KR20200046401A - Method for manufacturing VRLA cell including hydrophilic pressure-bonded spun lace nonwoven fabric and RLA battery - Google Patents

Method for manufacturing VRLA cell including hydrophilic pressure-bonded spun lace nonwoven fabric and RLA battery Download PDF

Info

Publication number
KR20200046401A
KR20200046401A KR1020180127520A KR20180127520A KR20200046401A KR 20200046401 A KR20200046401 A KR 20200046401A KR 1020180127520 A KR1020180127520 A KR 1020180127520A KR 20180127520 A KR20180127520 A KR 20180127520A KR 20200046401 A KR20200046401 A KR 20200046401A
Authority
KR
South Korea
Prior art keywords
hydrophilic
nonwoven fabric
battery
vrla
vrla battery
Prior art date
Application number
KR1020180127520A
Other languages
Korean (ko)
Other versions
KR102204985B1 (en
Inventor
최석모
김진구
김종인
Original Assignee
주식회사 한국아트라스비엑스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국아트라스비엑스 filed Critical 주식회사 한국아트라스비엑스
Priority to KR1020180127520A priority Critical patent/KR102204985B1/en
Publication of KR20200046401A publication Critical patent/KR20200046401A/en
Application granted granted Critical
Publication of KR102204985B1 publication Critical patent/KR102204985B1/en

Links

Images

Classifications

    • H01M2/145
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/121Valve regulated lead acid batteries [VRLA]
    • H01M2/162
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention relates to a method for manufacturing a VRLA battery including hydrophilic crimp spun lace non-woven fabric, and the VRLA battery and, more specifically, to a method for manufacturing a VRLA battery including hydrophilic crimp spun lace non-woven fabric, which provides, as a separator, the hydrophilic crimp spun lace non-woven fabric instead of an absorbent glass fiber mat separator which is conventionally used, thereby improving a working environment due to dust exposure of glass fiber, facilitating a charging process of the VRLA battery with low weighing compared to excellent mechanical strength, and providing the VRLA battery with excellent wetting characteristics and porosity. Through the present invention, the separator for s VRLA battery having micropores is manufactured by using the non-woven fabric in which hydrophilic polyester or polypropylene is compressed by a spun lace method instead of the conventional glass fiber, thereby improving the working environment, increasing workability, achieving higher electrolyte absorption, and greatly increasing saturation.

Description

친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지 제조방법 및 VRLA전지{Method for manufacturing VRLA cell including hydrophilic pressure-bonded spun lace nonwoven fabric and RLA battery}Method for manufacturing VRLA cell including hydrophilic crimped spunlace non-woven fabric and VRLA battery {Method for manufacturing VRLA cell including hydrophilic pressure-bonded spun lace nonwoven fabric and RLA battery}

본 발명은 친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지 제조방법 및 VRLA 전지에 관한 것으로, 더욱 상세하게는 종래에 사용되던 흡수성 유리섬유(Absorbet Glass Fiber Mat) 격리판을 대신에 친수성 압착 스펀레이스 부직포를 격리판으로 제공함으로써, 유리 섬유의 분진 노출에 따른 작업 환경을 개선하고, 우수한 기계적 강도 대비 낮은 평량으로 VRLA전지의 차입 공정을 용이하게 하며, 뛰어난 젖음 특성과 다공도를 가진 VRLA전지를 제공하기 위한 친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지 제조방법에 관한 것이다.The present invention relates to a VRLA battery manufacturing method and a VRLA battery including a hydrophilic crimp spunlace nonwoven fabric, and more specifically, to isolate a hydrophilic crimp spunlace nonwoven fabric instead of a conventional absorbent glass fiber mat separator. By providing it as a plate, it improves the working environment due to dust exposure of the glass fiber, facilitates the borrowing process of the VRLA battery with a low basis weight compared to excellent mechanical strength, and hydrophilic crimping to provide a VRLA battery with excellent wetting characteristics and porosity It relates to a VRLA battery manufacturing method including a spunlace nonwoven fabric.

VRLA(Valve Regulated Lead Acid) 전지는 납축전지의 일종으로서 밀폐형 전지(Sealed Battery) 또는 재조합 전지(Recombinant Battery)라고도 하며, 이온화 경향이 큰 음극(Pb-해면상납)사이에 묽은 황산의 전해액을 넣은 구조를 갖고 있어서, 화학반응에 의해 전기적인 기전력을 발생시키며 사용기간에 따른 물의 첨가가 불필요한 2차 전지이다.VRLA (Valve Regulated Lead Acid) battery is a type of lead acid battery, also called a sealed battery or a recombinant battery, and has a structure in which dilute sulfuric acid electrolyte is placed between cathodes with high ionization tendency (Pb-spongy lead). It is a secondary battery that generates an electric electromotive force by a chemical reaction and does not require the addition of water depending on the period of use.

상술한 VRLA(Valve Regulated Lead Acid) 전지는 안정한 품질, 높은 신뢰성, 우수한 경제성을 가지고 있어 현재까지도 광범위하게 사용되고 있으며 특히, 자동차의 시동용 전원(SLI, Starting Lighting and Ignition)으로 가장 많이 사용되고 있다.The above-mentioned VRLA (Valve Regulated Lead Acid) battery has a stable quality, high reliability, and excellent economical efficiency, and thus is widely used to date, and is most often used as a power source for starting a vehicle (SLI).

그 외에도 전기자동차, 열차, 선박, 항공기, 골프카, 지게차, 발전호, 변전소, 전화국, 무선중계소, 무정전전원장치 등으로 사용되고 있다.In addition, it is used in electric vehicles, trains, ships, aircraft, golf cars, forklifts, power generation houses, substations, telephone stations, wireless relay stations, and uninterruptible power supplies.

그러나, 종래의 VRLA(Valve Regulated Lead Acid) 전지는 다음과 같은 문제점들을 포함하고 있어 그 사용상 한계가 있었다.However, the conventional VRLA (Valve Regulated Lead Acid) battery has the following problems and has limitations in its use.

먼저, 종래의 VRLA(Valve Regulated Lead Acid) 전지는 전지 내부의 팽창압력에 의해 전지 케이스가 부풀어 오르는 Bulging 현상으로 인하여 전지 케이스의 파손 및 이로 인한 전해액의 누출우려가 있었으며, 이러한 전해액의 누출은 결국 전지의 수명단축을 초래하였다.First, in the conventional VRLA (Valve Regulated Lead Acid) battery, there is a risk of damage to the battery case and leakage of the resulting electrolyte due to the bulging phenomenon in which the battery case swells due to the expansion pressure inside the battery. It resulted in shortened life span.

구체적으로 설명하면, VRLA(Valve Regulated Lead Acid) Battery는 납축전지의 일종으로서 이온화 경향이 큰 음극(Pb, 해면상납)사이에 묽은 황산의 전해액을 넣은 구조를 갖고 있어서, 화학반응에 의해 전기적인 기전력을 발생시키며 사용 기간에 따른 물의 첨가가 불필요하며 충전 시 양극에서 생성되는 산소가 음극에서 소비되는 원리를 갖고 있어서 물의 소모가 없다.Specifically, a VRLA (Valve Regulated Lead Acid) Battery is a type of lead acid battery, and has a structure in which an electrolytic solution of dilute sulfuric acid is put between a negative electrode (Pb, sea level lead) with a large ionization tendency. It does not require the addition of water depending on the period of use, and the oxygen generated at the anode during charging has the principle of being consumed at the cathode.

VRLA용 격리판은 양극에서 발생한 산소 가스가 음극으로 쉽게 이동할 수 있는 가스 채널을 형성하여 산소 재결합(Oxygen Recombination) 반응을 유도하게 한다. The separator for VRLA forms a gas channel through which oxygen gas generated at the anode can easily move to the cathode to induce an oxygen recombination reaction.

VRLA 전지는 유리섬유매트의 미세 기공을 통하여 충전 시 내부 화학반응에 의해 양극판에서 발생되는 산소(O2)가스가 음극판으로 이동되어 음극판의 다공성 납(Pb)과 반응하여 PbO를 형성시키고, 이 PbO는 전해액(H2SO4)과 반응하여 황산납(PbSO4)과 물(H2O)을 형성시키므로 수소(H2)가스의 발생을 억제하는 구조의 장수명 배터리이다. In the VRLA battery, oxygen (O2) gas generated in the positive electrode plate is moved to the negative electrode plate by internal chemical reaction when charged through the micro pores of the glass fiber mat, and reacts with the porous lead (Pb) of the negative electrode plate to form PbO. It is a long life battery with a structure that suppresses the generation of hydrogen (H2) gas by forming lead sulfate (PbSO4) and water (H2O) by reacting with the electrolyte (H2SO4).

자세히 설명하면, VRLA 전지는 납축전지의 일종으로서 이온화 경향이 큰 음극(Pb, 해면상납)사이에 묽은 황산의 전해액을 넣은 구조를 갖고 있어서, 화학반응에 의해 전기적인 기전력을 발생시키며 사용 기간에 따른 물의 첨가가 불필요하며 충전 시 양극에서 생성되는 산소가 음극에서 소비되는 원리를 갖고 있어서 물의 소모가 없다.In detail, the VRLA battery is a type of lead acid battery, and has a structure in which an electrolytic solution of dilute sulfuric acid is put between the cathode (Pb, sponge on the surface), which has a large ionization tendency, and generates electrical electromotive force by chemical reaction. There is no need to add water and there is no consumption of water because the oxygen generated at the anode during charging is consumed at the cathode.

VRLA전지용 격리판은 양극에서 발생한 산소 가스가 음극으로 쉽게 이동할 수 있는 가스 채널을 형성하여 산소 재결합(Oxygen Recombination) 반응을 유도하게 한다. The separator for the VRLA battery forms a gas channel through which oxygen gas generated at the anode can easily move to the cathode to induce an oxygen recombination reaction.

따라서, 전지 절연체 외 이온 전도체로서의 역할로 반대 극성을 가진 전극의 직접적인 접촉을 방지하고 동시에 두 전극간의 이온의 흐름이 가능케 하는 것이다.Accordingly, it is to prevent direct contact of electrodes having opposite polarities as a role of an ion conductor other than the battery insulator and to simultaneously allow ions to flow between the two electrodes.

종래의 VRLA전지용 격리판은 흡수성 유리섬유(AGM)를 사용하였다. As a separator for a conventional VRLA battery, absorbent glass fibers (AGM) were used.

흡수성 유리섬유(AGM)는 황산 전해질을 흡수 및 고정하여 유동되는 현상을 막는 동시에 격리판으로서의 기능을 한다.Absorbent glass fiber (AGM) absorbs and fixes sulfuric acid electrolyte to prevent the phenomenon of flow and at the same time functions as a separator.

그러나, AGM 격리판은 침상형의 유리 섬유로 구성되어 있어 VRLA 전지 생산 공정에 있어서 유해한 작업환경을 만들고, 유리 섬유 자체의 낮은 기계적 강도 특성으로 인하여 극판군 차입 공정에서 격리판이 잘 찢어지는 문제점이 있었다.However, the AGM separator is composed of needle-shaped glass fibers, which creates a hazardous working environment in the VRLA battery production process, and has a problem in that the separator is easily torn in the pole group borrowing process due to the low mechanical strength characteristics of the glass fiber itself. .

본 발명은 종래의 유리 섬유 대신 친수성 폴리에스테르 또는 폴리프로필렌을 스펀레이스법으로 압착한 부직포로 미세 기공들을 갖는 VRLA 전지용 격리판을 제조하여 작업환경과 작업성을 개선하고 더 높은 전해질 흡수율과 포화도를 크게 향상 시키는 제조 방법을 제공하고자 한다.The present invention is to prepare a separator for VRLA batteries having micropores with a nonwoven fabric in which a hydrophilic polyester or polypropylene is compressed by a spunlace method instead of a conventional glass fiber to improve the working environment and workability, and to increase the higher electrolyte absorption and saturation. It is intended to provide an improved manufacturing method.

대한민국특허공개번호 제10-2010-0088019호Republic of Korea Patent Publication No. 10-2010-0088019

따라서, 본 발명은 상기 종래의 문제점을 해소하기 위해 안출된 것으로,Therefore, the present invention has been devised to solve the conventional problems,

본 발명의 목적은 종래의 유리 섬유 대신 친수성 폴리에스테르 또는 폴리프로필렌을 스펀레이스법으로 압착한 부직포로 미세 기공들을 갖는 VRLA 전지용 격리판을 제조하여 작업환경과 작업성을 개선하고 더 높은 전해질 흡수율과 포화도를 크게 향상 시키는 제조 방법을 제공하고자 한다.An object of the present invention is to prepare a separator for VRLA batteries having micropores with a nonwoven fabric in which a hydrophilic polyester or polypropylene is compressed by a spunlace method instead of a conventional glass fiber, to improve work environment and workability, and to improve electrolyte absorption and saturation. It is intended to provide a manufacturing method that greatly improves the.

본 발명이 해결하고자 하는 과제를 달성하기 위하여, 본 발명의 일실시예에 따른 친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지 제조방법은,In order to achieve the problem to be solved by the present invention, a VRLA battery manufacturing method including a hydrophilic crimp spunlace nonwoven fabric according to an embodiment of the present invention,

흡수성 유리섬유(AGM) 대신에 친수성 폴리에스테르 또는 폴리프로필렌을 준비하는 단계(S100);와Preparing a hydrophilic polyester or polypropylene instead of absorbent glass fibers (AGM) (S100); And

상기 준비된 친수성 폴리에스테르 또는 폴리프로필렌을 스펀 레이스법을 이용하여 압착하여 친수성 스펀레이스 부직포를 형성하여 친수성부직포격리판을 생산하는 단계(S200);와Forming a hydrophilic spunlace nonwoven fabric by compressing the prepared hydrophilic polyester or polypropylene using a spunlace method (S200); and

극판군 차입 공정시, 상기 친수성부직포격리판, 양극판, 음극판을 순차적으로 적층하여 극판군을 구성하는 단계(S300);와In the process of borrowing the pole plate group, the hydrophilic nonwoven fabric isolation plate, the positive electrode plate, and the negative electrode plate are sequentially stacked to form a pole plate group (S300); and

상기 극판군을 전조에 형성시켜 VRLA 전지를 완성시키는 단계(S400);를 포함함으로써, 본 발명의 과제를 해결하게 된다.The step of completing the VRLA battery by forming the pole plate group on the fore (S400); to solve the problem of the present invention.

VRLA전지의 황산 전해액은 충전 시 물분해로 양극에서 산소가스가 발생되며, 높은 다공도와 우수한 흡수성 유리섬유의 가스 통로를 통해 음극에서 산소 재결합된다. The sulfuric acid electrolyte of the VRLA battery generates oxygen gas at the anode by water decomposition during charging, and recombines oxygen at the cathode through the gas passage of high porosity and excellent absorbent glass fibers.

이때, 본 발명인 친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지 제조방법 및 VRLA 전지를 통해, 분진이 발생하지 않고, 극판과 스펀레이스 부직포가 최대한 적층된 극판군을 제공하여 VRLA격리판이 훼손되지 않고, 차입이 용이하도록 하는 효과를 제공하게 된다.At this time, through the VRLA battery manufacturing method and the VRLA battery including the hydrophilic crimped spunlace nonwoven fabric of the present inventors, dust is not generated, and the polar plate and the spunlace nonwoven fabric are provided with a stacked electrode plate as much as possible, so that the VRLA isolation plate is not damaged and borrowed It provides an effect to facilitate.

구체적으로, 본 발명에서는 유리 섬유 대신 친수성 스펀레이스 부직포, 양극판, 음극판을 순차적으로 적층된 극판군을 구성하여 되는 VRLA전지를 제공한다.Specifically, the present invention provides a VRLA battery comprising a hydrophilic spunlace nonwoven fabric, a positive electrode plate, and a negative electrode plate, which are sequentially stacked instead of glass fibers.

스펀레이스 부직포는 뛰어난 기계적 강도, 90% 이상의 다공도를 가지고 압축성형되며, 황산전해액에 대해 우수한 흡수성을 보유하여 전기 저항이 낮기 때문에 고성능 VRLA전지를 구현하는 효과를 제공하게 된다.The spunlace nonwoven fabric is compression molded with excellent mechanical strength and porosity of 90% or more, and possesses excellent water absorption properties for sulfuric acid electrolytes, so it has low electrical resistance, thereby providing the effect of realizing a high-performance VRLA battery.

도 1은 본 발명의 일실시예에 따른 친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지 제조방법을 나타낸 공정도이다.
도 2는 본 발명의 일실시예에 따른 친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지 제조방법에 의해 제조된 친수성부직포격리판이 내장된 VRLA 전지의 단면 예시도이다.
도 3은 본 발명의 일실시예에 따른 친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지 제조방법에서 제조된 개선품과 종래품를 비교한 그래프로서, 미국 자동차 기술자 협회 규격에 따라 고온 환경에서 수명을 검증한 그래프 도면이다.
1 is a process diagram showing a VRLA battery manufacturing method including a hydrophilic crimp spunlace nonwoven fabric according to an embodiment of the present invention.
FIG. 2 is an exemplary cross-sectional view of a VRLA battery incorporating a hydrophilic nonwoven fabric separator manufactured by a VRLA battery manufacturing method including a hydrophilic crimped spunlace nonwoven fabric according to an embodiment of the present invention.
Figure 3 is a graph comparing the improved product and the conventional product produced in a VRLA battery manufacturing method including a hydrophilic crimped spunlace nonwoven fabric according to an embodiment of the present invention, a graph verifying the life in a high temperature environment according to the American Automobile Engineers Association standard It is a drawing.

본 발명의 일실시예에 따른 친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지 제조방법은,VRLA battery manufacturing method including a hydrophilic crimping spunlace nonwoven fabric according to an embodiment of the present invention,

흡수성 유리섬유(AGM) 대신에 친수성 폴리에스테르 또는 폴리프로필렌을 준비하는 단계(S100);와Preparing a hydrophilic polyester or polypropylene instead of absorbent glass fibers (AGM) (S100); And

상기 준비된 친수성 폴리에스테르 또는 폴리프로필렌을 스펀 레이스법을 이용하여 압착하여 친수성 스펀레이스 부직포를 형성하여 친수성부직포격리판을 생산하는 단계(S200);와Forming a hydrophilic spunlace nonwoven fabric by compressing the prepared hydrophilic polyester or polypropylene using a spunlace method (S200); and

극판군 차입 공정시, 상기 친수성부직포격리판, 양극판, 음극판을 순차적으로 적층하여 극판군을 구성하는 단계(S300);와In the process of borrowing the pole plate group, the hydrophilic nonwoven fabric isolation plate, the positive electrode plate, and the negative electrode plate are sequentially stacked to form a pole plate group (S300); and

상기 극판군을 전조에 형성시켜 VRLA 전지를 완성시키는 단계(S400);를 포함하는 것을 특징으로 한다.It characterized in that it comprises a; step (S400) to complete the VRLA battery by forming the pole plate group on the front.

이때, 상기 친수성부직포격리판을 생산하는 단계(S200)에 의해,At this time, by producing the hydrophilic non-woven fabric separation plate (S200),

생산된 친수성부직포격리판을 극판군 차입 공정시 사용함으로써, 격리판 훼손을 방지하는 것을 특징으로 한다.It is characterized in that the produced hydrophilic nonwoven fabric isolation plate is used during the borrowing process of the pole plate group to prevent damage to the separator.

또한, 본 발명의 상기 제조 방법에 의해,In addition, by the above production method of the present invention,

제조된 친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지를 제공할 수 있게 된다.It will be possible to provide a VRLA battery comprising the produced hydrophilic crimp spunlace nonwoven fabric.

이하, 본 발명에 의한 친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지 제조방법 및 VRLA 전지의 실시예를 통해 상세히 설명하도록 한다.Hereinafter, a method for manufacturing a VRLA battery including a hydrophilic crimp spunlace nonwoven fabric according to the present invention and an embodiment of a VRLA battery will be described in detail.

본 발명인 VRLA 전지는 일반적으로 케이스, 극판군으로 이루어지는데, 구체적으로 설명하자면, 케이스는 일정크기의 내부 공간이 형성되게 되며, 케이스의 내부에 구비되며 일정 개수의 양극판 및 음극판이 교대로 구비되는 복수 개의 극판군을 형성하게 된다.VRLA batteries according to the present invention are generally made of a case and a group of poles. In detail, the case is formed with an internal space of a certain size, and is provided inside the case, and a plurality of positive and negative plates are alternately provided. This will form a group of dog plates.

상기 케이스(case)는 양극판, 음극판, 격리판 및 전해액을 저장하는 용기로 상술한 구성들을 포함하기 위한 일정크기의 내부 공간이 형성되어 있다.The case is a container for storing a positive electrode plate, a negative electrode plate, a separator, and an electrolyte, and an internal space of a predetermined size is formed to include the above-described components.

이때, 상기 양극판은 외부 도선으로부터 전자를 받아 양극 활물질이 환원되는 전극으로, 다양한 방법을 통해 제작될 수 있다.At this time, the positive electrode plate is an electrode through which electrons are reduced by receiving electrons from external conductors, and may be manufactured through various methods.

그리고, 상기 음극판은 음극 활물질이 산화되면서 도선으로 전자를 방출하는 전극으로, 다양한 방법을 통해 제작될 수 있으나 본 발명의 바람직한 실시 예에 있어서는 기판과 활물질인 해면상납(Pb)으로 형성되며, 해면상납은 다공성과 반응성이 풍부하여 상기 전해액이 자유로이 확산, 침투되도록 구성하였다.In addition, the negative electrode plate is an electrode that emits electrons as a conducting wire while the negative electrode active material is oxidized, but may be manufactured through various methods. In a preferred embodiment of the present invention, it is formed of a substrate and an active material, sea level lead (Pb). It was configured to allow the electrolyte to diffuse and penetrate freely due to its rich silver porosity and reactivity.

한편, 상기 활물질 첨가제는 상기 양극판 및 상기 음극판의 활물질에 일정형상 및 일정크기로 첨가되게 된다.On the other hand, the active material additive is added to the active material of the positive electrode plate and the negative electrode plate in a certain shape and a certain size.

이때, 상기 격리판은 흡수성 유리섬유(AGM)를 사용했다. At this time, the separator was made of absorbent glass fibers (AGM).

흡수성 유리섬유(AGM)는 황산 전해질을 흡수 및 고정하여 유동되는 현상을 막는 동시에 격리판으로서의 기능을 한다.Absorbent glass fiber (AGM) absorbs and fixes sulfuric acid electrolyte to prevent the phenomenon of flow and at the same time functions as a separator.

그러나, AGM 격리판은 침상형의 유리 섬유로 구성되어 있어 VRLA 전지 생산 공정에 있어서 유해한 작업환경을 만들고, 유리 섬유 자체의 낮은 기계적 강도 특성으로 인하여 극판군 차입 공정에서 격리판이 잘 찢어지는 문제점이 있었다. However, the AGM separator is composed of needle-shaped glass fibers, which creates a hazardous working environment in the VRLA battery production process, and has a problem in that the separator is easily torn in the pole group borrowing process due to the low mechanical strength characteristics of the glass fiber itself. .

본 발명은 종래의 유리 섬유 대신 친수성 폴리에스테르 또는 폴리프로필렌을 스펀레이스법으로 압착한 부직포로 미세 기공들을 갖는 VRLA 전지용 격리판을 제조하여 작업환경과 작업성을 개선하고 더 높은 전해질 흡수율과 포화도를 크게 향상 시키고자 한다.The present invention is to prepare a separator for VRLA batteries having micropores with a nonwoven fabric in which a hydrophilic polyester or polypropylene is compressed by a spunlace method instead of a conventional glass fiber to improve the working environment and workability, and to increase the higher electrolyte absorption and saturation. I want to improve.

도 1은 본 발명의 일실시예에 따른 친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지 제조방법을 나타낸 공정도이다.1 is a process diagram showing a VRLA battery manufacturing method including a hydrophilic crimp spunlace nonwoven fabric according to an embodiment of the present invention.

도 1에 도시한 바와 같이, 본 발명인 친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지 제조방법은,As shown in Figure 1, the present invention is a method of manufacturing a VRLA battery comprising a hydrophilic crimp spunlace nonwoven fabric,

흡수성 유리섬유(AGM) 대신에 친수성 폴리에스테르 또는 폴리프로필렌을 준비하는 단계(S100);와Preparing a hydrophilic polyester or polypropylene instead of absorbent glass fibers (AGM) (S100); And

상기 준비된 친수성 폴리에스테르 또는 폴리프로필렌을 스펀 레이스법을 이용하여 압착하여 친수성 스펀레이스 부직포를 형성하여 친수성부직포격리판을 생산하는 단계(S200);와Forming a hydrophilic spunlace nonwoven fabric by compressing the prepared hydrophilic polyester or polypropylene using a spunlace method (S200); and

극판군 차입 공정시, 상기 친수성부직포격리판, 양극판, 음극판을 순차적으로 적층하여 극판군을 구성하는 단계(S300);와In the process of borrowing the pole plate group, the hydrophilic nonwoven fabric isolation plate, the positive electrode plate, and the negative electrode plate are sequentially stacked to form a pole plate group (S300); and

상기 극판군을 전조에 형성시켜 VRLA 전지를 완성시키는 단계(S400);를 포함하는 것을 특징으로 한다.It characterized in that it comprises a; step (S400) to complete the VRLA battery by forming the pole plate group on the front.

구체적으로 설명하면, 흡수성 유리섬유(AGM) 대신에 친수성 폴리에스테르 또는 폴리프로필렌을 준비(S100)하게 된다.Specifically, instead of absorbent glass fibers (AGM), hydrophilic polyester or polypropylene is prepared (S100).

이때, 상기 친수성 폴리에스테르 또는 폴리프로필렌의 평균 직경은 01 ~ 10㎛이다.At this time, the average diameter of the hydrophilic polyester or polypropylene is 01 ~ 10㎛.

평균 직경이 10㎛을 초과하는 경우에는 부직포상에 미세공극을 효과적으로 형성할 수 없으며, 평균 직경이 1㎛미만인 경우에는 제조원가가 상승하고 부직포의 기계적 물성이 저하될 수 있어 바람직하지 못하다.If the average diameter exceeds 10 µm, micropores cannot be effectively formed on the nonwoven fabric, and if the average diameter is less than 1 µm, the manufacturing cost may increase and the mechanical properties of the nonwoven fabric may deteriorate, which is not preferable.

이후, 준비된 친수성 폴리에스테르 또는 폴리프로필렌을 스펀 레이스법을 이용하여 압착하여 친수성 스펀레이스 부직포를 형성하여 친수성부직포격리판(4)을 생산하게 된다.Thereafter, the prepared hydrophilic polyester or polypropylene is compressed using a spunlace method to form a hydrophilic spunlace nonwoven fabric to produce a hydrophilic nonwoven fabric separator 4.

따라서, 상기 생산된 친수성부직포격리판은 도 2에 도시한 바와 같이, 양극판(1)과 음극판(2) 사이에 삽입되어 사용되게 된다.Therefore, the produced hydrophilic nonwoven fabric insulating plate is used to be inserted between the positive electrode plate 1 and the negative electrode plate 2, as shown in FIG.

상기한 친수성 스펀레이스 부직포는 일반적으로, 친수성 스펀레이스 부직포의 상부 또는 하부에 지류를 덧대어 워터 펀칭을 통해 결속단계, 및 상기 결속된 원단을 탈수, 건조시키는 탈수/건조단계를 포함하는 통하여 제조된다.The above-described hydrophilic spunlace nonwoven fabric is generally produced through a step of binding through a water punching padding the top or bottom of the hydrophilic spunlace nonwoven fabric, and a dehydration / drying step of dehydrating and drying the bound fabric. .

상기 워터펀칭이란 고압의 물로 친수성 폴리에스테르 또는 폴리프로필렌을 계속적으로 통과시켜 밀도와 결합력을 증대시키는 방법을 말하며, 상기 워터펀칭의 횟수 및 강도는 합지에 요구되는 강성에 맞도록 조절될 수 있다.The water punching refers to a method of increasing the density and bonding strength by continuously passing hydrophilic polyester or polypropylene with high pressure water, and the number and strength of the water punching can be adjusted to suit the stiffness required for lamination.

이후, 극판군 차입 공정을 통해, 상기 제조된 친수성부직포격리판, 양극판, 음극판을 순차적으로 적층하여 극판군을 구성(S300)하고, 상기 극판군을 전조에 형성시켜 VRLA 전지를 완성(S400)시키게 되는 것이다.Subsequently, through the electrode plate group borrowing process, the prepared hydrophilic non-woven fabric isolation plate, the positive electrode plate, and the negative electrode plate are sequentially stacked to form a pole plate group (S300), and the pole plate group is formed on the roll to complete the VRLA battery (S400). Will be.

이때, 친수성 폴리에스테르 또는 폴리프로필렌을 스펀 레이스법을 이용하여 압착하여 친수성 스펀레이스 부직포를 형성하여 친수성부직포격리판(4)은 미세 공극을 다수 형성하고 있으므로 뛰어난 기계적 강도, 90% 이상의 다공도를 가지고 압축 성형되었으므로 황산전해액에 대해 우수한 흡수성을 보유하여 전기 저항이 낮기 때문에 고성능 VRLA전지를 구현하는 효과가 있다.At this time, hydrophilic polyester or polypropylene is compressed using a spunlace method to form a hydrophilic spunlace nonwoven fabric, and the hydrophilic nonwoven fabric separator 4 forms a large number of micropores, thereby compressing it with excellent mechanical strength and porosity of 90% or more. Because it is molded, it has the effect of realizing a high-performance VRLA battery because it possesses excellent water absorption against the sulfuric acid electrolyte and has low electrical resistance.

본 발명에서는 내부 쇼트 서킷 현상을 방지하고, 절대 황산 흡수량 및 원활한 산소 전달 싸이클을 결정하기 위하여 친수성부직포격리판의 평균 두께를 10 ~ 20㎜, 보다 바람직하기로는 120 ~ 150㎜로 하는 것이 좋다. In the present invention, in order to prevent the internal short circuit phenomenon and determine the absolute sulfuric acid absorption amount and the smooth oxygen transfer cycle, the average thickness of the hydrophilic nonwoven separator is 10 to 20 mm, more preferably 120 to 150 mm.

평균 두께가 10㎜미만이면 전지용 격리판으로 적용하기 어렵다.If the average thickness is less than 10 mm, it is difficult to apply as a separator for batteries.

이하, 실시예 및 비교예를 통하여 본 발명을 더욱 구체적으로 살펴본다. Hereinafter, the present invention will be described in more detail through Examples and Comparative Examples.

그러나 본 발명은 하기 실시예에만 한정되는 것은 아니다.However, the present invention is not limited to the following examples.

<실시예><Example>

친수성 폴리에스테르 또는 폴리프로필렌을 스펀 레이스법을 이용하여 압착하여 친수성 스펀레이스 부직포를 형성하였다.The hydrophilic polyester or polypropylene was compressed using a spunlace method to form a hydrophilic spunlace nonwoven fabric.

이후, 제조한 상기 친수성 스펀레이스 부직포를 수성 폴리아크릴 용액에 디핑후 수성 폴리아크릴수지 함량이 5중량%가 되도록 스퀴칭하고, 계속해서 120℃로 건조하여 두께가 145㎜인 VRLA 전지용 친수성부직포격리판을 제조하였다.Subsequently, after dipping the prepared hydrophilic spunlace nonwoven fabric in an aqueous polyacrylic solution, squeeze it so that the aqueous polyacrylic resin content is 5% by weight, and then continue to dry it at 120 ° C to obtain a hydrophilic nonwoven fabric for VRLA battery having a thickness of 145 mm. It was prepared.

제조한 VRLA 전지용 친수성부직포격리판의 중량 및 물성들은 평가한 결과는 표 1과 같다.Table 1 shows the results of evaluation of the weight and properties of the hydrophilic nonwoven fabric separator for VRLA batteries.

<비교예><Comparative Example>

흡수성 유리섬유(AGM)로 수성 폴리아크릴 용액에 디핑후 수성 폴리아크릴수지 함량이 5중량%가 되도록 스퀴칭하고, 계속해서 120℃로 건조하여 두께가 145㎜인 VRLA 전지용 AGM격리판을 제조하였다.After dipping into an aqueous polyacrylic solution with absorbent glass fibers (AGM), the aqueous polyacrylic resin content was squeezed to 5% by weight, and then dried at 120 ° C to prepare an AGM separator for VRLA batteries having a thickness of 145 mm.

제조된 VRLA 전지용 AGM격리판의 중량 및 물성들을 측정한 결과는 표 1과 같다.Table 1 shows the results of measuring the weight and properties of the manufactured AGM separator for VRLA batteries.

구분division 실시예Example 비교예Comparative example 중량(g/㎡)Weight (g / ㎡) 100100 100100 다공성(%)Porosity (%) 9090 8585 종방향 인장강도(Kgf)Longitudinal tensile strength (Kgf) 40.2140.21 3.313.31 연신율(%)Elongation (%) 98.5798.57 6.26.2 흡수속도(㎜/초)Absorption speed (mm / sec) 0.53170.5317 0.14300.1430

상기한 격리판의 인장강도, 연신율, 다공성 및 흡수속도는 아래 방법을 평가(측정)하였다.The following methods were evaluated (measured) for the tensile strength, elongation, porosity, and absorption rate of the separator.

1) 인장강도(Kgf)/연신율(%)1) Tensile strength (Kgf) / Elongation (%)

BCT(Battery Council International) 표준시험방법 중 "재결합된 전지 격리막(Recombinant Battery Seperator Mat)의 인장강도 및 연신율 측정방법"에 따른다.According to the BCT (Battery Council International) standard test method, "Method for measuring tensile strength and elongation of recombinant battery separator mat".

2) 다공성(%)2) Porosity (%)

수은 침투법을 사용하여 측정하며 이 방법은 수은을 공극률 분석기를 사용하여 수은에 가해지는 압력을 변화시켜 상이한 공극에 주입한다. It is measured using the mercury infiltration method, which uses a porosity analyzer to change the pressure applied to the mercury and injects it into different pores.

폴리머층의 미세공극의 크기는 공극을 형성하기 전에 측정한다.The size of the micropores in the polymer layer is measured before forming the voids.

3) 흡수속도(㎜/초)3) Absorption speed (mm / sec)

폭 25 * 길이 20㎝ 시편의 밑부분 5㎜를 37%의 황산 수용액에 수직으로 침지시킨 후, 시편을 통해 상승한 황산 수용액의 높이가 120㎜일 때의 시간을 측정한다.After immersing the bottom 5 mm of the width 25 * 20 cm specimen vertically into a 37% aqueous sulfuric acid solution, measure the time when the height of the aqueous sulfuric acid solution through the specimen is 120 mm.

상기한 시험 평가 결과, 본 발명의 RLA 전지용 친수성부직포격리판을 통해 친수성이 뛰어나 황산 전해질의 차입 공정을 용이하게 할 수 있으며, 인장 강도 등의 기계적 강도가 우수하며, 우수한 다공성을 가지고 있기 때문에 내부 전기 쇼트 발생을 방지할 수 있음을 알 수 있었다.As a result of the above test evaluation, the hydrophilic nonwoven fabric for RLA battery of the present invention is excellent in hydrophilicity and can facilitate the borrowing process of the sulfuric acid electrolyte, has excellent mechanical strength such as tensile strength, and has excellent porosity, so internal electrical It has been found that shorting can be prevented.

한편, VRLA 전지용 친수성부직포격리판을 삽입하여 전지를 제조하게 되면, 수명 종지 현상을 제거하게 되어 종래의 AGM 격리판이 삽입된 전지에 대비 10% 이상의 기초성능 향상과 11% 내구성을 향상시킬 수 있다는 점을 발견하였다.On the other hand, if a battery is manufactured by inserting a hydrophilic non-woven fabric separator for VRLA batteries, the end of life phenomenon is eliminated, which can improve basic performance by more than 10% and improve durability by 11% compared to a battery in which a conventional AGM separator is inserted. Found.

위 발명의 효과를 파악하기 위해 종래의 극판을 제작하고 조립 및 화성하여 기초성능 및 수명시험을 하였다.In order to grasp the effects of the above invention, a conventional electrode plate was fabricated, assembled, and converted to perform basic performance and life tests.

또한, 최종적인 80Ah의 용량을 갖는 제품을 제작하였으며, 고온에서의 수명을 검증하기 위해 SAE J2801 규격에 따라 수명 시험을 진행하였다. In addition, a product having a final capacity of 80 Ah was produced, and a life test was conducted according to the SAE J2801 standard to verify life at high temperatures.

시험 결과, 보유용량에서 88Ah의 용량과 수명이 304사이클에서 종지되었으며, 이는 종래품 대비 보유용량에서 10%, 수명에서는 11% 향상되었다.As a result of the test, the capacity and life of 88Ah at the holding capacity ended at 304 cycles, which improved by 10% at the holding capacity compared to the conventional product and 11% at the life.

이에 대한 시험 자료는 후술하도록 하겠다.Test data for this will be described later.

도 3은 본 발명의 일실시예에 따른 VRLA 전지용 친수성부직포격리판을 포함하는 개선품과 종래품를 비교한 그래프로서, 미국 자동차 기술자 협회 규격에 따라 고온 환경에서 수명을 검증한 그래프 도면이다.Figure 3 is a graph comparing the improved product and the conventional product including a hydrophilic non-woven fabric for VRLA battery according to an embodiment of the present invention, a graph showing the life in a high temperature environment according to the American Automobile Engineers Association standard.

<시험예><Test Example>

후술하는 종래품이라 함은, 출원인이 제조하는 VRLA 전지에 사용하는 일반적인 제품을 말하며, 개선품은 본 발명의 VRLA 전지용 친수성부직포격리판을 포함시켜 제조된 제품을 말한다.The conventional product, which will be described later, refers to a general product used in VRLA batteries manufactured by the applicant, and improved products refer to products manufactured by including the hydrophilic nonwoven fabric separator for VRLA batteries of the present invention.

구분division 종래품Conventional products 개선품Improvement RCRC 125min125min 138min138min CCACCA 635A635A 700A700A C20C20 80Ah80Ah 88Ah88Ah 내구성(SAE J2801)Durability (SAE J2801) 274 Cycle274 Cycle 304 Cycle304 Cycle

상기 표 2는 종래의 VRLA 전지와 본 발명의 VRLA 전지의 성능 시험결과로서, 내구성이 종래품의 경우, 274 cycle을 나타냈으며, 개선품의 경우, 304 Cycle을 나타내고 있다.(도 3 참조)Table 2 shows the performance test results of the conventional VRLA battery and the VRLA battery of the present invention, and the durability is 274 cycles in the case of the conventional product and 304 cycles in the case of the improved product (see FIG. 3).

따라서, 종래품보다 내구성이 11% 향상되었음을 실험을 통해 확인할 수 있었다.Therefore, it was confirmed through experiments that the durability was improved by 11% over the conventional product.

1) 보유용량 (RC : Reserve Capacity)1) Reserve Capacity (RC)

보유용량 RC는 만충전 완료 후 1시간 이상 방치한 다음 25℃에서 25A의 방전전류로 방전종지전압 10.5V 도달 시까지의 방전가능지속시간을 측정하는 것으로, 예를 들면 이는 차량에 있어서 시동이 정지된 상태 등에서 부하를 작동시키는데 어느 시간까지 최소한의 기능을 발휘할 수 있는가에 대한 척도가 된다.Retention capacity RC is to measure the dischargeable duration until discharge end voltage reaches 10.5 V at 25 ° C with a discharge current of 25 A after standing for 1 hour or more after full charge is completed. For example, it stops starting in a vehicle. It is a measure of how long the minimum function can be achieved to operate the load under conditions.

시험결과, 표 2에서 보는 바와 같이, 본 발명에 따른 친수성부직포격리판을 포함한 VRLA 전지를 제작하였을 경우, 보유용량(RC)은 135 ~ 140분으로, 정확하게는 138분으로 종래품에 대비하여 10%의 성능향상 효과를 보임으로써 친수성부직포격리판이 보유용량에 대한 긍정적인 영향을 주었음을 알 수 있었다.As a result of the test, as shown in Table 2, when a VRLA battery including a hydrophilic non-woven fabric isolation plate according to the present invention was manufactured, the holding capacity (RC) was 135 to 140 minutes, exactly 138 minutes, compared to the conventional product 10 The performance improvement effect of% showed that the hydrophilic nonwoven fabric separator had a positive effect on the storage capacity.

2) 저온시동전류(CCA : Cold Cranking Ampere)2) Cold Cranking Ampere (CCA)

일반적으로 축전지의 급속방전 특성은 -10℃이하에서 급속히 저하되는데, 저온시동전류(CCA)는 저온에서의 자동차 시동능력을 평가하기 위한 고율방전시험으로서, 만충전 완료 후 -18℃에서 630A로 30초 방전시의 전압을 측정한다. In general, the rapid discharge characteristic of a battery rapidly decreases below -10 ℃, and the low-temperature starting current (CCA) is a high-rate discharge test for evaluating the starting ability of a vehicle at low temperatures. The voltage at the time of ultra-discharge is measured.

이 시험에 있어서는 30초 때의 전압이 7.2V이상 요구되며, 높을수록 성능이 우수한 것으로 평가된다. In this test, a voltage of 30 seconds or more is required at 7.2 V or higher, and the higher the performance, the better the performance.

본 발명에서는 (30초 전압÷6-0.2)×630의 보정식을 사용하여 CCA를 계산하였다.In the present invention, CCA was calculated using a correction formula of (30 sec voltage ÷ 6-0.2) x 630.

시험결과, 표 2에서 도시한 바와 같이, 30초 전압은 7.70V ~ 7.82V, 환산 CCA는 680A ~ 700A으로, 정확하게는 700A로 기존제품에 대비하여 10%의 성능향상 효과를 보임으로써 친수성부직포격리판을 포함하는 제품을 제작하였을 경우 저온시동전류에 대한 긍정적인 영향을 주었음을 알 수 있었다.As shown in Table 2, the 30 second voltage is 7.70V to 7.82V, the converted CCA is 680A to 700A, and the accuracy is 700A, which shows a 10% performance improvement effect compared to the existing product, thereby improving the hydrophilic nonwoven fabric isolation. It was found that when the product containing the plate was manufactured, it had a positive effect on the low-temperature starting current.

3) 20 시간율 용량(AH)3) 20 hour rate capacity (AH)

이는 저율방전 특성을 알아보기 위한 것으로, 축전지 용량에 대해 비교적 적은 전류인 3.75A로 연속 방전시켜, 전압이 10.5V에 도달할 때까지의 방전용량(AH)을 측정하는 것이다. This is to find out the low-rate discharge characteristics, and is to continuously discharge at 3.75A, which is a relatively small current for the battery capacity, to measure the discharge capacity (AH) until the voltage reaches 10.5V.

시험 결과, 85AH ~ 90AH로, 정확하게는 88AH로 기존제품에 대비하여 4%의 성능향상 효과를 보임으로써, 친수성부직포격리판을 포함하는 제품을 제작하였을 경우에 20 시간율 용량(AH)에 대한 긍정적인 영향을 주었음을 알 수 있었다.As a result of the test, it was 85AH ~ 90AH, exactly 88AH, showing a 4% performance improvement effect compared to the existing product, which is positive for the 20 hour rate capacity (AH) when a product containing a hydrophilic nonwoven fabric separator is manufactured. It was found that phosphorus was affected.

4) 수명 검증 시험(SAE J2801, Cycle)4) Life test (SAE J2801, Cycle)

미국 자동차 기술자 협회 규격에 따라 75℃ 환경에서 수명을 검증한 그래프(J2801)로서, 상기 시험 규격은 전지가 고온(75℃)에서 충전/방전을 반복하여 수명이 종지될 때까지의 사이클을 측정하는 시험 방법이다. As a graph (J2801) of verifying life in a 75 ° C environment according to the American Society of Automotive Engineers, the test standard measures the cycle until the life of the battery is terminated by repeating charging / discharging at high temperature (75 ° C). It is a test method.

(1사이클 : 25A 18초 방전, 14.2V[최대 25A] 정전압 30분 충전- 5회 반복시 1Cycle)(1 cycle: 25A 18 sec discharge, 14.2V [max 25A] constant voltage 30 min charge-1 cycle after 5 repetitions)

본 시험은 1주 동안 34회 반복하며, 그 후 56시간 정치 후 200A 고율로 방전하여 30초 시점에서의 전압을 측정함으로써 배터리의 상태를 판정한다. This test was repeated 34 times for one week, and after standing for 56 hours, discharged at a high rate of 200 A to measure the voltage at the time of 30 seconds to determine the state of the battery.

30초 시점의 전압이 7.2V 이상이면 배터리를 온전한 상태로 판정하여 위의 싸이클을 반복하며, 7.2V 이하이면 배터리를 수명종지로 판정하여, 시험을 중단한다. If the voltage at 30 seconds is 7.2V or more, the battery is judged to be in an intact state, and the above cycle is repeated.

시험 결과, 종래품에 대비하여 수명에서 11% 향상되는 효과를 보임으로써 친수성부직포격리판을 포함하는 제품을 제작하였을 경우, 수명 증가에 대한 긍정적인 영향을 주었음을 알 수 있다.As a result of the test, it can be seen that when a product containing a hydrophilic nonwoven fabric separator was manufactured by showing an effect of 11% improvement in life compared to the conventional product, it had a positive effect on the increase in life.

요약하자면, VRLA전지는 충전 중 발생하는 산소 가스가 음극의 산소 재결합으로 황산 전해액 감소를 최소화한 납축전지이다. In summary, the VRLA battery is a lead acid battery in which oxygen gas generated during charging minimizes the reduction of sulfuric acid electrolyte by recombination of oxygen at the cathode.

이때, 산소 가스가 음극으로 쉽게 이동할 수 있는 가스 통로와 황산 전해액을 고정시키기 위해 흡수성 유리 섬유를 사용한다.At this time, an absorbent glass fiber is used to fix the gas passage and the sulfuric acid electrolyte, through which oxygen gas can easily move to the cathode.

흡수성 유리 섬유는 뛰어난 전해액 보유 특성이 있어야 하기에 높은 다공도와 젖음 특성이 있다. The absorbent glass fiber has high porosity and wettability because it must have excellent electrolyte retention properties.

하지만, 유리섬유 특성상, 작업 시 분진이 날리며, 두께가 두꺼우며, 쉽게 찢어져 양극판과 음극판의 분리기능을 하지 못하고 제품에서 Short circuit 불량이 발생하게 된다.However, due to the characteristics of the glass fiber, dust is blown off during operation, the thickness is thick, and it is easily torn, so it cannot function to separate the positive and negative plates and a short circuit defect occurs in the product.

본 발명에서는 이러한 유리 섬유 대신 친수성 스펀레이스 부직포, 양극판, 음극판을 순차적으로 적층된 극판군을 구성하여 되는 VRLA전지를 제공한다.In the present invention, instead of such glass fibers, a hydrophilic spunlace nonwoven fabric, a positive electrode plate, and a negative electrode plate are constituted by sequentially stacked electrode plate groups to provide a VRLA battery.

상기한 스펀레이스 부직포는 뛰어난 기계적 강도, 90% 이상의 다공도를 가지고 압축 성형되며, 황산전해액에 대해 우수한 흡수성을 보유하여 전기 저항이 낮기 때문에 고성능 VRLA전지를 구현하는 효과를 제공하게 됨으로써, 내구성 향상에 따른 수명 향상의 상승 효과를 제공하게 되는 것이다.The above spunlace nonwoven fabric is compression molded with excellent mechanical strength, porosity of 90% or more, and possesses excellent water absorption against sulfuric acid electrolyte, so it has low electrical resistance, thereby providing the effect of realizing a high-performance VRLA battery. It is to provide a synergistic effect of life improvement.

상기와 같은 내용의 본 발명이 속하는 기술분야의 당업자는 본 발명의 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시된 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. Those of ordinary skill in the art to which the present invention pertains to the above contents can understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, the embodiments described above are exemplified in all respects and should be understood as non-limiting.

1 : 양극판
2 : 음극판
4 : 친수성부직포격리판
1: anode plate
2: Cathode plate
4: Hydrophilic non-woven isolation plate

Claims (3)

친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지 제조방법에 있어서,
흡수성 유리섬유(AGM) 대신에 친수성 폴리에스테르 또는 폴리프로필렌을 준비하는 단계(S100);와
상기 준비된 친수성 폴리에스테르 또는 폴리프로필렌을 스펀 레이스법을 이용하여 압착하여 친수성 스펀레이스 부직포를 형성하여 친수성부직포격리판을 생산하는 단계(S200);와
극판군 차입 공정시, 상기 친수성부직포격리판, 양극판, 음극판을 순차적으로 적층하여 극판군을 구성하는 단계(S300);와
상기 극판군을 전조에 형성시켜 VRLA 전지를 완성시키는 단계(S400);를 포함하는 것을 특징으로 하는 친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지 제조방법.
In the method of manufacturing a VRLA battery comprising a hydrophilic crimped spunlace nonwoven fabric,
Preparing a hydrophilic polyester or polypropylene instead of absorbent glass fibers (AGM) (S100); And
Forming a hydrophilic spunlace nonwoven fabric by pressing the prepared hydrophilic polyester or polypropylene using a spunlace method (S200); and
In the electrode plate group borrowing process, the hydrophilic nonwoven fabric isolation plate, the positive electrode plate, and the negative electrode plate are sequentially stacked to form a pole plate group (S300); and
A method of manufacturing a VRLA battery including a hydrophilic crimped spunlace nonwoven fabric, comprising; forming a group of the electrode plates on a roll to complete a VRLA battery (S400).
제 1항에 있어서,
상기 친수성부직포격리판을 생산하는 단계(S200)에 의해,
생산된 친수성부직포격리판을 극판군 차입 공정시 사용함으로써, 격리판 훼손을 방지하는 것을 특징으로 하는 친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지 제조방법.
According to claim 1,
By the step (S200) of producing the hydrophilic nonwoven fabric separation plate,
A method of manufacturing a VRLA battery including a hydrophilic crimped spunlace nonwoven fabric, characterized in that the produced hydrophilic nonwoven fabric isolation plate is used in the electrode plate group borrowing process to prevent damage to the separator.
제 1항의 제조 방법에 의해,
제조된 친수성 압착 스펀레이스 부직포를 포함한 VRLA 전지.

By the manufacturing method of claim 1,
VRLA battery including a manufactured hydrophilic crimped spunlace nonwoven fabric.

KR1020180127520A 2018-10-24 2018-10-24 Method for manufacturing VRLA cell including hydrophilic pressure-bonded spun lace nonwoven fabric and RLA battery KR102204985B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180127520A KR102204985B1 (en) 2018-10-24 2018-10-24 Method for manufacturing VRLA cell including hydrophilic pressure-bonded spun lace nonwoven fabric and RLA battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180127520A KR102204985B1 (en) 2018-10-24 2018-10-24 Method for manufacturing VRLA cell including hydrophilic pressure-bonded spun lace nonwoven fabric and RLA battery

Publications (2)

Publication Number Publication Date
KR20200046401A true KR20200046401A (en) 2020-05-07
KR102204985B1 KR102204985B1 (en) 2021-01-19

Family

ID=70733608

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180127520A KR102204985B1 (en) 2018-10-24 2018-10-24 Method for manufacturing VRLA cell including hydrophilic pressure-bonded spun lace nonwoven fabric and RLA battery

Country Status (1)

Country Link
KR (1) KR102204985B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230025251A (en) * 2021-08-13 2023-02-21 한국앤컴퍼니 주식회사 Method of manufacturing separator for lead-acid battery using organic fiber of spring structure to improve strength

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106796A (en) * 1995-10-11 1997-04-22 Kanebo Ltd Storage battery
KR20100088019A (en) 2009-01-29 2010-08-06 비나텍주식회사 Power battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106796A (en) * 1995-10-11 1997-04-22 Kanebo Ltd Storage battery
KR20100088019A (en) 2009-01-29 2010-08-06 비나텍주식회사 Power battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230025251A (en) * 2021-08-13 2023-02-21 한국앤컴퍼니 주식회사 Method of manufacturing separator for lead-acid battery using organic fiber of spring structure to improve strength

Also Published As

Publication number Publication date
KR102204985B1 (en) 2021-01-19

Similar Documents

Publication Publication Date Title
KR101227779B1 (en) High performance energy storage devices
RU2484565C2 (en) Hybrid device for electric energy accumulation with electrochemical supercapacitor/ lead-acid battery
KR101833287B1 (en) Electrical storage device and electrode thereof
KR20030005759A (en) Electrode for lead storage battery and method for manufacturing thereof
KR102105992B1 (en) Manufacturing method of lead plate for lead battery with high conductivity graphene fiber and lead acid battery
KR102204985B1 (en) Method for manufacturing VRLA cell including hydrophilic pressure-bonded spun lace nonwoven fabric and RLA battery
US20220407083A1 (en) Active material having oxidized fiber additive &amp; electrode and battery having same
CN111295791B (en) Valve-controlled lead storage battery
KR20240042996A (en) VRLA battery manufacturing method including aluminum silicate separator
KR102424560B1 (en) Electrode plate manufacturing method for lead acid battery with improved charging efficiency and low-temperature starting capability by applying ion conductive polymer electrolyte membrane
KR102617644B1 (en) Method of manufacturing separator for lead-acid battery using organic fiber of spring structure to improve strength
JP6677436B1 (en) Lead storage battery
WO2019064854A1 (en) Lead acid storage battery
KR102424556B1 (en) Method for manufacturing a substrate for a lead acid battery with increased surface area
US20220393181A1 (en) Lead-acid battery having fiber electrode with lead-calcium strap
KR20230044876A (en) Electrode plate manufacturing method of lead-acid battery using carbon paper
KR20220148048A (en) VRLA battery manufacturing method with metal coating applied to prevent liquid depletion
CN116114084A (en) Method of manufacturing lead acid battery assembly
WO2021150851A1 (en) Lead-acid battery having fiber electrode and alloy for use with same
JP2006066254A (en) Lead-acid storage battery
JPH0388266A (en) Thin sealed lead-acid battery
JP2004273306A (en) Manufacturing method of battery and separator used for the battery
KR19980020315A (en) Hydrogen negative electrode, alkali secondary battery employing the same, and manufacturing method thereof
JPH10189032A (en) Sealed alkaline storage battery

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant