KR20200042305A - 유체 분석용 칩 - Google Patents

유체 분석용 칩 Download PDF

Info

Publication number
KR20200042305A
KR20200042305A KR1020180122722A KR20180122722A KR20200042305A KR 20200042305 A KR20200042305 A KR 20200042305A KR 1020180122722 A KR1020180122722 A KR 1020180122722A KR 20180122722 A KR20180122722 A KR 20180122722A KR 20200042305 A KR20200042305 A KR 20200042305A
Authority
KR
South Korea
Prior art keywords
fluid
chip
embossed
lower plate
fluid analysis
Prior art date
Application number
KR1020180122722A
Other languages
English (en)
Other versions
KR102166770B1 (ko
Inventor
최준규
Original Assignee
주식회사 스몰머신즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 스몰머신즈 filed Critical 주식회사 스몰머신즈
Priority to KR1020180122722A priority Critical patent/KR102166770B1/ko
Publication of KR20200042305A publication Critical patent/KR20200042305A/ko
Application granted granted Critical
Publication of KR102166770B1 publication Critical patent/KR102166770B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0851Bottom walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Optical Measuring Cells (AREA)

Abstract

본 발명의 실시예에 따른 유체 분석용 칩은 내부에 유체가 이동 가능한 유체채널을 형성하여 상기 유체에 포함된 검출 대상물질의 움직임을 관찰하거나, 상기 검출 대상물질을 계수할 수 있는 유체 분석용 칩으로서, 투입구 및 배출구가 형성되는 상판; 및 상기 상판의 하측에 배치되고, 상면에 상기 유체를 수용 가능한 복수개의 세포 수용홈이 형성되는 하판;을 포함한다.
본 발명의 실시예에 따르면, 하판에 복수개의 세포 수용홈을 형성하고, 유체채널의 양 측부에 공기벽을 형성하는 복수개의 공기채널을 형성함으로써, 유체 내에 포함된 검출 대상물질의 운동성을 관찰하거나, 검출 대상물질을 계수할 수 있고, 유체의 흐름이 안정화되어 유체 내에 기포의 발생이 예방되며, 나아가 유체채널 내에 유체의 양이 정량화되어 정확한 유체 분석이 가능할 수 있다.

Description

유체 분석용 칩{CHIP FOR ANALYZING FLUIDS}
본 발명은 유체 분석용 칩에 관한 것으로, 보다 상세하게는 유체시료에 포함된 세포 등을 관찰하고 계수할 수 있는 유체 분석용 칩에 관한 것이다.
일반적으로, 유체시료의 분석은 화학 및 생명공학 분야 외에도 환자로부터 채취한 혈액, 체액의 분석을 통한 진단 분야 등에서 광범위하게 이용되고 있다. 근래에는 이러한 유체시료의 분석을 좀 더 간편하고 효율적으로 수행하기 위하여, 소형화된 다양한 종류의 분석 및 진단 장비들과 기술들이 개발되고 있다.
특히, 랩온어칩(lab-on-a-chip) 기술은 시료의 분리, 정제, 혼합, 표지화, 분석 및 세정 등 실험실에서 수행되는 다양한 실험 과정들을 미세유체역학 기술 등을 이용하여 작은 크기의 칩 상에서 구현하는 기술을 말한다.
이러한 랩온어칩(lab-on-a-chip) 기술과 관련하여 DNA 추출부터 해석까지의 프로세스를 칩 상에서 한 번에 실시할 수 있는 휴대가 가능한 개인 식별용 DNA 해석 장치까지 개발되고 있는 등 산업 각 분야에서 그 활용이 활발히 이루어지고 있다.
또한, 체외진단(In vitro diagnostics) 분야에 있어서도, 병원이나 연구실에서 행해지는 혈액, 체액 등의 복잡한 정밀 검사를 현장에서 개인이 직접 손쉽게 할 수 있는 휴대용 진단 도구, 즉 POCT(point of care testing)분야에 대한 연구도 활발히 이루어지고 있다.
POCT는 응급실, 수술실 또는 일반 가정 등 진료 현장에서 간편하게 질병을 진단할 수 있는 현장 진단 기술을 말하며, 고령화 및 복지 사회를 대비하여 그 필요성과 수요가 계속하여 증가하는 분야이기도 하다. 현재는 혈당 측정용 진단 도구가 시장의 주류를 차지하고 있지만, POCT에 대한 실질적인 요구가 증대되면서 젖산, 콜레스테롤, 요소 및 감염성 병원균 등 다양한 생체 물질들을 분석하는 진단 도구에 대한 수요 또한 빠르게 증가하고 있는 추세이다.
이와 같은 분석 또는 진단 기술들은 일반적으로 각종 유체시료를 칩 내부에 형성된 미세 채널을 통하여 이동시키면서 유체와 칩 내부에 고정화된 항체 단백질 또는 그 외 각종 시료들과의 반응 여부를 여러 가지 탐지 방법으로 검출, 분석함으로써 이루어진다.
이러한 검출, 분석과 관련된 랩온어칩(lab-on-a-chip)은 실험실에서 수행되는 다양한 실험과정 예를 들어, 시료의 분리, 정제, 혼합, 표지화(labeling), 분석, 및 세척 등을 작은 크기의 칩 상에서 구현하는 것을 의미한다. 랩온어칩의 설계에는, 미세유체역학(micro-fluidics), 미세유체조작시스템(micro-LHS) 관련 기술이 주로 이용된다. 또한, 미세유체역학 및 미세유체조작시스템을 구현하는 칩 구조물을 제작함에 있어, 반도체 회로설계 기술을 이용하여 미세한 채널을 칩 내부에 형성시킨 칩이 시판 중에 있다.
전술한 POCT용 또는 랩온어칩용으로 사용되는 플라스틱 마이크로칩은 폴리카보네이트(PC), 폴리스티렌(PS), 폴리프로필렌(PP), 폴리에틸렌테레프탈레이트(PET) 등과 같은 폴리에틸렌 유도체(PE derivatives), 폴리메틸메타크릴레이트(PMMA), 또는 아크릴 계통의 플라스틱 종류의 재질로 이루어지며, 일회용으로 사용된다.
이러한 플라스틱 마이크로칩은 상부기판과 하부기판을 접합하여 제조되는데, 접합된 상부기판과 하부기판 사이에 시료를 충전하기 위한 소정 높이의 시료충전부 공간과 또는 미세 구조물 등이 구비된다.
플라스틱 마이크로칩은 시료충전부 공간이 수 ㎕ 내지 수백 ㎕의 체적을 갖도록 정밀하게 제조되어야 하기 때문에, 시료충전부 공간 또는 미세 구조물을 포함하는 상부기판 및 하부기판을 매우 정밀하고 정확하게 접합하여야만 플라스틱 마이크로칩이 완벽하게 기능할 수 있다.
그러나, 종래의 플라스틱 마이크로칩은 내부로 유입된 시료가 상부기판 혹은 하부기판의 내벽을 따라 일 방향으로 유동 가능한 구조로 형성됨에 따라, 시료의 유동 속도가 균일하지 못함은 물론, 시료의 유동 중 시료 내에 기포가 발생하게 되어 수용공간 내에 시료의 양을 정량화할 수 없어 정확한 분석이 불가능한 문제점이 있었다.
또한, 종래의 플라스틱 마이크로칩에는 세포의 계수를 위하여 일면에 세포를 수용 가능한 0.5 ~ 10 ㎛의 선 폭을 가지는 미세한 그리드가 형성된다.
이와 같은, 0.5 ~ 10 ㎛의 선 폭을 가지는 미세한 그리드는, 반도체 가공을 통해서 실리콘 웨이퍼에 패턴을 각인하고, 이 형틀에 니켈, 코발트, 철 등을 도금하여 플라스틱 사출을 위한 템플릿(경면 철판 코어)을 제작된다.
그러나, 0.5 ~ 10 ㎛의 선 폭을 가지는 미세한 그리드를 형성하기 위해 제작되는 템플릿(경면 철판 코어)은 반도체 가공의 높은 비용으로 제작된 기판을 전사하고, 도금의 특성상 두께가 1mm 이하와 연성 재질로 한정됨에 따라 고가의 제작 비용이 요구되고, 사용 시 찍힘에 의한 파손 및 수지가 침투하여 휘어지는 문제점이 있었다.
또한, 상기한 템플릿은 마모가 심함에 따라, 그리드의 형성 시 잦은 교체가 필요하고, 높은 압력을 가할 수 없어 생산시간이 증가하는 문제점이 있었다.
공개특허공보 제10-2011-0075448호
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 극초단 레이저를 이용하여 금형코어에 직접 미세패턴을 형성하고, 이를 통해 격자 구조의 양각 돌기를 형성하여, 유체시료에 포함된 검출 대상물질의 움직임의 관찰 및 계수를 정확하게 할 수 있고, 유체채널 내에 유체가 균일한 속도로 이동되도록 하여 유체의 양을 정량화하고 정확한 유체 분석이 가능할 수 있는 유체 분석용 칩을 제공하는 것이다.
본 발명의 과제는 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 유체 분석용 칩은 내부에 유체가 이동 가능한 유체채널을 형성하여 상기 유체에 포함된 검출 대상물질의 움직임을 관찰하거나, 상기 검출 대상물질을 계수할 수 있는 유체 분석용 칩으로서, 투입구 및 배출구가 형성되는 상판; 및 상기 상판의 하측에 배치되고, 상면에 상기 유체를 수용 가능한 복수개의 세포 수용홈이 형성되는 하판;을 포함한다.
상기 하판은, 상기 하판의 상면으로부터 미리 설정된 길이로 돌출되어 격자형 구조를 형성하고, 내측에 상기 복수개의 세포 수용홈을 형성하는 양각돌기를 포함할 수 있다.
상기 복수개의 세포 수용홈은 단일 세포 수용홈의 평면적의 크기에 따라 복수개의 세포 수용영역으로 구분될 수 있다.
상기 양각돌기는 상기 유체의 이동방향 및 상기 하판의 폭 방향 중 적어도 하나의 방향을 따라 높이가 점차 증가하거나, 감소하는 구조로 형성될 수 있다.
상기 양각돌기의 단부는 곡면 또는 경사면의 구조로 형성될 수 있다.
상기 양각돌기는, 상기 하판의 상면으로부터 단부를 향하여 단면의 폭이 점차 좁아지는 웨지(wedge) 구조로 형성될 수 있다.
상기 양각돌기의 단부에는 상기 양각돌기의 단부로부터 미리 설정된 길이로 돌출되는 미세돌기가 더 형성될 수 있다.
상기 유체채널의 양 측부에는 내측에 상기 유체채널로 유입된 상기 유체의 흐름을 안내하는 공기벽(air-wall)을 형성하는 공기채널이 더 형성될 수 있다.
상기 양각돌기는 펨토초 레이저 가공을 통해 표면에 미세 패턴이 형성된 금형을 이용하여 상기 하판의 상면에 형성될 수 있다.
상기 양각돌기의 선폭과 높이의 비는 1:0.1 ~ 1:2의 크기로 형성될 수 있다.
상기 양각돌기의 선폭은 1 내지 3㎛의 크기로 형성되고, 상기 양각돌기의 높이는 0.5 내지 2㎛의 크기로 형성될 수 있다.
본 발명의 실시예에 따르면, 하판에 복수개의 세포 수용홈을 형성하고, 유체채널의 양 측부에 공기벽을 형성하는 복수개의 공기채널을 형성함으로써, 유체 내에 포함된 검출 대상물질의 운동성을 관찰하거나, 검출 대상물질을 계수할 수 있고, 유체의 흐름이 안정화되어 유체 내에 기포의 발생이 예방되며, 나아가 유체채널 내에 유체의 양이 정량화되어 정확한 유체 분석이 가능할 수 있다.
또한, 격자형 구조를 형성하는 양각돌기를 통하여 복수개의 세포 수용홈을 형성함으로써, 세포 수용홈에 수용된 검출 대상물질을 외부 공간과 격리시켜 세포 수용홈에 수용된 검출 대상물질에 외부 유체의 혼입이나, 세포 수용홈에 수용된 검출 대상물질이 외부로 유실되는 것을 예방할 수 있다.
또한, 양각돌기의 단부를 곡면 또는 경사면의 구조로 형성하여 검출 대상물질이 양각돌기의 표면에 위치할 경우, 단부의 표면을 따라 일 측 또는 타 측으로 이동되도록 함으로써, 검출 대상물질이 복수개의 세포 수용홈 사이의 경계부위에 잔존하는 것을 차단하여 안정적으로 검출 대상물질을 구획할 수 있고, 이를 통해 정확한 세포의 관찰이 가능할 수 있다.
도 1은 본 발명의 실시예에 따른 유체 분석용 칩을 나타낸 사시도이다.
도 2는 도 1의 II-II 선을 따라 절개한 단면도이다.
도 3은 도 1의 III-III 선을 따라 절개한 단면도이다.
도 4는 본 발명의 실시예에 따른 유체 분석용 칩을 나타낸 평면도이다.
도 5는 본 발명의 실시예에 따른 유체 분석용 칩의 상판을 나타낸 사시도이다.
도 6은 도 3의 “A”부분을 나타낸 확대도이다.
도 7은 도 2의 “B”부분을 나타낸 확대도이다.
도 8은 본 발명의 실시예에 따른 유체 분석용 칩의 하판을 나타낸 사시도이다.
도 9는 도 4의 “C”부분을 나타낸 확대도이다.
도 10 내지 도 11은 본 발명의 실시예에 따른 유체 분석용 칩의 양각돌기의 다양한 실시예를 개략적으로 나타낸 단면도이다.
도 12 내지 도 15는 유체채널의 높이가 100㎛인 마이크로 유체라인에서 일 방향으로 초당 2㎕의 유체가 흐를 경우, 양각돌기의 선폭 및 높이 변화에 따른 시료의 흐름 변화를 나타낸 도면이다.
도 16 내지 도 19는 X축 방향을 기준으로 하는 속도분포를 나타낸 도면이다.
도 20은 양각돌기의 폭 및 높이 변화에 따른 와류(turbulence)의 높이를 나타낸 도표이다.
도 21 내지 도 23은 복수개의 세포 수용영역의 다양한 실시예를 나타낸 도면이다.
이하에서는 첨부된 도면을 참조하여 다양한 실시예를 보다 상세하게 설명한다. 본 명세서에 기재된 실시예는 다양하게 변형될 수 있다. 특정한 실시예가 도면에서 묘사되고 상세한 설명에서 자세하게 설명될 수 있다. 그러나, 첨부된 도면에 개시된 특정한 실시예는 다양한 실시예를 쉽게 이해하도록 하기 위한 것일 뿐이다. 따라서, 첨부된 도면에 개시된 특정 실시예에 의해 기술적 사상이 제한되는 것은 아니며, 발명의 사상 및 기술 범위에 포함되는 모든 균등물 또는 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 이러한 구성요소들은 상술한 용어에 의해 한정되지는 않는다. 상술한 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 명세서에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
한편, 본 명세서에서 사용되는 구성요소에 대한 "모듈" 또는 "부"는 적어도 하나의 기능 또는 동작을 수행한다. 그리고, "모듈" 또는 "부"는 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합에 의해 기능 또는 동작을 수행할 수 있다. 또한, 특정 하드웨어에서 수행되어야 하거나 적어도 하나의 프로세서에서 수행되는 "모듈" 또는 "부"를 제외한 복수의 "모듈들" 또는 복수의 "부들"은 적어도 하나의 모듈로 통합될 수도 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
그 밖에도, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그에 대한 상세한 설명은 축약하거나 생략한다.
도 1은 본 발명의 실시예에 따른 유체 분석용 칩(1)을 나타낸 사시도이고, 도 2는 도 1의 II-II 선을 따라 절개한 단면도이다.
도 1 및 도 2를 참조하면, 본 발명의 실시예에 따른 유체 분석용 칩(1)(이하 ‘유체 분석용 칩(1)’이라 함)은 내부에 유체가 이동 가능한 유체채널(C1) 및 유체의 흐름을 안내하는 공기채널(C2)을 형성하여 유체에 포함된 검출 대상물질의 움직임을 관찰하거나, 검출 대상물질을 계수할 수 있고, 유체가 균일한 속도로 이동되도록 하여 유체 내에 기포의 발생을 억제함은 물론, 유체채널(C1) 내에 유체의 양을 정량화할 수 있다. 여기서, “유체”라 함은 액체 또는 기체 또는 그들의 중간 상태를 유지하여 유체채널(C1) 내에서 자유로이 흐를 수 있는 유체시료를 의미할 수 있다. 예컨대, 유체는 세포 용해물, 전혈, 혈장, 혈청, 침, 안구액, 뇌척수액, 땀, 뇨, 젖, 복수액, 활액 및 복막액일 수 있으나, 반드시 이에 제한되는 것은 아니다. 그리고, 유체 내에는 세포 혹은 항원 등과 같은 검출 대상물질이 포함될 수 있다. 또한, “채널(channel)”이라 함은 본 유체 분석용 칩(1) 내부에 길이방향을 따라 형성되는 소정의 유체 이동 공간을 의미할 수 있다. 또한, 검출 대상물질의 운동성을 관찰하거나, 검출 대상물질의 계수는 본 유체 분석용 칩(1)이 장착된 광학 현미경 또는 CCD 카메라 등이 구비된 분석장비를 이용하여 수행될 수 있다.
또한, 본 유체 분석용 칩(1)은 복수의 위치에서 유체 분석을 동시에 수행하거나, 서로 다른 유체의 유체 분석을 개별적으로 수행할 수 있도록 적어도 두 개 이상의 유체 분석 구간을 구비할 수 있다.
도 4는 본 발명의 실시예에 따른 유체 분석용 칩(1)을 나타낸 평면도이다.
도 4를 참조하면, 본 유체 분석용 칩(1)에는 길이방향을 따라 서로 대향 배치되는 복수개의 유체 분석 구간이 형성되며, 복수개의 유체 분석 구간은 제1 유체 분석 구간(T1) 및 제2 유체 분석 구간(T2)을 포함할 수 있다.
또한, 본 유체 분석용 칩(1)은 상·하 적층되어 내부에 유체채널(C1)을 형성하는 상판(10) 및 하판(20)을 포함한다.
도 3은 도 1의 III-III 선을 따라 절개한 단면도이고, 도 5는 본 발명의 실시예에 따른 유체 분석용 칩(1)의 상판(10)을 나타낸 사시도이다.
도 3 및 도 5를 참조하면, 상판(10)은 미리 설정된 두께를 가지는 직사각 형상의 평판 구조로 형성된다. 그리고, 상판(10)은 유체 분석 시 유체채널(C1)에 흐르는 유체를 육안으로 확인 할 수 있도록 투명한 플라스틱 소재 또는 아크릴 소재 또는 유리 등의 소재로 형성될 수 있다.
또한, 상판(10)에는 투입구(11) 및 배출구(12)가 형성된다.
더 자세하게는, 상판(10)에는, 유체가 투입되는 투입구(11)와, 길이방향을 따라 투입구(11)에 대향하는 위치에 형성되어 유체가 유체채널(C1)로 투입될 경우 유체채널(C1) 내에 잔류하는 공기를 배출하여 유체의 흐름을 원활하게 하고, 잔여 유체가 배출되는 배출구(12)가 형성될 수 있다. 예컨대, 투입구(11)는 유체가 원활하게 유체채널(C1) 측으로 유입될 수 있도록 원형 또는 반원형의 형상으로 형성되고, 후술할 하판(20)에 형성된 유체 유동부(22)의 상부에 위치할 수 있다. 그리고, 배출구(12)는 유체채널(C1) 내부에 적정 공기압이 유지될 수 있도록 길이방향의 크기보다 폭 방향의 크기가 상대적으로 더 크게 형성되는 슬릿(slit) 구조로 형성되고, 후술할 하판(20)에 형성된 함몰홈(21)의 상부에 위치할 수 있다.
또한, 상판(10)에는 투입구(11)로 투입된 유체를 유체채널(C1) 측으로 안내하는 안내면(13)이 형성될 수 있다.
도 6은 도 3의 “A”부분을 나타낸 확대도이다.
도 6의 (a)를 참조하면, 투입구(11)가 형성된 상판(10)의 내면에는 외부에서 투입구(11)로 투입되는 유체와 접촉되어, 시간차를 두어 유체를 유체채널(C1) 측으로 안내하는 안내면(13)이 형성될 수 있다. 예컨대, 안내면(13)은 상판(10)의 하면에 대하여 미리 설정된 경사 각도를 가지는 경사면 형태로 형성될 수 있다.
이에 따라, 안내면(13)은 투입구(11)로 투입되는 유체가 유체 유동부(22)의 상면에 직접적으로 낙하되어 비산되는 것을 예방하여 유체를 안정적으로 유체채널(C1)로 유입시킬 수 있다.
또한, 안내면(13)에는 안내돌기(14)가 더 형성될 수 있다.
도 6의 (b)를 참조하면, 안내면(13)에는 안내면(13)의 표면에 유체가 잔류하는 것을 예방할 수 있도록, 안내면(13)의 표면으로부터 미리 설정된 길이로 돌출되어 안내면(13)에 낙하된 유체를 유체채널(C1) 측으로 안내하는 안내돌기(14)가 형성될 수 있다. 예컨대, 안내돌기(14)는 안내면(13)의 둘레를 따라 복수개로 형성되고, 안내돌기(14)에 수직방향으로 낙하되어 표면에 접촉된 유체가 안내면(13) 측으로 흘러 이동될 수 있도록 돌출방향을 따라 단면의 폭이 좁아지는 웨지(wedge) 구조로 형성될 수 있다. 또한, 안내돌기(14)와 안내면(13) 사이의 연결부위는 유체의 잔류를 최소화 할 수 있도록 곡면 처리될 수 있다.
또한, 안내돌기(14)는, 안내돌기(14)의 표면을 따라 유체채널(C1) 측으로 이동하는 유체가 안내돌기(14)의 단부에서 낙하되지 않고, 표면장력에 의해 상판(10)의 하면으로 이동되는 것을 예방할 수 있도록, 상판(10)의 하면보다 외측으로 더 돌출된 구조로 형성될 수 있다. 예컨대, 안내돌기(14)에서 상판(10)의 하면보다 외측으로 더 돌출된 부위는, 단부에서 유체의 낙하율을 향상시킬 수 있도록 단부를 향할수록 단면의 폭이 점차 좁아지는 형태로 형성되거나, 끝이 둥근 반구 형태로 형성될 수 있다.
또한, 상판(10)의 하면에는 지지구조물(15)이 형성될 수 있다.
도 2, 도 4 및 도 5의 (b)를 참조하면, 지지구조물(15)은 하판(20)의 상면에 지지되고, 하판(20)의 상면에서 용해되어 하판(20)의 상면에 접합될 수 있다.
더 자세하게는, 지지구조물(15)은 하판(20)에 지지되어 상판(10)에 수직방향으로 작용하는 하중을 분산시키고, 본 유체 분석용 칩(1) 내부에서 복수개의 채널(C1, C2)과 채널 외의 공간 사이에 경계를 이룰 수 있다. 또한, 지지구조물(15)은 상판(10)과 하판(20) 사이에 형성되는 유체채널(C1)의 높이를 결정하고, 상판(10)에 처짐이 발생하여 상판(10)이 하판(20)에 밀착되는 현상을 예방함은 물론, 유체채널(C1)의 크기를 일정한 상태로 유지하여 유체의 흐름을 균일하게 유지시킬 수 있다. 예컨대, 도 2를 참조하면, 지지구조물(15)의 높이(h1)는 후술할 양각돌기(24)의 높이(h2)보다 더 크게 형성될 수 있다. 이에 따라, 상판(10)이 하판(20)의 상면에 안착될 경우, 양각돌기(24)와 상판(10)의 하면 사이에 소정 크기의 유체채널(C1)이 형성될 수 있다.
또한, 지지구조물(15)은 지지층(151)과, 용제(152)를 포함할 수 있다.
도 7은 도 2의 “B”부분을 나타낸 확대도이다.
도 4 및 도 7을 참조하면, 지지층(151)은 상판(10)의 하면으로부터 미리 설정된 길이로 돌출되어 하판(20)의 상면에 지지되고, 평면상에서 상판(10)과 하판(20) 사이에 형성된 유체채널(C1)의 둘레를 감싸는 구조로 형성될 수 있다.
한편, 지지층(151)의 모서리 부위에는 지지층(151)의 표면상에서 용해된 용제(152)를 지지층(151)의 둘레로 확산시킬 수 있는 확산면(151a)이 형성될 수 있다. 이에 따라, 상판(10)과 하판(20)의 접합 시, 지지층(151)의 모서리 부위로 유출된 용제(152)는 확산면(151a)을 따라 지지층(151) 전체에 고루 확산되어 지지층(151)과 하판(20)의 접합 성능을 향상시킬 수 있다. 예컨대, 확산면(151a)은 도 7의 (a)에 도시된 바와 같이 지지층(151)의 모서리 부위에 곡면 구조로 형성되거나, 도 7의 (b)에 도시된 바와 같이 지지층(151)의 모서리 부위에 경사면 구조로 형성될 수 있다. 그러나, 확산면(151a)의 형상은 반드시 이에 한정되는 것은 아니며, 동일한 기능을 구현할 수 있는 조건 내에서 다양한 구조로 변경되어 적용될 수 있다.
또한, 지지층(151)은 돌출방향을 향하여 단면의 폭이 점차 작아지는 구조로 형성될 수 있다. 이에 따라, 지지층(151)은 하판(20)과의 접촉을 최소화 하여 구조를 단순화하고, 전체적인 무게를 경량화 할 수 있다.
용제(152)는 지지층(151)의 표면에 구비되어 하판(20)에 상판(10)을 적층할 경우, 하판(20)의 상면에 접촉된 상태에서 용해되어 지지층(151)과 하판(20)의 상면을 접합시킬 수 있다. 예컨대, 용제(152)는 열, 초음파, 또는 외력이 가해질 경우 용해된 후, 소정 시간이 지나면서 경화되는 유기용제로 적용될 수 있다. 그러나, 지지층(151)은 반드시 이의 방법을 통해 하판(20)의 상면에 접합되는 것은 아니며, 열 접합, 플라즈마, 압력, 초음파 등을 활용한 다양한 접합 방법을 통해 접합될 수 있다.
도 8은 본 발명의 실시예에 따른 유체 분석용 칩(1)의 하판(20)을 나타낸 사시도이고, 도 9는 도 4의 “C”부분을 나타낸 확대도이며, 도 10 내지 도 11은 본 발명의 실시예에 따른 유체 분석용 칩(1)의 양각돌기(24)의 다양한 실시예를 개략적으로 나타낸 단면도이다.
도 4 및 도 8을 참조하면, 하판(20)은 상판(10)의 하측에 배치되어 상판(10)에 대응되는 외형의 형상으로 형성되고, 상판(10)과 동일하거나, 상판(10)에 비하여 더 두꺼운 두께로 형성된다. 그리고, 하판(20)은 유체 분석 시 유체채널(C1)에 흐르는 유체를 육안으로 확인 할 수 있도록 투명한 플라스틱 소재 또는 아크릴 소재 또는 유리 등의 소재로 형성될 수 있다.
또한, 하판(20)의 하면에는 하판(20)의 하면으로부터 소정의 길이로 돌출되어 설정 위치에 안착됨으로써, 본 유체 분석용 칩(1)에 수직 방향으로 작용하는 하중을 분산시키는 복수개의 지지돌기(25)가 형성될 수 있다.
또한, 도 2 및 도 8의 (a)를 참조하면, 하판(20)에는 유체채널(C1)을 통과한 유체의 일부가 수용되고, 공기채널(C2)을 형성하는 함몰홈(21), 및 일면을 따라 유체가 흐르는 유체 유동부(22)가 형성될 수 있다.
함몰홈(21)은 하판(20)의 상면으로부터 수직방향을 따라 미리 설정된 깊이로 함몰되어 형성되고, 후술할 유체 유동부(22)의 둘레에 구비될 수 있다. 그리고, 함몰홈(21)은 상판(10)과 하판(20)의 접합 시 유체채널(C1)과 연통되어 유체채널(C1)의 양 측부에 공기채널(C2)을 형성할 수 있다. 공기채널(C2)은 내측에 공기벽(air-wall)을 형성하여 유체채널(C1)로 유입된 유체의 흐름을 안내할 수 있다.
즉, 공기채널(C2)은, 유체채널(C1)에서 유체가 흐를 때, 고체의 매개체가 없는 곳에서 물 분자가 서로 끌어당겨 전체의 표면적을 줄이는 방향으로 힘이 작용하여, 유체와 공기 사이의 계면(interface)이 마치 고무줄과 같은 장력을 갖도록, 유체채널(C1)의 양 측부에 공기벽을 형성할 수 있다. 이에 따라, 유체채널(C1)로 유입된 유체는 공기벽에 의해 유체채널(C1)의 양 측부로 먼저 이동하지 않게 되고, 유체채널(C1)의 중앙부를 흐르는 유체는 유체채널(C1)의 측부를 흐르는 유체와 균등한 유동 속도를 유지하여, 유체 내에 기포가 발생되는 것을 예방할 수 있다. 그리고, 유체채널(C1) 전체에 유체가 균일하게 채워지도록 하여 유체의 양을 정량화함으로써, 정확한 유체 분석이 가능할 수 있다.
또한, 공기채널(C2)은 유체의 흐름에 있어 가이드 역할은 물론, 유체채널(C1)로부터 넘치는 시료를 수용(Overflow troughs)하여 유체채널(C1) 내의 시료를 정량화하는 역할을 수행할 수 있다.
한편, 일반적으로 0.1mm 이하의 채널에서 5% 내의 오차를 유지하기 위해서는 0.005mm의 높이 조절이 필요하다. 그러나, 초음파 융착방식을 통한 플라스틱 접합 방식은 융착 시 재료가 남아 높이 변화를 일으키고, 이에 따라 유체의 누수(leak)를 예방하기 위하여 더 넓은 면적을 용접 해야만 하는 문제점이 있었다. 그래서 이를 해결하기 위해, 종래에는 플라스틱 초음파 융착을 수행하지 않고, 두 판의 거리를 유지하는 턱을 만들고 그 턱에 액상 접착제를 침투시켜 경화시키는 방법을 이용하였다. 그러나, 이의 방법은 과정이 복잡하고, 오랜 작업시간이 소요되는 문제점이 있었다. 따라서, 본 유체 분석용 칩(1)은 상술한 공기채널(C2)을 통하여 유체의 가이드 역할 및, 유체채널(C1)로부터 넘치는 시료를 수용(Overflow troughs)하여 유체채널(C1) 내의 시료를 정량화하는 역할을 수행함은 물론, 압력차에 의해 상판(10)과 하판(20)이 분리되지 않고 상호 일정한 거리를 유지되도록 함에 따라, 초음파 융착 부위를 최소화 하여 초음파 융착을 통해 액체를 가두는 종래의 유체 분석용 칩에 비해 상대적으로 얇은 두께를 가질 수 있고, 제품의 제조시간 및 비용을 월등히 단축시킬 수 있으며, 제조 설비를 간소화할 수 있다.
예컨대, 함몰홈(21)의 함몰 깊이는 지지구조물(15)의 높이에 비하여 더 크게 형성될 수 있다. 이에 따라. 공기채널(C2)의 높이(h3)는 유체채널(C1)의 높이, 즉 지지구조물(15)의 높이(h1)에 비하여 더 크게 형성될 수 있다.
유체 유동부(22)는 함몰홈(21)의 내측에 형성되어 상면에 유체를 수용 가능한 복수개의 세포 수용홈(23)이 형성되고, 상판(10)의 하면에 대향 배치되어 유체가 이동되는 유체채널(C1)을 형성할 수 있다.
또한, 하판(20)은 양각돌기(24)를 포함할 수 있다.
도 2 및 도 4를 참조하면, 양각돌기(24)는 하판(20)의 상면으로부터 수직방향을 따라 미리 설정된 길이로 돌출되어 격자형 구조를 형성하고, 내측에 복수개의 세포 수용홈(23)을 형성할 수 있다.
여기서, 양각돌기(24)는 시료의 흐름에 영향을 주지 않고, 시료에 포함된 세포가 양각돌기(24)의 단부에 걸치지 않아 양각돌기(24)를 기준으로 이분법적인 판별이 객관적으로 이루어질 수 있도록, 미리 설정된 선폭과 높이의 비율을 갖는 크기로 형성될 수 있다.
더 자세하게는, 양각돌기(24)는 선폭과 높이의 비율이 1:01 내지 1:2의 크기로 형성되며, 구체적으로 양각돌기(24)의 선폭은 1 내지 3㎛의 크기로 형성되고, 양각돌기(24)의 높이는 0.5 내지 2㎛의 크기로 형성될 수 있다.
이에 대해서는 도 12 내지 도 20에 도시된 실험 결과를 통하여 더욱 상세히 설명한다.
도 12 내지 도 15는 유체채널의 높이가 100㎛인 마이크로 유체라인에서 일 방향으로 초당 2㎕의 유체가 흐를 경우, 양각돌기(24)의 선폭 및 높이 변화에 따른 시료의 흐름 변화를 나타낸 실험결과이다. 여기서, 양각돌기(24)는 X축 방향을 따라 250㎛ 간격만큼 복수로 이격 배치되어 있고, 각 양각돌기(24)는 1㎛, 3㎛, 5㎛ 및 10㎛의 선폭(W)과, 0.5㎛, 2㎛, 4㎛ 및 6㎛의 높이(H)로 각각 적용된다. 그리고, 도 16 내지 도 19는 X축 방향을 기준으로 하는 속도분포를 나타낸 실험결과이다. 여기서, 빨간색이 아닌 부분은 반대방향으로 유동이 일어나는 곳으로 와류가 형성된 것을 의미한다. 또한, 도 20은 양각돌기(24)의 폭 및 높이 변화에 따른 와류(turbulence)의 높이를 나타낸 도표이다.
도 12 내지 20을 참조하면, 양각돌기(24)의 높이가 4㎛ 이상일 경우, 모든 경우에서 양각돌기(24)의 후방에 높이가 2㎛ 이상인 와류가 발생되고, 양각돌기(24)의 높이가 2㎛ 이하일 경우, 일부의 경우(선폭이 5㎛ 및 10㎛인 경우)를 제외한 모든 경우에서 양각돌기(24)의 후방에 높이가 0.5㎛ 이하인 와류가 발생되었다. 즉, 실험결과에 따르면 양각돌기(24)의 후방에서 발생되는 와류는 양각돌기(24)의 선폭이 좁고, 높이가 높을수록 크기가 커지고, 양각돌기(24)의 선폭 보다 양각돌기(24)의 높이에 더 큰 영향을 받게 된다.
따라서, 상기한 실험결과를 바탕으로, 유체 시료의 흐름에 영향을 주지 않는 양각돌기(24)의 최대 크기는 와류의 높이가 0.5㎛ 이하로 발생되는, 높이 2㎛, 선폭 3㎛인 경우이고, 이에 따라 양각돌기(24)는 선폭 1 내지 3㎛, 높이 0.5 내지 2㎛의 크기로 적용될 수 있다.
또한, 양각돌기(24)는 표면에 미세 패턴이 형성된 금형을 이용한 사출성형 방법을 통하여 제작될 수 있다.
더 자세하게는, 양각돌기(24)는 마이크로 내지 나노 단위의 극초단 레이저(펨토초 10-15) 가공을 통해 표면에 격자 형상의 미세 패턴이 형성된 금형(사출 코어)을 이용한 사출성형 방법을 통하여 하판의 상면에 형성될 수 있다. 참고로, 격자 형상의 미세 패턴은, 금형 표면을 폴리싱 처리한 후, 금형을 스테이지에 고정시키는 단계, 펨토초 재생 증폭장치를 스테이지에 고정된 금형의 상부에 위치시킨 후, 미리 설정된 경로를 따라 금형의 표면상에서 이동하며, 금형의 표면에 레이저를 조사하여 격자 형상의 미세 패턴을 형성하는 단계, 그리고 격자 형상의 미세 패턴이 형성된 금형의 표면에 후처리를 수행하여 가공홈 내의 침전물 및 버(burr)를 제거하는 단계를 통해 금형의 표면에 형성될 수 있다. 여기서, 펨토초 재생 증폭장치는 격자의 폭이 가장 큰 패턴에서 격자의 폭이 가장 작은 패턴 순으로 레이저 가공을 수행할 수 있고, 각 가공에 따라 출력되는 레이저의 세기 및 이동속도를 조절하여 금형의 표면에 형성되는 가공홈의 폭 및 깊이를 조절할 수 있다.
여기서, 극초단 레이저 가공을 통해 표면에 직접 미세 패턴이 각인된 사출 코어는 NAK55, NAK80, STAVAX 등의 열처리 강 소재로 적용되어, 부식에 강하고, 미세입자에 의한 찍힘이 발생하지 않는 이점이 있다. 또한, 사출 코어는 수지의 침투 문제와 생산시간 단축, 제작비용 절감 등의 이점이 있고, 이에 따라 본 유체 분석용 칩(1)의 생산 시 생산비용을 월등히 절감할 수 있다.
즉, 본 유체 분석용 칩(1)은 양각돌기(24)를 통하여 하판(20)의 상면에 격자형상의 돌출 구조물을 형성하고, 이를 통해 복수개의 세포 수용홈(23)을 형성할 수 있다.
한편, 하판(20)의 상면에 형성되는 복수개의 세포 수용홈(23)은 단일 세포 수용홈(23)의 평면적의 크기에 따라 복수개의 세포 수용영역으로 구분될 수 있다.
도 9를 참조하면, 복수개의 세포 수용영역은, 복수개의 세포 수용홈(23) 가운데 가장 큰 평면적의 크기를 갖는 복수개의 세포 수용홈(23)으로 구성되는 제1 세포 수용영역(A1), 제1 세포 수용영역(A1)을 구성하는 단일 세포 수용홈(23)의 평면적에 비하여 1/4 내지 1/6 사이의 평면적의 크기로 형성되는 복수개의 세포 수용홈(23)으로 구성되는 제2 세포 수용영역(A2), 제2 세포 수용영역(A2)을 구성하는 단일 세포 수용홈(23)의 평면적에 비하여 1/4 내지 1/6 사이의 평면적의 크기로 형성되는 복수개의 세포 수용홈(23)으로 구성되는 제3 세포 수용영역(A3), 제3 세포 수용영역(A3)을 구성하는 단일 세포 수용홈(23)의 평면적에 비하여 1/4 내지 1/6 사이의 평면적의 크기로 형성되는 복수개의 세포 수용홈(23)으로 구성되는 제4 세포 수용영역(A4), 및 제4 세포 수용영역(A4)을 구성하는 단일 세포 수용홈(23)의 평면적에 비하여 1/4 내지 1/6 사이의 평면적의 크기로 형성되는 복수개의 세포 수용홈(23)으로 구성되는 제5 세포 수용영역(A5)을 포함할 수 있다. 그러나, 복수개의 세포 수용영역은 반드시 이에 한정되는 것은 아니며, 필요에 따라 세포 수용영역의 수가 증가 혹은 감소될 수 있다.
또한, 복수개의 세포 수용영역은 하판(20)의 상면 상에 서로 다른 크기로 형성될 수 있다.
더 자세하게는, 제1 세포 수용영역(A1)은 전체 세포 수용영역의 84 ~ 86%, 제2 세포 수용영역(A2)은 전체 세포 수용영역의 10 ~ 12 %, 제3 세포 수용영역(A3)은 전체 수용영역의 1 ~ 2 %, 제4 세포 수용영역(A4)은 전체 수용영역의 0.5 ~ 1 %, 그리고 제5 세포 수용영역(A5)은 전체 수용역영의 0.1 ~ 0.5 %를 차지할 수 있다. 여기서, 제5 세포 수용영역(A5)은 전체 세포 수용영역의 중앙에 배치되고, 제4 세포 수용영역(A4)은 제5 세포 수용영역(A5)을 중심으로 교차 배치되며, 제3 세포 수용영역(A3)은 교차 배치된 제4 세포 수용영역(A4) 사이에 배치될 수 있다. 이를 통해, 제5 세포 수용영역(A5), 제4 세포 수용영역(A4) 및 제3 세포 수용영역(A3)은 제1 세포 수용영역(A1)을 이루는 단일 세포 수용홈(23)의 크기와 동일한 크기의 단일 수용영역을 형성할 수 있다. 그리고, 제2 세포 수용영역(A2)은 상기 단일 수용영역을 중심으로 교차 배치되고, 제1 세포 수용영역(A1)은 제2 세포 수용영역(A2)의 둘레에 배치될 수 있다.
그러나, 복수개의 세포 수용영역은 반드시 이에 한정되는 것은 아니며, 도 21 내지 도 23에 도시된 바와 같이 다양한 크기 및 형상으로 적용될 수 있다.
한편, 복수개의 세포 수용홈(23)을 형성하는 양각돌기(24)는 전체적으로 동일한 높이로 형성되거나, 수용영역에 따라 각각 다른 높이로 형성될 수 있다.
또한, 양각돌기(24)는 상기 유체의 이동방향 및 상기 하판(20)의 폭 방향 중 적어도 하나의 방향을 따라 높이가 점차 증가하거나, 감소하는 구조로 형성될 수 있다.
더 자세하게는, 양각돌기(24)는 도 10의 (a)에 도시된 바와 같이 유체의 이동방향을 따라 높이가 점차 증가하는 구조로 형성되거나, 도 10의 (b)에 도시된 바와 같이 유체의 이동방향을 따라 높이가 점차 감소하는 구조로 형성될 수 있다. 또한, 도면에는 도시되지 않았으나, 양각돌기(24)는 유체의 이동방향 혹은 하판(20)의 폭 방향을 따라 파형과 같은 요철구조를 이루도록 형성되거나, 하판(20)의 폭 방향을 따라 중심부에서 외측을 향할수록 높이가 점차 증가하는 하프(harp)형 구조로 형성될 수 있다. 그러나, 양각돌기(24)는 반드시 이에 한정되는 것은 아니며, 필요에 따라 다양한 구조로 변경되어 적용될 수 있다.
또한, 양각돌기(24)는 표면에 위치한 검출 대상물질을 일 측 또는 타 측으로 안내할 수 있는 구조로 형성될 수 있다.
더 자세하게는, 양각돌기(24)의 단부는 도 11의 (a)에 도시된 바와 같이 표면에 안착된 검출 대상물질을 일 측 또는 타 측으로 안내할 수 있도록 곡면 구조로 형성될 수 있다. 또한, 도면에는 도시되지 않았으나, 양각돌기(24)의 단부는 경사면의 구조로 형성될 수 있다. 아울러, 양각돌기(24)의 단부는 표면에 안착된 검출 대상물질을 일 방향으로만 안내할 수 있는 구조로 형성될 수 있다.
또한, 양각돌기(24)는 도 11의 (b)에 도시된 바와 같이 단부에 안착되는 검출 대상물질과의 접촉을 최소화할 수 있도록 하판(20)의 상면으로부터 단부를 향하여 단면의 폭이 점차 좁아지는 타원형상의 웨지 구조로 형성될 수 있다.
또한, 도 11의 (c)에 도시된 바와 같이 양각돌기(24)의 단부에는 검출 대상물질이 잔존하는 것이 차단될 수 있도록 곡면형상으로 형성된 양각돌기(24)의 단부로부터 수직방향을 따라 미리 설정된 길이로 돌출되는 미세돌기(241)가 더 형성될 수 있다. 예컨대, 미세돌기(241)는 단부를 향하여 단면의 폭이 점차 좁아지는 웨지 구조로 형성되고, 양각돌기(24)에 비하여 더 작은 폭 및 높이로 형성될 수 있다.
이처럼 본 발명의 실시예에 따르면, 하판(20)에 복수개의 세포 수용홈(23)을 형성하고, 유체채널(C1)의 양 측부에 공기벽을 형성하는 복수개의 공기채널(C2)을 형성함으로써, 유체 내에 포함된 검출 대상물질의 운동성을 관찰하거나, 검출 대상물질을 계수할 수 있고, 유체의 흐름이 안정화되어 유체 내에 기포의 발생이 예방되며, 나아가 유체채널(C1) 내에 유체의 양이 정량화되어 정확한 유체 분석이 가능할 수 있다.
또한, 격자형 구조를 형성하는 양각돌기(24)를 통하여 복수개의 세포 수용홈(23)을 형성함으로써, 세포 수용홈(23)에 수용된 검출 대상물질을 외부 공간과 격리시켜 세포 수용홈(23)에 수용된 검출 대상물질에 외부 유체의 혼입이나, 세포 수용홈(23)에 수용된 검출 대상물질이 외부로 유실되는 것을 예방할 수 있다.
또한, 양각돌기(24)의 단부를 곡면 또는 경사면의 구조로 형성하여 검출 대상물질이 양각돌기(24)의 표면에 위치할 경우, 단부의 표면을 따라 일 측 또는 타 측으로 이동되도록 함으로써, 검출 대상물질이 복수개의 세포 수용홈(23) 사이의 경계부위에 잔존하는 것을 차단하여 안정적으로 검출 대상물질을 구획할 수 있고, 이를 통해 정확한 세포의 관찰이 가능할 수 있다.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안 될 것이다.
1. 유체 분석용 칩
10. 상판
11. 투입구
12. 배출구
13. 안내면
14. 안내돌기
15. 지지구조물
151. 지지층
151a. 확산면
152. 용제
20. 하판
21. 함몰홈
22. 유체 유동부
23. 세포 수용홈
24. 양각돌기
241. 미세돌기
25. 지지돌기
C1. 유체채널
C2. 공기채널

Claims (11)

  1. 내부에 유체가 이동 가능한 유체채널을 형성하여 상기 유체에 포함된 검출 대상물질의 움직임을 관찰하거나, 상기 검출 대상물질을 계수할 수 있는 유체 분석용 칩으로서,
    투입구 및 배출구가 형성되는 상판; 및
    상기 상판의 하측에 배치되고, 상면에 상기 유체를 수용 가능한 복수개의 세포 수용홈이 형성되는 하판;
    을 포함하는 유체 분석용 칩.
  2. 제1항에 있어서,
    상기 하판은,
    상기 하판의 상면으로부터 미리 설정된 길이로 돌출되어 격자형 구조를 형성하고, 내측에 상기 복수개의 세포 수용홈을 형성하는 양각돌기를 포함하는 유체 분석용 칩.
  3. 제2항에 있어서,
    상기 복수개의 세포 수용홈은 단일 세포 수용홈의 평면적의 크기에 따라 복수개의 세포 수용영역으로 구분되는 유체 분석용 칩.
  4. 제3항에 있어서,
    상기 양각돌기는 상기 유체의 이동방향 및 상기 하판의 폭 방향 중 적어도 하나의 방향을 따라 높이가 점차 증가하거나, 감소하는 구조로 형성되는 유체 분석용 칩.
  5. 제2항에 있어서,
    상기 양각돌기의 단부는 곡면 또는 경사면의 구조로 형성되는 유체 분석용 칩.
  6. 제5항에 있어서,
    상기 양각돌기는,
    상기 하판의 상면으로부터 단부를 향하여 단면의 폭이 점차 좁아지는 웨지(wedge) 구조로 형성되는 유체 분석용 칩.
  7. 제5항에 있어서,
    상기 양각돌기의 단부에는 상기 양각돌기의 단부로부터 미리 설정된 길이로 돌출되는 미세돌기가 더 형성되는 유체 분석용 칩.
  8. 제1항에 있어서,
    상기 유체채널의 양 측부에는 내측에 상기 유체채널로 유입된 상기 유체의 흐름을 안내하는 공기벽(air-wall)을 형성하는 공기채널이 더 형성되는 유체 분석용 칩.
  9. 제2항에 있어서,
    상기 양각돌기는 펨토초 레이저 가공을 통해 표면에 미세 패턴이 형성된 금형을 이용하여 상기 하판의 상면에 형성되는 유체 분석용 칩.
  10. 제2항에 있어서,
    상기 양각돌기의 선폭과 높이의 비는 1:0.1 ~ 1:2의 크기로 형성되는 유체 분석용 칩.
  11. 제10항에 있어서,
    상기 양각돌기의 선폭은 1 내지 3㎛의 크기로 형성되고, 상기 양각돌기의 높이는 0.5 내지 2㎛의 크기로 형성되는 유체 분석용 칩.
KR1020180122722A 2018-10-15 2018-10-15 유체 분석용 칩 KR102166770B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180122722A KR102166770B1 (ko) 2018-10-15 2018-10-15 유체 분석용 칩

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180122722A KR102166770B1 (ko) 2018-10-15 2018-10-15 유체 분석용 칩

Publications (2)

Publication Number Publication Date
KR20200042305A true KR20200042305A (ko) 2020-04-23
KR102166770B1 KR102166770B1 (ko) 2020-10-16

Family

ID=70472297

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180122722A KR102166770B1 (ko) 2018-10-15 2018-10-15 유체 분석용 칩

Country Status (1)

Country Link
KR (1) KR102166770B1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100065538A (ko) * 2008-12-08 2010-06-17 한국전자통신연구원 일회용 진단 키트
KR20110075448A (ko) 2009-12-28 2011-07-06 주식회사 나노엔텍 미세유동 장치의 제작 방법 및 제작된 미세유동 장치
KR101175594B1 (ko) * 2012-05-14 2012-08-21 주식회사 나노엔텍 샘플분석용 칩
KR20130124005A (ko) * 2012-05-04 2013-11-13 삼성테크윈 주식회사 바이오 센서
KR20140046666A (ko) * 2012-10-10 2014-04-21 케이맥(주) 랩 온어칩 및 이를 제작하는 방법
KR20180097726A (ko) * 2015-12-28 2018-08-31 퀴아젠 사이언시스, 엘엘씨 개별 시딩 마이크로스폿을 위한 마이크로리테이너를 지닌 플로우셀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100065538A (ko) * 2008-12-08 2010-06-17 한국전자통신연구원 일회용 진단 키트
KR20110075448A (ko) 2009-12-28 2011-07-06 주식회사 나노엔텍 미세유동 장치의 제작 방법 및 제작된 미세유동 장치
KR20130124005A (ko) * 2012-05-04 2013-11-13 삼성테크윈 주식회사 바이오 센서
KR101175594B1 (ko) * 2012-05-14 2012-08-21 주식회사 나노엔텍 샘플분석용 칩
KR20140046666A (ko) * 2012-10-10 2014-04-21 케이맥(주) 랩 온어칩 및 이를 제작하는 방법
KR20180097726A (ko) * 2015-12-28 2018-08-31 퀴아젠 사이언시스, 엘엘씨 개별 시딩 마이크로스폿을 위한 마이크로리테이너를 지닌 플로우셀

Also Published As

Publication number Publication date
KR102166770B1 (ko) 2020-10-16

Similar Documents

Publication Publication Date Title
US20240060872A1 (en) Cell capture system and method of use
US8941826B2 (en) Three-dimensional (3D) hydrodynamic focusing using a microfluidic device
US10232371B2 (en) Microfluidic devices and methods for cell processing
US9110026B2 (en) Microfluidic devices and methods based on massively parallel picoreactors for cell and molecular diagnostics
US20110030458A1 (en) Chip for analyzing fluids
JP2013217918A (ja) ターゲット物質捕獲用フィルタ
US7678336B2 (en) Channel apparatus for focusing a fluid flow
US20210285863A1 (en) Particle detection device and particle detection method
JP2009287971A (ja) マイクロチップ
KR102166770B1 (ko) 유체 분석용 칩
JP5137551B2 (ja) 生化学反応カセット
KR102094687B1 (ko) 유체 분석용 칩
JP2016166861A (ja) マイクロチップ、並びに分析装置及び分析方法
US20110286887A1 (en) Open type groove channel chip
KR20130104281A (ko) 바이오 센서
US20190275522A1 (en) Microscale cell filter
EP2544009A2 (en) Microfluidic device comprising microchannel where protrusions are formed on bottom surface

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant