KR20200041279A - Method for surface modification of submicron silicon micropowder - Google Patents

Method for surface modification of submicron silicon micropowder Download PDF

Info

Publication number
KR20200041279A
KR20200041279A KR1020190125285A KR20190125285A KR20200041279A KR 20200041279 A KR20200041279 A KR 20200041279A KR 1020190125285 A KR1020190125285 A KR 1020190125285A KR 20190125285 A KR20190125285 A KR 20190125285A KR 20200041279 A KR20200041279 A KR 20200041279A
Authority
KR
South Korea
Prior art keywords
submicron
modification
slurry
reforming
modifier
Prior art date
Application number
KR1020190125285A
Other languages
Korean (ko)
Other versions
KR102262637B1 (en
Inventor
시아오야오 순
지아카이 카오
송시안 왕
Original Assignee
지앙수 노보레이 뉴 머티리얼 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지앙수 노보레이 뉴 머티리얼 컴퍼니 리미티드 filed Critical 지앙수 노보레이 뉴 머티리얼 컴퍼니 리미티드
Publication of KR20200041279A publication Critical patent/KR20200041279A/en
Application granted granted Critical
Publication of KR102262637B1 publication Critical patent/KR102262637B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/041Grinding
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/043Drying, calcination
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/045Agglomeration, granulation, pelleting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Abstract

The present invention relates to a method for surface modification of sub-micron silicon micropowder. The method includes the steps of: introducing sub-micron silicon micropowder and deionized water at a weight ratio of 3:7-6:4 and heating them under agitation, mixing them homogeneously, transferring them to a grinder to perform preliminary dispersion homogeneously, and forming sub-micron slurry; adding a modifying agent to the sub-micron slurry and carrying out preliminary modification through wet grinding modification; transferring the preliminarily modified sub-micron slurry to a flash dryer to perform dry modification, drying the slurry to a water content of less than or equal to 0.3% at an air introduction temperature of 120-300°C and transferring the slurry to a collector to maintain constant temperature; and deagglomerating the temperature-maintained material by using an air classifier mill to a sub-micron size under a deagglomeration pressure of greater than or equal to 1.0 Mpa. The method uses deionized water as a solvent and thus does not cause waste water discharge. Therefore, the method is cost-efficient and eco-friendly, and uses a process of mechanochemical modification combined with wet modification to provide a high modification effect.

Description

서브마이크론 실리콘 미세분말의 표면개질 방법{METHOD FOR SURFACE MODIFICATION OF SUBMICRON SILICON MICROPOWDER}METHOD FOR SURFACE MODIFICATION OF SUBMICRON SILICON MICROPOWDER

본 발명은 무기 비금속 재료 심층 가공 기술분야에 관한 것으로서, 특히 서브마이크론 실리콘 미세분말의 표면개질 방법에 관한 것이다.The present invention relates to the field of deep processing of inorganic non-metallic materials, and more particularly, to a method for surface modification of submicron silicon fine powder.

실리콘 미세분말은 절연성, 열안정성, 내화학성 등 이점을 가지며, 에폭시 몰딩 컴파운드(EMC), 동박적층판(CCL), 전기절연, 코팅제, 접착제 등 분야에 널리 사용되고 있다. 과학 기술이 발전함에 따라, 전자제품도 경박단소 방향으로 발전하고 있어, CCL판재도 점점 박형화되고 있으며, 이는 사용되는 충전재에 대해 미세한 입도를 요구하고 있는데, 일반 마이크론스케일 SiO2는 이미 CCL 초박판에서의 사용 요구를 충족시킬 수 없는 반면, 서브마이크론 SiO2는 그 사용 요구를 충족하는 이외 역학적 성능, 가공성능 등도 보다 우수하며; 코팅제와 접착제 분야에서는, 친환경에 대한 의식이 부단히 증가함에 따라, 유성 대신 수성의 코팅, 접착제가 전체적인 발전 추세이며, 마이크론스케일 SiO2는 밀도가 크므로, 사용 과정에서 쉽게 침강되어, 사용이 제한되지만, 서브마이크론스케일 SiO2는 침강성의 요구 사항을 충족하는 이외에 것 외에도 역학적 성능이 더 좋고 투명도가 더 좋으며 안개 그림자가 더 작고 촉감이 더 좋은 것 같은 더 나은 성능을 나타낼 수 있다.Silicone fine powder has advantages such as insulation, thermal stability, and chemical resistance, and is widely used in fields such as epoxy molding compound (EMC), copper-clad laminate (CCL), electrical insulation, coating agent, and adhesive. With the development of science and technology, electronic products are also developing in the direction of light and thin, and the CCL plate material is gradually becoming thinner, which requires a fine particle size for the filler used, and the general micron scale SiO2 is already used in the CCL ultra thin plate. While it cannot meet the demand for use, submicron SiO2 has better mechanical performance, processing performance, etc. in addition to meeting the demand for use; In the field of coatings and adhesives, as the awareness of eco-friendliness continues to increase, water-based coatings and adhesives are the overall development trend, and micron-scale SiO2 has a high density, so it is easily settled in the process of use, and its use is limited. In addition to meeting the requirements of sedimentation, the submicronscale SiO2 can exhibit better performance, such as better mechanical performance, better transparency, smaller fog shadows, and better feel.

서브마이크론 실리콘 미세분말은 마이크론 실리콘 미세분말에 비하여 보다 큰 비표면적을 가지고 있어, 직접 사용하는 체계에는 점도가 크고, 분산하기 어려운 등 문제점이 있으므로, 이에 대한 표면개질이 필요하다. Submicron silicon micropowder has a larger specific surface area than micron silicon micropowder, and since the system used directly has problems such as large viscosity and difficulty in dispersing, surface modification is required.

국내외에서 생산되는 실리콘 미세분말의 표면개질은 건식개질과 습식개질로 나눌 수 있는데, 건식개질은 공정이 간단하고, 제품생산 비용이 낮지만, 개질제가 실리콘 미세분말 표면에 균일하게 분산되기 어려워, 개질 효과가 좋지 못하다. 건식개질은 마이크론 실리콘 미세분말의 표면개질에만 적합하며, 예하면 특허 CN101591478에서는 D50=3-50㎛인 초미세 실리콘 미세분말을 원료로 선택하고, 표면개질 혼합액을 사용하여 건식개질을 통해 표면개질된 실리콘 미세분말을 얻는다. 특허 CN103613956A에서는 산화알루미늄볼을 볼밀기에 담는 동시에, 4~16메쉬의 규사와 개질제인 헥사메틸 디실라잔을 볼밀기에 넣어, 메카노케미컬 개질 및 체가름을 실시하여 입경이 다르게 개질된 실리콘 미세분말을 스크리닝하여 얻는다.The surface modification of silicon fine powder produced at home and abroad can be divided into dry modification and wet modification. Dry modification is a simple process, and the production cost of the product is low, but it is difficult for the modifier to be uniformly dispersed on the surface of the silicon fine powder. The effect is not good. Dry modification is suitable only for the surface modification of micron silicon micropowder. For example, in patent CN101591478, ultrafine silicon micropowder with D50 = 3-50㎛ is selected as a raw material, and the surface is modified through dry modification using a surface modification mixture. A silicon fine powder is obtained. In the patent CN103613956A, aluminum oxide balls are put in a ball mill, and 4 ~ 16 mesh silica and a modifier hexamethyl disilazane are put in a ball mill to perform mechanical and chemical modification and sieving to modify the silicon fine particles with different particle sizes. The powder is obtained by screening.

서브마이크론, 나노 실리콘 미세분말인 경우 습식개질이 필요하다. 서브마이크론, 나노 실리콘 미세분말에 대한 습식개질에는 건조 후 응집되는 문제가 존재하므로, 입자의 단분산을 이루지 못하게 되어, 제품의 사용 효과에 영향을 미침으로써, 서브마이크론, 나노 제품이 응당 가져야 할 효과를 낼 수 없게 된다. In the case of submicron and nano-silicon fine powders, wet reforming is required. Since the problem of coagulation after drying exists in the wet modification of the submicron and nano-silicon micropowder, the monodispersity of the particles cannot be achieved, and by affecting the use effect of the product, the submicron and nano-products must have the effect. Will not be able to pay.

예하면 특허 CN 103627215A에서는 결정질 규사 또는 용융 석영을 원료로 하여 건식 연마를 통해 마이크론 실리콘 미세분말을 얻은 다음, 마이크론스케일의 실리콘 미세분말을 습식 연마하고, 개질제를 첨가하여 입도가 서브마이크론스케일이 될 때 까지 연마하여, 압축 여과를 통해 서브마이크론 실리콘 미세분말 필터케이크를 얻으며, 사용 시 초음파 분산을 수행해야 한다. 해당 공정은 제품 사용시 초음파 분산이 필요하므로, 사용하기 불편하다.For example, in patent CN 103627215A, micron silicon fine powder is obtained by dry polishing using crystalline silica or molten quartz as a raw material, and then wet grinding of the micron silicon fine powder and adding a modifier to give a particle size of submicron scale. Polished to obtain a submicron silicon fine powder filter cake through compression filtration, and ultrasonic dispersion should be performed when used. This process is inconvenient to use because it requires ultrasonic dispersion when using the product.

특허 CN10694729A3에서는 나노실리카, 분산제 및 에탄올을 사용하여 나노실리카 분산액을 제조한 다음, 나노실리카 분산액을 초음파 발생기에 넣어 복합 개질제를 첨가하고 개질하여 개질된 나노실리카 용액을 얻게 되, 마지막으로 개질된 나노실리카 용액을 여과, 건조, 분쇄, 체가름하여 개질된 나노실리카를 얻는다. 해당 공정은 복잡하고, 에탄올을 용매로 사용함으로써, 원가가 높고, 안전상의 위험이 존재하며, 동시에 분쇄, 체가름만으로는 입자의 단분산을 이루지 못한다. In the patent CN10694729A3, nano-silica dispersion was prepared by using nano-silica, dispersant, and ethanol, and then the nano-silica dispersion was added to an ultrasonic generator to add and modify the composite modifier to obtain a modified nano-silica solution, and finally the modified nano-silica The solution is filtered, dried, ground, and sieved to obtain modified nanosilica. The process is complicated, and by using ethanol as a solvent, the cost is high, there is a safety risk, and at the same time, pulverization and sieve alone do not achieve monodispersion of particles.

특허 CN103194097A에서는 1중량부 실라카를 50중량부 증류수에 첨가하여 현탁액으로 교반하여 초음파에 넣어, 40~70℃하에서 10~30min동안 초음파 분산을 수행하여, 실라카의 분산액을 얻고; 이어서 사슬 길이가 서로 다른 일정한 량의 개질제를 분산액에 첨가하고, 조제 한 방울을 첨가하여, 항온 및 초음파 하에서 교반한 다음 슬러리를 여과, 세척, 건조하여 개질된 실라카 제품을 얻는다. 해당 공정은 복잡하고, 제조된 분산액은 고형물 함량이 낮고, 원가가 높으며, 건조 후 제품은 응집 문제가 존재하므로, 단분산을 이루지 못한다. In patent CN103194097A, 1 part by weight of silaca is added to 50 parts by weight of distilled water, stirred as a suspension, put into ultrasonic waves, and subjected to ultrasonic dispersion at 40 to 70 ° C for 10 to 30 minutes to obtain a dispersion of silaca; Subsequently, a constant amount of modifiers having different chain lengths are added to the dispersion, a drop of a crude agent is added, stirred under constant temperature and ultrasound, and then the slurry is filtered, washed, and dried to obtain a modified silica product. The process is complex, the prepared dispersion has a low solids content, a high cost, and after drying, the product has a cohesive problem, so it cannot achieve monodispersion.

특허 CN106745006A에서는 스토버(stober) 방법에 의해 제조된 나노실리카 생성물을 알콜 세척, 물 세척한 후, 동결 건조하여 단분산 나노실리카 분체A를 얻고; 다음 단분산 나노실리카 분체A를 에탄올에 넣어 초음파 분산을 수행함으로써 체계B를 얻으며; 이어서 체계B를 반응솥에 넣어 밀봉하여, 일정한 온도와 압력 조건하에서 시간을 유지하며, 다음 압력을 천천히 대기압으로 방출시켜, 소수성으로 개질된 나노실리카 입자를 얻는다. 개질 방법은 비록 응집이 적고, 단분산된 제품을 얻지만, 동결 건조를 사용해야 하며, 원가가 비교적 높다.In patent CN106745006A, the nanosilica product prepared by the stober method is alcohol washed, washed with water, and then freeze-dried to obtain monodisperse nanosilica powder A; System B was obtained by performing ultrasonic dispersion by adding monodisperse nanosilica powder A in ethanol; Subsequently, the system B is sealed in a reaction pot to maintain time under constant temperature and pressure conditions, and the next pressure is slowly released to atmospheric pressure to obtain hydrophobically modified nanosilica particles. The reforming method uses less freeze-drying, although it has little aggregation and obtains a monodisperse product, and the cost is relatively high.

본 발명이 해결하고자 하는 기술적 과제는, 종래 기술의 부족점에 대하여, 공정이 간단하고, 경제적이고 친환경적이며, 원가가 낮고, 입자 분산성이 우수하며, 사용이 편리한 서브마이크론 실리콘 미세분말의 표면개질 방법을 제공하는 것이다.The technical problem to be solved by the present invention is, with respect to the shortcomings of the prior art, the process is simple, economical and environmentally friendly, low cost, excellent particle dispersibility, and convenient surface modification of submicron silicon fine powder. Is to provide a way.

본 발명이 해결하고자 하는 기술적 과제는 이하 기술방안으로 구현될 수 있으며, 본 발명에 따른 서브마이크론 실리콘 미세분말의 표면개질 방법은,The technical problem to be solved by the present invention can be realized by the following technical solutions, and the surface modification method of the submicron silicon micropowder according to the present invention,

서브마이크론 실리콘 미세분말과 탈이온수를 3:7-6:4인 질량비로 교반통에 넣어 교반하면서 가열하고, 원료 온도를 50-90℃로 제어하여, 균일하게 혼합한 후 연삭기에 전송하여 예비 분산시키되, 예비 분산 온도를 50-90℃로 제어하여 균일하게 분산시킨 후, 서브마이크론 슬러리를 제조하여 얻는 전처리 단계(1) ; Submicron silicon fine powder and deionized water are heated in a stirring container at a mass ratio of 3: 7-6: 4 while stirring, the raw material temperature is controlled at 50-90 ° C, uniformly mixed, and then transferred to a grinding machine for preliminary dispersion. Pre-dispersion step (1) obtained by preparing a submicron slurry after uniformly dispersing by controlling the pre-dispersion temperature to 50-90 ° C .;

단계(1)에 따른 서브마이크론 슬러리에 개질제를 첨가하되, 개질제의 첨가량은 서브마이크론 실리콘 미세분말 중량의 1.0-4.0%이고, 습식 연마개질을 통하여, 초기 개질을 완성하며, 상기 개질제는 실란커플링제, 헥사메틸 디실라잔 또는 실란커플링제와 헥사메틸 디실라잔의 혼합물이고, 실란커플링제인 것이 바람직한 초기 개질 단계(2); A modifier is added to the submicron slurry according to step (1), but the amount of modifier added is 1.0-4.0% of the submicron silicone fine powder weight, and through wet polishing reforming, the initial modification is completed, and the modifier is a silane coupling agent. , An initial modification step (2) in which hexamethyl disilazane or a mixture of silane coupling agent and hexamethyl disilazane is preferably a silane coupling agent;

단계(2)에서 제조된 서브마이크론 슬러리를 플래시 건조기에 전송하여 건조 개질하고, 공기 진입 온도가 120-300℃하에서 수분이 ≤ 0.3%로 되도록 건조시킨 후, 수집기에 전송하여 보온하되, 보온 온도가 60-120℃하에서 보온 시간 20-60min 동안 보온함으로써 2차 개질을 완성하는 2차 개질 단계(3); The sub-micron slurry prepared in step (2) is transferred to a flash dryer to dry reform, and dried so that the moisture is ≤ 0.3% under an air inlet temperature of 120-300 ° C., and then transferred to a collector to keep warm, but the warming temperature is A secondary reforming step (3) of completing the secondary reforming by keeping the insulation under 60-120 ° C. for 20-60 min;

보온된 원료를 기류분쇄기로 해응집시키되, 해응집 압력이 ≥ 1.0MPa인 조건하에서, 전처리 전의 입도와 일치하도록 해응집시키는 해응집 단계(4); 를 포함하는 것을 특징으로 한다.A deagglomeration step (4) of deagglomerating the insulated raw material with an air grinder, and deagglomerating to match the particle size before pretreatment under conditions in which the deagglomeration pressure is ≥ 1.0 MPa; It characterized in that it comprises a.

본 발명이 해결하고자 하는 기술적 과제는 이하 기술방안으로 구현될 수도 있으며, 단계(1)의 상기 연삭기의 라이닝은 폴리우레탄, 탄화규소 또는 산화지르코늄이고, 분쇄 매체는 산화지르코늄 또는 질화규소이며, 분쇄 매체 직경은 0.2-0.8㎜이다. The technical problem to be solved by the present invention may be implemented in the following technical solutions, the lining of the grinding machine in step (1) is polyurethane, silicon carbide or zirconium oxide, and the grinding medium is zirconium oxide or silicon nitride, and the grinding media diameter Is 0.2-0.8 mm.

본 발명이 해결하고자 하는 기술적 과제는 이하 기술방안으로 구현될 수도 있으며, 단계(3) 중 플래시 건조기의 블레이드와 내벽에는 텅스텐 카바이드 또는 산화지르코늄이 스프레이 코팅된다.The technical problem to be solved by the present invention may be implemented in the following technical solutions, and the tungsten carbide or zirconium oxide is spray-coated on the blade and the inner wall of the flash dryer during step (3).

본 발명이 해결하고자 하는 기술적 과제는 이하 기술방안으로 구현될 수도 있으며, 단계(4)의 상기 기류분쇄기의 라이닝과 분급휠은 산화알루미늄, 산화지르코늄이고, 또는, 라이닝과 분급휠의 표면에는 산화알루미늄 또는 산화지르코늄이 스프레이 코팅된다. The technical problem to be solved by the present invention may be implemented by the following technical solutions, and the lining and classifying wheel of the air pulverizer in step (4) are aluminum oxide, zirconium oxide, or aluminum oxide on the surface of the lining and classifying wheel. Alternatively, zirconium oxide is spray coated.

본 발명이 해결하고자 하는 기술적 과제는 이하 기술방안으로 구현될 수도 있으며, 그 단계는 다음과 같다.The technical problem to be solved by the present invention may be implemented in the following technical solutions, and the steps are as follows.

입도가 D50=0.2-1.0㎛, D100≤3.0㎛인 서브마이크론 실리콘 미세분말과 탈이온수를 3:7-6:4인 질량비로 교반통에 넣어 교반하면서 가열하고, 원료 온도를 50-90℃로 제어하여, 교반 시간 3-5min동안 교반한 후, 연삭기에 전송하여 예비 분산시키되, 원료 온도를 50-90℃로 유지하여 5-10min동안 예비 분산시킨 후, 서브마이크론 슬러리를 제조하여 얻는 전처리 단계(1); Submicron silicon fine powder having a particle size of D50 = 0.2-1.0 μm, D100 ≤ 3.0 μm and deionized water were heated in a stirring container at a mass ratio of 3: 7-6: 4 while stirring, and the raw material temperature was adjusted to 50-90 ° C. Pre-dispersed by controlling, stirring for 3-5 min, then transferring to a grinder to pre-disperse, maintaining the raw material temperature at 50-90 ° C., pre-dispersing for 5-10 min, and preparing a submicron slurry ( One);

단계(1)에 따른 서브마이크론 슬러리에 개질제를 첨가하되, 개질제의 첨가량은 서브마이크론 실리콘 미세분말 중량의 1.0-4.0%이고, 습식 연마개질을 통하여, 20-30min동안 연마함으로써 초기 개질을 완성하는 초기 개질 단계(2); An initial modifier is added by adding a modifier to the submicron slurry according to step (1), wherein the amount of modifier added is 1.0-4.0% of the submicron silicone fine powder weight, and by grinding for 20-30 minutes through wet polishing reforming. Reforming step (2);

단계(2)에서 제조된 서브마이크론 슬러리를 플래시 건조기로 건조 개질하고, 공기 진입 온도가 120-300℃하에서, 수분이 ≤ 0.3%로 되도록 건조시킨 후, 수집기에 전송하여 보온하되, 보온 온도가 60-120℃하에서 보온 시간 20-60min동안 보온함으로써 2차 개질을 완성하는 2차 개질 단계(3); The submicron slurry prepared in step (2) is dried and reformed with a flash dryer, dried to an air inlet temperature of 120-300 ° C. so that the moisture is ≤ 0.3%, and then transferred to a collector to keep warm, but the warming temperature is 60. A secondary reforming step (3) of completing the secondary reforming by keeping the insulation under -120 ° C. for 20-60 min;

보온된 원료를 기류분쇄기로 해응집시키되, 해응집 압력이 ≥ 1.0MPa인 조건하에서, 입도가 D50=0.2-1.0㎛, D100≤3.0㎛로 되도록 해응집시키는 해응집 단계(4)를 포함한다. It comprises a deagglomeration step (4) to deagglomerate the insulated raw material with an air grinder, and deagglomerate such that the particle size becomes D50 = 0.2-1.0㎛, D100≤3.0㎛ under the condition that the deagglomeration pressure is ≥ 1.0MPa.

본 발명이 해결하고자 하는 기술적 과제는 이하 기술방안으로 구현될 수도 있으며, 그 단계는 다음과 같다.The technical problem to be solved by the present invention may be implemented in the following technical solutions, and the steps are as follows.

입도가 D50=0.5-0.7㎛, D100≤3.0㎛인 서브마이크론 실리콘 미세분말과 탈이온수를 1:1인 질량비로 교반통에 넣어 교반하면서 가열하고, 원료 온도를 70℃로 제어하여, 교반 시간 4min동안 교반한 후, 연삭기에 전송하여 예비 분산시키되, 원료 온도를 70℃로 유지하여 8min동안 예비 분산시킨 후, 서브마이크론 슬러리를 제조하여 얻는 전처리 단계(1);Submicron silicon fine powder having a particle size of D50 = 0.5-0.7㎛, D100≤3.0㎛ and deionized water were heated in a stirring container at a mass ratio of 1: 1, stirring while heating, and controlling the raw material temperature to 70 ℃, stirring time 4min After stirring for a while, pre-dispersed by transferring to a grinder, pre-dispersed for 8 min by maintaining the raw material temperature at 70 ° C., followed by a pretreatment step (1) of preparing a submicron slurry;

단계(1)의에 따른 서브마이크론 슬러리에 개질제를 첨가하되, 개질제의 첨가량은 서브마이크론 실리콘 미세분말 중량의 2.5%이고, 습식 연마개질을 통하여, 25min동안 연마함으로써 초기 개질을 완성하는 초기 개질 단계(2); An initial reforming step of adding an modifier to the submicron slurry according to step (1), wherein the amount of modifier added is 2.5% of the weight of the submicron silicon micropowder, and through wet polishing reform, polishing for 25 min to complete the initial reforming ( 2);

단계(2)에서 제조된 서브마이크론 슬러리를 플래시 건조기로 건조 개질하고, 공기 진입 온도가 210-220℃하에서, 수분이 ≤ 0.3%로 되도록 건조시킨 후, 수집기에 전송하여 보온하되, 보온 온도가 90-100℃하에서 보온 시간 40min동안 보온함으로써 2차 개질을 완성하는 2차 개질 단계(3); The submicron slurry prepared in step (2) is dried and reformed with a flash dryer, dried to a moisture content of ≤ 0.3% under an air inlet temperature of 210-220 ° C., and then transferred to a collector to keep warm, but the warming temperature is 90. A secondary reforming step (3) of completing the secondary reforming by keeping the insulation under -100 ° C for 40 min;

보온된 원료를 기류분쇄기로 해응집시키되, 해응집 압력 1.2MPa인 조건하에서, 입도가 D50=0.5-0.7㎛, D100≤3.0㎛로 되도록 해응집시키는 해응집 단계(4)를 포함한다.It includes a deagglomeration step (4) to deagglomerate the insulated raw material with an air grinder, and deagglomerate such that the particle size is D50 = 0.5-0.7㎛, D100≤3.0㎛ under the condition that the deagglomeration pressure is 1.2MPa.

종래의 기술과 비교하면, 본 발명은, 탈이온수를 용매로 사용하므로, 폐수 배출이 존재하지 않아, 경제적이고 친환경적이며, 메카노케미컬 개질과 습식개질을 결합한 방법을 이용함으로써, 개질 효과가 좋고, 기류 해응집을 이용하여 서브마이크론 실리콘 미세분말 제품의 입자가 응집되는 문제를 해결함으로써, 서브마이크론 실리콘 미세분말 제품의 입자가 충분히 분산하게 되며, 해당 제품은 공정이 간단하고, 사용이 편리하며, CCL, 코팅제, 접착제 등 분야에 널리 사용될 수 있다.Compared with the prior art, the present invention uses deionized water as a solvent, so there is no wastewater discharge, and it is economical and environmentally friendly. By using a method combining mechanical and wet reforming, the reforming effect is good, By solving the problem of the agglomeration of the particles of the submicron silicon micropowder product by using air flow condensation, the particles of the submicron silicon micropowder product are sufficiently dispersed, and the product is simple to process, convenient to use, and CCL , Coatings, adhesives, etc.

본 발명의 구체적인 기술방안은 본 분야의 당업자가 본 발명을 더 이해하도록 추가로 설명 되지만, 그 권리에 대한 한정은 하지 않는다. The specific technical method of the present invention is further described to further understand the present invention by those skilled in the art, but does not limit the rights.

실시예 1, 서브마이크론 실리콘 미세분말의 표면개질 방법은, Example 1, the surface modification method of the submicron silicon micropowder,

서브마이크론 실리콘 미세분말과 탈이온수를 3:7-6:4인 질량비로 교반통에 넣어 교반하면서 가열하고, 원료 온도를 50-90℃로 제어하여, 균일하게 혼합한 후 연삭기에 전송하여 예비 분산시키되, 균일하게 분산시킨 후, 서브마이크론 슬러리를 제조하여 얻는 전처리 단계(1); Submicron silicon fine powder and deionized water are heated in a stirring container at a mass ratio of 3: 7-6: 4 while stirring, the raw material temperature is controlled at 50-90 ° C, uniformly mixed, and then transferred to a grinding machine for preliminary dispersion. Pre-treatment step (1) obtained by preparing a submicron slurry after uniformly dispersing;

단계(1)에 따른 서브마이크론 슬러리에 개질제를 첨가하되, 개질제의 첨가량은 서브마이크론 실리콘 미세분말 중량의 1.0-4.0%이고, 원료 온도를 50-90℃로 유지하며, 습식 연마개질을 통하여, 20-30min동안 연마함으로써 초기 개질을 완성하는 초기 개질 단계(2); A modifier is added to the submicron slurry according to step (1), but the amount of the modifier added is 1.0-4.0% of the submicron silicone fine powder weight, maintaining the raw material temperature at 50-90 ° C, and through wet polishing reforming, 20 An initial modification step (2) of completing the initial modification by polishing for -30 min;

단계(2)에서 제조된 서브마이크론 슬러리를 플래시 건조기에 전송하여 건조 개질하고, 공기 진입 온도가 120-300℃하에서, 수분이 ≤0.3%로 되도록 건조시킨 후, 수집기에 전송하여 보온하되, 보온 온도가 60-120℃하에서 보온 시간 20-60min동안 보온함으로써 2차 개질을 완성하는 2차 개질 단계(3) ; The submicron slurry prepared in step (2) is transferred to a flash dryer to dry reform, and the air inlet temperature is 120-300 ° C., dried so that moisture is ≤0.3%, and then transferred to a collector to keep warm, but keep the temperature warm. A second reforming step (3) of completing the second reforming by keeping the insulation under 60-120 ° C. for 20-60 min;

보온된 원료를 기류분쇄기로 해응집시키되, 해응집 압력이 ≥ 1.0MPa인 조건하에서, 전처리 전의 입도와 일치하도록 해응집시키는 해응집 단계(4); 를 포함한다. A deagglomeration step (4) of deagglomerating the insulated raw material with an air grinder, and deagglomerating to match the particle size before pretreatment under conditions in which the deagglomeration pressure is ≥ 1.0 MPa; It includes.

실시예 2, 실시예 1에 따른 서브마이크론 실리콘 미세분말의 표면개질 방법에 있어서, 단계(2)에 따른 개질제는 실란커플링제, 헥사메틸 디실라잔 또는 실란커플링제와 헥사메틸 디실라잔의 혼합물이고, 실란커플링제인 것이 바람직하다. In the method for surface modification of submicron silicon micropowder according to Example 2 and Example 1, the modifier according to step (2) is a silane coupling agent, a hexamethyl disilazane or a mixture of a silane coupling agent and hexamethyl disilazane And is preferably a silane coupling agent.

실시예 3, 실시예 1-2에 따른 서브마이크론 실리콘 미세분말의 표면개질 방법에 있어서, 단계(3) 중 플래시 건조기의 블레이드과 내벽에는 텅스텐 카바이드 또는 산화지르코늄이 스프레이 코팅된다. In the method for surface modification of submicron silicon micropowders according to Examples 3 and 1-2, the tungsten carbide or zirconium oxide is spray-coated on the blade and the inner wall of the flash dryer during step (3).

실시예 4, 실시예 1-3에 따른 서브마이크론 실리콘 미세분말의 표면개질 방법에 있어서, 단계(1)의 상기 연삭기의 라이닝은 폴리우레탄, 탄화규소 또는 산화지르코늄이고, 분쇄 매체는 산화지르코늄 또는 질화규소이며, 분쇄 매체 직경은 0.2-0.8㎜이다. In the method for surface modification of submicron silicon micropowders according to Examples 4 and 1-3, the lining of the grinding machine in step (1) is polyurethane, silicon carbide or zirconium oxide, and the grinding medium is zirconium oxide or silicon nitride And the grinding media diameter is 0.2-0.8 mm.

실시예 5, 실시예 1-4에 따른 서브마이크론 실리콘 미세분말의 표면개질 방법에 있어서, 단계(4)의 상기 기류분쇄기의 라이닝과 분급휠은 산화알루미늄, 산화지르코늄이고, 또는, 표면에는 산화알루미늄 또는 산화지르코늄이 스프레이 코팅된다. In the surface modification method of the submicron silicon micropowder according to Example 5 or Example 1-4, the lining and classifying wheel of the air pulverizer in step (4) are aluminum oxide, zirconium oxide, or aluminum oxide on the surface. Alternatively, zirconium oxide is spray coated.

실시예 6, 서브마이크론 실리콘 미세분말의 표면개질 방법은, Example 6, the surface modification method of the submicron silicon micropowder,

입도가 D50=0.4-0.6㎛, D100≤2.0㎛인 서브마이크론 실리콘 미세분말과 탈이온수를 1:1인 질량비로 100L인 교반통에 넣어 교반하면서 가열하고, 원료 온도를 70℃로 제어하여, 교반 시간 4min동안 교반 주파수 30HZ로 균일하게 교반한 후, 6L인 연삭기에 전송하여 예비 분산시키되, 설비 회전속도를 700-1000RPM로 8min동안 분산시킨 후, 서브마이크론 슬러리를 제조하여 얻는 전처리 단계(1); Submicron silicon fine powder having a particle size of D50 = 0.4-0.6 μm and D100 ≤ 2.0 μm and deionized water were heated in a stirring vessel of 100 L at a mass ratio of 1: 1 and heated while stirring, and the raw material temperature was controlled to 70 ° C. and stirred. After uniformly stirring at a stirring frequency of 30 HZ for 4 min, the pre-dispersed by transferring to a 6L grinding machine and pre-dispersing the equipment rotation speed at 700-1000 RPM for 8 min, producing a submicron slurry (1);

단계(1)에 따른 서브마이크론 슬러리에 개질제를 첨가하되, 개질제의 첨가량은 실리콘 미세분말 중량의 2.5%이고, 원료 온도를 70℃로 유지하며, 습식 연마개질을 통하여, 설비 회전속도를 800-1100RPM로 25min동안 연마함으로써 초기 개질을 완성하는 초기 개질 단계(2); The modifier is added to the submicron slurry according to step (1), but the amount of modifier added is 2.5% of the weight of the silicon fine powder, the raw material temperature is maintained at 70 ° C, and through wet polishing reforming, the equipment rotation speed is 800-1100RPM. An initial reforming step (2) of completing the initial reforming by grinding for 25 minutes;

단계(2)에서 제조된 서브마이크론 슬러리를 플래시 건조기로 건조 개질하고, 플래시 건조기의 블레이드과 내벽에 텅스텐 카바이드 또는 산화지르코늄을 스프레이 코팅하며, 공기 진입 온도가 210-220℃하에서, 수분이 ≤ 0.3%로 되도록 건조시킨 후, 수집기에 전송하여 보온하되, 보온 온도가 90-100℃하에서 보온 시간 40min동안 보온함으로써 2차 개질을 완성하는 2차 개질 단계(3); The submicron slurry prepared in step (2) is dry-modified with a flash dryer, spray coated with tungsten carbide or zirconium oxide on the blades and the inner wall of the flash dryer, and the air inlet temperature is 210-220 ° C, and the moisture is ≤ 0.3%. After drying as much as possible, by transferring to a collector to keep warm, the second reforming step (3) to complete the second reforming by keeping the warming temperature at 90-100 ° C. for 40 min.

보온된 원료를 기류분쇄기로 해응집시키되, 기류분쇄기의 라이닝과 분급휠의 재료는 산화알루미늄, 산화지르코늄이고 또는, 표면에는 산화알루미늄 또는 산화지르코늄이 스프레이 코팅되며, 해응집 압력이 1.2MPa이고 기류분쇄기의 로터 직경이 200mm이며 회전속도가 3200r/min인 조건하에서, 입도가 D50=0.4-0.6㎛, D100≤2.0㎛로 되도록 해응집시키는 해응집 단계(4); 를 포함한다. The heat-insulated material is agglomerated by an air grinder, but the lining of the air grinder and the material of the classification wheel are aluminum oxide, zirconium oxide, or the surface is spray-coated with aluminum oxide or zirconium oxide, the deagglomeration pressure is 1.2 MPa and the air grinder A solution agglomeration step (4) to agglomerate to a particle size of D50 = 0.4-0.6 µm and D100 ≤ 2.0 µm under conditions of a rotor diameter of 200 mm and a rotational speed of 3200 r / min; It includes.

실시예 7, 서브마이크론 실리콘 미세분말의 표면개질 방법은, Example 7, the surface modification method of the submicron silicon micropowder,

입도가 D50=0.2-0.4㎛, D100≤2.0㎛인 서브마이크론 실리콘 미세분말과 탈이온수를 4:6인 질량비로 100L인 교반통에 넣어 교반하면서 가열하고, 원료 온도를 80℃로 제어하여, 교반 시간4min동안 교반 주파수 30HZ로 균일하게 혼합한 후, 6L인 연삭기에 전송하여 예비 분산시키되, 설비 회전속도를 900-1000RPM로 10min동안 분산시켜, 서브마이크론 슬러리를 제조하여 얻는 전처리 단계(1); Submicron silicon fine powder having a particle size of D50 = 0.2-0.4 µm and D100 ≤ 2.0 µm and deionized water were heated in a 100 L stirring vessel at a mass ratio of 4: 6, heated while stirring, and the raw material temperature was controlled to 80 ° C. and stirred. After uniformly mixing at a stirring frequency of 30HZ for 4min, the pre-dispersed by transferring to a 6L grinding machine and pre-dispersing the equipment rotation speed at 900-1000RPM for 10min, preparing a submicron slurry (1);

단계(1)에 따른 서브마이크론 슬러리에 실란커플링제 KH560을 첨가하되, 실란커플링제 KH560의 첨가량은 실리콘 미세분말 중량의 3.0%이고, 원료 온도를 80℃로 유지하며, 습식 연마개질을 통하여, 30min동안 연마하되, 설비 회전속도를 1000-1100RPM로 연마함으로써 초기 개질을 완성하는 초기 개질 단계(2); The silane coupling agent KH560 is added to the submicron slurry according to step (1), but the amount of the silane coupling agent KH560 is 3.0% of the weight of the silicon fine powder, the raw material temperature is maintained at 80 ° C, and through wet abrasive modification, 30min. While polishing, the initial modification step (2) to complete the initial modification by grinding the equipment rotation speed to 1000-1100RPM;

단계(2)에서 제조된 서브마이크론 슬러리를 플래시 건조기로 건조 개질하고, 플래시 건조기의 블레이드과 내벽에 텅스텐 카바이드 또는 산화지르코늄을 스프레이 코팅하며, 공기 진입 온도가 250-260℃하에서, 수분이 ≤ 0.3%로 되도록 건조시킨 후, 수집기에 전송하여 보온하되, 보온 온도가 100-110℃하에서 보온 시간 40min동안 보온함으로써 2차 개질을 완성하는 2차 개질 단계(3);The submicron slurry prepared in step (2) is dry-modified with a flash dryer, spray-coated tungsten carbide or zirconium oxide on the blades and the inner wall of the flash dryer, and the air inlet temperature is 250-260 ° C and the moisture is ≤ 0.3%. After drying as much as possible, by transferring to a collector to keep warm, the second reforming step (3) to complete the second reforming by keeping the warming temperature at 100-110 ° C. for 40 min.

보온된 원료를 기류분쇄기로 해응집시키되, 기류분쇄기의 라이닝과 분급휠의 재료는 산화알루미늄, 산화지르코늄이고, 또는, 표면에는 산화알루미늄 또는 산화지르코늄이 스프레이 코팅되며, 해응집 압력이 1.6MPa이고 기류분쇄기의 로터 직경이 200mm이며 회전속도가 3500r/min인 조건하에서, 입도가 D50=0.2-0.4㎛, D100≤2.0㎛로 되도록 해응집시키는 해응집 단계(4); 를 포함한다. The heat-insulated material is coagulated by an air grinder, but the lining of the air grinder and the material of the classification wheel are aluminum oxide, zirconium oxide, or, on the surface, aluminum oxide or zirconium oxide is spray coated, and the coagulation pressure is 1.6 MPa and air flow A solution agglomeration step (4) in which the particle size of the rotor is 200 mm and the rotation speed is 3500 r / min, so that the particle size is D50 = 0.2-0.4 μm and D100 ≤ 2.0 μm; It includes.

실시예 8, 서브마이크론 실리콘 미세분말의 표면개질 방법은,Example 8, the surface modification method of the submicron silicon fine powder,

입도가 D50=0.5-0.7㎛, D100≤3.0㎛인 서브마이크론 실리콘 미세분말과 탈이온수를 1:1인 질량비로 100L인 교반통에 넣어 교반하면서 가열하고, 원료 온도를 70℃로 제어하여, 교반 시간 4min동안 교반 주파수 30HZ로 균일하게 혼합한 후, 6L인 연삭기에 전송하여 연마 및 예비 분산시키되, 설비 회전속도를 800-900RPM로 8min동안 분산시켜, 서브마이크론 슬러리를 제조하여 얻는 전처리 단계(1); Submicron silicon fine powder having a particle size of D50 = 0.5-0.7µm and D100≤3.0µm and deionized water are heated in a 100L stirring vessel at a mass ratio of 1: 1 and heated while stirring, and the raw material temperature is controlled to 70 ° C and stirred. After mixing uniformly at a stirring frequency of 30 HZ for 4 min, it is transferred to a 6L grinder to be polished and pre-dispersed, but the equipment rotation speed is dispersed at 800-900 RPM for 8 min to prepare a submicron slurry (1). ;

단계(1)에 따른 서브마이크론 슬러리에 실란커플링제 KH570을 첨가하되, 실란커플링제 KH570의 첨가량은 실리콘 미세분말 중량의 2.5%이고, 원료 온도를 70℃로 유지하며, 습식 연마개질을 통하여, 설비 회전속도를 900-1000RPM로 25min동안 연마함으로써 초기 개질을 완성하는 초기 개질 단계(2); The silane coupling agent KH570 is added to the submicron slurry according to step (1), but the amount of the silane coupling agent KH570 added is 2.5% of the weight of the silicon fine powder, and the raw material temperature is maintained at 70 ° C. An initial reforming step (2) of completing the initial reforming by grinding the rotational speed at 900-1000 RPM for 25 min;

단계(2)에서 제조된 서브마이크론 슬러리를 플래시 건조기로 건조 개질하고, 플래시 건조기의 블레이드와 내벽에는 텅스텐 카바이드 또는 산화지르코늄이 스프레이 코팅되며, 공기 진입 온도가 260-270℃하에서, 수분이 ≤ 0.3%로 되도록 건조시킨 후, 수집기에 전송하여 보온하되, 보온 온도가 100-110℃하에서 보온 시간 40min동안 보온함으로써 2차 개질을 완성하는 2차 개질 단계(3); The submicron slurry prepared in step (2) is dry-modified with a flash dryer, tungsten carbide or zirconium oxide is spray-coated on the blades and the inner wall of the flash dryer, and the air inlet temperature is 260-270 ℃, and the moisture is ≤ 0.3%. After drying as possible, and then transferred to the collector to keep warm, the second reforming step (3) to complete the secondary reforming by keeping the insulation temperature at 100-110 ° C. for 40 min.

보온된 원료를 기류분쇄기로 해응집시키되, 기류분쇄기의 라이닝과 분급휠의 재료는 산화알루미늄, 산화지르코늄이고, 또는, 표면에는 산화알루미늄 또는 산화지르코늄이 스프레이 코팅되며, 해응집 압력이 1.2MPa이고 기류분쇄기의 로터 직경이 200mm이며 회전속도가 3200r/min인 조건하에서, 입도가 D50=0.5-0.7㎛, D100≤3.0㎛로 되도록 해응집시키는 해응집 단계(4); 를 포함한다. The insulated material is coagulated by an air grinder, but the lining of the air grinder and the material of the classification wheel are aluminum oxide, zirconium oxide, or aluminum oxide or zirconium oxide is spray-coated on the surface, the deagglomeration pressure is 1.2 MPa and air flow A solution agglomeration step (4) to agglomerate to a particle size of D50 = 0.5-0.7 µm and D100 ≤ 3.0 µm under the condition that the rotor diameter of the grinder is 200 mm and the rotational speed is 3200 r / min; It includes.

실시예 9, 서브마이크론 실리콘 미세분말의 표면개질 방법은, Example 9, the surface modification method of the submicron silicon micropowder,

입도가 D50=0.4-0.6㎛, D100≤2.0㎛인 서브마이크론 실리콘 미세분말과 탈이온수를 1:1인 질량비로 100L인 교반통에 넣어 교반하면서 가열하고, 원료 온도를 70℃로 제어하여, 교반 시간 4min동안 교반 주파수 30HZ로 균일하게 혼합한 후, 6L인 연삭기에 전송하여 연마 및 예비 분산시키되, 설비 회전속도를 800-900RPM로 8min동안 분산시킨 후, 서브마이크론 슬러리를 제조하여 얻는 전처리 단계(1); Submicron silicon fine powder having a particle size of D50 = 0.4-0.6 μm and D100 ≤ 2.0 μm and deionized water were heated in a stirring vessel of 100 L at a mass ratio of 1: 1 and heated while stirring, and the raw material temperature was controlled to 70 ° C. and stirred. After mixing uniformly at a stirring frequency of 30HZ for 4min, it is transferred to a 6L grinder and polished and pre-dispersed, but after the equipment rotation speed is dispersed at 800-900RPM for 8min, a pre-treatment step obtained by preparing a submicron slurry (1 );

단계(1)에 따른 서브마이크론 슬러리에 실란커플링제 KH570과 헥사메틸 디실라잔의 혼합물을 첨가하되, KH570과 헥사메틸 디실라잔의 질량비는 1:1이고, 실란커플링제 KH570과 헥사메틸 디실라잔의 혼합물의 첨가량은 실리콘 미세분말 중량의 1.5%이며, 원료 온도를 70℃로 유지하고, 습식 연마개질을 통하여, 설비 회전속도를 900-1000RPM로 20min동안 연마함으로써 초기 개질을 완성하는 초기 개질 단계(2); A mixture of silane coupling agent KH570 and hexamethyl disilazane is added to the submicron slurry according to step (1), wherein the mass ratio of KH570 and hexamethyl disilazane is 1: 1, and the silane coupling agent KH570 and hexamethyl disilala The addition amount of the mixture of the cup is 1.5% of the weight of the silicon fine powder, and the initial reforming step of completing the initial reforming by maintaining the raw material temperature at 70 ° C and grinding the equipment rotating speed at 900-1000RPM for 20min through wet polishing reforming. (2);

단계(2)에서 제조된 서브마이크론 슬러리를 플래시 건조기로 건조 개질하고, 플래시 건조기의 블레이드와 내벽에는 텅스텐 카바이드 또는 산화지르코늄이 스프레이 코팅되며, 공기 진입 온도가 230-240℃하에서, 수분이 ≤ 0.3%로 되도록 건조시킨 후, 수집기에 전송하여 보온하되, 보온 온도가 90-100℃하에서 보온 시간 40min동안 보온함으로써 2차 개질을 완성하는 2차 개질 단계(3); The submicron slurry prepared in step (2) is dry-modified with a flash dryer, and tungsten carbide or zirconium oxide is spray-coated on the blades and the inner wall of the flash dryer, and the air inlet temperature is 230-240 ° C, and the moisture is ≤ 0.3%. After drying as possible, and then transferred to the collector to keep warm, the second reforming step (3) to complete the secondary reforming by keeping the insulation temperature at 90-100 ° C. for 40 min.

보온된 원료를 기류분쇄기로 해응집시키되, 기류분쇄기의 라이닝과 분급휠의 재료는 산화알루미늄, 산화지르코늄이고, 또는, 표면에는 산화알루미늄 또는 산화지르코늄이 스프레이 코팅되며, 해응집 압력이 1.2MPa이고 기류분쇄기의 로터 직경이 200mm이며 회전속도가 3200r/min인 조건하에, 입도가 D50=0.4-0.6㎛, D100≤2.0㎛로 되도록 해응집시키는 해응집 단계(4); 를 포함한다.The insulated material is coagulated by an air grinder, but the lining of the air grinder and the material of the classification wheel are aluminum oxide, zirconium oxide, or aluminum oxide or zirconium oxide is spray-coated on the surface, the deagglomeration pressure is 1.2 MPa and air flow A solution agglomeration step (4) in which the particle diameter of the rotor is 200 mm and the rotation speed is 3200 r / min, so that the particle size is D50 = 0.4-0.6 μm and D100 ≤ 2.0 μm; It includes.

실시예 10, 서브마이크론 실리콘 미세분말의 표면개질 방법은,Example 10, the surface modification method of the submicron silicon micropowder,

입도가 D50=0.6-0.8㎛, D100≤3.0㎛인 실리콘 미세분말과 탈이온수를 6:4인 질량비로 100L인 교반통에 넣어 교반하면서 가열하고, 원료 온도를 50℃로 제어하여, 교반 시간 4min동안 교반 주파수 30HZ로 균일하게 혼합한 후, 6L인 연삭기에 전송하여 예비 분산시키되, 설비 회전속도를 700-800RPM로 8min동안 분산시킨 후, 서브마이크론 슬러리를 제조하여 얻는 전처리 단계(1);The silicon fine powder having a particle size of D50 = 0.6-0.8 µm and D100 ≤ 3.0 µm and deionized water were heated in a 100 L stirring vessel at a mass ratio of 6: 4, heated while stirring, and the raw material temperature was controlled at 50 ° C., stirring time 4 min. Pre-dispersed by uniformly mixing at a stirring frequency of 30HZ and then transferring to a 6L grinding machine to disperse the equipment rotational speed at 700-800RPM for 8min, and then preparing a submicron slurry (1);

단계(1)에 따른 서브마이크론 슬러리에 헥사메틸 디실라잔을 첨가하되, 헥사메틸 디실라잔의 첨가량은 실리콘 미세분말 중량의 1.0%이고, 원료 온도를 50℃로 유지하며, 습식 연마개질을 통하여, 설비 회전속도를 800-900RPM로 20min동안 연마함으로써 초기 개질을 완성하는 초기 개질 단계(2); Hexamethyl disilazane is added to the submicron slurry according to step (1), but the amount of hexamethyl disilazane added is 1.0% of the weight of the silicon fine powder, and the raw material temperature is maintained at 50 ° C, through wet polishing reforming. , Initial modification step (2) to complete the initial modification by grinding the equipment rotation speed at 800-900RPM for 20min;

단계(2)에서 제조된 서브마이크론 슬러리를 플래시 건조기로 건조 개질하고, 플래시 건조기의 블레이드와 내벽에는 텅스텐 카바이드 또는 산화지르코늄이 스프레이 코팅되며, 공기 진입 온도가 130-140℃하에서, 수분이 ≤ 0.3%로 되도록 건조시킨 후, 수집기에 전송하여 보온하되, 보온 온도가 60-70℃하에서 보온 시간 20min동안 보온함으로써 2차 개질을 완성하는 2차 개질 단계(3); The submicron slurry prepared in step (2) is dry-modified with a flash dryer, tungsten carbide or zirconium oxide is spray-coated on the blades and the inner wall of the flash dryer, and the air inlet temperature is under 130-140 ° C, and the moisture is ≤ 0.3%. After drying as possible, and then transferred to the collector to keep warm, the second reforming step (3) to complete the second reforming by keeping the warming temperature at 60-70 ° C. for 20 min.

보온된 원료를 기류분쇄기로 해응집시키되, 기류분쇄기의 라이닝과 분급휠의 재료는 산화알루미늄, 산화지르코늄이고, 또는, 표면에는 산화알루미늄 또는 산화지르코늄이 스프레이 코팅되며, 해응집 압력이 1.0MPa이고 기류분쇄기의 로터 직경이 200mm이며 회전속도가 3100r/min인 조건하에서, 입도가 D50=0.6-0.8㎛, D100≤3.0㎛로 되도록 해응집시키는 해응집 단계(4); 를 포함한다. The heat-insulated material is agglomerated by an air grinder, but the lining of the air grinder and the material of the classification wheel are aluminum oxide, zirconium oxide, or aluminum oxide or zirconium oxide is spray-coated on the surface, the deagglomeration pressure is 1.0 MPa, and the air flow A solution agglomeration step (4) to agglomerate to a particle size of D50 = 0.6-0.8 µm and D100 ≤ 3.0 µm under the condition that the rotor diameter of the grinder is 200 mm and the rotational speed is 3100 r / min; It includes.

실시예 8에서 제조된 개질 후의 서브마이크론 실리콘 미세분말 제품과 개질되지 않은 서브마이크론 실리콘 미세분말 제품을 비교하면, 제품 성능은 하기 표에 도시된 바와 같다.When the submicron silicone micropowder product after modification prepared in Example 8 is compared with the unmodified submicron silicone micropowder product, the product performance is as shown in the following table.

항목
명칭
Item
designation
입도Granularity
활성화율, %

Activation rate,%
흡유값, g/100gOil absorption value, g / 100g
침강, 일

Sedimentation
D50, ㎛D50, μm D100, ㎛D100, μm 개질되지 않은 실리콘 미세분말Unmodified silicone fine powder
0.52

0.52

1.82

1.82

0

0

58.2

58.2

8

8
개질된 실리콘 미세분말Modified silicone fine powder
0.55

0.55

1.91

1.91

100

100

44.6

44.6

20

20

상기 표로부터 알 수 있는 바, As can be seen from the above table,

1)서브마이크론 실리콘 미세분말 제품은 개질 전, 후 입도(D50, D100)가 기본적으로 변화하지 않는데, 이는 제품이 응집되지 않고, 분산성이 우수하여, 서브마이크론 실리콘 미세분말을 습식개질하여 건조시킨 후 제품이 응집되는 문제를 방지함을 의미하고; 1) The submicron silicon fine powder product does not basically change the particle size before and after modification (D50, D100). This product is not agglomerated and has excellent dispersibility. Means to prevent the problem of product agglomeration afterwards;

2)개질 후의 서브마이크론 실리콘 미세분말 제품 활성화율은 100%에 도달하는데, 이는 각 하나의 입자 모두가 기본적으로 개질제에 의해 코팅되어, 개질 효과가 비교적 좋음을 의미하며; 2) The activation rate of the submicron silicon micropowder product after modification reaches 100%, which means that each one particle is basically coated with a modifier, so that the modification effect is relatively good;

3)개질 후의 서브마이크론 실리콘 미세분말 제품은 흡유값이 현저하게 떨어지는데, 이는 개질 효과가 좋고, 응용 과정에서 점도가 낮으며, 유동성이 좋고, 분산성이 좋음을 의미하고; 3) The submicron silicone fine powder product after modification has a significantly lower oil absorption value, which means that the modification effect is good, the viscosity is low in the application process, the fluidity is good, and the dispersibility is good;

4)개질 후의 서브마이크론 실리콘 미세분말 제품은 침강 시간이 현저하게 증가되는데, 이는 개질 효과가 좋고, 응용 시 침강 방지 효과가 좋으며, 저장 주기가 길다는 것임을 의미한다. 4) The submicron silicon fine powder product after modification significantly increases the sedimentation time, which means that the modification effect is good, the sedimentation prevention effect is good when applied, and the storage cycle is long.

본 발명은 전처리, 초기 개질, 2차 개질 및 해응집을 통하여, 서브마이크론 실리콘 미세분말을 이용하여, 개질 효과가 좋은 표면처리 서브마이크론 실리콘 미세분말을 얻으며, 이는 공정이 간단하고, 경제적이고 친환경적이며, 원가가 낮고, 제품 개질 효과가 좋으며, 입자가 잘 분산되고, 사용이 편리하며, CCL, 코팅제, 접착제 등 분야에 널리 사용될 수 있다.The present invention obtains a surface treatment submicron silicon fine powder having a good modification effect by using a submicron silicon fine powder through pre-treatment, initial modification, secondary modification, and deagglomeration, which is simple, economical, and eco-friendly. , Cost is low, product modification effect is good, particles are well dispersed, convenient to use, and can be widely used in fields such as CCL, coating agent, adhesive.

Claims (8)

서브마이크론 실리콘 미세분말과 탈이온수를 3:7-6:4인 질량비로 교반통에 넣어 교반하면서 가열하고, 원료 온도를 50-90℃로 제어하여, 균일하게 혼합한 후 연삭기에 전송하여 예비 분산시키되, 예비 분산 온도를 50-90℃로 제어하여 균일하게 분산시킨 후, 서브마이크론 슬러리를 제조하여 얻는 전처리 단계(1);
단계(1)에 따른 서브마이크론 슬러리에 개질제를 첨가하되, 개질제의 첨가량은 서브마이크론 실리콘 미세분말 중량의 1.0-4.0%이고, 습식 연마개질을 통하여, 초기 개질을 완성하며, 상기 개질제는 실란커플링제, 헥사메틸 디실라잔 또는 실란커플링제와 헥사메틸 디실라잔의 혼합물인 초기 개질 단계(2);
단계(2)에서 제조된 서브마이크론 슬러리를 플래시 건조기에 전송하여 건조 개질하고, 공기 진입 온도가 120-300℃하에서, 수분이 ≤0.3%로 되도록 건조시킨 후, 수집기에 전송하여 보온하되, 보온 온도가 60-120℃하에서 보온 시간 20-60min동안 보온함으로써 2차 개질을 완성하는 2차 개질 단계(3);
보온된 원료를 기류분쇄기로 해응집시키되, 해응집 압력이 ≥ 1.0MPa인 조건하에서, 전처리 전의 입도와 일치하도록 해응집시키는 해응집 단계(4); 를 포함하는 것을 특징으로 하는 서브마이크론 실리콘 미세분말의 표면개질 방법.
Submicron silicon fine powder and deionized water are heated in a stirring container at a mass ratio of 3: 7-6: 4 while stirring, the raw material temperature is controlled at 50-90 ° C, uniformly mixed, and then transferred to a grinding machine for preliminary dispersion. Pre-dispersion step (1) obtained by preparing a submicron slurry after uniformly dispersing by controlling the pre-dispersion temperature to 50-90 ° C .;
A modifier is added to the submicron slurry according to step (1), but the amount of the modifier added is 1.0-4.0% of the weight of the submicron silicone fine powder, and through wet polishing reforming, the initial modification is completed, and the modifier is a silane coupling agent. , An initial modification step (2) which is a hexamethyl disilazane or a mixture of silane coupling agent and hexamethyl disilazane;
The sub-micron slurry prepared in step (2) is transferred to a flash dryer to dry reform, and dried under air inlet temperature of 120-300 ° C. so that moisture is ≤ 0.3%, and then transferred to a collector to keep warm, but to keep warm. A secondary reforming step (3) of completing the secondary reforming by keeping the insulation under 60-120 ° C. for 20-60 min;
A deagglomeration step (4) of deagglomerating the insulated raw material with an air flow grinder, under the condition that the deagglomeration pressure is ≥ 1.0 MPa, to match the particle size before pretreatment; Method for surface modification of submicron silicon micropowder, characterized in that it comprises a.
제 1 항에 있어서,
단계(2)에 따른 개질제는 실란커플링제인 것을 특징으로 하는 서브마이크론 실리콘 미세분말의 표면개질 방법.
According to claim 1,
The modifier according to step (2) is a surface modification method of a submicron silicon micropowder, characterized in that the silane coupling agent.
제 1 항 또는 제 2 항에 있어서,
단계(1)의 상기 연삭기의 라이닝은 폴리우레탄, 탄화규소 또는 산화지르코늄이고, 분쇄 매체는 산화지르코늄 또는 질화규소이며, 분쇄 매체 직경은 0.2-0.8㎜인 것을 특징으로 하는 서브마이크론 실리콘 미세분말의 표면개질 방법.
The method of claim 1 or 2,
The surface modification of the submicron silicon fine powder, characterized in that the lining of the grinding machine in step (1) is polyurethane, silicon carbide or zirconium oxide, the grinding medium is zirconium oxide or silicon nitride, and the grinding medium diameter is 0.2-0.8 mm. Way.
제 1 항 또는 제 2 항에 있어서,
단계(3) 중 플래시 건조기의 블레이드와 내벽에는 텅스텐 카바이드 또는 산화지르코늄이 스프레이 코팅되고, 공기 진입 온도는 120-300℃인 것을 특징으로 하는 서브마이크론 실리콘 미세분말의 표면개질 방법.
The method of claim 1 or 2,
A method of surface modification of submicron silicon micropowder, characterized in that tungsten carbide or zirconium oxide is spray coated on the blade and inner wall of the flash dryer during step (3), and the air inlet temperature is 120-300 ° C.
제 1 항 또는 제 2 항에 있어서,
단계(4)의 상기 기류분쇄기의 라이닝과 분급휠은 산화알루미늄, 산화지르코늄이고, 또는, 라이닝과 분급휠의 표면에는 산화알루미늄 또는 산화지르코늄이 스프레이 코팅되며, 해응집 압력 ≥1.0MPa인 것을 특징으로 하는 서브마이크론 실리콘 미세분말의 표면개질 방법.
The method of claim 1 or 2,
In the step (4), the lining and classifying wheel of the air pulverizer are aluminum oxide, zirconium oxide, or aluminum lining or zirconium oxide is spray-coated on the surface of the lining and classifying wheel, and the agglomeration pressure is ≥1.0 MPa. Submicron silicon micropowder surface modification method.
제 1 항 또는 제 2 항에 있어서,
단계(1)의 상기 서브마이크론 실리콘 미세분말의 입도는 D50=0.2-1.0㎛, D100≤3.0㎛인 것을 특징으로 하는 서브마이크론 실리콘 미세분말의 표면개질 방법.
The method of claim 1 or 2,
The particle size of the submicron silicon micropowder of step (1) is D50 = 0.2-1.0㎛, D100≤3.0㎛ surface modification method of the submicron silicon micropowder, characterized in that.
제 1 항에 있어서,
입도가 D50=0.2-1.0㎛, D100≤3.0㎛인 서브마이크론 실리콘 미세분말과 탈이온수를 3:7-6:4인 질량비로 교반통에 넣어 교반하면서 가열하고, 원료 온도를 50-90℃로 제어하여, 교반 시간 3-5min동안 교반한 후, 연삭기에 전송하여 예비 분산시키되, 원료 온도를 50-90℃로 유지하여 5-10min동안 예비 분산시킨 후, 서브마이크론 슬러리를 제조하여 얻는 전처리 단계(1);
단계(1)에 따른 서브마이크론 슬러리에 개질제를 첨가하되, 개질제의 첨가량은 서브마이크론 실리콘 미세분말 중량의 1.0-4.0%이고, 습식 연마개질을 통하여, 20-30min동안 연마함으로써 초기 개질을 완성하는 초기 개질 단계(2);
단계(2)에서 제조된 서브마이크론 슬러리를 플래시 건조기로 건조 개질하고, 공기 진입 온도가 120-300℃하에서, 수분이 ≤0.3%로 되도록 건조시킨 후, 수집기에 전송하여 보온하되, 보온 온도가 60-120℃하에서 보온 시간 20-60min동안 보온함으로써 2차 개질을 완성하는 2차 개질 단계(3);
보온된 원료를 기류분쇄기로 해응집시키되, 해응집 압력이 ≥1.0MPa인 조건하에서, 입도가 D50=0.2-1.0㎛, D100≤3.0㎛로 되도록 해응집시키는 해응집 단계(4); 를 포함하는 것을 특징으로 하는 서브마이크론 실리콘 미세분말의 표면개질 방법.
According to claim 1,
Submicron silicon fine powder having a particle size of D50 = 0.2-1.0 μm, D100 ≤ 3.0 μm and deionized water were heated in a stirring container at a mass ratio of 3: 7-6: 4 while stirring, and the raw material temperature was adjusted to 50-90 ° C. Pre-dispersed by controlling, stirring for 3-5 min, then transferring to a grinder to pre-disperse, maintaining the raw material temperature at 50-90 ° C. for pre-dispersing for 5-10 min, and then preparing a submicron slurry ( One);
An initial modifier is added by adding a modifier to the submicron slurry according to step (1), wherein the amount of modifier added is 1.0-4.0% of the submicron silicone fine powder weight, and by grinding for 20-30 minutes through wet polishing reforming. Reforming step (2);
The submicron slurry prepared in step (2) is dried and reformed with a flash dryer, dried to a moisture content of ≤0.3% under an air inlet temperature of 120-300 ° C., and then transferred to a collector to keep warm, but the warming temperature is 60. A secondary reforming step (3) of completing the secondary reforming by keeping the insulation under -120 ° C. for 20-60 min;
A deagglomeration step (4) of deagglomerating the insulated raw material with an air grinder, and deagglomerating such that the particle size is D50 = 0.2-1.0 mu m, D100≤3.0 mu m under conditions that the deagglomeration pressure is ≥1.0 MPa; Method for surface modification of submicron silicon micropowder, characterized in that it comprises a.
제 7 항에 있어서,
입도가 D50=0.5-0.7㎛, D100≤3.0㎛인 서브마이크론 실리콘 미세분말과 탈이온수를 1:1인 질량비로 교반통에 넣어 교반하면서 가열하고, 원료 온도를 70℃로 제어하여, 교반 시간 4min동안 교반한 후, 연삭기에 전송하여 예비 분산시키되, 원료 온도를 70℃로 유지하여 8min동안 예비 분산시켜, 서브마이크론 슬러리를 제조하여 얻는 전처리 단계(1);
단계(1) 따른 서브마이크론 슬러리에 개질제를 첨가하되, 개질제의 첨가량은 서브마이크론 실리콘 미세분말 중량의 2.5%이고, 습식 연마개질을 통하여, 25min동안 연마함으로써 초기 개질을 완성하는 초기 개질 단계(2);
단계(2)에서 제조된 서브마이크론 슬러리를 플래시 건조기로 건조 개질하고, 공기 진입 온도가 210-220℃하에서, 수분이 ≤ 0.3%이 되도록 건조시킨 후, 수집기에 전송하여 보온하되, 보온 온도가 90-100℃하에서 보온 시간 40min동안 보온함으로써 2차 개질을 완성하는 2차 개질 단계(3);
보온된 원료를 기류분쇄기로 해응집시키되, 해응집 압력 1.2MPa인 조건하에서, 입도가 D50=0.5-0.7㎛, D100≤3.0㎛로 되도록 해응집시키는 해응집 단계(4); 를 포함하는 것을 특징으로 하는 서브마이크론 실리콘 미세분말의 표면개질 방법.
The method of claim 7,
Submicron silicon fine powder having a particle size of D50 = 0.5-0.7㎛, D100≤3.0㎛ and deionized water were heated in a stirring container at a mass ratio of 1: 1, stirring while heating, and controlling the raw material temperature to 70 ℃, stirring time 4min After stirring for a while, pre-dispersed by transferring to a grinder, pre-dispersing for 8 min by maintaining the raw material temperature at 70 ° C., thereby preparing a submicron slurry (1);
An initial reforming step (2) in which the modifier is added to the submicron slurry according to step (1), but the amount of the modifier added is 2.5% of the weight of the submicron silicon micropowder, and through wet polishing reform, grinding for 25 minutes to complete the initial reforming. ;
The submicron slurry prepared in step (2) is dried and reformed with a flash dryer, dried under an air inlet temperature of 210-220 ° C., so that moisture is ≤ 0.3%, and then transferred to a collector to keep warm, but the warming temperature is 90. A secondary reforming step (3) of completing the secondary reforming by keeping the insulation under -100 ° C for 40 min;
A deagglomeration step (4) of deagglomerating the insulated raw material with an air grinder, and deagglomerating such that the particle size is D50 = 0.5-0.7µm, D100≤3.0µm, under the condition that the deagglomeration pressure is 1.2MPa; Method for surface modification of submicron silicon micropowder, characterized in that it comprises a.
KR1020190125285A 2018-10-10 2019-10-10 Method for surface modification of submicron silicon micropowder KR102262637B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811178335.7A CN109320998B (en) 2018-10-10 2018-10-10 Method for modifying surface of submicron silicon micropowder
CN201811178335.7 2018-10-10

Publications (2)

Publication Number Publication Date
KR20200041279A true KR20200041279A (en) 2020-04-21
KR102262637B1 KR102262637B1 (en) 2021-06-09

Family

ID=65261864

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190125285A KR102262637B1 (en) 2018-10-10 2019-10-10 Method for surface modification of submicron silicon micropowder

Country Status (3)

Country Link
JP (1) JP6933699B2 (en)
KR (1) KR102262637B1 (en)
CN (1) CN109320998B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974085A (en) * 2022-02-14 2023-04-18 连云港威晟硅材料有限公司 Surface-modified silicon micropowder and preparation method thereof
CN116376328A (en) * 2023-02-17 2023-07-04 广西电网有限责任公司电力科学研究院 Method for coating epoxy groups on micrometer alumina in short time and high efficiency
CN116376328B (en) * 2023-02-17 2024-05-17 广西电网有限责任公司电力科学研究院 Method for coating epoxy groups on micrometer alumina in short time and high efficiency

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079128A (en) * 2019-04-29 2019-08-02 江苏辉迈粉体科技有限公司 A kind of Submicron spherical silica micropowder organic dispersions and preparation method thereof
CN110408237A (en) * 2019-08-07 2019-11-05 江苏联瑞新材料股份有限公司 A kind of woodcare paint clear finish silicon powder and preparation method thereof
CN110484025B (en) * 2019-08-27 2021-05-18 佛山金戈新材料股份有限公司 Method for improving settling resistance and dispersibility of silicon micro powder in organic silicon pouring sealant
CN110665615B (en) * 2019-10-10 2022-04-19 青岛瓷兴新材料有限公司 Preparation method of superfine silicon powder
CN111073350A (en) * 2019-12-25 2020-04-28 中建材蚌埠玻璃工业设计研究院有限公司 Preparation method of submicron active silica micropowder
CN113755032A (en) * 2020-12-16 2021-12-07 安徽进化硅纳米材料科技有限公司 Method for refining silicon dioxide, ultrafine silicon dioxide powder and use
CN113004718A (en) * 2021-03-15 2021-06-22 刘绍辉 Superfine active silicon micro powder applied to electronic industry and preparation method thereof
CN113149024B (en) * 2021-04-25 2024-01-23 中建材玻璃新材料研究院集团有限公司 Preparation method of ultra-pure submicron silicon micropowder foam
CN114539815A (en) * 2022-03-01 2022-05-27 昆明冶金研究院有限公司 High-covering high-dispersity modified micro silicon powder and preparation method thereof
CN114539810A (en) * 2022-03-01 2022-05-27 昆明冶金研究院有限公司 High-dispersion modified silica fume and preparation method thereof
CN114804749A (en) * 2022-04-29 2022-07-29 中铁三局集团有限公司 Superfine modified silica micropowder low-resilience high-early-strength wet-spraying concrete and construction method thereof
CN115338401B (en) * 2022-08-30 2023-09-29 广州市华司特合金制品有限公司 Powder treatment method of high-specific gravity tungsten alloy
CN115477859B (en) * 2022-10-12 2024-03-26 江苏联瑞新材料股份有限公司 High-strength surface-modified silica micropowder for vinyl silica gel and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087317A (en) * 1996-04-26 1998-04-07 Degussa Ag Silicic acid modified to silane, its production and low viscosity polymer system containing the same and having low yield value
JP2011173779A (en) * 2010-01-26 2011-09-08 Sakai Chem Ind Co Ltd Silica particles, process for production of same, and resin composition containing same
CN103627215A (en) * 2013-11-27 2014-03-12 连云港东海硅微粉有限责任公司 Preparation method of submicron silica powder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305764C (en) * 2004-03-31 2007-03-21 张永 Hyperpure, superfine silicon powder and preparation method
JP5580513B2 (en) * 2007-12-06 2014-08-27 株式会社アドマテックス Spherical inorganic powder manufacturing method, spherical inorganic powder manufacturing apparatus, and resin composition manufacturing method
CN101280125B (en) * 2008-05-27 2010-12-08 阮建军 Production method of superfine silicon powder for electronic grade low-heat expansion coefficient copper clad laminate
BR112012001081A2 (en) * 2009-07-16 2016-02-16 Evonik Degussa Gmbh dispersion and method for modifying a surface with hydrophobized silica
JP6195524B2 (en) * 2014-01-28 2017-09-13 日揮触媒化成株式会社 Hydrophobic silica powder and method for producing the same
JP6347644B2 (en) * 2014-03-28 2018-06-27 デンカ株式会社 Surface-modified silica powder and slurry composition
CN104744971A (en) * 2015-03-04 2015-07-01 江西科越科技有限公司 Preparation process of wet-process superfine modified calcium carbonate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087317A (en) * 1996-04-26 1998-04-07 Degussa Ag Silicic acid modified to silane, its production and low viscosity polymer system containing the same and having low yield value
JP2011173779A (en) * 2010-01-26 2011-09-08 Sakai Chem Ind Co Ltd Silica particles, process for production of same, and resin composition containing same
CN103627215A (en) * 2013-11-27 2014-03-12 连云港东海硅微粉有限责任公司 Preparation method of submicron silica powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974085A (en) * 2022-02-14 2023-04-18 连云港威晟硅材料有限公司 Surface-modified silicon micropowder and preparation method thereof
CN116376328A (en) * 2023-02-17 2023-07-04 广西电网有限责任公司电力科学研究院 Method for coating epoxy groups on micrometer alumina in short time and high efficiency
CN116376328B (en) * 2023-02-17 2024-05-17 广西电网有限责任公司电力科学研究院 Method for coating epoxy groups on micrometer alumina in short time and high efficiency

Also Published As

Publication number Publication date
JP6933699B2 (en) 2021-09-08
CN109320998A (en) 2019-02-12
CN109320998B (en) 2021-02-23
KR102262637B1 (en) 2021-06-09
JP2020097515A (en) 2020-06-25

Similar Documents

Publication Publication Date Title
KR102262637B1 (en) Method for surface modification of submicron silicon micropowder
CN109721370A (en) Silicon nitride, ceramic slurry and preparation method
CN106751864A (en) The modified powdered whiting of a kind of surface modifying method of special powdered whiting of silicone adhesive and surface
CN110951279A (en) Preparation method of superfine acicular wollastonite modified spherical silicon dioxide composite powder
CN112094493A (en) Nano-modified thermoplastic polyurethane elastomer polishing material and preparation method thereof
CN108611089A (en) A kind of organically-modified fluorescence nano raw powder's production technology and application
CN110372913B (en) In-situ modification method of electronic-grade spherical filler
JP2007197655A (en) Microparticle-containing composition and method for producing the composition
CN108084742A (en) A kind of preparation method and purposes of the high heat conduction aluminium nitride dispersion liquid that insulate
CN114085552A (en) Modified wollastonite, preparation method thereof and application thereof in fluororubber
CN106543773A (en) The scale surface treatment method of the superfine quartz powder of median≤2 μm
JP2008150263A (en) Method of manufacturing silicon carbide powder
CN106927464A (en) A kind of method of modifying of silicon carbide micro-powder
CN113666380A (en) Preparation method of spherical silicon dioxide
CN106146864A (en) Graphene/polypropylene composite materials dusty material and preparation method for SLS
CN110407212B (en) High-dispersity nano carbonate gel as well as preparation method and application thereof
CN113292053B (en) Process for preparing high-dispersity aluminum nitride powder by carbothermic method based on polymer dispersant
KR20170038465A (en) The manufacturing method of flake silver powder using the agglomerated silver powder
CN115554939A (en) Aluminum nitride microcapsule and preparation method thereof
CN111620680B (en) Ceramic material for millimeter wave device and preparation method and application thereof
CN111548756B (en) Preparation method of calcium carbonate composite filler for epoxy resin adhesive
CN115087338A (en) Electromagnetic loss material with uniform electromagnetism and impedance matching and preparation method thereof
CN114409965B (en) Functionalized titanium dioxide filler, preparation method thereof and PTFE (polytetrafluoroethylene) high-frequency copper-clad laminate
JP6120045B2 (en) Inorganic particle-organic polymer composite, resin composition containing the same, and resin molded product
JP4644390B2 (en) Method for producing silica-coated metal composite powder

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant