KR20190135099A - Improvement of gnss-ro refraction angle calculation algorithm using geometric optics - Google Patents

Improvement of gnss-ro refraction angle calculation algorithm using geometric optics Download PDF

Info

Publication number
KR20190135099A
KR20190135099A KR1020180060117A KR20180060117A KR20190135099A KR 20190135099 A KR20190135099 A KR 20190135099A KR 1020180060117 A KR1020180060117 A KR 1020180060117A KR 20180060117 A KR20180060117 A KR 20180060117A KR 20190135099 A KR20190135099 A KR 20190135099A
Authority
KR
South Korea
Prior art keywords
gnss
direction vector
improvement
geometric optics
calculating
Prior art date
Application number
KR1020180060117A
Other languages
Korean (ko)
Inventor
이승우
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020180060117A priority Critical patent/KR20190135099A/en
Publication of KR20190135099A publication Critical patent/KR20190135099A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

In the present invention, a three-dimensional direction vector can be used to efficiently and precisely calculate a signal direction vector when calculating a GNSS-RO bending angle. When observing the GNSS-RO, L1 Doppler shift may be calculated in kinematic manner, wherein position and speed vectors of a GNSS satellite and position and speed vectors of a low orbit satellite for a corresponding point as a tangential point is increased or decreased by altitude are required. Then, by equalizing the same with the Doppler shift obtained by numerically differentiating the excess phase delay, transmission and reception signal direction vectors are calculated.

Description

기하광학을 이용한 GNSS-RO 굴절각 산출 알고리즘의 개선{IMPROVEMENT OF GNSS-RO REFRACTION ANGLE CALCULATION ALGORITHM USING GEOMETRIC OPTICS}IMPROVEMENT OF GNSS-RO REFRACTION ANGLE CALCULATION ALGORITHM USING GEOMETRIC OPTICS

본 발명은 기하광학을 이용한 GNSS-RO 굴절각 산출 알고리즘의 개선 방법에 관한 것이다.The present invention relates to a method for improving a GNSS-RO refractive angle calculation algorithm using geometric optics.

Excess phase delay를 비롯한 GNSS-RO 레벨 1a 자료는 원격 탐사 분야 등에 사용되기 위해 bending angle로 변환되어야 하며 이 경우 대기 refractivity 분포의 수평 gradient가 없는 것을 가정한 기하광학을 적용하는 것이 일반적인 방법이다. 이 과정에서 기하광학을 이용한 bending angle 산출 과정 중 GNSS 위성에서 송신하는 시점에서의 신호 방향 벡터와 저궤도 위성에서 수신하는 시점의 신호 방향 벡터를 계산하는 것은 전체 변환 과정 중에서 가장 핵심적인 부분 중의 하나이다.The GNSS-RO level 1a data, including the excess phase delay, must be converted to the bending angle for use in remote sensing applications. In this case, it is common to apply geometric optics assuming no horizontal gradient of atmospheric refractivity distribution. In the process of calculating the bending angle using geometric optics, calculating the signal direction vector at the point of time transmitted from the GNSS satellite and the signal direction vector at the point of time received at the low orbit satellite is one of the most essential parts of the overall conversion process.

본 발명은 GNSS-RO bending angle 산출 시에 신호 방향 벡터 계산을 보다 효율적이고 정확하게 계산할 수 있도록 3차원 방향 벡터를 사용하는 신호 처리 기법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a signal processing technique using a three-dimensional direction vector in order to calculate a signal direction vector more efficiently and accurately when calculating a GNSS-RO bending angle.

본 발명은 GNSS-RO bending angle 산출 시에 신호 방향 벡터 계산을 보다 효율적이고 정확하게 계산할 수 있도록 3차원 방향 벡터를 사용할 수 있다.In the present invention, the three-dimensional direction vector can be used to calculate the signal direction vector more efficiently and accurately when calculating the GNSS-RO bending angle.

본 발명은 GNSS-RO bending angle 산출 시에 3차원 방향 벡터를 사용하여, 신호 방향 벡터 계산을 보다 효율적이고 정확하게 계산할 수 있다.The present invention can calculate the signal direction vector more efficiently and accurately by using the three-dimensional direction vector when calculating the GNSS-RO bending angle.

본 특허는 GNSS-RO bending angle 산출 시에 신호 방향 벡터 계산을 보다 효율적이고 정확하게 계산할 수 있도록 3차원 방향 벡터를 사용하는 신호 처리 기법에 관한 것으로서 GNSS-RO 관측 시에 고도 별로 tangential point가 상승 또는 하강함에 따라 해당 지점에 대한 GNSS 위성의 위치 및 속도 벡터 그리고 저궤도 위성의 위치 및 속도 벡터를 필요로 하는데 L1 Doppler shift를 기구학 적인 방식으로 계산한 뒤 이를 excess phase delay를 수치 미분하여 구한 Doppler shift와 등치시킴으로서 송신 및 수신 신호 방향 벡터를 계산하게 된다. 이때 초기 송신 및 수신 벡터는 진공 상태에서의 신호 전파 방향 벡터를 사용할 수 있는데 기존 방식의 경우 진공 상태 신호 전파 방향 벡터에 대한 각도 차이값만을 계산하여 최종 송신 및 수신 신호 방향 계산 벡터를 계산하는 형태이며 따라서 송수신 별로 한 개의 미지수를 계산한다. 본 특허에서 제안하는 방법은 실제 3차원 공간 상의 신호 방향 벡터가 진공 상태 방향 벡터에 대해 성분별로 차이가 있을 수 있음을 감안하여 각각 3개의 미지수를 가지도록 벡터로 모델링하여 계산하는 방식이다. 이를 위해 초기 진공 상태 방향 벡터에서 GNSS 위성 및 저궤도 위성 위치 벡터를 tensor를 이용하여 투영함으로서 반복적으로 초기 벡터에 대해 adjustment를 계산하여 최종적으로 송신 및 수신 신호 방향 벡터를 3차원으로 계산하는 방법에 관한 것이다.This patent relates to a signal processing technique that uses three-dimensional direction vectors to calculate the signal direction vector more efficiently and accurately when calculating the GNSS-RO bending angle. The tangential point rises or falls by altitude during GNSS-RO observation. Therefore, we need the position and velocity vector of the GNSS satellite and the position and velocity vector of the low-orbiting satellite for that point. The transmit and receive signal direction vectors are calculated. In this case, the initial transmission and reception vector may use a signal propagation direction vector in a vacuum state. In the conventional method, the final transmission and reception signal direction calculation vector is calculated by calculating only an angle difference value of the vacuum signal propagation direction vector. Therefore, one unknown is calculated for each transmission and reception. The method proposed in this patent is a method of modeling and calculating a vector to have three unknowns in consideration of the fact that the signal direction vector on the actual three-dimensional space may be different for each component with respect to the vacuum state direction vector. To this end, the present invention relates to a method of repeatedly calculating the adjustment of the initial vector and finally calculating the transmit and receive signal direction vectors in three dimensions by projecting the GNSS satellite and the low orbit satellite position vector using a tensor from the initial vacuum state direction vector. .

Claims (1)

기하광학을 이용한 GNSS-RO 굴절각 산출 알고리즘의 개선 방법.Improvement of GNSS-RO Refractive Angle Calculation Algorithm Using Geometric Optics.
KR1020180060117A 2018-05-28 2018-05-28 Improvement of gnss-ro refraction angle calculation algorithm using geometric optics KR20190135099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180060117A KR20190135099A (en) 2018-05-28 2018-05-28 Improvement of gnss-ro refraction angle calculation algorithm using geometric optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180060117A KR20190135099A (en) 2018-05-28 2018-05-28 Improvement of gnss-ro refraction angle calculation algorithm using geometric optics

Publications (1)

Publication Number Publication Date
KR20190135099A true KR20190135099A (en) 2019-12-06

Family

ID=68837241

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180060117A KR20190135099A (en) 2018-05-28 2018-05-28 Improvement of gnss-ro refraction angle calculation algorithm using geometric optics

Country Status (1)

Country Link
KR (1) KR20190135099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323798B (en) * 2020-03-24 2021-04-09 中国科学院国家空间科学中心 GNSS occultation ionosphere error correction method and system based on ionosphere observation data
CN115549753A (en) * 2022-09-02 2022-12-30 湖北第二师范学院 GNSS-assisted LEO ground communication transceiving system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323798B (en) * 2020-03-24 2021-04-09 中国科学院国家空间科学中心 GNSS occultation ionosphere error correction method and system based on ionosphere observation data
CN115549753A (en) * 2022-09-02 2022-12-30 湖北第二师范学院 GNSS-assisted LEO ground communication transceiving system and method

Similar Documents

Publication Publication Date Title
CN106646538B (en) A kind of deformation monitoring GNSS signal multipath correcting method based on single poor filtering
US8639476B2 (en) Process for estimation of ballistic missile boost state
CN104035083B (en) A kind of radar target tracking method based on measurement conversion
KR101914550B1 (en) Method for tracking target position of radar
US9128186B2 (en) Target tracking device and target tracking method
CA2920519C (en) Angles-only initial orbit determination (iod)
JP6718098B2 (en) Position estimation apparatus and method
KR20190135099A (en) Improvement of gnss-ro refraction angle calculation algorithm using geometric optics
CN113204042B (en) Multi-constellation combined train positioning method based on precise single-point positioning
US9612316B1 (en) Correlation and 3D-tracking of objects by pointing sensors
Su et al. Underwater angle-only tracking with propagation delay and time-offset between observers
Ridao et al. USBL/DVL navigation through delayed position fixes
CN110646822B (en) Integer ambiguity Kalman filtering algorithm based on inertial navigation assistance
CN109143223A (en) A kind of the spatial object tracking filter and method of bistatic radar
US8831906B1 (en) Technique for determining closest point of approach
CN116449374A (en) Underwater positioning method based on sonar
CN111596287A (en) Moving target positioning method of distributed MIMO radar system
CN106403943B (en) Inertial attitude based on inertia angle increment adaptive equalization matches measurement method
KR101833007B1 (en) Method and system for estimating position and velocity of underwater vehicle using doppler beacon
CN103235325B (en) Based on the specular reflection point algorithm for estimating of line segment dichotomy
Liu et al. Mars cruise orbit determination from combined optical celestial techniques and x-ray pulsars
CN103454652A (en) High-precision GNSS system with multiple or double GNSS receiving systems
CN114877798B (en) Vortex wave/IMU (inertial measurement unit) fused building deformation monitoring method and system
KR102365291B1 (en) Global positioning system and method for improving relative position accuracy of gnss and barometer
Naankeu-Wati et al. Error budget analysis for surface and underwater survey system