KR20190099571A - Repulsive force cancellation method of shooting arms for aircraft - Google Patents

Repulsive force cancellation method of shooting arms for aircraft Download PDF

Info

Publication number
KR20190099571A
KR20190099571A KR1020180019161A KR20180019161A KR20190099571A KR 20190099571 A KR20190099571 A KR 20190099571A KR 1020180019161 A KR1020180019161 A KR 1020180019161A KR 20180019161 A KR20180019161 A KR 20180019161A KR 20190099571 A KR20190099571 A KR 20190099571A
Authority
KR
South Korea
Prior art keywords
aircraft
repulsive force
projectile
logic step
equation
Prior art date
Application number
KR1020180019161A
Other languages
Korean (ko)
Other versions
KR102114081B1 (en
Inventor
이승덕
Original Assignee
한국항공우주산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공우주산업 주식회사 filed Critical 한국항공우주산업 주식회사
Priority to KR1020180019161A priority Critical patent/KR102114081B1/en
Publication of KR20190099571A publication Critical patent/KR20190099571A/en
Application granted granted Critical
Publication of KR102114081B1 publication Critical patent/KR102114081B1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/024Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

The present invention relates to a method of cancelling repulsive force by launching of a weapon from an aircraft. The method, when distances in the x, y, and z directions between the center of gravity of an aircraft and a point of action of a projectile are referred to as D_x, D_y, and D_z, respectively, an angle in left and right directions of the projectile is referred to as ψ_T, and an angle in upward and downward directions of the projectile is referred to as θ_T, comprises: a repulsive force calculation logic step of calculating repulsive force; a repulsive moment calculation logic step of calculating a repulsive moment by the calculated repulsive force; and a compensation instruction tuning logic step of tuning a compensation instruction by receiving the calculated repulsive moment and a launching signal. According to the present invention, it is possible to calculate an instruction for minimizing the aircraft from being positioned incorrectly, based on a mounting location of the projectile, a launching angle, and a magnitude of the repulsive force, at launch, and a pilot can focus on a shooting mission without worrying about the aircraft being positioned incorrectly.

Description

비행체의 무장 발사에 의한 반발력 상쇄방법{Repulsive force cancellation method of shooting arms for aircraft}Repulsive force cancellation method of shooting arms for aircraft

본 발명은 비행체에 장착된 무장 발사체의 발사 시 비행체에 가해지는 반발력을 상쇄하기 위한 방법에 관한 것으로 더욱 상세하게는, 무장 발사체의 발사 시 발사체의 장착 위치, 발사각도, 반발력 크기로부터 비행체의 자세 흐트러짐을 최소화하는 명령을 계산하여 조종사의 임무 효율을 증대시킬 수 있는 비행체의 무장 발사에 의한 반발력 상쇄방법에 관한 것이다.The present invention relates to a method for offsetting the repulsive force applied to a vehicle upon launching an armed projectile mounted on the vehicle, and more particularly, the attitude of the vehicle from the mounting position, the angle of launch, and the size of the projectile when the armed projectile is launched. The present invention relates to a method of offsetting repulsion by armed firing of a vehicle that can increase the pilot's mission efficiency by calculating a command that minimizes the number of commands.

종래 헬리콥터와 같은 비행체에서 물대포나 기관총 등의 질량을 가지는 물체를 발사할 경우 작용, 반작용에 의해 헬리콥터의 자세 흐트러짐을 유발하게 되고, 이는 조종사로 하여금 임무를 수행하는데 조종부하를 증가시키는 원인이 되고, 명중률이 급격이 떨어진다는 문제점이 있다.When launching an object having a mass such as a water cannon or a machine gun from an aircraft such as a conventional helicopter, the helicopter's posture is distorted by the action or reaction, which causes the pilot to increase the control load in performing the mission. There is a problem that the accuracy rate drops sharply.

또한, 무장 발사하는 경우 발사장치의 장착 위치, 발사각도, 발사 시의 반발력의 크기에 따라 비행체의 자세 흐트러짐의 크기와 경향도 시시각각 달라진다.In addition, in the case of armed firing, the size and tendency of the vehicle's posture disturbances also vary depending on the mounting position of the launcher, the launch angle, and the magnitude of the repulsive force during the launch.

이렇게 발사 시 비행체의 자세 흐트러짐의 크기와 경향이 변하기 때문에 조종사가 예측하고 이를 보정하기에 많은 어려움이 따른다는 문제점이 있다.Since the size and tendency of the aircraft's posture disturbances are changed at the time of launching, there is a problem that the pilot has a lot of difficulties in predicting and correcting the problem.

나아가, 종래의 단순 피드백 제어를 통한 비행체의 자세 유지 방법은 이미 비행체의 자세 흐트러짐이 발생한 이후에 동작하기 때문에 효과가 거의 없다는 문제점이 있다.Furthermore, there is a problem in that the conventional method for maintaining the attitude of the aircraft through simple feedback control has little effect since it operates after the attitude disorder of the aircraft has already occurred.

한국공개특허 제10-2017-0121553호('항공기 비행제어법칙 시뮬레이션 방법 및 장치', 2017.11.02 공개)Korean Patent Publication No. 10-2017-0121553 ('Aircraft flight control law simulation method and device', 2017.11.02 published)

본 발명은 전술한 문제점을 해결하기 위하여 안출된 것으로, 발사 시 발사체의 장착 위치, 발사각도, 반발력 크기로부터 비행체의 자세 흐트러짐을 최소화하는 명령을 계산할 수 있고, 조종사는 비행체의 자세 흐트러짐을 신경 쓰지 않고 발사 임무에만 집중할 수 있는 비행체의 무장 발사에 의한 반발력 상쇄방법을 제공하는 데 그 목적이 있다.The present invention has been made to solve the above-described problems, it is possible to calculate the command to minimize the attitude posture of the aircraft from the mounting position of the projectile, the launch angle, the size of the reaction force during the launch, the pilot does not care about the posture of the aircraft The objective is to provide a method of offsetting repulsion by armed firing of aircraft that can focus on launching missions.

본 발명은, 비행체의 무장 발사에 의한 반발력 상쇄방법에 있어서, 상기 비행체의 무게중심과 발사체 작용점과의 x, y, z방향 거리를 각각 Dx, Dy, Dz라 하고, 상기 발사체의 좌, 우 방향 각도를

Figure pat00001
라 하고, 상기 발사체의 상, 하 방향 각도를
Figure pat00002
라 할 때, 반발력을 계산하는 반발력 계산 로직 단계; 계산된 반발력에 의해 반발모멘트를 계산하는 반발모멘트 계산 로직 단계; 계산된 반발모멘트와 발사 신호를 입력받아 보상명령을 튜닝하는 보상명령 튜닝 로직 단계;를 포함한다.The present invention, in the method of offsetting the reaction force by the armed launch of the aircraft, the distance in the x, y, z direction between the center of gravity of the aircraft and the projectile action point is D x , D y , D z , respectively, the left of the projectile Right angle
Figure pat00001
The angle of the up and down direction of the projectile
Figure pat00002
A repulsive force calculation logic step of calculating a repulsive force; A reaction moment calculation logic step of calculating a reaction moment by the calculated reaction force; And a compensation command tuning logic step of tuning the compensation command by receiving the calculated rebound moment and the firing signal.

본 발명에 있어서, 제어법칙(Control Law)에서 계산된 시리즈 액추에이터(Series Actuator)의 명령에 상기 보상명령 튜닝 로직 단계의 결과를 더해주는 것을 특징으로 한다.In the present invention, it is characterized in that the result of the compensation instruction tuning logic step is added to the command of the series actuator calculated in the Control Law.

본 발명에 있어서, 상기 반발력 계산 로직 단계에서는 다음의 수학식 1 내지 수학식 3으로 반발력을 계산하고, In the present invention, in the repulsive force calculation logic step, the repulsive force is calculated by the following Equations 1 to 3,

Figure pat00003
(수학식 1)
Figure pat00003
(Equation 1)

Figure pat00004
(수학식 2)
Figure pat00004
(Equation 2)

Figure pat00005
(수학식 3)
Figure pat00005
(Equation 3)

상기 반발모멘트 계산 로직 단계에서는 다음의 수학식 4 내지 수학식 6으로 반발모멘트를 계산하고, In the repulsive moment calculation logic step, the rebound moment is calculated by the following Equation 4 to Equation 6,

Figure pat00006
(수학식 4)
Figure pat00006
(Equation 4)

Figure pat00007
(수학식 5)
Figure pat00007
(Equation 5)

Figure pat00008
(수학식 6)
Figure pat00008
(Equation 6)

상기 보상명령 튜닝 로직 단계에서는 다음의 표 1에 의해 보상명령을 튜닝하는 것을 특징으로 한다.In the compensation command tuning logic step, the compensation command is tuned according to Table 1 below.

Figure pat00009
(표 1)
Figure pat00009
Table 1

본 발명의 비행체의 무장 발사에 의한 반발력 상쇄방법에 따르면, 다음과 같은 효과가 있다.According to the method of offsetting the repulsion by the armed firing of the aircraft of the present invention, there are the following effects.

발사 시 발사체의 장착 위치, 발사각도, 반발력 크기로부터 비행체의 자세 흐트러짐을 최소화하는 명령을 계산하여 조종사의 임무 효율을 증대시킬 수 있다.Commands to minimize aircraft stance disturbances can be calculated from the projectile's mounting position, angle of launch, and magnitude of repulsion at launch to increase pilot efficiency.

따라서 무장 발사 시 조종사는 비행체의 자세 흐트러짐을 신경 쓰지 않고 발사 임무에만 집중할 수 있는 효과가 있다.Thus, when armed launching, pilots can focus on launching missions without worrying about mishandling of the aircraft.

도 1은 본 발명에 따른 비행체의 무장 발사에 의한 반발력 상쇄방법을 수행하기 위하여 적용되는 변수들을 도시한 도면
도 2는 본 발명의 바람직한 실시 예에 따른 비행체의 무장 발사에 의한 반발력 상쇄방법을 도시한 블록다이어그램
도 3은 반발력 계산 로직 단계를 도시한 블록다이어그램
도 4는 반발모멘트 계산 로직 단계를 도시한 블록다이어그램
도 5는 보상명령 튜닝 로직 단계를 도시한 블록다이어그램
도 6은 비행체의 자세 흐트러짐 보상명령 로직 개략도
1 is a view showing the parameters applied to perform a method for canceling the reaction force by the armed launch of the aircraft according to the present invention
Figure 2 is a block diagram showing a method of offsetting the reaction force by the armed launch of the aircraft according to a preferred embodiment of the present invention
3 is a block diagram showing the repulsive force calculation logic step.
4 is a block diagram showing the repulsive moment calculation logic step.
5 is a block diagram showing a compensation instruction tuning logic step.
6 is a schematic diagram of a posture disturbance compensation command logic of an aircraft;

이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시 예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that it can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.

따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시 예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, various equivalents that may be substituted for them at the time of the present application It should be understood that there may be water and variations.

본 발명에 따른 비행체의 무장 발사에 의한 반발력 상쇄방법을 수행하기 위하여 적용되는 변수들을 도 1에 도시하였다.Variables applied to perform the repulsive force offset method by the armed firing of the vehicle according to the present invention are shown in FIG.

도 1에 도시한 바와 같이, 비행체의 무게중심과 발사체 작용점과의 x, y, z방향 거리를 각각 Dx, Dy, Dz라 한다. As shown in FIG. 1, the distances in the x, y and z directions between the center of gravity of the vehicle and the point of action of the projectile are referred to as D x , D y , and D z , respectively.

통상 발사체는 비행체의 전방에 위치하고, 비행체의 무게중심은 후방에 위치하므로 비행체의 무게중심과 발사체 작용점과의 x 방향 거리인 Dx는 항상 존재한다. 또한, 발사체는 비행체의 무게중심보다 하부에 위치하므로 비행체의 무게중심과 발사체 작용점과의 z 방향 거리인 Dz는 항상 존재한다. 그러나 비행체의 무게중심과 발사체 작용점과의 y 방향 거리는 동일 선상에 위치할 경우 0이 될 수도 있다.Normally, the projectile is located in front of the vehicle, and the center of gravity of the vehicle is located at the rear, so D x, which is the distance in the x direction between the center of gravity of the vehicle and the projectile operating point, is always present. In addition, since the projectile is located below the center of gravity of the aircraft, D z, which is the z direction distance between the center of gravity of the vehicle and the projectile operating point, is always present. However, the distance in the y direction between the center of gravity of the aircraft and the point of action of the projectile may be zero if located on the same line.

나아가, 발사체의 좌, 우 방향 각도를

Figure pat00010
라 하고, 발사체의 상, 하 방향 각도를
Figure pat00011
라 한다.Furthermore, the left and right angles of the projectile
Figure pat00010
And the up and down angles of the projectile
Figure pat00011
It is called.

본 발명의 바람직한 실시 예에 따른 비행체의 발사에 의한 반발력 상쇄방법은, 도 2에 도시한 바와 같이, 발사체의 좌, 우 방향 각도와 발사체의 상, 하 방향 각도를 입력받아 반발력 계산 로직 단계와, 반발모멘트 계산 로직 단계를 수행하고, 발사 신호를 입력받아 보상명령 튜닝 로직 단계를 수행한다.Repulsive force offset method by the launch of the vehicle according to a preferred embodiment of the present invention, as shown in Figure 2, the left and right direction angle of the projectile and the up and down angle of the projectile input logic logic step, The repulsion moment calculation logic step is performed, and the compensation signal tuning logic step is performed by receiving the firing signal.

먼저, 반발력 계산 로직 단계에서는, 발사체의 좌, 우 방향각도

Figure pat00012
와, 발사체의 상, 하 방향각도
Figure pat00013
를 입력받아서 도 3과 같이 반발력을 계산한다.First, in the repulsive force calculation logic step, the left and right angles of the projectile
Figure pat00012
W, the up and down angle of the projectile
Figure pat00013
Calculate the repulsive force as shown in FIG.

더욱 상세하게는, 반발력 계산 로직 단계에서 다음의 수학식 1 내지 수학식 3으로 반발력을 계산한다.More specifically, the repulsive force is calculated by the following Equations 1 to 3 in the repulsive force calculation logic step.

Figure pat00014
Figure pat00014

Figure pat00015
Figure pat00015

Figure pat00016
Figure pat00016

다음으로, 반발모멘트 계산 로직 단계에서는, 상기 반발력 계산 로직 단계에서 계산된 반발력에 의해 도 4와 같이 반발모멘트를 계산한다.Next, in the reaction moment calculation logic step, the reaction moment is calculated as shown in FIG. 4 by the reaction force calculated in the reaction force calculation logic step.

더욱 상세하게는, 반발모멘트 계산 로직 단계에서 다음의 수학식 4 내지 수학식 6으로 발발모멘트를 계산한다.More specifically, in the repulsion moment calculation logic step, the occurrence moment is calculated by the following equations (4) to (6).

Figure pat00017
Figure pat00017

Figure pat00018
Figure pat00018

Figure pat00019
Figure pat00019

다음으로, 보상명령 튜닝 로직 단계에서는, 상기 반발모멘트 계산 로직 단계에서 계산된 반발모멘트와, 발사체의 발사 신호를 입력받아 도 5와 같이 보상명령을 튜닝 한다.Next, in the compensation command tuning logic step, the compensation command calculated in the reaction moment calculation logic step and the firing signal of the projectile are input to tune the compensation command as shown in FIG. 5.

더욱 상세하게는, 보상명령 튜닝 로직 단계에서 튜닝 변수를 다음의 표 1과 같이 적용하여 보상명령을 튜닝 한다.More specifically, in the compensation command tuning logic step, the tuning variable is applied as shown in Table 1 below to tune the compensation command.

Figure pat00020
Figure pat00020

최종적으로, 도 6에 도시한 바와 같이, 제어법칙(Control Law)에서 계산된 시리즈 액추에이터(Series Actuator)의 명령에 보상명령 튜닝 로직 단계의 결과를 더해준다.Finally, as shown in FIG. 6, the result of the compensation command tuning logic step is added to the command of the series actuator calculated in the control law.

상기와 같이, 발사체의 장착 위치, 반발력 크기는 사전에 상수로 적용하고, 발사체의 발사각도와 발사 신호를 입력받아서, 비행체의 자세 흐트러짐의 크기와 이를 방지하기 위한 조종 명령의 크기, 발사 시점 대비 조종 명령의 크기 및 시점 등을 예측하여 적용할 수 있다.As described above, the mounting position of the projectile and the size of the repulsive force are applied in advance as a constant, and by receiving the launch angle and the launch signal of the projectile, the size of the attitude disorder of the vehicle and the size of the control command for preventing it, the control command against the launch time It can be applied to predict the size and time of the.

최초에 예측한 조종 명령의 크기와 시점에 대한 효과가 충분하지 않을 경우, 시뮬레이션을 통하여 제어이득과 시간 지연 요소의 튜닝 수행과 효과, 확인 작업을 반복할 수 있다.If the effects on the size and timing of the initially predicted control command are not sufficient, the simulation can repeat the control gains, effects, and verification of the control gain and time delay elements.

이와 같이, 시뮬레이션을 통해 충분한 효과를 확인한 이후에는 비행시험을 수행하여 제어이득과 시간 지연 요소의 튜닝을 수행한다.As such, after confirming sufficient effects through simulation, flight tests are performed to tune the control gain and time delay components.

발사각도에 의한 경향 변화는 벡터의 외적을 사용하여 계산한다.The change in tendency due to the angle of launch is calculated using the cross product of the vector.

본 발명의 비행체의 발사에 의한 반발력 상쇄방법에 따르면, 다음과 같은 효과가 있다.According to the repulsive force offset method by the launch of the aircraft of the present invention, there are the following effects.

발사 시 발사체의 장착 위치, 발사각도, 반발력 크기로부터 비행체의 자세 흐트러짐을 최소화하는 명령을 계산하여 조종사의 임무 효율을 증대시킬 수 있다.Commands to minimize aircraft stance disturbances can be calculated from the projectile's mounting position, angle of launch, and magnitude of repulsion at launch to increase pilot efficiency.

따라서 무장 발사 시 조종사는 비행체의 자세 흐트러짐을 신경 쓰지 않고 발사 임무에만 집중할 수 있는 효과가 있다.Thus, when armed launching, pilots can focus on launching missions without worrying about mishandling of the aircraft.

이상과 같이, 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Dx : 비행체의 무게중심과 발사체 작용점과 x방향 거리
Dy : 비행체의 무게중심과 발사체 작용점과 y방향 거리
Dz : 비행체의 무게중심과 발사체 작용점과 z방향 거리

Figure pat00021
: 발사체의 좌, 우 방향각도
Figure pat00022
: 발사체의 상, 하 방향각도D x : Center of gravity of the aircraft, distance from projectile action point and x direction
D y : Center of gravity of the aircraft, distance from the projectile action point and y direction
D z : Center of gravity of the aircraft, the point of action of the projectile and the distance in z direction
Figure pat00021
: Left and right angle of projectile
Figure pat00022
: Up and down angle of projectile

Claims (3)

비행체의 발사에 의한 반발력 상쇄방법에 있어서,
상기 비행체의 무게중심과 발사체 작용점과의 x, y, z방향 거리를 각각 Dx, Dy, Dz라 하고,
상기 발사체의 좌, 우 방향 각도를
Figure pat00023
라 하고,
상기 발사체의 상, 하 방향 각도를
Figure pat00024
라 할 때,
반발력을 계산하는 반발력 계산 로직 단계;
계산된 반발력에 의해 반발모멘트를 계산하는 반발모멘트 계산 로직 단계; 및
계산된 반발모멘트와 발사 신호를 입력받아 보상명령을 튜닝하는 보상명령 튜닝 로직 단계를 포함하는 비행체의 무장 발사에 의한 반발력 상쇄방법.
In the method of offsetting the reaction force by the launch of the aircraft,
The distance in the x, y, z direction between the center of gravity of the vehicle and the point of action of the projectile is D x , D y , D z , respectively.
Left and right angles of the projectile
Figure pat00023
,
Up and down angle of the projectile
Figure pat00024
When we say
A repulsive force calculation logic step of calculating a repulsive force;
A reaction moment calculation logic step of calculating a reaction moment by the calculated reaction force; And
And a compensation command tuning logic step of tuning the compensation command by receiving the calculated reaction moment and the firing signal.
제1항에 있어서,
제어법칙(Control Law)에서 계산된 시리즈 액추에이터(Series Actuator)의 명령에 상기 보상명령 튜닝 로직 단계의 결과를 더해주는 것을 특징으로 하는 비행체의 무장 발사에 의한 반발력 상쇄방법.
The method of claim 1,
A method of canceling repulsion by armed firing of an aircraft, comprising adding a result of the compensation command tuning logic step to a command of a series actuator calculated in a control law.
제1항에 있어서,
상기 반발력 계산 로직 단계에서는 다음의 수학식 1 내지 수학식 3으로 반발력을 계산하고,
Figure pat00025
(수학식 1)
Figure pat00026
(수학식 2)
Figure pat00027
(수학식 3)
상기 반발모멘트 계산 로직 단계에서는 다음의 수학식 4 내지 수학식 6으로 발발모멘트를 계산하고,
Figure pat00028
(수학식 4)
Figure pat00029
(수학식 5)
Figure pat00030
(수학식 6)
상기 보상명령 튜닝 로직 단계에서는 아래의 표에 의해 보상명령을 튜닝하는 것을 특징으로 하는 비행체의 무장 발사에 의한 반발력 상쇄방법.
Figure pat00031
(표 1)
The method of claim 1,
In the repulsive force calculation logic step, the repulsive force is calculated by the following Equations 1 to 3,
Figure pat00025
(Equation 1)
Figure pat00026
(Equation 2)
Figure pat00027
(Equation 3)
In the repulsive moment calculation logic step, the occurrence moment is calculated by the following Equation 4 to Equation 6,
Figure pat00028
(Equation 4)
Figure pat00029
(Equation 5)
Figure pat00030
(Equation 6)
In the compensating command tuning logic step, the repulsive force offset method by armed firing of a vehicle according to the following table is tuned.
Figure pat00031
Table 1
KR1020180019161A 2018-02-19 2018-02-19 Repulsive force cancellation method of shooting arms for aircraft KR102114081B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180019161A KR102114081B1 (en) 2018-02-19 2018-02-19 Repulsive force cancellation method of shooting arms for aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180019161A KR102114081B1 (en) 2018-02-19 2018-02-19 Repulsive force cancellation method of shooting arms for aircraft

Publications (2)

Publication Number Publication Date
KR20190099571A true KR20190099571A (en) 2019-08-28
KR102114081B1 KR102114081B1 (en) 2020-05-25

Family

ID=67775449

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180019161A KR102114081B1 (en) 2018-02-19 2018-02-19 Repulsive force cancellation method of shooting arms for aircraft

Country Status (1)

Country Link
KR (1) KR102114081B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100102373A (en) * 2009-03-11 2010-09-24 삼성테크윈 주식회사 Remote shooting system
JP2013185749A (en) * 2012-03-07 2013-09-19 Ihi Aerospace Co Ltd Self-propelled missile launcher
KR20140052607A (en) * 2012-10-25 2014-05-07 한국항공우주산업 주식회사 System and method for adjusting control law gain according to the change of center of gravity of aircraft
KR20140111775A (en) * 2013-03-12 2014-09-22 현대중공업 주식회사 Submarine
KR20170121553A (en) 2016-04-25 2017-11-02 한국항공우주산업 주식회사 Flight control law simulation method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100102373A (en) * 2009-03-11 2010-09-24 삼성테크윈 주식회사 Remote shooting system
JP2013185749A (en) * 2012-03-07 2013-09-19 Ihi Aerospace Co Ltd Self-propelled missile launcher
KR20140052607A (en) * 2012-10-25 2014-05-07 한국항공우주산업 주식회사 System and method for adjusting control law gain according to the change of center of gravity of aircraft
KR20140111775A (en) * 2013-03-12 2014-09-22 현대중공업 주식회사 Submarine
KR20170121553A (en) 2016-04-25 2017-11-02 한국항공우주산업 주식회사 Flight control law simulation method and apparatus

Also Published As

Publication number Publication date
KR102114081B1 (en) 2020-05-25

Similar Documents

Publication Publication Date Title
US7513455B1 (en) Ballistic missile interceptor guidance by acceleration relative to line-of-sight
KR101502401B1 (en) Maximum engagement distance calculating method based on gradient for air-to-air missile
US20140109552A1 (en) In-Flight Attitude Control and Direct Thrust Flight Control System of a Vehicle and Craft Comprising Such a System
Kumar et al. Cooperative guidance strategies for active aircraft protection
KR20190099571A (en) Repulsive force cancellation method of shooting arms for aircraft
US20220065588A1 (en) Course correction systems for projectiles
WO2019035834A1 (en) Gbias for rate based autopilot
CA2283526C (en) Neural network trajectory command controller
CN107719705B (en) Method for inhibiting vibration of satellite solar sailboard by using solid micro-thruster array
Zlotnik et al. Rotation-matrix-based attitude control without angular velocity measurements
US7872215B2 (en) Methods and apparatus for guiding a projectile
KR20220030242A (en) Dynamic weapon-target assignment using a control-based methodology
Purnawan et al. Disturbance compensating model predictive control for warship heading control in missile firing mission
Proff et al. Study of impact point prediction methods for zero-effort-miss guidance: Application to a 155 mm spin-stabilized guided projectile
Braun et al. Advances in inertial guidance technology for aerospace systems
Wan et al. Suboptimal Midcourse Guidance with Terminal‐Angle Constraint for Hypersonic Target Interception
KR101841015B1 (en) Method for simulating characteristics of slbm
Kumar et al. Variable gain predictive PN guidance for interception of high speed re-entry targets
CN108279693B (en) Air-to-ground guided weapon upside-down-hanging rolling control method
US2866384A (en) Combination of hedgehog projector and gun mount
US10041774B2 (en) Multi-hypothesis fire control and guidance
Lee et al. Impact angle control guidance laws using finite-time-convergence control methods
RU2653168C1 (en) Method of aircraft control with satellite navigation equipment and device for its implementation
KR102312652B1 (en) Guided missile system and operation method of the same
Varma et al. A Pitch Controlled Impact-Angle-Constrained Guidance Law for Surface-to-Surface Missiles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant