KR20190089431A - Cu-Bi-Te BASED THERMOELECTRIC MATERIALS AND METHOD OF FORMING THE SAME - Google Patents

Cu-Bi-Te BASED THERMOELECTRIC MATERIALS AND METHOD OF FORMING THE SAME Download PDF

Info

Publication number
KR20190089431A
KR20190089431A KR1020180007900A KR20180007900A KR20190089431A KR 20190089431 A KR20190089431 A KR 20190089431A KR 1020180007900 A KR1020180007900 A KR 1020180007900A KR 20180007900 A KR20180007900 A KR 20180007900A KR 20190089431 A KR20190089431 A KR 20190089431A
Authority
KR
South Korea
Prior art keywords
thermoelectric material
forming
powder
present
sintering
Prior art date
Application number
KR1020180007900A
Other languages
Korean (ko)
Other versions
KR102061958B1 (en
Inventor
정인
차준일
조병진
Original Assignee
서울대학교산학협력단
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 한국과학기술원 filed Critical 서울대학교산학협력단
Priority to KR1020180007900A priority Critical patent/KR102061958B1/en
Publication of KR20190089431A publication Critical patent/KR20190089431A/en
Application granted granted Critical
Publication of KR102061958B1 publication Critical patent/KR102061958B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H01L35/14
    • H01L35/16
    • H01L35/18
    • H01L35/34
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Abstract

A Cu-Bi-Te-based thermoelectric material and a method of forming the same are provided. A method of forming the Cu-Bi-Te-based thermoelectric material includes a step of reacting Cu, Bi, and Te to form Cu-Bi-Te-based powder, and a step of sintering the Cu-Bi-Te-based powder. The Cu-Bi-Te-based powder may be formed by solid-phase reaction between Cu and Bi-Te-based powder. The sintering may be performed by a spark plasma sintering (SPS) process. The Cu-Bi-Te-based thermoelectric material is formed by the above method. The Cu-Bi-Te-based thermoelectric material may be n type. It is possible to provide a Cu-Bi-Te-based thermoelectric material with excellent performance at room temperature.

Description

Cu-Bi-Te계 열전 재료 및 그 형성 방법{Cu-Bi-Te BASED THERMOELECTRIC MATERIALS AND METHOD OF FORMING THE SAME}Cu-Bi-Te based thermoelectric material and method of forming the same

본 발명은 Cu-Bi-Te계 열전 재료 및 그 형성 방법에 관한 것이다.The present invention relates to a Cu-Bi-Te thermoelectric material and a method of forming the same.

열전 현상은 열과 전기 사이의 가역적이고, 직접적인 에너지 변환을 의미한다. 열전 현상은 재료 내부의 전자와 정공의 이동에 의해 열이 이동하는 현상 또는 열의 이동에 의하여 전자나 정공의 이동 즉, 전류를 발생하는 현상이다. 외부로부터 인가된 전류에 의해 형성된 양단의 온도차를 이용하여 냉각분야에 응용하는 펠티어 효과(peltier effect)와 재료 양단의 온도차로부터 발생하는 기전력을 이용하여 발전분야에 응용하는 제벡효과(seebeck effect)로 구분되며, 상기 두 가지 효과는 모두 가역적인 현상이다.Thermoelectric conversion means reversible, direct energy conversion between heat and electricity. Heat transfer is a phenomenon in which heat is moved by the movement of electrons and holes in the material, or the movement of electrons or holes is caused by the movement of heat, that is, a current is generated. The peltier effect applied to the cooling field by using the temperature difference at both ends formed by the externally applied current and the seebeck effect applied to the power generation field by using the electromotive force generated from the temperature difference between the both ends of the material Both of these effects are reversible phenomena.

이와 같은 열전현상을 일으키는 열전소자는 열전모듈, 펠티어소자, 써모일렉트릭 쿨러, 써모일렉트릭 모듈 등의 다양한 이름으로 불리고 있으며, 저온의 열원으로부터 열을 흡수하여 고온의 열원에 열을 주는 작은 열펌프 장치이며, 또한, 재료 양단에 발생하는 온도차에 의한 전력의 발전이 가능하여 신재생 에너지원의 하나로 주목받고 있다.These thermoelectric elements are called thermoelectric modules, Peltier elements, thermoelectric coolers, and thermoelectric modules. These thermoelectric elements are small heat pump devices that absorb heat from a low temperature heat source and heat it to a high temperature heat source , And it is possible to generate electric power by the temperature difference generated at both ends of the material, and it is attracting attention as one of the renewable energy sources.

상온 근처 열전 재료는 Bi2Te3계 재료가 거의 독점적으로 사용되어 왔다. 그러나, p-형 Bi0 . 5Sb1 . 5Te3, n-형 Bi2Te2 . 7Se0 .3의 특정 조성 이외에는 우수한 성질을 보이는 소재가 거의 존재하지 않는다. 또, 종래의 n-형 재료는 음이온으로 Se을 일부 포함하여 열전성능지수(thermoelectric figure of merit, ZT)의 최고값을 갖는 온도 영역이 Te만을 포함하는 p-형 재료에 비해 상대적으로 고온영역에 위치하여 소자 성능에 악영향을 미쳤다. Bi 2 Te 3 materials have been used almost exclusively as thermoelectric materials near room temperature. However, p-type Bi 0 . 5 Sb 1 . 5 Te 3 , n-type Bi 2 Te 2 . 7 Se 0 .3 , there is almost no material exhibiting excellent properties. In the conventional n-type material, the temperature region having the highest value of the thermoelectric figure of merit (ZT) including a part of Se as an anion is relatively higher in the high temperature region than the p- And the device performance was adversely affected.

상기와 같은 문제점을 해결하기 위하여, 본 발명은 새로운 Cu-Bi-Te계 열전 재료를 제공한다.In order to solve the above problems, the present invention provides a novel Cu-Bi-Te thermoelectric material.

본 발명은 상온에서 우수한 성능을 갖는 Cu-Bi-Te계 열전 재료를 제공한다.The present invention provides a Cu-Bi-Te thermoelectric material having excellent performance at room temperature.

본 발명은 상기 Cu-Bi-Te계 열전 재료의 형성 방법을 제공한다.The present invention provides a method of forming the Cu-Bi-Te thermoelectric material.

본 발명의 다른 목적들은 다음의 상세한 설명과 첨부한 도면으로부터 명확해 질 것이다.Other objects of the present invention will become apparent from the following detailed description and the accompanying drawings.

본 발명의 실시예들에 따른 Cu-Bi-Te계 열전 재료의 형성 방법은, Cu, Bi, 및 Te를 반응시켜 Cu-Bi-Te계 분말을 형성하는 단계 및 상기 Cu-Bi-Te계 분말을 소결하는 단계를 포함한다.The method for forming a Cu-Bi-Te-based thermoelectric material according to embodiments of the present invention includes the steps of forming a Cu-Bi-Te-based powder by reacting Cu, Bi, and Te, And sintering.

상기 Cu-Bi-Te계 분말은 Cu와 Bi-Te계 분말을 고상반응시키는 것에 의해 형성될 수 있다. 상기 Cu는 Bi-Te계 분말의 인터스티셜(interstitial) 자리에 도핑될 수 있다. 상기 고상반응은 650 ~ 750℃에서 수행될 수 있다.The Cu-Bi-Te powder can be formed by solid-phase reaction of Cu and Bi-Te powder. The Cu may be doped into the interstitial site of the Bi-Te-based powder. The solid state reaction can be performed at 650 to 750 ° C.

상기 소결은 SPS(Spark Plasma Sintering) 공정에 의해 수행될 수 있다.The sintering can be performed by a SPS (Spark Plasma Sintering) process.

상기 SPS 공정은 500 ~ 600℃에서 수행될 수 있다.The SPS process may be performed at 500 to 600 < 0 > C.

본 발명의 실시예들에 따른 Cu-Bi-Te계 열전 재료는 상기 방법에 의해 형성된다. A Cu-Bi-Te-based thermoelectric material according to embodiments of the present invention is formed by the above method.

상기 Cu-Bi-Te계 열전 재료는 하기 화학식을 가질 수 있다.The Cu-Bi-Te thermoelectric material may have the following chemical formula.

[화학식][Chemical Formula]

CuyBi2Te3+x Cu y Bi 2 Te 3 + x

상기 화학식에서, x는 0 이상 1 미만의 실수를 나타내고, y는 0.01 이상 0.1 이하의 실수를 나타낸다.In the above formula, x represents a real number of 0 or more and less than 1, and y represents a real number of 0.01 or more and 0.1 or less.

상기 Cu-Bi-Te계 열전 재료는 n 타입일 수 있다.The Cu-Bi-Te-based thermoelectric material may be n-type.

본 발명의 실시예들에 따르면, 간단한 방법으로 Cu-Bi-Te계 열전 재료를 형성할 수 있다. 상기 Cu-Bi-Te계 열전 재료는 상온에서 매우 높은 역률을 가질 수 있다. 상기 Cu-Bi-Te계 열전 재료는 선택적으로 원하는 위치에 Cu를 도입함으로써 새로운 n 타입 열전소재를 구현할 수 있다.According to embodiments of the present invention, a Cu-Bi-Te thermoelectric material can be formed by a simple method. The Cu-Bi-Te thermoelectric material can have a very high power factor at room temperature. The Cu-Bi-Te-based thermoelectric material can selectively incorporate Cu at a desired position to realize a new n-type thermoelectric material.

도 1은 본 발명의 실시예들에 따른 Cu-Bi-Te계 열전 재료의 전기 전도도를 나타낸다.
도 2는 본 발명의 실시예들에 따른 Cu-Bi-Te계 열전 재료의 역률을 나타낸다.
1 shows the electrical conductivity of a Cu-Bi-Te thermoelectric material according to embodiments of the present invention.
2 shows the power factor of a Cu-Bi-Te thermoelectric material according to embodiments of the present invention.

이하, 실시예들을 통하여 본 발명을 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예들을 통해 쉽게 이해될 것이다. 본 발명은 여기서 설명되는 실시예들에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서, 이하의 실시예들에 의하여 본 발명이 제한되어서는 안 된다.Hereinafter, the present invention will be described in detail with reference to examples. The objects, features and advantages of the present invention will be easily understood by the following embodiments. The present invention is not limited to the embodiments described herein, but may be embodied in other forms. The embodiments disclosed herein are provided so that the disclosure may be thorough and complete, and that those skilled in the art will be able to convey the spirit of the invention to those skilled in the art. Therefore, the present invention should not be limited by the following examples.

본 발명의 실시예들에 따른 Cu-Bi-Te계 열전 재료의 형성 방법은, Cu, Bi, 및 Te를 반응시켜 Cu-Bi-Te계 분말을 형성하는 단계 및 상기 Cu-Bi-Te계 분말을 소결하는 단계를 포함한다.The method for forming a Cu-Bi-Te-based thermoelectric material according to embodiments of the present invention includes the steps of forming a Cu-Bi-Te-based powder by reacting Cu, Bi, and Te, And sintering.

상기 Cu-Bi-Te계 분말은 Cu와 Bi-Te계 분말을 고상반응시키는 것에 의해 형성될 수 있다. 상기 고상반응은 650 ~ 750℃에서 수행될 수 있다. 상기 소결은 SPS(Spark Plasma Sintering) 공정에 의해 수행될 수 있다. 상기 SPS 공정은 500 ~ 600℃에서 수행될 수 있다. 상기 고상반응과 상기 SPS 공정을 연속으로 수행하는 것에 의해 Cu-Bi-Te계 열전 재료가 형성될 수 있다. 상기 Cu-Bi-Te계 열전 재료는 하기 화학식을 가질 수 있다.The Cu-Bi-Te powder can be formed by solid-phase reaction of Cu and Bi-Te powder. The solid state reaction can be performed at 650 to 750 ° C. The sintering can be performed by a SPS (Spark Plasma Sintering) process. The SPS process may be performed at 500 to 600 < 0 > C. The Cu-Bi-Te thermoelectric material can be formed by continuously performing the solid state reaction and the SPS process. The Cu-Bi-Te thermoelectric material may have the following chemical formula.

[화학식][Chemical Formula]

CuyBi2Te3+x Cu y Bi 2 Te 3 + x

상기 화학식에서, x는 0 이상 1 미만의 실수를 나타내고, y는 0.01 이상 0.1 이하의 실수를 나타낸다. x 및 y는 반응물의 농도, 공정 조건 등에 따라 달라질 수 있다.In the above formula, x represents a real number of 0 or more and less than 1, and y represents a real number of 0.01 or more and 0.1 or less. x and y may vary depending on the concentration of the reactants, the process conditions, and the like.

과량의 Te 분위기(Bi 대 Te의 몰수비가 1:(1.5+n)이고, n은 0보다 큰 실수) 가 많음)에서 상기 Cu는 Bi-Te계 분말의 인터스티셜(interstitial) 자리에 도핑될 수 있다. 즉, 과량의 Te 분위기에서 Cu를 n 타입 도펀트(dopant)로 선택적으로 도입할 수 있다. 이에 의해, 상기 Cu-Bi-Te계 열전 재료는 n 타입일 수 있다. The Cu is doped into the interstitial site of the Bi-Te-based powder in an excessive Te atmosphere (the molar ratio of Bi to Te is 1: (1.5 + n) and n is a real number larger than 0) . That is, Cu can be selectively introduced into an n-type dopant in an excessive Te atmosphere. Thus, the Cu-Bi-Te-based thermoelectric material may be n-type.

실시예Example

Cu 0.23g과 Bi-Te계 분말 49.77g을 700℃에서 녹여서 6시간 동안 고상반응시켜 Cu-Bi-Te계 분말을 형성하였다. SPS 공정을 수행하여 상기 Cu-Bi-Te계 분말을 소결화하였다. 상기 Cu-Bi-Te계 분말을 5분간 550℃까지 승온시킨 후 10분간 유지하여 소결체를 얻었다. 이에 의해, Cu-Bi-Te계 열전 재료가 형성되었다. 상기 Cu-Bi-Te계 열전 재료의 전기 전도도와 역률(power factor, PF)를 측정하였다. 0.23 g of Cu and 49.77 g of Bi-Te powder were melted at 700 ° C. and solid-reacted for 6 hours to form a Cu-Bi-Te powder. SPS process was performed to sinter the Cu-Bi-Te powder. The Cu-Bi-Te powder was heated to 550 DEG C for 5 minutes and held for 10 minutes to obtain a sintered body. As a result, a Cu-Bi-Te thermoelectric material was formed. The electrical conductivity and the power factor (PF) of the Cu-Bi-Te thermoelectric material were measured.

도 1은 본 발명의 실시예들에 따른 Cu-Bi-Te계 열전 재료의 전기 전도도를 나타내고, 도 2는 본 발명의 실시예들에 따른 Cu-Bi-Te계 열전 재료의 역률을 나타낸다. 도 1 및 도 2에서 화학식의 하첨자로 표시된 x는 0.1 ~ 0.5의 실수를 나타낸다. FIG. 1 shows the electrical conductivity of a Cu-Bi-Te thermoelectric material according to embodiments of the present invention, and FIG. 2 shows a power factor of a Cu-Bi-Te thermoelectric material according to embodiments of the present invention. In Figs. 1 and 2, x, denoted by a subscript in the formula, represents a real number of 0.1 to 0.5.

도 1 및 도 2를 참조하면, 상기 Cu-Bi-Te계 열전 재료는 높은 전기 전도도와 역률을 갖는 것으로 나타났다. 특히, 상기 Cu-Bi-Te계 열전 재료 중 Cu0 . 06Bi2Te3 +x는 상온에서 약 45㎼/㎝K2의 매우 높은 역률을 갖는 것으로 나타났다.Referring to FIGS. 1 and 2, the Cu-Bi-Te thermoelectric material has high electric conductivity and power factor. Particularly, among the Cu-Bi-Te thermoelectric materials, Cu 0 . 06 Bi 2 Te 3 + x has a very high power factor of about 45 cd / cm 2 at room temperature.

이제까지 본 발명에 대한 구체적인 실시예들을 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.Hereinafter, specific embodiments of the present invention have been described. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. Therefore, the disclosed embodiments should be considered in an illustrative rather than a restrictive sense. The scope of the present invention is defined by the appended claims rather than by the foregoing description, and all differences within the scope of equivalents thereof should be construed as being included in the present invention.

Claims (9)

Cu, Bi, 및 Te를 반응시켜 Cu-Bi-Te계 분말을 형성하는 단계; 및
상기 Cu-Bi-Te계 분말을 소결하는 단계를 포함하는 Cu-Bi-Te계 열전 재료의 형성 방법.
Cu, Bi, and Te to form a Cu-Bi-Te-based powder; And
And sintering the Cu-Bi-Te-based powder to form a Cu-Bi-Te-based thermoelectric material.
제 1 항에 있어서,
상기 Cu-Bi-Te계 분말은 Cu와 Bi-Te계 분말을 고상반응시키는 것에 의해 형성되는 것을 특징으로 하는 Cu-Bi-Te계 열전 재료의 형성 방법.
The method according to claim 1,
Wherein the Cu-Bi-Te-based powder is formed by solid-phase reaction of Cu and a Bi-Te-based powder.
제 2 항에 있어서,
상기 Cu는 Bi-Te계 분말의 인터스티셜(interstitial) 자리에 도핑되는 것을 특징으로 하는 Cu-Bi-Te계 열전 재료의 형성 방법.
3. The method of claim 2,
Wherein the Cu is doped into an interstitial site of a Bi-Te-based powder.
제 2 항에 있어서,
상기 고상반응은 650 ~ 750℃에서 수행되는 것을 특징으로 하는 Cu-Bi-Te계 열전 재료의 형성 방법.
3. The method of claim 2,
Wherein the solid phase reaction is performed at a temperature of 650 to 750 占 폚.
제 1 항에 있어서,
상기 소결은 SPS(Spark Plasma Sintering) 공정에 의해 수행되는 것을 특징으로 하는 Cu-Bi-Te계 열전 재료의 형성 방법.
The method according to claim 1,
The method of forming a Cu-Bi-Te thermoelectric material according to claim 1, wherein the sintering is performed by a spark plasma sintering (SPS) process.
제 5 항에 있어서,
상기 SPS 공정은 500 ~ 600℃에서 수행되는 것을 특징으로 하는 Cu-Bi-Te계 열전 재료의 형성 방법.
6. The method of claim 5,
Wherein the SPS process is performed at 500 to 600 ° C.
제 1 항 내지 제 6 항 중 어느 한 항의 방법에 의해 형성된 Cu-Bi-Te계 열전 재료. A Cu-Bi-Te thermoelectric material formed by the method of any one of claims 1 to 6. 제 7 항에 있어서,
상기 Cu-Bi-Te계 열전 재료는 하기 화학식을 갖는 것을 특징으로 하는 Cu-Bi-Te계 열전 재료.
[화학식]
CuyBi2Te3 +x
(상기 화학식에서, x는 0 이상 1 미만의 실수를 나타내고, y는 0.01 이상 0.1 이하의 실수를 나타냄)
8. The method of claim 7,
Wherein the Cu-Bi-Te thermoelectric material has the following chemical formula.
[Chemical Formula]
Cu y Bi 2 Te 3 + x
(In the above formula, x represents a real number of 0 or more and less than 1, and y represents a real number of 0.01 or more and 0.1 or less)
제 7 항에 있어서,
상기 Cu-Bi-Te계 열전 재료는 n 타입인 것을 특징으로 하는 Cu-Bi-Te계 열전 재료.
8. The method of claim 7,
Wherein the Cu-Bi-Te-based thermoelectric material is n-type.
KR1020180007900A 2018-01-22 2018-01-22 Cu-Bi-Te BASED THERMOELECTRIC MATERIALS AND METHOD OF FORMING THE SAME KR102061958B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180007900A KR102061958B1 (en) 2018-01-22 2018-01-22 Cu-Bi-Te BASED THERMOELECTRIC MATERIALS AND METHOD OF FORMING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180007900A KR102061958B1 (en) 2018-01-22 2018-01-22 Cu-Bi-Te BASED THERMOELECTRIC MATERIALS AND METHOD OF FORMING THE SAME

Publications (2)

Publication Number Publication Date
KR20190089431A true KR20190089431A (en) 2019-07-31
KR102061958B1 KR102061958B1 (en) 2020-01-03

Family

ID=67474057

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180007900A KR102061958B1 (en) 2018-01-22 2018-01-22 Cu-Bi-Te BASED THERMOELECTRIC MATERIALS AND METHOD OF FORMING THE SAME

Country Status (1)

Country Link
KR (1) KR102061958B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110052225A (en) * 2009-11-12 2011-05-18 삼성전자주식회사 Nanocomposite thermoelectric material, and thermoelectric device and thermoelectric module comprising same
KR20120050905A (en) * 2010-11-08 2012-05-21 이화여자대학교 산학협력단 Doped bi2te3-based thermoelectric material and preparing method of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110052225A (en) * 2009-11-12 2011-05-18 삼성전자주식회사 Nanocomposite thermoelectric material, and thermoelectric device and thermoelectric module comprising same
KR20120050905A (en) * 2010-11-08 2012-05-21 이화여자대학교 산학협력단 Doped bi2te3-based thermoelectric material and preparing method of the same

Also Published As

Publication number Publication date
KR102061958B1 (en) 2020-01-03

Similar Documents

Publication Publication Date Title
KR101760834B1 (en) Chalcogenide thermoelectric material and thermoelectric device comprised same
KR101995917B1 (en) Power factor enhanced thermoelectric material and method of producing same
JP2008512001A (en) P-type semiconductor containing silver
CN103872237A (en) Copper-sulfur-based high-performance thermoelectric material and preparation method thereof
Hung et al. Segmented thermoelectric oxide‐based module for high‐temperature waste heat harvesting
CN102887488B (en) Cu-Ga-Sb-Te quaternary thermoelectric semiconductor with chalcopyrite structure, and preparation process for Cu-Ga-Sb-Te quaternary thermoelectric semiconductor
KR20130071531A (en) Manufacturing method of thermoelectric device and cooling thermoelectric moudule using the same
Nemoto et al. Characteristics of a pin–fin structure thermoelectric uni-leg device using a commercial n-type Mg 2 Si source
US7435896B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the material, cooling device and electric apparatus using the element, and electric power generation method and cooling method using the element
US20110129668A1 (en) Organic-inorganic hybrid nanofiber for thermoelectric application and method of forming the same
Saini et al. Introduction and brief history of thermoelectric materials
WO2017037884A1 (en) Thermoelectric conversion material and thermoelectric conversion element in which same is used, and thermoelectric conversion module
KR20190089431A (en) Cu-Bi-Te BASED THERMOELECTRIC MATERIALS AND METHOD OF FORMING THE SAME
CN105633264A (en) Thermoelectric battery with series-wound electric leg structure
Kadhim et al. Thermoelectric generation device based on p-type Bi0. 4Sb1. 6Te3 and n-type Bi2Se0. 6Te2. 4 bulk materials prepared by solid state microwave synthesis
Sk et al. Exploring the possibility of enhancing the figure-of-merit (> 2) of Na 0.74 CoO 2: A combined experimental and theoretical study
US9960334B2 (en) Thermoelectric materials and their manufacturing method
Kadhim et al. Chalcogen-based thermoelectric power generation device using p-type Bi0. 4Sb1. 6Se2. 4Te0. 6 and n-type Bi2Se0. 6Te2. 4 prepared by solid-state microwave synthesis
CN110335936A (en) A kind of indium sulphur base thermoelectricity material and preparation method thereof
KR101587784B1 (en) Thermoelectric material using composite and method for manufacturing the thermoelectric material
Kishore et al. Thermoelectric Energy Harvesters and Applications
Huseynaliyev et al. The use of high efficiency thermoelectric materials to transfer a heat to electricity
Ma et al. Introduction of Organic Thermoelectrics
CN103107278A (en) Pb-mixing In4Se3 thermoelectric material and preparing method thereof
KR20190050018A (en) Copper-doped thermoelectric material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right