈을 제공한다. 상기 전지모듈에 포함되는 리튬 이차전지의 수량은, 전지모듈의 용도 및 용량 등을 고려하여 다양하게 조절될 수 있음은 물론이다.The lithium secondary battery of the present invention can be manufactured according to a conventional method in the art. For example, it can be produced by placing a porous separator between the positive electrode and the negative electrode, and adding a non-aqueous electrolyte. The lithium secondary battery according to the present invention is applied not only to a battery cell used as a power source for a small device, but also as a unit cell of a battery module that is a power source for a medium-to-large size device. In this aspect, the present invention also provides a battery module including two or more of the lithium secondary batteries are electrically connected (serial or parallel). Of course, the number of lithium secondary batteries included in the battery module may be variously adjusted in consideration of the use and capacity of the battery module.

나아가, 본 발명은 당 분야의 통상적인 기술에 따라 상기 전지모듈을 전기적으로 연결한 전지팩을 제공한다. 상기 전지모듈 및 전지팩은 파워 툴(Power Tool); 전기차(Electric Vehicle, EV), 하이브리드 전기차(Hybrid Electric Vehicle, HEV), 및 플러그인 하이브리드 전기차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 전기 트럭; 전기 상용차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용 가능하나, 반드시 이에 한정되는 것은 아니다.Furthermore, the present invention provides a battery pack electrically connecting the battery modules according to conventional techniques in the art. The battery module and the battery pack are a power tool (Power Tool); An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid electric vehicle (PHEV); Electric truck; Electric commercial vehicles; Alternatively, the power storage system may be used as a power supply for any one or more medium and large devices, but is not limited thereto.

이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 이는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred embodiments are provided to help the understanding of the present invention, but these are merely illustrative of the present invention, and it is apparent to those skilled in the art that various changes and modifications can be made within the scope and technical scope of the present invention. It is also natural that the modifications fall within the scope of the appended claims.

[실시예 1] 나노 황의 제조 [Example 1] Preparation of nano sulfur

먼저, 에탄올(용매)에 입자의 입도가 40 ㎛인 황 파우더를 에탄올 100 중량부 대비 5 ~ 10 중량부만큼 혼합하여 황 혼합액을 제조하였으며, 여기에 1 mm 크기의 지르코니아 비즈를 에탄올 100 중량부 대비 20 ~ 50 중량부만큼 첨가한 후, 추가로 분자량 40,000 이하의 폴리아크릴릭애씨드(분산제)를 에탄올 100 중량부 대비 1 ~ 10 중량부만큼 투입하며 오비탈 쉐이커(Benchtop Shaker, Lab COMPANION)로 황 혼합액에 포함된 황 입자를 12 시간 동안 분쇄하여 나노 황을 제조하였다.First, sulfur powder having a particle size of 40 μm in ethanol (solvent) was mixed with 5 to 10 parts by weight compared to 100 parts by weight of ethanol to prepare a sulfur mixture, and 1 mm of zirconia beads was compared to 100 parts by weight of ethanol. After adding 20 to 50 parts by weight, an additional polyacrylic acid (dispersant) having a molecular weight of 40,000 or less is added in an amount of 1 to 10 parts by weight compared to 100 parts by weight of ethanol, and included in the sulfur mixture as an orbital shaker (Benchtop Shaker, Lab COMPANION) The pulverized sulfur particles were pulverized for 12 hours to prepare nanosulfur.

[실시예 2] 나노 황의 제조 [Example 2] Preparation of nano sulfur

분산제로서 폴리아크릴레이트계 화합물 대신 폴리우레탄 유레아를 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 나노 황을 제조하였다.Nanosulfur was prepared in the same manner as in Example 1, except that polyurethane urea was used instead of the polyacrylate-based compound as a dispersant.

[비교예 1] 통상적인 황 [Comparative Example 1] Conventional sulfur

분쇄 공정을 거치지 않은, 입자의 입도가 40 ㎛인 황 파우더를 준비하였다.A sulfur powder having a particle size of 40 μm, which has not been subjected to a grinding process, was prepared.

[비교예 2] 통상적인 황의 제조 [Comparative Example 2] Preparation of conventional sulfur

분산제를 사용하지 않은 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 황을 제조하였다.Sulfur was prepared in the same manner as in Example 1, except that no dispersant was used.

[비교예 3] 통상적인 황의 제조 [Comparative Example 3] Preparation of conventional sulfur

분산제로서 폴리아크릴레이트계 화합물 대신 지방산(fatty acid)을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 황을 제조하였다.Sulfur was prepared in the same manner as in Example 1, except that a fatty acid was used as a dispersant instead of a polyacrylate-based compound.

[비교예 4] 통상적인 황의 제조 [Comparative Example 4] Preparation of conventional sulfur

분산제로서 폴리아크릴레이트계 화합물 대신 인산(phosphoric acid)을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 황을 제조하였다.Sulfur was prepared in the same manner as in Example 1, except that phosphoric acid was used instead of the polyacrylate-based compound as a dispersant.

[실험예 1] 황 입자의 입도 평가 [Experimental Example 1] Particle size evaluation of sulfur particles

입도분석기(Microtrac사)를 이용하여, 상기 실시예 1, 2 및 비교예 1 내지 4로부터 준비 또는 제조된 황 입자의 평균 입도를 측정하였으며, 그 결과를 하기 표 1에 나타내었다.Using a particle size analyzer (Microtrac), the average particle size of the sulfur particles prepared or prepared from Examples 1 and 2 and Comparative Examples 1 to 4 was measured, and the results are shown in Table 1 below.

황 입자의 평균 입도Average particle size of sulfur particles 실시예 1Example 1 30 nm30 nm 실시예 2Example 2 200 nm200 nm 비교예 1Comparative Example 1 40 ㎛40 μm 비교예 2Comparative Example 2 23 ㎛ 및 1 ㎛ 이하23 μm and 1 μm or less 비교예 3Comparative Example 3 34 ㎛34 μm 비교예 4Comparative Example 4 22 ㎛22 μm

※ 단, 비교예 1을 제외하고는 분쇄 공정을 거친 황 입자를 의미함.※ However, except for Comparative Example 1, it means sulfur particles that have undergone a crushing process.

도 1은 본 발명의 일 실시예 및 비교예에 따라 분쇄 제조된 황 혼합액 내 황 입자의 입도를 나타낸 그래프이다. 상기와 같이 실시예 1, 2 및 비교예 1 내지 4로부터 준비 또는 제조된 황 입자의 평균 입도를 측정한 결과, 상기 표 1에 나타낸 바, 그리고 도 1에 도시된 바와 같이, 분산제를 사용하지 않은 비교예 2는 황 입자가 23 ㎛, 그리고 1 ㎛ 이하의 입도로 분쇄되는 등, 다양한 크기의 입자가 혼재하여 매우 불균일한 상태를 나타내었다. 도 2는 본 발명의 일 실시예에 따라 분쇄 제조된 나노 황 혼합액(a, 실시예 1에 해당) 및 분산제를 사용하지 않고 분쇄 제조된 황 혼합액(b, 비교예 2에 해당)의 이미지로서, 분산제까지 사용하여 분쇄를 거친 실시예 1의 나노 황 혼합액의 경우, 황의 입자 크기가 줄고 균일하여 용액의 색상이 흰색에 가까웠으나, 분산제를 사용하지 않고 분쇄를 거친 비교예 2의 경우에는, 황 입자의 크기가 다양하게 혼재하여 사진상으로도 매우 불균일한 것을 확인할 수 있었다. 그밖에, 폴리아크릴레이트계 분산제를 사용하지 않고 지방산 분산제나 인산 분산제를 사용한 비교예 3 및 4 또한, 분쇄를 거친 후에도 여전히 황 입자 크기가 마이크로미터 크기인 것을 확인할 수 있었다.1 is a graph showing the particle size of sulfur particles in a sulfur mixture prepared by grinding according to an embodiment and a comparative example of the present invention. As a result of measuring the average particle size of the sulfur particles prepared or prepared from Examples 1, 2 and Comparative Examples 1 to 4 as described above, as shown in Table 1 above, and as shown in FIG. 1, no dispersant was used. Comparative Example 2 showed a very non-uniform state in which particles of various sizes were mixed, such as sulfur particles being crushed to a particle size of 23 μm or less and 1 μm or less. FIG. 2 is an image of a nano-sulfur mixture (a, corresponding to Example 1) crushed and prepared without using a dispersant according to an embodiment of the present invention (b, corresponding to Comparative Example 2), In the case of the nano-sulfur mixture of Example 1, which had been pulverized using a dispersant, the particle size of the sulfur was reduced and uniform, so that the color of the solution was close to white, but in the case of Comparative Example 2, which was pulverized without using a dispersant, sulfur particles It was confirmed that the size of the mixture was various, and thus it was very uneven in the picture. In addition, Comparative Examples 3 and 4 using a fatty acid dispersant or a phosphoric acid dispersant without using a polyacrylate dispersant also confirmed that the sulfur particle size was still micrometer size after pulverization.

[실시예 3, 비교예 5] 리튬 이차전지의 제조 [Example 3, Comparative Example 5] Preparation of lithium secondary battery

상기 실시예 1 및 비교예 2에서 각각 제조된 황을 탄소나노튜브와 3 : 7의 중량비로 혼합한 후 155 ℃ Melt-diffusion 방식으로 황-탄소 복합체를 제조하였다. 이어서, 상기 제조된 황-탄소 복합체, 도전재로서 super-P 및 바인더로서 폴리비닐리덴플루오라이드(PVdF)를 88 : 5 : 7의 중량비로 혼합하고, NMP 용매에 분산시켜 슬러리를 제조한 후, 이를 알루미늄 집전체(Al foil)에 500 ㎛의 두께로 코팅한 후, 120 ℃의 진공 오븐에서 13 시간 동안 건조하여 리튬 이차전지용 양극을 제조하였다.Sulfur prepared in Example 1 and Comparative Example 2 was mixed with a carbon nanotube in a weight ratio of 3: 7, and then a sulfur-carbon composite was prepared by a 155 ° C Melt-diffusion method. Subsequently, the prepared sulfur-carbon composite, super-P as a conductive material, and polyvinylidene fluoride (PVdF) as a binder were mixed in a weight ratio of 88: 5: 7 and dispersed in an NMP solvent to prepare a slurry, This was coated on an aluminum current collector (Al foil) to a thickness of 500 μm, and then dried in a vacuum oven at 120 ° C. for 13 hours to prepare a positive electrode for a lithium secondary battery.

계속해서, 상기 제조된 양극을 음극(Li metal foil)과 대면하도록 위치시킨 후, 그 사이에 폴리에틸렌 분리막을 개재시켰고, 이어서, 디메틸에테르 용매에 4 M 농도로 LiFSI가 용해된 전해액을 주입하여 코인-셀 형태의 리튬-황 전지를 제조하였다.Subsequently, after placing the prepared positive electrode so as to face the negative electrode (Li metal foil), a polyethylene separator was interposed therebetween, and then, an electrolyte solution in which LiFSI was dissolved at a concentration of 4 M in a dimethyl ether solvent was injected to coin- A cell-type lithium-sulfur battery was prepared.

[실험예 2] 전지의 방전 용량 유지율 평가 [Experimental Example 2] Evaluation of battery discharge capacity retention rate

상기 실시예 3 및 비교예 5에서 제조된 리튬-황 전지를 반복적으로 충방전(충전: 0.1 C, 방전: 0.1 C)하여 전지의 방전 용량 유지율을 측정하였으며(1.5 V까지 방전), 그 결과를 도 3에 나타내었다. 도 3은 본 발명의 일 실시예 및 비교예에 따라 제조된 리튬-황 전지의 방전 용량 유지율을 보여주는 그래프로서, 도 3에 도시된 바와 같이, 본 발명의 나노 황을 적용한 리튬-황 전지(실시예 3)는, 통상적인 황을 적용한 리튬-황 전지(비교예 5)와 거의 유사한 충방전 용량을 나타내었으며, 이로부터, 황 입자 분쇄 시 분산제의 첨가가 전지의 저항 등으로 작용하지 않아, 전지 성능에 차이가 없음을 알 수 있다.The lithium-sulfur batteries prepared in Example 3 and Comparative Example 5 were repeatedly charged and discharged (charging: 0.1 C, discharging: 0.1 C) to measure the discharge capacity retention rate of the batteries (discharging to 1.5 V), and the results were obtained. It is shown in FIG. 3. Figure 3 is a graph showing the discharge capacity retention rate of the lithium-sulfur battery prepared according to an embodiment and a comparative example of the present invention, as shown in Figure 3, the lithium-sulfur battery to which the nano-sulfur of the present invention is applied (implementation Example 3) showed a charge-discharge capacity almost similar to a lithium-sulfur battery to which conventional sulfur was applied (Comparative Example 5), from which the addition of a dispersant during the pulverization of sulfur particles did not act as a resistance of the battery, etc. It can be seen that there is no difference in performance.

Claims (13)

(a) 황 및 용매를 혼합하여 황 혼합액을 제조하는 단계; 및
(b) 상기 제조된 황 혼합액에 비즈(beads)를 공급한 후, 분산제를 첨가하며 분쇄 장치로 황 혼합액에 포함된 황 입자를 분쇄시키는 단계;를 포함하는 나노 황의 제조 방법.
(a) preparing sulfur mixture by mixing sulfur and a solvent; And
(b) After supplying beads to the prepared sulfur mixture, adding a dispersant and pulverizing the sulfur particles contained in the sulfur mixture with a grinding device;
청구항 1에 있어서, 상기 분산제는 폴리아크릴레이트계 화합물, 폴리아민계 화합물, 폴리우레탄계 화합물 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 나노 황의 제조 방법.The method of claim 1, wherein the dispersing agent is selected from the group consisting of polyacrylate-based compounds, polyamine-based compounds, polyurethane-based compounds, and mixtures thereof. 청구항 1에 있어서, 상기 분산제는 폴리아크릴레이트계 화합물인 것을 특징으로 하는, 나노 황의 제조 방법.The method of claim 1, wherein the dispersant is a polyacrylate-based compound. 청구항 3에 있어서, 상기 폴리아크릴레이트계 화합물은 폴리아크릴릭애씨드, 폴리아크릴아미드, 폴리메틸메타크릴레이트 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 나노 황의 제조 방법.The method of claim 3, wherein the polyacrylate-based compound is selected from the group consisting of polyacrylic acid, polyacrylamide, polymethylmethacrylate, and mixtures thereof. 청구항 1에 있어서, 상기 분산제의 사용 함량은 상기 황 혼합액 100 중량부에 대하여 0.1 내지 30 중량부인 것을 특징으로 하는, 나노 황의 제조 방법.The method according to claim 1, The content of the dispersing agent is characterized in that 0.1 to 30 parts by weight with respect to 100 parts by weight of the sulfur mixture, the production method of nano-sulfur. 청구항 1에 있어서, 상기 (a) 단계의 황 입자 평균입도는 1 내지 1,000 ㎛이고, 상기 분쇄를 거쳐 제조되는 나노 황 입자의 평균입도는 1,000 nm 미만인 것을 특징으로 하는, 나노 황의 제조 방법.The method according to claim 1, wherein the average particle size of the sulfur particles in the step (a) is 1 to 1,000 μm, and the average particle size of the nano-sulfur particles produced through the pulverization is less than 1,000 nm. 청구항 1에 있어서, 상기 용매는 알코올계 화합물, 벤젠계 화합물, 디메틸포름아미드, 테트라하이드로퓨란, N-메틸피롤리돈 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 나노 황의 제조 방법.The method of claim 1, wherein the solvent is selected from the group consisting of alcohol-based compounds, benzene-based compounds, dimethylformamide, tetrahydrofuran, N-methylpyrrolidone, and mixtures thereof. 청구항 1에 있어서, 상기 (a) 단계의 황 함량은 상기 용매 100 중량부에 대하여 0.5 내지 30 중량부인 것을 특징으로 하는, 나노 황의 제조 방법.The method according to claim 1, characterized in that the sulfur content of the step (a) is 0.5 to 30 parts by weight based on 100 parts by weight of the solvent. 청구항 1에 있어서, 상기 비즈의 평균 입경은 10 mm 이하인 것을 특징으로 하는, 나노 황의 제조 방법.The method according to claim 1, characterized in that the average particle diameter of the beads is 10 mm or less, the manufacturing method of nano-sulfur. 청구항 1에 있어서, 상기 분쇄 장치는 오비탈 쉐이커(orbital shaker), 3-롤 밀(3-roll mill) 및 제트 밀(jet mill)로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 나노 황의 제조 방법.The method of claim 1, wherein the grinding device is selected from the group consisting of an orbital shaker, a 3-roll mill and a jet mill. 청구항 1의 제조방법에 의해 제조되는 나노 황; 및
상기 나노 황이 담지되도록 표면에 기공이 형성된 탄소 구조체;를 포함하는 리튬 이차전지용 양극 활물질.
Nano sulfur produced by the method of claim 1; And
A positive electrode active material for a lithium secondary battery comprising a; carbon structure with pores formed on the surface to support the nano-sulfur.
청구항 11의 양극 활물질을 포함하는 양극; 음극; 상기 양극과 음극의 사이에 개재되는 전해질; 및 분리막;을 포함하는 리튬 이차전지.A positive electrode comprising the positive electrode active material of claim 11; cathode; An electrolyte interposed between the positive electrode and the negative electrode; And a separator; a lithium secondary battery. 청구항 12에 있어서, 상기 리튬 이차전지는 리튬-황 전지인 것을 특징으로 하는, 리튬 이차전지.The lithium secondary battery according to claim 12, wherein the lithium secondary battery is a lithium-sulfur battery.
KR1020180140002A 2018-11-14 2018-11-14 Method for preparing nano-sulfur, positive electrode active material for lithium secondary battery including the nano-sulfur prepared therefrom and lithium secondary battery including the positive electrode material KR20200056095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180140002A KR20200056095A (en) 2018-11-14 2018-11-14 Method for preparing nano-sulfur, positive electrode active material for lithium secondary battery including the nano-sulfur prepared therefrom and lithium secondary battery including the positive electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180140002A KR20200056095A (en) 2018-11-14 2018-11-14 Method for preparing nano-sulfur, positive electrode active material for lithium secondary battery including the nano-sulfur prepared therefrom and lithium secondary battery including the positive electrode material

Publications (1)

Publication Number Publication Date
KR20200056095A true KR20200056095A (en) 2020-05-22

Family

ID=70913873

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180140002A KR20200056095A (en) 2018-11-14 2018-11-14 Method for preparing nano-sulfur, positive electrode active material for lithium secondary battery including the nano-sulfur prepared therefrom and lithium secondary battery including the positive electrode material

Country Status (1)

Country Link
KR (1) KR20200056095A (en)

Similar Documents

Publication Publication Date Title
US10290859B2 (en) Method of preparing composition for forming positive electrode of lithium secondary battery, and positive electrode and lithium secondary battery manufactured by using the composition
KR101730956B1 (en) Negative active material, manufacturing method thereof, and lithium battery containing the material
US20200028174A1 (en) Positive Electrode Active Material Pre-Dispersion Composition, Positive Electrode For Secondary Battery, And Lithium Secondary Battery Including The Positive Electrode
US20140154584A1 (en) Sulfide-based solid battery
KR102256479B1 (en) Negative electrode active material for lithium secondary battery, and preparing method therof
KR102448075B1 (en) Method for preparing positive electrode active material for lithium sulfur battery, positive electrode active material for lithium sulfur battery prepared thereby and lithium sulfur battery including the same
KR20200018902A (en) A negative electrode for a lithium secondary battery formed with a ferroelectric polymer protective layer, method for preparing the same, and a lithium secondary battery including the negative electrode
KR20190101651A (en) Negative electrode slurry, negative electrode for lithium secondary battery and lithium secondary battery comprising the same
KR20170111638A (en) The method for manufacturing of slurry for negative electrode
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
KR20210037849A (en) Positive electrode for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the positive electrode
KR20130136934A (en) Anode active material for secondary battery
CN112514112B (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
KR101122938B1 (en) Preparation method of electrode active material particle
KR102617871B1 (en) Positive electrode active material complex for lithium secondary battery and manufacturing method thereof
KR20220040013A (en) Positive electrode for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the positive electrode
KR20210015048A (en) Binder for improving a adhesion of positive electrode, positive electrode for lithium secondary battery including the same and lithium secondary battery including the positive electrode
KR20200056095A (en) Method for preparing nano-sulfur, positive electrode active material for lithium secondary battery including the nano-sulfur prepared therefrom and lithium secondary battery including the positive electrode material
KR20200089474A (en) Positive electrode active material for lithium secondary battery, method for preparing the same and lithium secondary battery including the positive electrode active material
KR20220057728A (en) Positive electrode active material for lithium secondary battery, method for preparing the same and lithium secondary battery including the positive electrode active material
KR20210015499A (en) Binder for improving a adhesion of positive electrode, positive electrode for lithium secondary battery including the same and lithium secondary battery including the positive electrode
KR20200089788A (en) Positive electrode active material for lithium secondary battery, method for preparing the same and lithium secondary battery including the positive electrode active material
KR102420595B1 (en) Positive electrode active material for lithium sulfur battery, method for preparing the same and lithium sulfur battery including the same
KR20140025103A (en) Cathode active material for lithium secondary battery and manufacturing method thereof
US20220115642A1 (en) Positive electrode active material for lithium rechargeable battery, manufacturing method therefor and lithium rechargeable battery comprising same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal