KR20190047247A - Method of enhancement for γ-aminobutyricacid in by-product of rice by addition of hydrolyzed protein and multi-environmental stress treatments - Google Patents

Method of enhancement for γ-aminobutyricacid in by-product of rice by addition of hydrolyzed protein and multi-environmental stress treatments Download PDF

Info

Publication number
KR20190047247A
KR20190047247A KR1020170140899A KR20170140899A KR20190047247A KR 20190047247 A KR20190047247 A KR 20190047247A KR 1020170140899 A KR1020170140899 A KR 1020170140899A KR 20170140899 A KR20170140899 A KR 20170140899A KR 20190047247 A KR20190047247 A KR 20190047247A
Authority
KR
South Korea
Prior art keywords
rice
content
products
gamma
gaba
Prior art date
Application number
KR1020170140899A
Other languages
Korean (ko)
Other versions
KR102067430B1 (en
Inventor
임승택
오수진
김현수
Original Assignee
주식회사 설곡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 설곡 filed Critical 주식회사 설곡
Priority to KR1020170140899A priority Critical patent/KR102067430B1/en
Publication of KR20190047247A publication Critical patent/KR20190047247A/en
Application granted granted Critical
Publication of KR102067430B1 publication Critical patent/KR102067430B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/115Cereal fibre products, e.g. bran, husk
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/197Treatment of whole grains not provided for in groups A23L7/117 - A23L7/196
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/02Acid
    • A23V2250/038Gamma-amino butyric acid
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/10Drying, dehydrating

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Cereal-Derived Products (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

The present invention relates to a method of increasing, within a short time, gamma-aminobutyric acid in rice by-products by using the addition of hydrolyzed proteins and various environmental stress treatments. According to the present invention, the content of gamma-aminobutyric acid (GABA) contained in rice by-products can be dramatically increased over a short time. The rice by-products prepared according to the present invention has a dramatically increased GABA content, and thus may be beneficially used in the fields related to food including food ingredients, health supplements, functional foods, drugs, drinks, milk, and the like. Further, the rice by-products have a dramatically increased content of various beneficial amino acids as well as cysteine which is effective for wrinkles, whitening, and the like, and thus may be beneficially used as compositions for cosmetics.

Description

단백질 가수분해물 첨가 및 다양한 환경적 스트레스 처리를 통한 쌀 부산물 내 감마-아미노부틸산의 증진방법{Method of enhancement for γ-aminobutyricacid in by-product of rice by addition of hydrolyzed protein and multi-environmental stress treatments}[0001] The present invention relates to a method for enhancing gamma-aminobutyric acid in rice byproducts by adding a protein hydrolyzate and various environmental stress treatments,

본 발명은 단백질 가수분해물 첨가 및 다양한 환경적 스트레스 처리를 이용하여, 쌀 부산물 내 감마-아미노부틸산을 단시간 내에 증진시키는 방법에 관한 것이다.The present invention relates to a method for enhancing gamma-aminobutyric acid in rice byproducts in a short period of time using the addition of protein hydrolysates and various environmental stress treatments.

쌀 부산물은 현미를 백미로 도정할 때 얻어지는 과피, 종피 및 호분층의 분쇄물을 말하는데 쌀이 가지고 있는 영양분의 95%는 미강과 쌀눈에 포함되어 있으며 현미의 호분층에 기능성분이 함유되어 있음은 잘 알려져 있다. 쌀 부산물은 양질의 단백질, 식이섬유, 각종 비타민과 미네랄이 함유되어 있을 뿐만 아니라 생리 활성인 감마-오리자놀(γ-oryzanol), 감마-아미노부틸산(γ-aminobutyricacid, GABA), 세라마이드(ceramide), 토코트리에놀(tocotrienol), 식물성스테롤(phytosterols) 등의 천연 항산화 물질, 수용성 비타민, 칼슘, 인, 철 등의 미네랄이 풍부하다.It is well known that 95% of the nutrients contained in rice are contained in rice bran and rice husk and that the functional ingredient is contained in the rice bran layer. . Rice by-products contain not only high-quality protein, dietary fiber, various vitamins and minerals but also physiologically active γ-oryzanol, γ-aminobutyricacid (GABA), ceramide, Natural antioxidants such as tocotrienol and phytosterols, and water-soluble vitamins, minerals such as calcium, phosphorus and iron.

특히 GABA는 4개의 탄소로 구성되어 있는 비단백질 구성 아미노산의 억제성 신경전달물질로서 1980년대 중반부터 이용되기 시작하였으며, 2001년부터 본격적으로 시장을 형성하기 시작한 성분으로 신경안정 작용, 스트레스 해소, 기억력 증진, 혈압강화 작용, 우울증 완화, 중풍과 치매 예방, 불면, 비만, 갱년기 장애, 당뇨 등에 효과가 있는 것으로 알려져 있으며, 뇌졸증 및 결장암, 대장암 세포의 전이 및 증식 억제 효과도 있어 세계적인 식품 소재로 알려지고 있어 식품업계에서 특히 주목되고 있는 기능성 성분의 하나로 각 방면에서 GABA를 증강시킨 기능성 식품의 개발이 진행되고 있다.In particular, GABA is an inhibitory neurotransmitter of non-protein constituent amino acids composed of four carbons and has been in use since the mid 1980s. Since 2001, GABA has started to form a market in earnest, It has been known to be effective in improving blood pressure, strengthening blood pressure, relieving depression, preventing stroke and dementia, insomnia, obesity, menopausal disorders and diabetes. It is also known as a global food ingredient because it has the effect of inhibiting metastasis and proliferation of stroke, colon cancer and colorectal cancer cells. As one of the functional ingredients that have been attracting attention particularly in the food industry, the development of functional foods that enhance GABA in each direction is underway.

일반적으로 우리 몸은 GABA 요구량을 모두 생산하지만 에스트로겐, 살리실산염 및 식품첨가물의 과잉섭취, 저 단백 식단, 아연과 비타민 B의 부족이 GABA 생성을 방해하며, 식품을 통해 보충할 경우 필요량은 하루 500-3000 mg 정도이다. GABA는 곡류 식품에 함유되어 있으나, 자연상태에서의 식물체 GABA 함유량으로는 양리작용을 발휘하기에 부족하여 자연적인 섭취로 GABA의 생리작용을 기대하기는 어려운 실정이다. 이에 화학적 방법, 미생물 이용방법, 다양한 스트레스 이용 방법 등을 활용하여 가바 함량을 증대시키고 이를 다양한 제품에 적용하여 이용하고 있다.In general, our body produces all of the GABA requirements, but the overdose of estrogen, salicylate and food additives, low protein diet, and zinc and vitamin B deficiency interfere with GABA production, It is about 3000 mg. Although GABA is contained in cereal foods, it is difficult to expect the physiological action of GABA due to the natural ingestion because the GABA content of the plant in the natural state is not enough to exert a bivalent action. Therefore, the amount of GABA is increased by using a chemical method, a method of using microorganisms, a method of utilizing various stresses, and applied to various products.

단백질 가수분해물(hydrolyzed protein, HP)은 밀, 옥수수, 유당, 미생물 등을 산 가수분해 혹은 효소 가수분해 하여 제조되는 것으로, 단백질보다 소화 및 흡수가 용이하고, 고분자인 단백질 섭취시 발생할 수 있는 알레르기의 위험이 적으며, 아미노산 다량 섭취시 발생할 수 있는 설사, 배탈 등과 같은 고삼투압에 의한 장애의 위험이 적은 등의 영양학적 장점들 때문에 이유식, 환자용 유동식, 다이어트 보조식 등의 단백질원으로 널리 이용되고 있다.Hydrolyzed protein (HP) is produced by acid hydrolysis or enzymatic hydrolysis of wheat, corn, lactose, and microorganisms. It is easier to digest and absorb than protein, and it can cause allergic It is widely used as a protein source for baby food, patient liquid diet, and diet-assisted diet due to nutritional advantages such as low risk and low risk of disability caused by high osmotic pressure such as diarrhea and stomach which may occur when a large amount of amino acid is consumed .

또한, 단백질을 섭취하게 되면 기초대사량이 증가하고, 지방의 흡수가 감소하는 효과가 있는데, 단백질 가수분해물은 이러한 효과가 더욱 높을 뿐만 아니라, 체내 지방의 분해 또는 산화를 촉진하고, 혈중의 저밀도 지단백 계통의 콜레스테롤 증가를 억제하는 등의 지질대사개선효능도 있는 것으로 보고되고 있다.In addition, the intake of protein increases the basal metabolism and decreases the absorption of fat. The protein hydrolyzate not only has such a high effect, but also accelerates the decomposition or oxidation of the body fat, and low density lipoprotein , Which is known to inhibit the increase of cholesterol.

한편, 미강, 쌀눈을 포함하는 쌀 부산물은 대부분이 버려지거나 가축의 비료로 사용되고 있고 최근에 들어 쌀 부산물을 식품산업에 응용한 미강유 등이 나오고 있으나 아직 그 개발에 있어서 미비하고, 현재 쌀 부산물을 이용하여 GABA의 함량을 늘려 다양한 산업에 적용하고자 하는 많은 연구가 진행되고 있다. 일 예로, 쌀 부산물에 효소 또는 글루탐산을 첨가하거나 미생물을 주입 배양하여 GABA의 함량을 늘리고자 하는 연구들이 보고된바 있으나, 제조비용이 높고, 과정이 복잡하여 시간이 많이 소요되는 단점을 가지고 있다. On the other hand, rice by-products, including rice gruel and rice husks, are mostly used as fertilizer or livestock fertilizer. Recently rice bran oil has been applied to the food industry, but it has not been developed yet. Many studies have been conducted to increase the content of GABA and apply it to various industries. For example, studies have been made to increase the content of GABA by adding enzymes or glutamic acid to rice by-products or by injecting microorganisms into the rice byproducts, but they have disadvantages in that they are expensive to manufacture and require a long process time.

본 발명의 목적은 단백질 가수분해물 첨가 및 다양한 환경적 스트레스 처리를 통해, 쌀 부산물 내 감마-아미노부틸산(GABA)을 단시간 내에 증진하는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for improving gamma-aminobutyric acid (GABA) in rice byproducts in a short period of time through the addition of protein hydrolysates and various environmental stress treatments.

본 발명은 상기 과제를 해결하기 위하여,In order to solve the above problems,

(a) 쌀 부산물에 물을 분무하여 상기 쌀 부산물의 수분 함량을 20-60%로 조절하는 단계; 및(a) spraying water on rice by-products to adjust the water content of the rice by-products to 20-60%; And

(b) 상기 수분 함량이 조절된 쌀 부산물에 질소 기체 또는 이산화탄소 기체를 주입하고, 30-50 ℃의 온도에서 1-8 시간동안 저장하는 단계;를 포함하고,(b) injecting nitrogen gas or carbon dioxide gas into the rice by-product whose moisture content is controlled, and storing at a temperature of 30-50 DEG C for 1-8 hours,

상기 (a) 단계에서 쌀 부산물의 수분 함량 조절 시 단백질 가수분해물을 첨가하는 것을 특징으로 하는 쌀 부산물 내 감마-아미노부틸산의 증진방법을 제공한다.The present invention also provides a method for enhancing gamma-aminobutyric acid in rice by-products, which comprises adding a protein hydrolyzate when controlling the moisture content of rice by-products in the step (a).

본 발명에 따르면, 상기 단백질 가수분해물의 농도는 1 내지 50%(w/v)일 수 있다.According to the present invention, the concentration of the protein hydrolyzate may be 1 to 50% (w / v).

본 발명에 따르면, 상기 단백질 가수분해물은 밀 단백질 가수분해물일 수 있다.According to the present invention, the protein hydrolyzate may be a wheat protein hydrolyzate.

본 발명에 따르면, 상기 (a) 단계에서 쌀 부산물의 수분 함량 조절 시 글루탐산을 더 첨가할 수 있다.According to the present invention, glutamic acid may be further added to control the moisture content of rice by-products in the step (a).

이때, 상기 글루탐산의 농도는 100 내지 1000 mM일 수 있다.At this time, the concentration of the glutamic acid may be 100-1000 mM.

본 발명에 따르면, 상기 (a) 단계에서 쌀 부산물의 수분 함량 조절 시 PLP(prydoxal-5'-phosphate)를 더 첨가할 수 있다.According to the present invention, PLP (prydoxal-5'-phosphate) may be further added to control the water content of rice by-products in the step (a).

이때, 상기 PLP(prydoxal-5'-phosphate)의 농도는 100 내지 1000 μM일 수 있다.At this time, the concentration of the PLP (prydoxal-5'-phosphate) may be 100 to 1000 μM.

본 발명에 따르면, 상기 (a) 단계의 물은 증류수, pH 2-4의 산성 이온수, pH 5-8의 중성 이온수, pH 9-11의 알칼리성 이온수 중에서 선택될 수 있다.According to the present invention, the water of step (a) may be selected from distilled water, acidic ionic water of pH 2-4, neutral ionized water of pH 5-8, and alkaline ionized water of pH 9-11.

본 발명에 따르면, 상기 쌀 부산물은 쌀눈 또는 미강일 수 있다.According to the present invention, the rice by-products may be rice bran or rice bran.

본 발명에 따르면, 쌀 부산물에 포함된 감마-아미노부틸산(GABA)의 함량을 빠른 시간 내에 크게 증가시킬 수 있다. 본 발명에 따라 제조된 쌀 부산물은 GABA 함량이 크게 향상되는바 식품소재, 건강보조식품, 기능성식품, 약물, 음료, 우유 등 식품관련 분야에 유용하게 이용될 수 있으며, 주름, 미백 등에 효과가 있는 시스테인을 비롯한 다양한 유용 아미노산의 함량이 크게 증가하는바 화장품 조성물로도 유용하게 이용될 수 있다.According to the present invention, the content of gamma-aminobutyric acid (GABA) contained in rice by-products can be greatly increased in a short period of time. The rice by-products prepared according to the present invention are greatly improved in GABA content and can be effectively used in food-related fields such as food materials, health supplements, functional foods, drugs, beverages and milk, The content of various useful amino acids such as cysteine is greatly increased, so that it can be usefully used as a cosmetic composition.

도 1은 미강(RB)과 쌀 부산물(RG)의 글루탐산(Glu), 감마-아미노부틸산(GABA) 및 수분함량(WC) 측정 결과를 나타낸 것이다.
도 2는 본 발명의 실시예 1에 따라, 각각 20, 30, 40%로 수분함량이 조절된 쌀 부산물을 질소 충전 및 20 ℃의 온도에서 암실 저장 시 저장 시간에 따른 글루탐산(Glu)과 감마-아미노부틸산(GABA)의 함량 변화를 측정한 결과를 나타낸 것이다.
도 3은 본 발명의 실시예 1에 따라, 각각 20, 30, 40%로 수분함량이 조절된 쌀 부산물을 질소 충전 및 30 ℃의 온도에서 암실 저장 시 저장 시간에 따른 글루탐산(Glu)과 감마-아미노부틸산(GABA)의 함량 변화를 측정한 결과를 나타낸 것이다.
도 4는 본 발명의 실시예 1에 따라, 각각 20, 30, 40%로 수분함량이 조절된 쌀 부산물을 질소 충전 및 40 ℃의 온도에서 암실 저장 시 저장 시간에 따른 글루탐산(Glu)과 감마-아미노부틸산(GABA)의 함량 변화를 측정한 결과를 나타낸 것이다.
도 5는 본 발명의 실시예 1에 따라, 각각 20, 30, 40%로 수분함량이 조절된 쌀 부산물을 질소 충전 및 50 ℃의 온도에서 암실 저장 시 저장 시간에 따른 글루탐산(Glu)과 감마-아미노부틸산(GABA)의 함량 변화를 측정한 결과를 나타낸 것이다.
도 6은 본 발명의 실시예 1에 따라, 각각 20, 30, 40%로 수분함량이 조절된 쌀 부산물을 질소 충전 및 60 ℃의 온도에서 암실 저장 시 저장 시간에 따른 글루탐산(Glu)과 감마-아미노부틸산(GABA)의 함량 변화를 측정한 결과를 나타낸 것이다.
도 7은 본 발명의 실시예 2에서, 글루탐산 첨가 농도에 따른 쌀 부산물 내의 글루탐산(Glu)과 감마-아미노부틸산(GABA)의 함량 변화를 측정한 결과를 나타낸 것이다.
도 8은 본 발명의 실시예 2에서, plp 첨가 농도에 따른 쌀 부산물 내의 글루탐산(Glu)과 감마-아미노부틸산(GABA)의 함량 변화를 측정한 결과를 나타낸 것이다.
도 9는 본 발명의 실시예 3에서, 단백질 가수분해물 첨가 농도에 따른 쌀 부산물 내의 글루탐산(Glu)과 감마-아미노부틸산(GABA)의 함량 변화를 측정한 결과를 나타낸 것이다.
도 10은 본 발명의 실시예 3에서, plp 첨가 농도에 따른 쌀 부산물 내의 글루탐산(Glu)과 감마-아미노부틸산(GABA)의 함량 변화를 측정한 결과를 나타낸 것이다.
FIG. 1 shows the results of measurement of glutamic acid (Glu), gamma-aminobutyric acid (GABA) and water content (WC) of rice bran (RB) and rice by-product (RG).
FIG. 2 is a graph showing the results of a comparison between the glutamic acid (Glu) and the gamma-aminopterin (Glu) activity of the rice by-products having moisture content adjusted to 20, 30 and 40% Aminobutyric acid (GABA) was measured.
FIG. 3 is a graph showing changes in the content of glutamic acid (Glu) and gamma-aminobutyric acid (Glu) according to the storage time when the rice byproducts whose moisture contents were controlled by 20, 30, 40% Aminobutyric acid (GABA) was measured.
FIG. 4 is a graph showing changes in the content of glutamic acid (Glu) and gamma-aminopterin (Glu) according to the storage time when the rice by-products were adjusted to moisture contents of 20, 30 and 40% Aminobutyric acid (GABA) was measured.
FIG. 5 is a graph showing changes in the content of glutamic acid (Glu) and gamma-aminopterin (Glu) according to the storage time when the rice by-products were adjusted to moisture content of 20, 30 and 40% Aminobutyric acid (GABA) was measured.
FIG. 6 is a graph showing changes in the content of glutamic acid (Glu) and gamma-aminopterin (Glu) according to the storage time of the rice byproducts having moisture content of 20, 30 and 40% Aminobutyric acid (GABA) was measured.
FIG. 7 shows the results of measurement of changes in the content of glutamic acid (Glu) and gamma-aminobutyric acid (GABA) in rice by-products according to the concentration of glutamic acid added in Example 2 of the present invention.
FIG. 8 shows the results of measurement of changes in the content of glutamic acid (Glu) and gamma-aminobutyric acid (GABA) in rice by-products according to the concentration of plp added in Example 2 of the present invention.
FIG. 9 shows the results of measurement of changes in the content of glutamic acid (Glu) and gamma-aminobutyric acid (GABA) in rice by-products according to the concentration of protein hydrolyzate added in Example 3 of the present invention.
10 shows the results of measurement of changes in the content of glutamic acid (Glu) and gamma-aminobutyric acid (GABA) in rice by-products according to the concentration of plp added in Example 3 of the present invention.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 단백질 가수분해물 첨가 및 다양한 환경적 스트레스 처리를 통해, 쌀 부산물 내 감마-아미노부틸산(GABA)을 단시간 내에 증진하는 방법을 제공하고자 한다.In the present invention, it is intended to provide a method for improving gamma-aminobutyric acid (GABA) in rice byproducts in a short time by adding protein hydrolysates and various environmental stress treatments.

이를 위해, 본 발명은 (a) 쌀 부산물에 물을 분무하여 상기 쌀 부산물의 수분 함량을 20-60%로 조절하는 단계; 및 (b) 상기 수분 함량이 조절된 쌀 부산물에 질소 기체 또는 이산화탄소 기체를 주입하고, 30-50 ℃의 온도에서 1-8 시간동안 저장하는 단계;를 포함하고, 상기 (a) 단계에서 쌀 부산물의 수분 함량 조절 시 단백질 가수분해물을 첨가하는 것을 특징으로 하는 쌀 부산물 내 감마-아미노부틸산의 증진방법을 제공한다.To this end, the present invention provides a method for producing a rice by-product comprising the steps of: (a) spraying water on rice by-products to adjust the water content of the rice by-products to 20-60%; And (b) injecting nitrogen gas or carbon dioxide gas into the rice by-product whose moisture content is controlled, and storing the rice by-product at a temperature of 30-50 ° C. for 1-8 hours. In the step (a) Aminobutyric acid in rice byproducts, characterized in that the protein hydrolyzate is added during the control of the moisture content of rice.

상기 단계를 구체적으로 살펴보면,Specifically,

상기 (a) 단계는 쌀 부산물에 물을 분무하여 상기 쌀 부산물의 수분 함량을 20-60%로 조절하는 단계이다. 이때, 상기 쌀 부산물의 수분 함량을 20-60%로 조절함에 따라 항스트레스, 항고혈압, 집중력 강화, 항비만 효과 등이 있는 비 단백질 구성 아미노산인 감마-아미노부틸산(GABA)의 함량을 종래 쌀 부산물(수분함량: 10%)보다 크게 향상시키는 효과가 있고, 특히 상기 범위를 벗어나는 경우로서 쌀 부산물의 수분 함량이 60%를 초과하는 경우에는 감마-아미노부틸산의 함량이 낮아지는 문제점이 있다.In the step (a), water is sprayed to the by-product of rice to adjust the moisture content of the by-product of rice to 20-60%. The content of gamma-aminobutyric acid (GABA), which is a nonprotein constituent amino acid having antistress, antihypertensive, concentration strengthening, anti-obesity effect and the like, is controlled by controlling the moisture content of the by-product of rice to 20-60% It has an effect of greatly improving the byproducts (moisture content: 10%). In particular, when the moisture content of rice byproduct exceeds 60%, the content of gamma-aminobutyric acid is lowered.

또한, 본 발명에서는 쌀 부산물 내 감마-아미노부틸산의 함량을 더욱 증가시키기 위해, 상기 (a) 단계에서 단백질 가수분해물을 더 첨가할 수 있다. 이때, 상기 단백질 가수분해물은 밀, 대두, 유당 단백질의 가수분해물일 수 있으며, 더욱 바람직하게는 밀 단백질 가수분해물일 수 있다. 또한, 상기 단백질 가수분해물의 농도는 1 내지 50%(w/v)일 수 있으며, 더욱 바람직하게는 10 내지 40%(w/v)일 수 있다. 상기 단백질 가수분해물의 농도가 상기 하한치 미만이면 감마-아미노부틸산의 함량 증가 효과가 미미하며, 상기 상한치를 초과하면 감마-아미노부틸산의 함량이 더이상 증가하지 않는다는 문제점이 있다.Further, in the present invention, in order to further increase the content of gamma-aminobutyric acid in the by-product of rice, the protein hydrolyzate may be further added in the step (a). At this time, the protein hydrolyzate may be a hydrolyzate of wheat, soybean or lactose protein, more preferably a wheat protein hydrolyzate. In addition, the concentration of the protein hydrolyzate may be 1 to 50% (w / v), more preferably 10 to 40% (w / v). When the concentration of the protein hydrolyzate is less than the lower limit, the effect of increasing the content of gamma-aminobutyric acid is insignificant, and when the concentration exceeds the upper limit, the content of gamma-aminobutyric acid is no longer increased.

또한, 본 발명에서는 쌀 부산물 내 감마-아미노부틸산의 함량을 더욱 증가시키기 위해, 상기 (a) 단계에서 글루탐산을 더 첨가할 수 있다. 이때, 상기 글루탐산의 농도는 100 내지 1000 mM일 수 있으며, 더욱 바람직하게는 400 내지 1000 mM일 수 있다. 상기 글루탐산의 농도가 상기 하한치 미만이면 감마-아미노부틸산의 함량 증가 효과가 미미하며, 상기 상한치를 초과하면 감마-아미노부틸산의 함량이 더이상 증가하지 않는다는 문제점이 있다.Further, in the present invention, in order to further increase the content of gamma-aminobutyric acid in the by-product of rice, glutamic acid may be further added in the step (a). At this time, the concentration of the glutamic acid may be 100-1000 mM, more preferably 400-1000 mM. When the concentration of glutamic acid is less than the lower limit, the effect of increasing the content of gamma-aminobutyric acid is insignificant, and when the concentration exceeds the upper limit, the content of gamma-aminobutyric acid is no longer increased.

또한, 본 발명에서는 쌀 부산물 내의 효소를 활성화시켜 쌀 부산물 내에 감마-아미노부틸산으로 전환되지 않은 글루탐산을 추가적으로 전환시켜 쌀 부산물 내 감마-아미노부틸산의 함량을 더욱 증가시키기 위해, 상기 (a) 단계에서 쌀 부산물 내 효소의 보조인자로 작용하는 PLP(prydoxal-5'-phosphate)를 더 첨가할 수 있다. 이때, 상기 PLP(prydoxal-5'-phosphate)의 농도는 100 내지 1000 μM일 수 있다. 상기 PLP의 농도가 상기 하한치 미만이면 감마-아미노부틸산의 함량 증가 효과가 미미하며, 상기 상한치를 초과하면 감마-아미노부틸산의 함량이 더이상 증가하지 않는다는 문제점이 있다.Further, in the present invention, in order to further increase the content of gamma-aminobutyric acid in the by-product of rice by activating the enzyme in the rice by-product to further convert glutamic acid not converted into gamma-aminobutyric acid into rice by- (Prydoxal-5'-phosphate), which acts as a cofactor for the enzyme in rice by-products, can be added. At this time, the concentration of the PLP (prydoxal-5'-phosphate) may be 100 to 1000 μM. If the concentration of PLP is below the lower limit, the effect of increasing the content of gamma-aminobutyric acid is insignificant, and if the PLP is above the upper limit, the content of gamma-aminobutyric acid is not increased any more.

또한, 상기 단계 (a)의 물은 증류수, pH 2-4의 산성 이온수, pH 5-8의 중성 이온수, pH 9-11의 알칼리성 이온수 중에서 선택될 수 있다.In addition, the water of step (a) may be selected from distilled water, acidic ionized water of pH 2-4, neutral ionized water of pH 5-8, and alkaline ionized water of pH 9-11.

또한, 본 발명에 사용된 쌀 부산물은 쌀눈 또는 미강일 수 있다.The rice by-products used in the present invention may also be rice bran or rice bran.

다음으로, 상기 단계 (b)는 상기 수분함량이 20-60%인 쌀 부산물에 질소 기체 또는 이산화탄소 기체를 주입하고, 30-50 ℃의 온도에서 1-8 시간동안 저장하는 단계이다. 상기 단계 (b)의 다양한 환경적 스트레스 처리에 의해, 감마-아미노부틸산의 함량이 더욱 증가하는 효과가 있다.Next, the step (b) is a step of injecting nitrogen gas or carbon dioxide gas into the by-product of rice having the moisture content of 20-60%, and storing it at a temperature of 30-50 ° C for 1-8 hours. The various environmental stress treatments of step (b) have the effect of further increasing the content of gamma-aminobutyric acid.

이하에서는 바람직한 실시예 등을 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예 등은 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments and the like. It will be apparent to those skilled in the art, however, that these examples are provided for further illustrating the present invention and that the scope of the present invention is not limited thereto.

실시예Example 1 : 쌀눈의 수분함량 및 다양한 환경적 스트레스(Multi-environmental stress) 처리에 따른 글루탐산과  1: Water content of rice flour and various environmental stresses (glutamic acid and glutamic acid) GABA의GABA's 함량 변화 Content change

(1) 먼저, 환경적 스트레스 처리하지 않은 쌀눈 내에 존재하는 글루탐산과 GABA의 함량을 측정하여 그 결과를 하기 도 1에 나타내었다.(1) First, the content of glutamic acid and GABA present in unirradiated rice balls was measured, and the results are shown in FIG.

측정 결과, 쌀눈의 글루탐산 함량은 277.9 mg/100 g, GABA 함량은 79.7 mg/100 g으로 나타났으며, 수분 함량은 약 10%인 것으로 나타났다.As a result, the content of glutamic acid was 277.9 mg / 100 g and the content of GABA was 79.7 mg / 100 g in rice, and the moisture content was about 10%.

(2) 다음으로, 쌀눈 100 g에 pH 2.8 의 산성 이온수를 분무하면서 수분함량을 각각 10(control), 20, 30, 40 %로 각각 조절하여 상온에서 10분간 보관한 후, 질소 충전 및 다양한 온도(30, 40, 50, 60 ℃)에서 0, 2, 4, 6, 8, 12 시간 동안 저장하였다. (2) Next, the water content was adjusted to 10 (control), 20, 30, and 40%, respectively, while acidic ionized water having a pH of 2.8 was sprayed to 100 g of rice husk, and the mixture was stored at room temperature for 10 minutes. And stored at 0, 2, 4, 6, 8, and 12 hours at 30, 40, 50, and 60 ℃.

상기 쌀눈의 글루탐산 및 감마-아미노부틸산의 함량을 측정하기 위해, 각각의 쌀눈 1 g에 4.5% 설포사리틸산(Sulfosalicylic acid), 70% 에틸알코올을 각각 4.5 ml씩 넣고 2분 동안 교반한 뒤, 진탕항온수조(shaking water bath, 40 ℃)에서 160 rpm으로 30분 동안 교반한 후, 3000 rpm, 4 ℃에서 15분 동안 원심분리하여 쌀눈을 전처리하였다. 상기 과정을 3번 반복하고 상등액을 Advantec, DISMIC-13HP, Syringe Filter 0.20 ㎛로 여과한 후 HPLC로 분석하였다. 추출물 내에 글루탐산 및 감마-아미노부틸산을 분석하기 위해, 0.1 M borate buffer solution에 OPA와 MPA를 혼합하여 HPLC의 automatic input device program을 이용하여 유도체화하였다. HPLC분석 조건은 컬럼(Column : 5 ㎛ C18(Ⅱ) Dionex bonned Silica products)를 사용하였고 유속(Flow rate)은 분당 1.2 ml, 컬럼 온도는 40 ℃, 주입양은 10 ㎕이며, FLD 검출기를 이용하여 338 nm 파장에서 측정하였다. A mobile phase (10 mM borax, 10 mM sodium phosphate, and 0.5 mM sodium azide at pH 8.2)이고, B mobile phase (45% acetonitrile, 45% methanol, 10% distilled water)를 이용하였으며, gradient program은 0 12 min, 10% B; 1213 min, 1030% B; 1317 min, 3090% B; 17 20 min, 90100% B. The flow rate was 1.2 mL/min로 하였다. 측정 결과는 하기 도 2 내지 도 6에 나타내었다.In order to measure the content of glutamic acid and gamma-aminobutyric acid in the rice gums, 4.5 ml of 4.5% sulfosalicylic acid and 70% ethyl alcohol were added to 1 g of each rice gruel, and the mixture was stirred for 2 minutes. The mixture was stirred at 160 rpm for 30 minutes in a shaking water bath (40 ° C.), and then centrifuged at 3000 rpm at 4 ° C. for 15 minutes to pre-treat rice husks. The above procedure was repeated 3 times and the supernatant was filtered with 0.20 μm of Advantec, DISMIC-13HP, Syringe Filter and analyzed by HPLC. To analyze glutamic acid and gamma-aminobutyric acid in the extract, OPA and MPA were mixed in 0.1 M borate buffer solution and derivatized using HPLC automatic input device program. The flow rate was 1.2 ml per minute, the column temperature was 40 ° C, the injection amount was 10 μl, and the FLD detector was used for the analysis of the column (column: 5 μm C18 (Ⅱ) Dionex boned Silica products) nm wavelength. A mobile phase (10 mM borax, 10 mM sodium phosphate, and 0.5 mM sodium azide at pH 8.2) was used and B mobile phase (45% acetonitrile, 45% methanol, 10% distilled water) min, 10% B; 1213 min, 1030% B; 1317 min, 3090% B; 17 20 min, 90 100% B. The flow rate was 1.2 mL / min. The measurement results are shown in Figs. 2 to 6 below.

측정 결과, 아무런 환경적 스트레스를 처리하지 않은 쌀눈의 GABA 함량은 79.8 mg/100 g인 반면, 본 발명에 따라 다양한 환경적 스트레스(수분함량, 저장온도 및 시간)를 처리한 쌀눈의 GABA 함량은 모두 증가하였으며, 특히 수분함량 30%, 저장온도 40 ℃, 저장시간 6 시간의 조건에서 GABA 함량은 최대 269.5 mg/100 g으로 약 3배 이상 증가하는 것을 확인하였다. As a result of measurement, the GABA content of rice husks without any environmental stress was 79.8 mg / 100 g, while the GABA content of rice husks treated with various environmental stresses (moisture content, storage temperature and time) Especially at a moisture content of 30%, a storage temperature of 40 ° C and a storage time of 6 hours, the GABA content increased up to about 269.5 mg / 100 g, about three times.

실시예Example 2 : 다양한 환경적 스트레스( 2: Various environmental stresses ( MESMES ) 처리 및 글루탐산 첨가에 따른 쌀눈의 글루탐산과 ) Treated with glutamic acid and glutamic acid GABAGABA 함량 변화 Content change

(1) 쌀눈 100 g에 pH 2.8 의 산성 이온수를 분무하되, 글루탐산을 각각 100, 200, 400, 600, 800 및 1000 mM 첨가하면서, 쌀눈의 수분함량을 30%로 조절하여 상온에서 10분간 보관한 후, 질소 충전 및 40 ℃ 온도에서 6시간 동안 저장하였다.(1) 100 g of glutamate was added to 100 g of glutamic acid to 100 g of glutamic acid, and the water content of the glutinous rice was adjusted to 30%, and the glutamic acid was stored at room temperature for 10 minutes , Then charged with nitrogen and stored at 40 DEG C for 6 hours.

다음으로, 상기 실시예 1의 (2)와 동일한 방법에 의해 쌀눈에 포함된 글루탐산 및 감마-아미노부틸산의 함량을 측정하였으며, 그 결과를 하기 도 7에 나타내었다(RG: 일반 쌀눈, RGS: MES 처리 쌀눈, G100-1000: MES 처리 및 글루탐산 100-1000 mM 첨가한 쌀눈).Next, the content of glutamic acid and gamma-aminobutyric acid contained in the rice gums was measured by the same method as in Example 1 (2), and the results are shown in FIG. 7 (RG: common rice gruel, RGS: MES-treated rice ginseng, G100-1000: rice husk added with 100-1000 mM glutamic acid and MES treatment).

측정 결과, 본 발명의 실시예 1에서 도출한 최적 환경적 스트레스 처리에 더하여 글루탐산을 첨가할 경우 쌀눈의 GABA 함량이 모두 증가하였으며, 특히 1000 mM의 글루탐산을 첨가한 경우 쌀눈의 GABA 함량은 약 1,470 mg/100 g으로 일반 쌀눈에 비해 GABA 함량이 최대 18배 이상 증가하는 것을 확인하였다.As a result of measurement, the addition of glutamic acid in addition to the optimal environmental stress treatment derived from Example 1 of the present invention increased the GABA content of rice, and in particular, when 1000 mM glutamic acid was added, the GABA content of rice gummi was about 1,470 mg / 100 g, which is higher than that of ordinary rice by 18 times.

(2) 쌀눈 100 g에 pH 2.8 의 산성 이온수를 분무하되, 글루탐산을 1000 mM 첨가하고, PLP를 각각 100, 200, 300, 400 및 500 μM 첨가하면서, 쌀눈의 수분함량을 30%로 조절하여 상온에서 10분간 보관한 후, 질소 충전 및 40 ℃ 온도에서 6시간 동안 저장하였다.(2) To 100 g of rice husk, acidic ionized water having a pH of 2.8 was sprayed, 1000 mM of glutamic acid was added, and the water content of the rice husk was adjusted to 30% while PLP was added at 100, 200, 300, For 10 minutes, then charged with nitrogen and stored at 40 ° C for 6 hours.

다음으로, 상기 실시예 1의 (2)와 동일한 방법에 의해 쌀눈에 포함된 글루탐산 및 감마-아미노부틸산의 함량을 측정하였으며, 그 결과를 하기 도 8에 나타내었다(RG: 일반 쌀눈, RGS: MES 처리 쌀눈, G1000: MES 처리 및 글루탐산 1,000 mM 첨가한 쌀눈, p100-500: MES 처리, 글루탐산 1,000 mM 첨가 및 PLP 100-500 μM 첨가한 쌀눈).Next, the content of glutamic acid and gamma-aminobutyric acid contained in the rice gums was measured by the same method as in Example 1 (2). The results are shown in FIG. 8 (RG: common rice gruel, RGS: MES treated rice ginseng, G1000: rice husk with MES treatment and 1,000 mM glutamic acid, p100-500: MES treatment, 1000 mM glutamic acid addition and 100-500 μM PLP).

측정 결과, 본 발명의 실시예 1에서 도출한 최적 환경적 스트레스 처리 및 실시예 2의 (1)에서 도출한 최적농도의 글루탐삼 첨가에 더하여, PLP를 첨가할 경우 쌀눈의 GABA 함량이 모두 증가하였으며, 특히 300 μM의 PLP를 첨가한 경우 쌀눈의 GABA 함량은 약 2222.2 mg/100 g으로 일반 쌀눈에 비해 GABA 함량이 최대 27배 이상 증가하는 것을 확인하였다.As a result of measurement, the addition of PLP to the optimal environmental stress treatment derived from Example 1 of the present invention and the optimum concentration of glutamate obtained in (1) of Example 2 increased the GABA content of rice , Especially when 300 μM of PLP was added, the content of GABA in rice ginseng was about 2222.2 mg / 100 g, which was 27 times higher than that of ordinary rice.

실시예Example 3 : 다양한 환경적 스트레스( 3: Various environmental stresses ( MESMES ) 처리 및 ) Processing and 단백질가수분해물Protein hydrolyzate 첨가에 따른 쌀눈의 글루탐산과 GABA 함량 변화 Changes in Glutamic Acid and GABA Content of Rice Grains with Addition

(1) 먼저, 유 단백질 가수분해물(HMP), 대두 단백질 가수분해물(HSP), 밀 단백질 가수분해물(HWP)의 글루탐산과 GABA 함량을 측정하여, 하기 표 1에 나타내었다.(1) First, glutamic acid and GABA content of milk protein hydrolyzate (HMP), soy protein hydrolyzate (HSP) and wheat protein hydrolyzate (HWP) were measured and shown in Table 1 below.

Figure pat00001
Figure pat00001

측정 결과, 밀 단백질 가수분해물(HWP)의 경우 글루탐산의 함량이 다른 단백질 가수분해물에 비해 매우 높다는 것을 확인하였다.As a result, it was confirmed that the content of glutamic acid in wheat protein hydrolyzate (HWP) was much higher than that of other protein hydrolysates.

(2) 산성 이온수에 밀 단백질 가수분해물을 녹여 각각 1, 3, 5, 10, 20, 30, 40%(w/v)로 농도를 조절한 후, 쌀 부산물 100 g에 분무하여, 쌀눈의 수분함량을 30%로 조절하고 상온에서 10분간 보관한 후, 질소 충전 및 40 ℃ 온도에서 6시간 동안 저장하였다.(2) The whey protein hydrolyzate was dissolved in acidic ionized water and the concentration was adjusted to 1, 3, 5, 10, 20, 30, 40% (w / v) The content was adjusted to 30%, stored at room temperature for 10 minutes, then charged with nitrogen and stored at 40 ° C for 6 hours.

다음으로, 상기 실시예 1의 (2)와 동일한 방법에 의해 쌀눈에 포함된 글루탐산 및 감마-아미노부틸산의 함량을 측정하였으며, 그 결과를 하기 도 9에 나타내었다(RG: 일반 쌀눈, RGE: MES 처리 쌀눈, GH1-40: MES 처리 및 밀 단백질 가수분해물 1-40%(w/v) 첨가한 쌀눈).Next, the content of glutamic acid and gamma-aminobutyric acid contained in the rice gums was measured by the same method as in Example 1 (2). The results are shown in FIG. 9 (RG: MES treated rice ginseng, GH1-40: rice husks added with 1-40% (w / v) MES treatment and wheat protein hydrolyzate).

측정 결과, 본 발명의 실시예 1에서 도출한 최적 환경적 스트레스 처리에 더하여 밀 단백질 가수분해물을 첨가할 경우 쌀눈의 GABA 함량이 모두 증가하였으며, 특히 30%(w/v)의 밀 단백질 가수분해물을 첨가한 경우 쌀눈의 GABA 함량은 일반 쌀눈에 비해 최대 6배 이상 증가하는 것을 확인하였다.As a result of the measurement, the addition of the wheat protein hydrolyzate to the optimum environmental stress treatment derived from Example 1 of the present invention increased the GABA content of the rice, especially 30% (w / v) wheat protein hydrolyzate The content of GABA in rice was 6 times higher than that of normal rice.

(3) 산성 이온수에 밀 단백질 가수분해물을 녹여 30%(w/v)로 농도를 조절하여 쌀눈 100 g에 분무하되, PLP를 각각 100 내지 1000 μM 첨가하면서, 쌀눈의 수분함량을 30%로 조절하여 상온에서 10분간 보관한 후, 질소 충전 및 40 ℃ 온도에서 6시간 동안 저장하였다.(3) Dissolve the whey protein hydrolyzate in acidic ionized water and adjust the concentration to 30% (w / v). Spray 100 g of rice flour, adjusting the moisture content of the rice flour to 30% while adding 100 to 1000 μM of PLP , Stored at room temperature for 10 minutes, then charged with nitrogen and stored at 40 ° C for 6 hours.

다음으로, 상기 실시예 1의 (2)와 동일한 방법에 의해 쌀눈에 포함된 글루탐산 및 감마-아미노부틸산의 함량을 측정하였으며, 그 결과를 하기 도 10에 나타내었다(RG: 일반 쌀눈, RGE: MES 처리 쌀눈, GW30: MES 처리 및 밀 단백질 가수분해물 30%(w/v) 첨가한 쌀눈, p100-1000: MES 처리, 밀 단백질 가수분해물 30%(w/v) 첨가 및 PLP 100-1000 μM 첨가한 쌀눈).Next, the content of glutamic acid and gamma-aminobutyric acid contained in the rice was measured by the same method as in Example 1 (2), and the results are shown in FIG. 10 (RG: MES treated rice gum, GW30: rice husk added with 30% (w / v) of MES treatment and wheat protein hydrolyzate, p100-1000: MES treatment, addition of 30% (w / v) of wheat protein hydrolyzate and 100-1000 μM of PLP A rice gruel).

측정 결과, 본 발명의 실시예 1에서 도출한 최적 환경적 스트레스 처리 및 실시예 3의 (2)에서 도출한 최적농도의 밀 단백질 가수분해물 첨가에 더하여, PLP를 첨가할 경우 쌀눈의 GABA 함량이 모두 증가하였으며, 특히 300 μM 이상의 PLP를 첨가한 경우 쌀눈의 GABA 함량은 일반 쌀눈에 비해 최대 10배 이상 증가하는 것을 확인하였다.As a result of the measurement, in addition to the optimal environmental stress treatment derived from Example 1 of the present invention and the addition of the optimum concentration of wheat protein hydrolyzate obtained in (2) of Example 3, the addition of PLP resulted in a decrease in the GABA content . In particular, it was confirmed that the content of GABA in rice blast increased more than 10 times compared with that of normal rice when PLP of 300 μM or more was added.

실시예Example 4 : 다양한 환경적 스트레스( 4: Various environmental stresses ( MESMES ) 처리 및 ) Processing and 단백질가수분해물Protein hydrolyzate 첨가에 따른 쌀눈의 아미노산 함량 측정 Determination of Amino Acid Content of Rice Grains by Addition

일반 쌀눈, 상기 실시예 1에 따라 MES 처리된 쌀눈, 상기 실시예 3의 (2)에 따라 MES 처리 및 밀 단백질 가수분해물 첨가된 쌀눈 및 상기 실시예 3의 (3)에 따라 MES 처리, 밀 단백질 가수분해물 첨가 및 PLP 첨가된 쌀눈의 아미노산 함량을 비교분석하였다. Rice husks obtained by MES treatment according to Example 1 above, rice husks added with MES treatment and wheat protein hydrolyzate according to (2) of Example 3, and MES treatment according to Example 3 (3) Amino acid contents of rice blend added with hydrolysates and PLP were compared and analyzed.

상기 쌀눈 1 g에 4.5% 설포사리틸산(Sulfosalicylic acid), 70% 에틸알코올을 각각 4.5 ml씩 넣고 2분 동안 교반한 뒤, 진탕항온수조(shaking water bath, 40 ℃)에서 160 rpm으로 30분 동안 교반한 후, 3,000 rpm, 4 ℃에서 15분 동안 원심분리하여 쌀눈을 전처리하였다. 상기 과정을 3번 반복하고 상등액을 Advantec, DISMIC-13HP, Syringe Filter 0.20 ㎛로 여과한 후 HPLC로 분석하였다. 추출물 내에 아미노산을 분석하기 위해, 0.2 M borate buffer에 OPA와 MPA를 혼합하였고, 2차 amino acid인 Prorine을 분석하기 위해서 FMOC시약을 이용하여 HPLC의 automatic input device program을 통해 유도체화하였다. HPLC분석 조건은 컬럼(Column : 5 ㎛ C18(Ⅱ) Dionex bonned Silica products)를 사용하였고 유속(Flow rate)은 분당 1.2 ml, 컬럼 온도는 40 ℃, 주입양은 10 ㎕이며, FLD 검출기를 이용하여 340nm과 450nm 파장에서 측정하였다. A mobile phase (10 mM borax, 10 mM sodium phosphate, and 0.5 mM sodium azide at pH 8.2)이고, B mobile phase (45% acetonitrile, 45% methanol, 10% distilled water)를 이용하였으며, gradient program은0-2 min, 2% B; 2-35 min, 2-54% B; 35-38 min, 100% B; 38-43 min, 100% B; 43-44 min, 2%. The flow rate was 1.5 mL/min at 40°C 로 하였다. 측정 결과는 하기 표 2에 나타내었다.4.5 ml of 4.5% sulfosalicylic acid and 70% ethyl alcohol were added to 1 g of the above rice, and the mixture was stirred for 2 minutes. Then, the mixture was shaken in a shaking water bath (40 ° C) at 160 rpm for 30 minutes After stirring, the rice husks were pre-treated by centrifugation at 3,000 rpm and 4 ° C for 15 minutes. The above procedure was repeated 3 times and the supernatant was filtered with 0.20 μm of Advantec, DISMIC-13HP, Syringe Filter and analyzed by HPLC. To analyze amino acids in the extract, OPA and MPA were mixed in a 0.2 M borate buffer. To analyze Prorine, a second amino acid, an FMOC reagent was used to derivatize it by HPLC automatic input device program. The flow rate was 1.2 ml per minute, the column temperature was 40 ° C, the injection amount was 10 μl, and the flow rate was 340 nm (nm) using an FLD detector. The HPLC analysis conditions were as follows: Column: 5 urn C18 (Ⅱ) Dionex boned Silica products) And at a wavelength of 450 nm. A mobile phase (10 mM borax, 10 mM sodium phosphate, and 0.5 mM sodium azide at pH 8.2) and B mobile phase (45% acetonitrile, 45% methanol, 10% distilled water) 2 min, 2% B; 2-35 min, 2-54% B; 35-38 min, 100% B; 38-43 min, 100% B; 43-44 min, 2%. The flow rate was 1.5 mL / min at 40 ° C. The measurement results are shown in Table 2 below.

Figure pat00002
Figure pat00002

측정 결과, 본 발명에 따라 MES 처리, MES 처리 및 밀 단백질 가수분해물 첨가, MES 처리, 밀 단백질 가수분해물 첨가 및 PLP 첨가시 모두 Asp와 글루탐산을 제외하고는 아미노산의 함량이 증가하는 것을 확인하였으며, MES 처리와 함께 밀 단백질 가수분해물을 첨가하거나, 이에 더하여 PLP를 첨가할 경우 시스테인을 비롯한 다양한 유용 아미노산의 함량이 크게 증가하는 것을 확인하였다.As a result of the measurement, it was confirmed that amino acid content except for Asp and glutamic acid was increased during MES treatment, MES treatment and addition of wheat protein hydrolyzate, MES treatment, wheat protein hydrolyzate addition and PLP addition, and MES The addition of wheat protein hydrolyzate and the addition of PLP significantly increased the content of various amino acids including cysteine.

Claims (9)

(a) 쌀 부산물에 물을 분무하여 상기 쌀 부산물의 수분 함량을 20-60%로 조절하는 단계; 및
(b) 상기 수분 함량이 조절된 쌀 부산물에 질소 기체 또는 이산화탄소 기체를 주입하고, 30-50 ℃의 온도에서 1-8 시간동안 저장하는 단계;를 포함하고,
상기 (a) 단계에서 쌀 부산물의 수분 함량 조절 시 단백질 가수분해물을 첨가하는 것을 특징으로 하는 쌀 부산물 내 감마-아미노부틸산의 증진방법.
(a) spraying water on rice by-products to adjust the water content of the rice by-products to 20-60%; And
(b) injecting nitrogen gas or carbon dioxide gas into the rice by-product whose moisture content is controlled, and storing at a temperature of 30-50 DEG C for 1-8 hours,
A method for enhancing gamma-aminobutyric acid in rice by-products, which comprises adding a protein hydrolyzate to the rice by-product in the step (a).
제1항에 있어서,
상기 단백질 가수분해물의 농도는 1 내지 50%(w/v)인 것을 특징으로 하는 쌀 부산물 내 감마-아미노부틸산의 증진방법.
The method according to claim 1,
Wherein the concentration of the protein hydrolyzate is 1 to 50% (w / v).
제1항에 있어서,
상기 단백질 가수분해물은 밀 단백질 가수분해물인 것을 특징으로 하는 쌀 부산물 내 감마-아미노부틸산의 증진방법.
The method according to claim 1,
Wherein the protein hydrolyzate is a wheat protein hydrolyzate.
제1항에 있어서,
상기 (a) 단계에서 쌀 부산물의 수분 함량 조절 시 글루탐산을 더 첨가하는 것을 특징으로 하는 쌀 부산물 내 감마-아미노부틸산의 증진방법.
The method according to claim 1,
A method for enhancing gamma-aminobutyric acid in rice by-products, which comprises adding glutamic acid to the rice by-product in the step (a).
제4항에 있어서,
상기 글루탐산의 농도는 100 내지 1000 mM인 것을 특징으로 하는 쌀 부산물 내 감마-아미노부틸산의 증진방법.
5. The method of claim 4,
Wherein the concentration of glutamic acid is 100 to 1000 mM.
제1항에 있어서,
상기 (a) 단계에서 쌀 부산물의 수분 함량 조절 시 PLP(prydoxal-5'-phosphate)를 더 첨가하는 것을 특징으로 하는 쌀 부산물 내 감마-아미노부틸산의 증진방법.
The method according to claim 1,
The method of enhancing gamma-aminobutyric acid in rice by-products, wherein PLDP (prydoxal-5'-phosphate) is further added in controlling the moisture content of rice by-products in the step (a).
제6항에 있어서,
상기 PLP(prydoxal-5'-phosphate)의 농도는 100 내지 1000 μM인 것을 특징으로 하는 쌀 부산물 내 감마-아미노부틸산의 증진방법.
The method according to claim 6,
The method of enhancing gamma-aminobutyric acid in rice by-products according to claim 1, wherein the concentration of prydoxal-5'-phosphate is 100-1000 μM.
제1항에 있어서,
상기 (a) 단계의 물은 증류수, pH 2-4의 산성 이온수, pH 5-8의 중성 이온수, pH 9-11의 알칼리성 이온수 중에서 선택되는 것을 특징으로 하는 쌀 부산물 내 감마-아미노부틸산의 증진방법.
The method according to claim 1,
Wherein the water of step (a) is selected from distilled water, acidic ionized water of pH 2-4, neutral ionized water of pH 5-8, alkaline ionized water of pH 9-11, Way.
제1항에 있어서,
상기 쌀 부산물은 쌀눈 또는 미강인 것을 특징으로 하는 쌀 부산물 내 감마-아미노부틸산의 증진방법.
The method according to claim 1,
Wherein the by-product of rice is rice or bamboo rice.
KR1020170140899A 2017-10-27 2017-10-27 Method of enhancement for γ-aminobutyricacid in by-product of rice by addition of hydrolyzed protein and multi-environmental stress treatments KR102067430B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170140899A KR102067430B1 (en) 2017-10-27 2017-10-27 Method of enhancement for γ-aminobutyricacid in by-product of rice by addition of hydrolyzed protein and multi-environmental stress treatments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170140899A KR102067430B1 (en) 2017-10-27 2017-10-27 Method of enhancement for γ-aminobutyricacid in by-product of rice by addition of hydrolyzed protein and multi-environmental stress treatments

Publications (2)

Publication Number Publication Date
KR20190047247A true KR20190047247A (en) 2019-05-08
KR102067430B1 KR102067430B1 (en) 2020-01-17

Family

ID=66580111

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170140899A KR102067430B1 (en) 2017-10-27 2017-10-27 Method of enhancement for γ-aminobutyricacid in by-product of rice by addition of hydrolyzed protein and multi-environmental stress treatments

Country Status (1)

Country Link
KR (1) KR102067430B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210035593A (en) * 2019-09-24 2021-04-01 고려대학교 산학협력단 Method of enhancement for γ-aminobutyric acid in soy sauce using rice bran and various physical treatments
KR20220079129A (en) * 2020-12-04 2022-06-13 (주)마린바이오프로세스 culture medium of lactic acid bacteria containing high concentration gaba and Preparing Method Thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100117918A (en) * 2009-04-27 2010-11-04 강원대학교산학협력단 The preparing method for natural gaba using serial fermentation of plant originated lactic acid bacteria with gaba-producing ability and protease-producing ability, and the food and beverage containing the natural gaba
KR20150012473A (en) * 2013-07-25 2015-02-04 고려대학교 산학협력단 Method for increasing γ-aminobutyric acid content in rice polishing by using physical treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100117918A (en) * 2009-04-27 2010-11-04 강원대학교산학협력단 The preparing method for natural gaba using serial fermentation of plant originated lactic acid bacteria with gaba-producing ability and protease-producing ability, and the food and beverage containing the natural gaba
KR20150012473A (en) * 2013-07-25 2015-02-04 고려대학교 산학협력단 Method for increasing γ-aminobutyric acid content in rice polishing by using physical treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ohtsubo, S., et al. Enzymatic production of γ-aminobutyric acid using rice(Oryza sativa) Germ. Food Sci. Technol. Res., 6(3): 208~211(2000.)* *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210035593A (en) * 2019-09-24 2021-04-01 고려대학교 산학협력단 Method of enhancement for γ-aminobutyric acid in soy sauce using rice bran and various physical treatments
KR20220079129A (en) * 2020-12-04 2022-06-13 (주)마린바이오프로세스 culture medium of lactic acid bacteria containing high concentration gaba and Preparing Method Thereof

Also Published As

Publication number Publication date
KR102067430B1 (en) 2020-01-17

Similar Documents

Publication Publication Date Title
Abd El-Salam et al. Preparation, properties, and uses of enzymatic milk protein hydrolysates
US4452888A (en) Process for producing a low-molecular weight peptide composition and nutrient agent containing the same
EP2420244B1 (en) Lipid metabolism-improving agent
WO2004022083A1 (en) A nutritional and therapeutic composition of an insulin sensitizer and a peptide fraction
WO2013092851A1 (en) Process for obtaining rice protein hydrolysates useful in the prevention and/or treatment of obesity
Yasuda et al. Biochemical aspects of red koji and tofuyo prepared using Monascus fungi
CN101558791A (en) Dual-protein based polypeptide soy-bean milk powder and preparation method thereof
Arai Functional food science in Japan: state of the art
CN102080118A (en) Preparation method of rice bran antioxidant active protein peptide
WO2009061603A1 (en) Method for decreasing bitterness and improving taste of protein-free and hydrolyzed infant formulas
CN103371318B (en) Dietary nutrition replenishing food
Shao et al. Advancement of the preparation methods and biological activity of peptides from sesame oil byproducts: A review
Bao et al. In vitro and in vivo assessment of angiotensin-converting enzyme (ACE) inhibitory activity of fermented soybean milk by Lactobacillus casei strains
JP2024073533A (en) Use of peptidylarginine deiminases to obtain improved food products - Patents.com
KR20190047247A (en) Method of enhancement for γ-aminobutyricacid in by-product of rice by addition of hydrolyzed protein and multi-environmental stress treatments
US20100286034A1 (en) Uses for aqueous streams containing proteins
Sari et al. Critical overview of biorefinery approaches for valorization of protein rich tree nut oil industry by-product
EP2249667B1 (en) Nutritious drink
Li et al. A comprehensive review of mung bean proteins: Extraction, characterization, biological potential, techno‐functional properties, modifications, and applications
JP6041242B2 (en) Peptides containing tryptophan
Lim et al. Wheat gluten hydrolysates prepared by sequential treatment with different combinations of commercial proteases
Yu Bioconversion of soy under the influence of Aspergillus oryzae strains producing hydrolytic enzymes
Akbarbaglu et al. Biological properties of LMW-peptide fractions from apricot kernel protein: Nutritional, antibacterial and ACE-inhibitory activities
Danial et al. Enrichment of mung bean with L-DOPA, GABA, essential amino acids via controlled biofermentation strategy
JP2005263782A (en) Antioxidative peptide derived from royal jelly

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant