KR20200032423A - Cathode material for sodium secondary batteries - Google Patents

Cathode material for sodium secondary batteries Download PDF

Info

Publication number
KR20200032423A
KR20200032423A KR1020180111442A KR20180111442A KR20200032423A KR 20200032423 A KR20200032423 A KR 20200032423A KR 1020180111442 A KR1020180111442 A KR 1020180111442A KR 20180111442 A KR20180111442 A KR 20180111442A KR 20200032423 A KR20200032423 A KR 20200032423A
Authority
KR
South Korea
Prior art keywords
sodium
sodium secondary
present
secondary battery
synthesis method
Prior art date
Application number
KR1020180111442A
Other languages
Korean (ko)
Inventor
명승택
박윤지
최지웅
Original Assignee
세종대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세종대학교산학협력단 filed Critical 세종대학교산학협력단
Priority to KR1020180111442A priority Critical patent/KR20200032423A/en
Publication of KR20200032423A publication Critical patent/KR20200032423A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a positive electrode active material for a sodium secondary battery. The inventors of the present invention had repeatedly conducted in-depth studies and various experiments and confirmed embodiment of the synthesis to dope Ti on a layered Na_0.67[Mn_0.5Fe_0.5]O_2 material which has previously shown excellent features using a combination of the combustion synthesis method and a solid-phase method, and positive effects such as an increase in capacity retention rate through stabilization of electrochemical properties can be expected.

Description

나트륨 이차전지용 양극 활물질 {Cathode material for sodium secondary batteries}Anode active material for sodium secondary batteries {Cathode material for sodium secondary batteries}

본 발명은 이차전지에 관한 것으로 구체적으로는 나트륨계 전극 활물질을 포함하는 이차전지에 관한 것이다.The present invention relates to a secondary battery, and specifically, to a secondary battery including a sodium-based electrode active material.

2000년대 들어서서 전 세계적으로 대체 에너지 및 에너지 저장장치에 관한 관심이 급증하고 있고 휴대기기, 노트북과 같은 IT기기의 보급이 급속도로 확대되고 있다. 또한 최근 Electric Vehicle(EV) 관련 기술도 개발됨에 따라 전력저장장치로서 재사용이 가능한 리튬이차전지에 대한 수요가 증가하였고, 이에 대한 연구도 전 세계에 걸쳐 활발히 진행되고 있다. 리튬이온전지는 현재 매우 높은 시장점유율을 차지하고 있으나, 리튬의 한정적인 매장량과 종래의 기술의 발전이 이미 한계에 다다랐다는 예측이 나오고 있는 시점에서 자원의 무기화 가능성 및 가격 상승이 불가피하다. 따라서 리튬이차전지를 대체할 수 있는 ‘포스트 리튬이차전지’의 개발이 필요한 상황이다.In the 2000s, interest in alternative energy and energy storage devices has rapidly increased worldwide, and the spread of IT devices such as portable devices and laptops is rapidly expanding. In addition, recently, as electric vehicle (EV) related technologies have been developed, demand for reusable lithium secondary batteries as a power storage device has increased, and research on this has been actively conducted all over the world. Lithium-ion batteries currently occupy a very high market share, but at the time when it is predicted that the limited reserves of lithium and the development of conventional technologies have already reached the limit, the possibility of mineralization of resources and the price increase are inevitable. Therefore, there is a need to develop a 'post lithium secondary battery' that can replace the lithium secondary battery.

위와 같은 이유 때문에 리튬을 대체할 만한 매장량이 품부하고 가격이 저렴한 새로운 에너지 저장장치에 대한 연구 개발이 필요한 시점이다. 현재 차세대 전지로서 가장 각광받고 있는 에너지 저장매체는 나트륨 이온전지로 리튬과 대비했을 때 풍부한 자원분포와 저렴한 원자재 가격 및 이온의 삽입, 탈리 반응이 리튬과 유사하여 새로운 이온전지로의 개발이 매우 용이하다. 아직 전 세계적으로 기초연구단계인 나트륨이차전지 분야의 활발한 연구를 통해 원천기술을 확보하고 지속적인 기술 우위를 선점하여 독보적인 기술수준을 구축하고 국가 경쟁력 향상에 기여할 수 있다. For the above reasons, it is time to research and develop a new energy storage device that has a sufficient reserve and a low price to replace lithium. As the next generation battery, the most popular energy storage medium is a sodium ion battery, which is very easy to develop into a new ion battery due to its abundant resource distribution, low raw material price, and ion insertion and desorption reactions similar to lithium. . Through active research in the field of sodium secondary battery, which is still in the basic research stage, around the world, it is possible to secure original technology and preoccupy a continuous technological advantage to build a unique technology level and contribute to the improvement of national competitiveness.

비록, 현재까지 개발된 나트륨 이온전지는 나트륨의 에너지 밀도와 평균작동전압, 안전성 등이 리튬과 비교하여 상대적으로 약간 낮아 전기자동차 등의 고성능 전지로서는 적용이 다소 어렵지만, 에너지 저장장치(ESS) 및 스마트 그리드 저장장치 등의 활용방안으로서 연구개발의 필요성 및 시장 잠재성이 매우 크다. 따라서 지속적인 연구개발을 통하여 고성능 전지의 대체재로서의 가능성 또한 보여 지고 있는 상황이다. 또한, 특정구조를 갖는 물질의 경우 반응이 지속될수록 비가역적인 반응과 물질의 구조적인 안정성이 저하되는 문제점을 가지고 있다. 이를 위해 구조적 안정성 및 전기화학적 특성이 우수한 물질개발이 절실하게 필요한 상태이다. 이러한 이유로 나트륨 이온전지는 차세대 이온전지로서 현재 리튬기반의 이온전지 시장을 대체하기 위하여 활발한 연구가 진행되고 있다. Although the sodium ion battery developed to date has relatively low energy density, average operating voltage, and safety of sodium compared to lithium, it is somewhat difficult to apply as a high-performance battery such as an electric vehicle, but it is somewhat difficult to apply energy storage devices (ESS) and smart As a way to utilize grid storage devices, the need for R & D and the market potential are very high. Therefore, through continuous research and development, the possibility of replacing high-performance batteries is also being seen. In addition, in the case of a material having a specific structure, as the reaction continues, irreversible reactions and structural stability of the material are deteriorated. To this end, there is an urgent need for the development of materials with excellent structural stability and electrochemical properties. For this reason, sodium ion batteries are next-generation ion batteries, and active research is currently being conducted to replace the lithium-based ion battery market.

나트륨 이차전지 양극 활물질의 전기화학적 특성 안정화를 통한 용량유지율을 증가시킬 필요가 있다.It is necessary to increase the capacity retention rate by stabilizing the electrochemical properties of the sodium secondary battery positive electrode active material.

본 발명은 연소합성법 및 고상법의 혼용된 기술을 통해 구현된 층상 구조의 삼성분계 소듐 전이금속 산화물을 특징으로 한다.The present invention features a ternary structure sodium transition metal oxide having a layered structure realized through a mixed technique of a combustion synthesis method and a solid phase method.

본 발명은 상기와 같은 기존 기술의 문제점을 극복하고 차후 연구개발에 필요한 기술력 향상에 보탬이 되는 것을 목적으로 한다.The present invention aims to overcome the problems of the existing technology as described above and to help improve the technical skills necessary for future research and development.

본 출원의 발명자들은 심도있는 연구와 다양한 실험을 거듭하여 연소합성법 및 고상법의 혼용된 기술을 이용하여 기존 우수한 특성을 보였던 층상구조의 Na0.67[Mn0.5Fe0.5]O2 물질에 Ti를 도핑을 진행하는 합성의 구현성을 확인하고 전기화학적 특성의 안정화를 통한 용량 유지율 증가 등 매우 긍정적인 효과를 기대할 수 있다. The inventors of this application doped Ti into the Na 0.67 [Mn 0.5 Fe 0.5 ] O 2 material of the layered structure that showed excellent characteristics by using a combination of combustion synthesis method and solid phase method through repeated research and various experiments. Very positive effects can be expected, such as increasing the capacity retention rate by confirming the feasibility of ongoing synthesis and stabilizing the electrochemical properties.

P2 층상구조 나트륨 산화물 Na0.67[Mn0.5Fe0.5]1-xTixO2의 합성 방법 및 Ti를 도핑하는데 있어 모든 양의 Ti 도핑량을 포함한다.P2 layered structure sodium oxide Na 0.67 [Mn 0.5 Fe 0.5 ] Synthesis method of 1-x Ti x O 2 and Ti doping amount in all amounts are included in doping Ti.

전기화학적 특성 안정화를 통한 용량유지율을 증가된 나트륨 이차전지 양극 활물질을 얻을 수 있다.It is possible to obtain a sodium secondary battery positive electrode active material having an increased capacity retention rate through stabilization of electrochemical properties.

도면 1은 실험 예에서 소듐 전이금속 산화물 Na0.67[Mn0.5Fe0.5]1-xTixO2 (x=0.05) 물질에 대한 합성 방법이다.
도면 2는 상기 물질의 합성 온도별 XRD 데이터이다.
도면 3은 상기 물질의 Rietveld refinement 데이터이다.
도면 4는 상기 물질을 전극으로 사용한 반전지의 충, 방전 특성 및 용량 데이터 이다.
Figure 1 is a synthesis method for a sodium transition metal oxide Na 0.67 [Mn 0.5 Fe 0.5 ] 1-x Ti x O 2 (x = 0.05) material in the experimental example.
Figure 2 is XRD data for each synthesis temperature of the material.
Figure 3 is the Rietveld refinement data of the material.
Figure 4 is a charge and discharge characteristics and capacity data of the half-cell using the material as an electrode.

이하, 실시 예를 통해 본 발명을 더욱 상술하지만, 하기 실시 예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention is further described through examples, but the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.

상기 발명에서 사용된 합성방법은 연소합성법과 고상법이다. 먼저 연소합성법을 이용한 합성방법은 0.5몰의 질산나트륨(NaNO3)과 0.5몰의 질산망간 4수화물(Manganese(II) nitrate tetrahydrate)과 0.5몰의 질산철 9수화물(Iron(III) nitrate nonahydrate)와 킬레이트제의 용도로 구연산(Citric acid), ?탕(Sucrose)을 사용하며 각각 질산염 대비 0.2배, 0.05배를 증류수에 용해시키고 충분히 섞일 수 있도록 마그네틱 바를 이용하여 12시간 이상 교반하여 준다. 교반한 용액을 110°C의 오븐에 하루동안 보관하여 용액이 잘 연소 할 수 있도록 하고, 하루 이상 건조된 분말을 수거하여 알루미나 도가니에서 한 번 더 태워서 남은 질산염을 없애준다.  The synthesis method used in the above invention is a combustion synthesis method and a solid phase method. First, the synthesis method using the combustion synthesis method is 0.5 mol of sodium nitrate (NaNO3), 0.5 mol of manganese nitrate tetrahydrate, and 0.5 mol of iron nitrate hexahydrate (Iron (III) nitrate nonahydrate) and chelate. Citric acid and Sucrose are used for the purpose of use, and 0.2 times and 0.05 times respectively, respectively, compared to nitrate are dissolved in distilled water and stirred for more than 12 hours using a magnetic bar to sufficiently mix. The stirred solution is stored in an oven at 110 ° C for one day so that the solution can burn well, and the dried powder is collected over a day to burn once more in an alumina crucible to remove the remaining nitrate.

이렇게 연소합성법을 통해 얻은 혼합물과 티타니움 디옥사이드(Titanium oxide)를 100 : 5 몰비로 혼합하여 몰탈로 30분간 섞어준다. 이후에, 일정한 압력으로 펠레타이징 시킨 후에 알루미나 도가니에 넣은 뒤, Air gas(O2/N2 21%를 사용) 분위기에서 5°C/mi의 승온속도로 1200°C 열처리 작업을 10시간동안 가해주고 30℃까지 4°C/min의 서냉 과정을 통하면 Hexagonal 구조에 공간군이 P63/mmc 인 P2- Na0.67[Mn0.5Fe0.5]1-xTixO2 (x=0.05) 분말을 얻게 된다. 이렇게 생성된 분말은 XRD 분석 결과 단일상의 Na0.67[Mn0.5Fe0.5]1-xTixO2 (x=0.05) 결정임을 확인하였고, 이와 같은 합성 방법은 도식화하여 도면 1에 제사하였다.The mixture obtained through the combustion synthesis method and titanium oxide are mixed at a ratio of 100: 5 and mixed with mortar for 30 minutes. Thereafter, after pelletizing at a constant pressure, and then placed in an alumina crucible, 1200 ° C heat treatment was performed for 10 hours at a heating rate of 5 ° C / mi in an air gas (using 21% O 2 / N 2 ) atmosphere. When applied and subjected to a slow cooling process of 4 ° C / min up to 30 ° C, P2-Na 0.67 [Mn 0.5 Fe 0.5 ] 1-x Ti x O 2 (x = 0.05) powder with a space group of P6 3 / mmc in the Hexagonal structure You get As a result of XRD analysis, the powder thus produced was confirmed to be a single phase Na 0.67 [Mn 0.5 Fe 0.5 ] 1-x Ti x O 2 (x = 0.05) crystal, and the synthesis method was schematically provided in FIG.

이렇게 합성조건을 특정하기까지 900°C에서 1250°C까지 열처리 작업을 진행하였고, 이러한 온도별 결정구조의 차이는 도면 2에 제시되어 있다. 900°C에서는 Hexagonal 구조의 P3 단일상(공간군 : R-3m)이 관찰되었고, 1000°C - 1100°C 사이에서는 P2상과 P3상 모두 관찰되었다. 1200°에서는 P2 단일상이 확인되었으며 1200도 이상에서는 Fe3O4 등 불순물이 검출되어 Hexagonal 구조의 P2-Na0.67[Mn0.5Fe0.5]1-xTixO2 (x=0.05) 분말의 생성 열처리 온도 범위는 1100°C - 1200°C로 특정 지을 수 있다. The heat treatment was performed from 900 ° C to 1250 ° C until the synthesis conditions were specified, and the difference in crystal structure for each temperature is shown in FIG. 2. Hexagonal structure P3 single phase (space group: R-3m) was observed at 900 ° C, and both P2 and P3 phases were observed between 1000 ° C and 1100 ° C. A single phase of P2 was observed at 1200 °, and impurities such as Fe 3 O 4 were detected at 1200 ° C or higher, resulting in the formation of a Hexagonal P2-Na 0.67 [Mn 0.5 Fe 0.5 ] 1-x Ti x O 2 (x = 0.05) powder. The heat treatment temperature range can be specified from 1100 ° C to 1200 ° C.

상기에서 획득한 Na0.67[Mn0.5Fe0.5]1-xTixO2 (x=0.05) 분말들은 Na metal을 이용한 반전지로 제작하여 전기화학적 성능을 측정하였고 도면 4에 그에 대한 충, 방전 곡선을 제시하였다.The obtained Na 0.67 [Mn 0.5 Fe 0.5 ] 1-x Ti x O 2 (x = 0.05) powders were made of half - cell using Na metal to measure the electrochemical performance, and the charge and discharge curves for them are shown in FIG. 4. Presented.

본 발명에 따른 연소합성법 및 고상법을 통한 나트륨 이온전지 공정법은 나트륨 이차전지 뿐만 아니라 리튬, 포타슘 이차전지 공정에도 적용 가능하며 특히 중대형 디바이스의 전원인 전지모듈의 공정법으로 사용될 수 있다.The sodium ion battery process method through the combustion synthesis method and the solid phase method according to the present invention is applicable not only to the sodium secondary battery, but also to the lithium and potassium secondary battery processes, and may be used as a process method of a battery module that is a power source for a medium-sized device.

바람직하게는, 상기 중대형 디바이스는, 예를 들어, 전기적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기차(Electric Vehicle, EV), 하이브리드 전기차(Hybrid Electric Vehicle, HEV) 및 플러그인 하이브리드 전기차(Plug-in Hybrid Electric Vehicle, PHEV)를 포한하는 전기차; E-bike, E-scooter를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart) 등을 들 수 있으나, 이에 한정되는 것은 아니다.Preferably, the medium-to-large device includes, for example, a power tool that moves under power by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Electric two-wheeled vehicles including E-bikes and E-scooters; And an electric golf cart, but is not limited thereto.

본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Those skilled in the art to which the present invention pertains will be able to make various applications and modifications within the scope of the present invention based on the above.

Claims (2)

하기 화학식 1로 나타내어지고, P2 층상구조인 전극 활물질:
[화학식 1]
Nax[Mn0.5Fe0.5]1-yTiyO2
상기 화학식 1에서,
x는 0.5 내지 0.8이고,
y는 0.001 내지 0.5이다.
An electrode active material represented by the following Chemical Formula 1 and having a P2 layer structure:
[Formula 1]
Na x [Mn 0.5 Fe 0.5 ] 1-y Ti y O 2
In Chemical Formula 1,
x is 0.5 to 0.8,
y is 0.001 to 0.5.
하기 화학식 1로 나타내어지고, P2 층상구조인 전극 활물질을 포함하는 양극;
음극; 및
상기 양극과 상기 음극 사이에 배치된 전해질을 포함하는 이차전지:
[화학식 1]
Nax[Mn0.5Fe0.5]1-yTiyO2
상기 화학식 1에서,
x는 0.5 내지 0.8이고,
y는 0.001 내지 0.5이다.
A positive electrode represented by the following Chemical Formula 1 and comprising an electrode active material having a P2 layer structure;
cathode; And
Secondary battery comprising an electrolyte disposed between the positive electrode and the negative electrode:
[Formula 1]
Na x [Mn 0.5 Fe 0.5 ] 1-y Ti y O 2
In Chemical Formula 1,
x is 0.5 to 0.8,
y is 0.001 to 0.5.
KR1020180111442A 2018-09-18 2018-09-18 Cathode material for sodium secondary batteries KR20200032423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180111442A KR20200032423A (en) 2018-09-18 2018-09-18 Cathode material for sodium secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180111442A KR20200032423A (en) 2018-09-18 2018-09-18 Cathode material for sodium secondary batteries

Publications (1)

Publication Number Publication Date
KR20200032423A true KR20200032423A (en) 2020-03-26

Family

ID=69958566

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180111442A KR20200032423A (en) 2018-09-18 2018-09-18 Cathode material for sodium secondary batteries

Country Status (1)

Country Link
KR (1) KR20200032423A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234200A (en) * 2020-09-18 2021-01-15 中南大学 O3-type layered sodium-ion battery positive electrode material and preparation method thereof
CN112234201A (en) * 2020-09-18 2021-01-15 中南大学 O3-type layered sodium-ion battery positive electrode material and preparation method thereof
CN113078308A (en) * 2021-06-04 2021-07-06 蜂巢能源科技有限公司 Cobalt-free and nickel-free positive electrode material, preparation method thereof and battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234200A (en) * 2020-09-18 2021-01-15 中南大学 O3-type layered sodium-ion battery positive electrode material and preparation method thereof
CN112234201A (en) * 2020-09-18 2021-01-15 中南大学 O3-type layered sodium-ion battery positive electrode material and preparation method thereof
CN113078308A (en) * 2021-06-04 2021-07-06 蜂巢能源科技有限公司 Cobalt-free and nickel-free positive electrode material, preparation method thereof and battery

Similar Documents

Publication Publication Date Title
Muralidharan et al. Next‐generation cobalt‐free cathodes–a prospective solution to the battery industry's cobalt problem
Alias et al. Advances of aqueous rechargeable lithium-ion battery: A review
Weng et al. Synthesis and performance of Li [(Ni1/3Co1/3Mn1/3) 1− xMgx] O2 prepared from spent lithium ion batteries
Belharouak et al. Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications
Kang et al. Enhancing the rate capability of high capacity xLi2MnO3·(1− x) LiMO2 (M= Mn, Ni, Co) electrodes by Li–Ni–PO4 treatment
EP2680347B1 (en) Positive electrode active material having improved output characteristics, and lithium secondary battery comprising same
CN102437311B (en) Lithium iron phosphate composite material, its preparation method and application
EP2675003B1 (en) Mixed positive electrode active material with improved output characteristics and lithium secondary battery comprising same
JP2014510372A (en) Positive electrode active material with improved safety and life characteristics and lithium secondary battery including the same
EP2738844B1 (en) High capacity anode active material and rechargeable lithium battery comprising same
He et al. The effect of samaria doped ceria coating on the performance of Li1. 2Ni0. 13Co0. 13Mn0. 54O2 cathode material for lithium-ion battery
CN110600685B (en) Lithium manganate positive electrode material and preparation method thereof
Jo et al. Characterization of Li-rich xLi2MnO3·(1− x) Li [MnyNizCo1− y− z] O2 as cathode active materials for Li-ion batteries
KR20200032423A (en) Cathode material for sodium secondary batteries
KR20200086111A (en) Method of manufacturing cathode active material coated titanium dioxide
Chang et al. Lithium‐ion battery: A comprehensive research progress of high nickel ternary cathode material
JP5516463B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
CN102306776A (en) Method for preparing cathode material of lithium ion battery
JP6096216B2 (en) Mixed positive electrode active material with improved output characteristics, positive electrode including the same, and lithium secondary battery
KR20100013673A (en) Positive active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery using same
CN105576230A (en) Lithium-manganese-group-rich composite anode material, preparing method thereof and lithium ion battery
CN107834054B (en) Preparation method of lithium nickel manganese oxide-graphene composite material for lithium ion battery
KR20130014241A (en) Cathode material for lithium second battery and manufacturing method thereof
KR101941638B1 (en) Manufacturing method of cathode active material for a lithium secondary battery and cathode active material obtained thereby
CN103500821B (en) A kind of lithium ion battery electronegative potential lithium vanadium based compound and preparation method thereof