KR20190036906A - Composition for 3D Printing and Filament for 3D Printer - Google Patents

Composition for 3D Printing and Filament for 3D Printer Download PDF

Info

Publication number
KR20190036906A
KR20190036906A KR1020170126383A KR20170126383A KR20190036906A KR 20190036906 A KR20190036906 A KR 20190036906A KR 1020170126383 A KR1020170126383 A KR 1020170126383A KR 20170126383 A KR20170126383 A KR 20170126383A KR 20190036906 A KR20190036906 A KR 20190036906A
Authority
KR
South Korea
Prior art keywords
filament
printer
composition
fluorescent material
group
Prior art date
Application number
KR1020170126383A
Other languages
Korean (ko)
Other versions
KR102291561B1 (en
Inventor
오종회
Original Assignee
코오롱플라스틱 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱플라스틱 주식회사 filed Critical 코오롱플라스틱 주식회사
Priority to KR1020170126383A priority Critical patent/KR102291561B1/en
Publication of KR20190036906A publication Critical patent/KR20190036906A/en
Application granted granted Critical
Publication of KR102291561B1 publication Critical patent/KR102291561B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio

Abstract

The present invention relates to a composition for 3D printing and a filament for a 3D printer using the same. Specifically, the present invention provides a thermally stable composition for 3D printing, capable of emitting light in a molded article manufactured through 3D printing, and a filament for a 3D printer using the same. The filament composition for a 3D printer includes a spherical bead carrying a fluorescent material and a plastic resin.

Description

3D 프린터용 필라멘트 조성물 및 이를 이용한 3D 프린터용 필라멘트{Composition for 3D Printing and Filament for 3D Printer}TECHNICAL FIELD The present invention relates to a filament composition for a 3D printer and a filament for a 3D printer using the filament composition.

본 발명은 3D 프린터용 필라멘트 조성물 및 이를 이용한 3D 프린터용 필라멘트에 관한 것으로서, 보다 상세하게는 조형물에서 빛을 발광하는 특징을 가진 3D 프린팅용 조성물 및 이를 이용한 3D 프린터용 필라멘트에 관한 것이다.The present invention relates to a filament composition for a 3D printer and a filament for a 3D printer using the same. More particularly, the present invention relates to a composition for 3D printing having a feature of emitting light in a molding and a filament for a 3D printer using the same.

3D(3-Dimension, 3 차원) 프린터는 활자나 그림을 인쇄하듯이 입력된 3 차원 도면을 바탕으로 실제 입체 모양을 그대로 제작하는 장비이다. 최근 3D 프린팅 기술은 상당히 핫 이슈가 되고 있으며, 자동차, 의료, 예술, 교육분야로 확대되고 있으며, 다양한 모형을 만들기 위한 용도로 광범위하게 사용하고 있다. 3D프린터의 원리는 가장 크게 절삭형과 적층형으로 나눌 수 있으며, 실제 적용되고 있는 3D프린터의 대부분은 재료 손실이 없는 적층형에 해당된다. 3D (3-Dimension, 3-D) printers are devices that produce actual stereoscopic shapes on the basis of input 3-D drawings as if they were printing type or drawing. Recently, 3D printing technology has become a hot issue and has been expanding into the automotive, medical, arts, and education fields and has been used extensively for creating various models. The principle of 3D printers can be divided into cutting type and laminated type, and most of the 3D printers that are actually applied correspond to laminated type without material loss.

적층형 원리를 이용하는 방식도 약 20가지가 존재하지만, 이 가운데 가장 많이 사용되는 방식은 SLA(Stereolithography Apparatus), FDM(Fused Deposition Modeling) 혹은 FFF(Fused Filament Fabrication) 및 SLS(Selective Laser Sintering)방식이다.There are about 20 ways to use the stacking principle, but the most commonly used methods are SLA (Stereolithography Apparatus), FDM (Fused Deposition Modeling), FFF (Fused Filament Fabrication) and SLS (Selective Laser Sintering).

SLA의 경우 액체 상태의 광경화성 수지가 담긴 수조안에 레이저 빔을 투사하여 조형하는 방식으로서, 광경화성 수지인 에폭시 타입의 포토 폴리머가 주로 사용된다. 반면, 투입된 필라멘트상의 재료가 Z, Y, Z 축으로 움직이는 프린터의 노즐에서 용융상태로 토출되면서 3차원으로 조형되는 방식인 FDM(혹는 FFF)는 열가소성 플라스틱을 주 재료로 사용한다. 한편, SLS은 금속, 플라스틱, 세라믹 분말 등의 파우더 상 재료가 담긴 수조에 레이저를 쏘아 선택적으로 소결하는 방식으로 3D프린팅을 구현한다.In the case of the SLA, an epoxy type photopolymer as a photocurable resin is mainly used as a method of projecting a laser beam in a water tank containing a liquid photocurable resin. On the other hand, FDM (or FFF), which is a method of forming the three-dimensional shape while injecting the filamentary material in the melted state in the nozzle of the printer moving in the Z, Y, and Z axes, uses thermoplastic plastic as the main material. On the other hand, SLS realizes 3D printing by laser-selective sintering in a water tank containing powdery materials such as metal, plastic, and ceramic powder.

상기 3가지 방식 중에서 열가소성 플라스틱을 필라멘트 형태로 제조하여 사용하는 FDM방식이 3D 프린터의 가격이 비교적 저렴하여 접근성이 뛰어나 가장 널리 대중화 되어있다. FDM방식에는 일반적으로 3D 조형물을 형상할 때 베드 접착력 및 층(layer)간 접착력이 우수하고, 형태안정성이 좋다는 이유로 폴리락트산(Polylactic acid, PLA), ABS(Acrylonitrile Butadiene Styrene), HDPE, 폴리카보네이트(Polycarbonate, PC) 등의 딱딱한 소재와 열가소성 탄성체와 같은 유연한 소재가 사용되고 있다.Among the above three methods, the FDM method in which a thermoplastic plastic is manufactured in the form of a filament is the most widely popularized because of its relatively low cost because of its relatively low price. In the FDM method, polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), HDPE, polycarbonate (HDPE), and the like are generally used because of their excellent adhesion to the bed and adhesion between layers when forming 3D sculptures. Polycarbonate, PC) and flexible materials such as thermoplastic elastomers are used.

또한, 최근에는 다양한 기능을 가진 소재가 소개되고 있지만, 단순히 내열성, 고강도, 내충격 소재 등 기존 플라스틱의 한계를 벗어나지 못하는 한계를 가지고 있다. 한편, FDM용 필라멘트 중 PLA, ABS 등을 사용하여 축광형 안료를 첨가한 필라멘트가 판매되고 있다. In recent years, materials having various functions have been introduced, but they have limitations that can not exceed the limits of conventional plastics such as heat resistance, high strength, and impact resistant materials. On the other hand, among filaments for FDM, filaments to which phosphorescent pigments are added by using PLA, ABS or the like are sold.

하지만 본 필라멘트는 단순히 빛을 축광하였다가 어두운 환경이 조성이 되었을 때 야광을 나타내는 단순한 소재라 할 수 있다. UV 조사시 발광할 수 있는 물질을 이용한 사례가 있지만 이는 물질 자체를 사용하기 때문에 필라멘트 제조 혹은 필라멘트를 이용하여 3D 프린팅할 때 열적 안정성이 화보 되지 않아 성능이 구현 되지 않을 수 있다. 따라서 열적으로 안정하고 UV 조사시 발광할 수 있는 특수한 기능을 가진 소재에 대한 개발이 필요하다고 볼 수 있다.However, this filament is merely a simple material that shows luminous intensity when the dark environment is formed after simply luminescing the light. There is a case where a substance capable of emitting light upon UV irradiation is used. However, since the material itself is used, the thermal stability may not be displayed in 3D printing using filament manufacturing or filament, so performance may not be realized. Therefore, it is necessary to develop a material having a special function that is thermally stable and can emit light upon UV irradiation.

이에, 본 발명을 통해 3D 프린팅을 통해 제조된 조형물에서 빛을 발광할 수 있는 특성을 가진 열적으로 안정한 3D 프린팅용 조성물 및 이를 이용한 3D 프린터용 필라멘트를 제공하고자 한다.Accordingly, it is an object of the present invention to provide a thermally stable 3D printing composition having a characteristic capable of emitting light in a molding manufactured through 3D printing, and a filament for a 3D printer using the same.

본 발명의 바람직한 일 구현예는 플라스틱 수지 및 형광물질이 담지된 구형 비드를 포함하고, 상기 형광물질이 담지된 구형 비드는 플라스틱 수지 100 중량부 대비 2 내지 10 중량부로 포함하는 것인 3D 프린터용 필라멘트 조성물을 제공하는 것이다.A preferred embodiment of the present invention is a filament for a 3D printer, comprising a plastic resin and a spherical bead carrying a fluorescent material, wherein the spherical bead carrying the fluorescent material is contained in an amount of 2 to 10 parts by weight per 100 parts by weight of the plastic resin To provide a composition.

상기 플라스틱 수지는 PET(Polyethylene Terephtalate), PLA(Polylactic acid), ABS(Acrylonitrile Butadiene Styrene), PP(Polypropylene), PE(Polyethylene), HIPS(High Impact Polystyrene), EVA(Ethylene Vinyl Acetate), TPO(Thermoplastic Poly Olefin), PC(Polycarbonate), PETG(glycol- modified polyethylene terephthalate), Rubber, Nylon, PEN(polyethylene naphthalate), TPE(Thermo Plastic Elastomer) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 한다.The plastic resin may be selected from the group consisting of polyethylene terephthalate (PET), polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), polypropylene (PP), polyethylene (PE), high impact polystyrene (HIPS), ethylene vinyl acetate (EVA) Polyolefin, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), thermoplastic elastomer (TPE), and combinations thereof. .

상기 형광물질은 Naphthalene계, Fluorescein계, Pyrene계, Thiophene계, Fluorene계, Carbazole계, quinine계, Resorufin계, Benzodiazole 계, Pentacene 계, Perylene계, Pyrazine계 및 이들의 조합으로 이루어진 군에서 선택되는 1종 이상인 방향족 유도체 화합물; 및 Ir, Zn, Li, Al, Ru, Pt 및 이들의 조합으로 이루어진 군에서 선택되는 1종 이상의 유기금속 복합체를 포함하는 것을 특징으로 한다.Wherein the fluorescent material is selected from the group consisting of Naphthalene series, Fluorescein series, Pyrene series, Thiophene series, Fluorene series, Carbazole series, Quinine series, Resorufin series, Benzodiazole series, Pentacene series, Perylene series, Pyrazine series, An aromatic derivative compound having more than two species; And at least one organometallic complex selected from the group consisting of Ir, Zn, Li, Al, Ru, Pt, and combinations thereof.

상기 구형 비드의 지름은 1 내지 20㎛이고, 종횡비가 0.8 내지 1인 것을 특징으로 한다.The spherical bead has a diameter of 1 to 20 mu m and an aspect ratio of 0.8 to 1. [

상기 구형 비드는 폴리메틸메타크릴레이트(PMMA)인 것을 특징으로 한다.And the spherical bead is polymethyl methacrylate (PMMA).

본 발명의 다른 일 구현예는 상술한 3D 프린터용 필라멘트 조성물로부터 제조된 3D 프린터용 필라멘트를 제공하는 것이다.Another embodiment of the present invention is to provide a filament for a 3D printer made from the filament composition for a 3D printer described above.

상기 필라멘트는 직경이 0.8 ~ 4.0mm인 것을 특징으로 한다.And the filament has a diameter of 0.8 to 4.0 mm.

본 발명에 따르면 3D 프린터를 이용하여 개인이 원하는 조형물을 출력했을 때 자외선을 조사 하였을 때 여러가지 컬러가 발현되는 조형물을 출력할 수 있는 특수한 기능성을 가지며, 일반 발광소재와는 차별화된 열적 안정성이 우수한 UV 발광용 3D 프린팅용 조성물 및 이를 이용한 3D 프린터용 필라멘트를 제공할 수 있다.According to the present invention, when a 3D printer is used to output a desired sculpture, it is possible to output a sculptured material exhibiting various colors when irradiated with ultraviolet rays, and has a special function that is different from general light emitting materials A composition for 3D light emission and a filament for a 3D printer using the same.

본 발명에 의한 상기 3차원 프린팅용 조성물은 UV에 의해 발광하는 물질인 형광물질이 구형 비드에 담지화 되어 내열성이 우수하여, FDM 용 3D 프린터용 필라멘트 소재로 매우 적합하다고 할 수 있다.The composition for three-dimensional printing according to the present invention is highly suitable as a filament material for a 3D printer for FDM because the fluorescent material which is a substance emitting light by UV is supported on spherical beads and is excellent in heat resistance.

나아가, 최종 제조된 조형물에서 UV 조사시 다양한 컬러를 발광할 수 있으므로 유아용 장남감, 학습용 모형 등에 유용하게 이용될 수 있으며, 3차원 프린팅 원리를 학습하는 교육용에도 매우 유리하게 접목할 수 있다.Furthermore, since the final manufactured sculpture can emit various colors when UV is irradiated, it can be advantageously used for infant toys, learning models and the like, and is also advantageously applied to education for learning 3D printing principles.

도 1은 본 발명의 일 구현예에 따른 PMMA 형광 비드를 포함하는 필라멘트와 일반 필라멘트의 UV 조사시 발광 특성을 나타낸 사진이다.
도 2는 본 발명의 일 구현예에 따른 조형물에 UV 조사시 발광 특성을 나타낸 사진이다.
FIG. 1 is a photograph showing light emission characteristics of filaments and general filaments containing PMMA fluorescent beads according to an embodiment of the present invention upon UV irradiation.
2 is a photograph showing a luminescent characteristic upon UV irradiation of a sculpture according to an embodiment of the present invention.

본 발명의 일 구현예에 따르면, 플라스틱 수지 및 형광물질이 담지된 구형 비드를 포함하고, 상기 형광물질이 담지된 구형 비드는 플라스틱 수지 100 중량부 대비 2 내지 10 중량부로 포함하는 것인 3D 프린터용 필라멘트 조성물을 제공하는 것이다. According to an embodiment of the present invention, there is provided a 3D printer comprising a spherical bead carrying a plastic resin and a fluorescent material, wherein the spherical bead carrying the fluorescent material is contained in an amount of 2 to 10 parts by weight per 100 parts by weight of the plastic resin Filament < / RTI >

본 발명은 플라스틱 수지에 형광물질을 담지화한 구형 비드를 포함하여 다양한 물질에 따라 구현하고자 하는 컬러를 선택적으로 제조 할 수 있게 된다. 또한 형광물질이 구형 비드에 담지화 되어 있기 때문에 FMD방식에 적용되는 필라멘트에 가장 적합하게 적용될 수 있다.The present invention can selectively produce colors to be implemented according to various materials including spherical beads in which a fluorescent material is supported on a plastic resin. Also, since the fluorescent material is supported on spherical beads, it can be most suitably applied to the filament applied to the FMD method.

종래 3D 프린팅 소재로 널리 사용되고 있는 소재는 단순 축광형 안료를 사용한 것으로, 단순히 빛을 축광한 후 어두운 환경에 들어갔을 때 야광을 발현하는 소재일 뿐이다. 또한, 이를 해결하기 위해 형광물질 자체를 도입하여, 필라멘트에 적용하였으며, 이는 필라멘트를 제조하는 압출과정과 3D 프린팅 시에 두번의 열을 받아 형광물질이 분해되기도 하여, UV 발광 특성이 저하되는 문제가 발생한다. Conventionally, the material which is widely used as a 3D printing material is a simple phosphorescent pigment, and it is merely a material that exhibits luminous intensity when it enters a dark environment after phosphorescence of light. In order to solve this problem, the fluorescent material itself is introduced and applied to the filament, which causes the fluorescent material to be decomposed due to the double heat in the extrusion process for manufacturing the filament and the 3D printing process, Occurs.

그러나 본 발명의 3D 프린터용 필라멘트는 형광물질이 담지된 구형 비드를 포함하여, 통상 적용되고 있는 형광물질 자체를 적용하는 조성물 대비 우수한 열적 특성을 가지고 있고, 이러한 특성에 의해 두 번의 열이 가해지는 공정을 추가적으로 거치더라도 UV 발광 특성이 우수한 필라멘트를 제공할 수 있다.However, the filament for a 3D printer of the present invention includes spherical beads carrying a fluorescent material, and has excellent thermal properties compared to a composition employing a fluorescent material itself which is usually applied, and by this characteristic, It is possible to provide a filament having excellent UV light emission characteristics.

이하, 본 발명의 3D 프린터용 필라멘트 조성물 및 이를 이용한 FMD 방식의 3D 프린터용 필라멘트에 관하여 보다 구체적으로 설명한다.Hereinafter, the filament composition for the 3D printer of the present invention and the filament for the 3D printer using the FMD method using the filament composition will be described in more detail.

본 발명의 상기 3D 프린터용 필라멘트 조성물은 플라스틱 수지를 기본 베이스 수지로 사용하는 것으로서 상기 플라스틱 수지는 PET(Polyethylene Terephtalate), PLA(Polylactic acid), ABS(Acrylonitrile Butadiene Styrene), PP(Polypropylene), PE(Polyethylene), HIPS(High Impact Polystyrene), EVA(Ethylene Vinyl Acetate), TPO(Thermoplastic Poly Olefin), PC(Polycarbonate), PETG(glycol- modified polyethylene terephthalate), Rubber, Nylon, PEN(polyethylene naphthalate), TPE(Thermo Plastic Elastomer) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상인 것이 좋다.The filament composition for a 3D printer according to the present invention uses a plastic resin as a base resin. The plastic resin is selected from the group consisting of polyethylene terephthalate (PET), polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), polypropylene Polyethylene, HIPS (High Impact Polystyrene), Ethylene Vinyl Acetate (EVA), Thermoplastic Polyolefin (TPO), Polycarbonate, PETG, Rubber, Nylon, PEN (polyethylene naphthalate) Thermo Plastic Elastomer), and combinations thereof.

상기 형광물질이 담지된 구형 비드에서 형광물질은 방향족 유도체 화합물 및 유기금속 복합체를 포함하는 것이 바람직하다.In the spherical beads carrying the fluorescent material, the fluorescent material preferably includes an aromatic derivative compound and an organometallic complex.

상기 방향족 유도체 화합물은 Naphthalene계, Fluorescein계, Pyrene계, Thiophene계, Fluorene계, Carbazole계, quinine계, Resorufin계, Benzodiazole 계, Pentacene계, Perylene계, Pyrazine계 및 이들의 조합으로 이루어진 군에서 선택되는 1종 이상인 것을 들 수 있다.The aromatic derivative compound is selected from the group consisting of Naphthalene series, Fluorescein series, Pyrene series, Thiophene series, Fluorene series, Carbazole series, Quinine series, Resorufin series, Benzodiazole series, Pentacene series, Perylene series, Pyrazine series and combinations thereof Or more.

상기 방향족 유도체 화합물의 보다 구체적인 일례를 들면, 아래와 같다.

Figure pat00001
A more specific example of the aromatic derivative compound is as follows.
Figure pat00001

Figure pat00002
Figure pat00003
Figure pat00002
Figure pat00003

또한, 상기 유기금속 복합체는 Ir, Zn, Li, Al, Ru, Pt 등의 원소를 함유하는 유기금속 복합체일 수 있다. Also, the organometallic complex may be an organometallic complex containing elements such as Ir, Zn, Li, Al, Ru, and Pt.

상기 유기금속 복합체의 보다 구체적인 일례를 들면, 아래와 같다.A more specific example of the organometallic complex is as follows.

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

상술한 방향족 유도체 화합물과 유기금속 복합체를 포함하는 형광물질은 다음과 같은 모식도에 의한 기작으로 UV에 반응하여 빛을 발광하게 된다.The fluorescent material comprising the aromatic derivative compound and the organometallic complex described above emits light in response to UV as a mechanism by the following schematic diagram.

<모식도><Schematic diagram>

Figure pat00006
Figure pat00006

상기 모식도를 참조로 상세하게 설명하면, 바닥상태의 에너지 준위에 있는 형광물질 속의 전자가 외부에서 들어오는 자외선에 의하여 여기된 상위 에너지 준위인 S1 상태로 흥분되게 된다. 이후 일정시간이 지나게 되면(빛과 같은 속도) 다시 바닥 상태의 에너지 S0 상태로 돌아오게 되는데 이때 나오는 빛이 형광이며, 또한 계간교차를 통해 제3의 에너지 준위인 T1을 거쳐 S0와 같은 바닥상태의 에너지 준위로 돌아오면서 나오는 빛이 인광이다.In detail, the electrons in the fluorescent material at the energy level of the ground state are excited to the S1 state, which is the upper energy level excited by the ultraviolet rays entering from the outside. After a certain period of time (the same speed as light), the energy returns to the S0 state of the ground state. The light emitted at this time is fluorescent, and through the inter-stage intersection, through the third energy level T1, The light coming back to the energy level is the phosphorescence.

상기 방향족 유도체 및 유기금속 복합체를 포함하는 형광 물질이 담지된 구형 비드는 상기 플라스틱 수지 100 중량부 대비 2 내지 10중량부, 바람직하게는 2 내지 5중량부로 포함되는 것이 좋다. 상기 구형 비드 의 함량이 상기 범위를 만족할 경우 필라멘트 제조가 용이하며, 생산성이 우수할 뿐만 아니라, 최종 조형물을 출력한 후 UV 조사시 발광특성이 우수하다. 또한, 상기 구형 비드의 함량이 2중량부 미만일 경우에 발광 정도가 낮고, 상기 10중량부를 초과하는 경우 필라멘트의 강도가 저하되거나 경제적인 측면에서 제조원가가 올라가는 단점을 가지고 있다. The spherical beads carrying the fluorescent material containing the aromatic derivative and the organometallic complex may be included in an amount of 2 to 10 parts by weight, preferably 2 to 5 parts by weight, based on 100 parts by weight of the plastic resin. When the content of the spherical beads satisfies the above range, the filament is easily produced, the productivity is excellent, and the light emission characteristic is excellent upon UV irradiation after outputting the final molding. When the content of the spherical beads is less than 2 parts by weight, the degree of luminescence is low. When the amount of the spherical beads is more than 10 parts by weight, the strength of the filament is lowered and the manufacturing cost is increased from the economical point of view.

또한, 상기 구형 비드는 지름이 1 내지 20㎛, 바람직하게는 1 내지 10㎛인 것이 좋다. 상기 지름이 1㎛ 미만일 경우, 투입시 비산이 되어, 일정한 함량을 투입하기 어려운 문제가 있고, 20㎛를 초과하는 경우 필라멘트 제조시 분산이 잘 되지 않아 뭉침 현상으로 필라멘트의 강도가 저하되는 문제를 야기할 수 있다. It is also preferable that the spherical beads have a diameter of 1 to 20 占 퐉, preferably 1 to 10 占 퐉. If the diameter is less than 1 mu m, there is a problem that it is scattered during charging and it is difficult to inject a certain amount. When the diameter exceeds 20 mu m, the filament is not well dispersed during filament production, can do.

또한, 상기 구형 입자의 종횡비가 0.8 내지 1, 바람직하게는 0.9 내지 1인 것이 좋다. 상기 종횡비가 0.8 미만일 경우 분산문제가 발생하여 색 발광 및 필라멘트 강도가 저하되는 문제를 야기할 수 있다. It is also preferable that the spherical particles have an aspect ratio of 0.8 to 1, preferably 0.9 to 1. If the aspect ratio is less than 0.8, a dispersion problem may occur and color luminescence and filament strength may be lowered.

상기 구형 비드는 폴리메틸메타크릴레이트(PMMA)인 것이 발광특성 및 공정안정성 점에서 좋다. The spherical beads are made of polymethyl methacrylate (PMMA) in terms of light emission characteristics and process stability.

본 발명의 다른 일 구현예에 따르면, 상술한 3D 프린터용 필라멘트 조성물로부터 제조된 3D 프린터용 필라멘트를 제공하는 것이다.According to another embodiment of the present invention, there is provided a filament for a 3D printer produced from the above-described filament composition for a 3D printer.

상기 필라멘트는 직경이 0.8 ~ 4.0mm, 바람직하게는 1.5 내지 2.0, 더욱 바람직하게는 1.7 내지 1.8인 것이 좋다.The filament preferably has a diameter of 0.8 to 4.0 mm, preferably 1.5 to 2.0, more preferably 1.7 to 1.8.

3D 프린터용으로 사용되는 필라멘트의 굵기는 1.75mm가 일반적으로 사용되지만 필라멘트는 직경은 0.8 ~ 4.0mm의 범위로 만들 수 있다. 상기 필라멘트의 직경이 0.8mm 미만일 경우 필라멘트가 미세하게 되어 출력시간이 길어지며, 4.0mm를 초과할 경우 굵은 필라멘트를 출력할 수 있는 프린터가 제한적일 것이다. 또한, 출력을 함에 있어 결정화가 느려지기 때문에 정밀한 조형물을 기대하기 어렵다.The thickness of the filament used for the 3D printer is generally 1.75 mm, but the diameter of the filament may be in the range of 0.8 to 4.0 mm. When the diameter of the filament is less than 0.8 mm, the filament becomes fine and the output time becomes long. When the diameter exceeds 4.0 mm, a printer capable of outputting a thick filament will be limited. In addition, since crystallization is slowed in outputting, it is difficult to expect accurate molding.

실시예Example

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명 하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are for the purpose of illustrating the present invention more specifically, and the present invention is not limited thereto.

3D 프린터용 필라멘트는 하기 실시예 1 내지 3 및 비교예 1 내지 6로 표기된 조성물을 각각 사용하여, 스크류 직경 30mm, 스크류 길이 105mm의 단축압출기(single screw extruder)로 압출한 후 길이 4m의 냉각수조에서 냉각하고 권취하여 직경 1.75mm로 제조하였다. 하기 표 1에 기재된 함량은 수지 100중량부에 대한 중량부이다. The filament for the 3D printer was extruded using a single screw extruder having a screw diameter of 30 mm and a screw length of 105 mm by using the compositions shown in the following Examples 1 to 3 and Comparative Examples 1 to 6, Cooled and rolled to a diameter of 1.75 mm. The contents shown in Table 1 are parts by weight based on 100 parts by weight of resin.

필라멘트 제조에 적용한 조성물은 표 1 과 같으며 하기 측정 방법으로 측정하였다.The compositions applied to the filament production are shown in Table 1 and measured by the following measuring methods.

실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 비교예5Comparative Example 5 비교예6Comparative Example 6 PET계수지PET resin 100100 00 100100 100100 100100 100100 100100 00 00 PLA계수지PLA coefficient 00 100100 00 00 00 00 00 100100 100100 형광비드1 Fluorescent bead 1 22 22 1010 0.50.5 00 00 1515 1515 00 형광비드2Fluorescent bead 2 00 00 00 00 22 00 00 00 22 형광물질Fluorescent material 00 00 00 00 00 22 00 00 00

주석) 형광비드1: 형광물질이 담지된 PMMA 구형 비드(ASP 社의 BL-5BU; 블루 발광 비드, 지름이 5㎛이고, 종횡비가 1임)Tin) fluorescent beads 1: PMMA spherical beads carrying fluorescent material (BL-5BU of ASP, blue luminescence bead, diameter: 5 mu m, aspect ratio = 1)

형광비드2: 형광물질이 담지된 PMMA 구형 비드(ASP社의 BL-25BU; 블루 발광 비드 지름이 25㎛이고, 종횡비가 1임)Fluorescent beads 2: PMMA spherical beads carrying fluorescent material (BL-25BU of ASP Co., Ltd., blue light emitting bead diameter: 25 mu m, aspect ratio = 1)

형광물질: SMT 社 의 BLUE 400; 블루 발광 물질Fluorescent material: BLUE 400 from SMT; Blue luminescent material

PET계 수지: Kolon 社의 KE101(상품명); PEN-PET 계 플라스틱 수지PET resin: KE101 (trade name) of Kolon; PEN-PET plastic resin

PLA계 수지: 네이처웍스 社 PLA4032D 플라스틱 수지PLA resin: NatureWorks PLA4032D plastic resin

이어서 3차원 프린터(ALMOND, Opencreators 社)를 이용하여 정육면체의 3D 조형물을 제작하고, 하기와 같은 측정방법에 의해 물성을 측정하였다.Next, a 3D sculpture of a cube was produced using a three-dimensional printer (ALMOND, Opencreators), and physical properties were measured by the following measurement method.

측정방법How to measure

(1) 필라멘트 강도: 필라멘트 제작 후 5cm 의 길이로 무작위로 5개를 샘플링 한 후 400N의 힘으로 구부렸을 때 파손 횟수를 평가하였다. (1) Strength of filaments: Five filaments were randomly sampled at a length of 5 cm after filament fabrication, and the number of breakage was evaluated when bent at a force of 400 N.

(2) UV 조사시 발광 특성: BOTECK 사의 Super Light-LUX 장비를 활용하여 UVA, UVB 파장을 조사하였을 때지름 4.5mm 길이 37mm의 조형물에서 발생되는 빛의 밝기 수준을 지름 4.5mm, 길이 37mm 의 블루 케미라이트와 비교하여 아래와 같이 평가하였다. 단, 빛의 세기는 블루 케미라이트가 발광할 때 블루 케미라이트의 표면으로부터 발광되는 빛의 길이를 측정하고, 이와 같은 방법으로 조형물이 발광할 때, 조형물의 표면으로부터 발광되는 빛의 길이를 측정하여 이들의 측정치를 아래와 같이 평가하였다. 또한, 상기 빛의 길이는 발광 전과 후를 사진으로 찍은 후, 10배로 확대하여 물체의 표면으로부터 발광되는 빛의 길이를 줄자로 측정하였다 (2) Luminescence characteristics when exposed to UV light: When the UVA and UVB wavelengths are irradiated using BOTECK's Super Light-LUX equipment, the brightness level of the light emitted from a molding having a diameter of 4.5 mm and a length of 37 mm is 4.5 mm in diameter and 37 mm in length Compared with chemilite, it was evaluated as follows. However, the intensity of the light is measured by measuring the length of the light emitted from the surface of the blue chemilite when the blue chemilite emits light, and measuring the length of the light emitted from the surface of the molding, These measurements were evaluated as follows. The length of the light was measured by measuring the length of the light emitted from the surface of the object after photographing before and after the luminescence by 10 times magnification

높음: 블루 케미라이트의 빛의 길이(약 4mm) 보다 긴 경우High: longer than the length of the blue chemilite light (about 4 mm)

보통: 블루 케미라이트의 빛의 길이(약 4mm)와 동일한 경우Normal: the same as the length of the blue chemilite light (about 4 mm)

낮음: 블루 케미라이트의 빛의 길이(약 4mm)보다 짧은 경우Low: shorter than the length of the blue chemilite light (about 4 mm)

(3) 가공안정성: 실시예 및 비교예에 따라 제조된 필라멘트를 분쇄 후 압출하는 공정을 1회 및 3회로 각각 실시한 후, 4.5mm의 길이 및 37mm의 크기로 조형물을 출력하였다. 상기 1회 공정을 실시한 조형물과 3회 공정을 실시한 조형물의 발광특성을 측정한 후, 아래 수식에 의해 백분율로 계산하여 아래와 같이 평가하였다. 이때, 상기 발광특성은 조형물의 발광 전과 후를 사진으로 찍은 후, 10배로 확대하여 물체의 표면으로부터 발광되는 빛의 길이를 줄자로 측정하였다.(3) Stability of processing: The filaments produced according to Examples and Comparative Examples were crushed and extruded one time and three times, respectively, and then the molding was outputted in a length of 4.5 mm and a size of 37 mm. The luminescent characteristics of the one-step molding and the three-step molding were measured, and then the percentage was calculated by the following formula and evaluated as follows. At this time, the light emission characteristics were measured by photographing before and after the emission of the molding, and then measuring the length of light emitted from the surface of the object by 10 times magnification.

<수식><Formula>

가공안정성(%)= (3회 공정시의 발광특성 측정값/1회 공정시의 발광특성 측정값)×100Processing stability (%) = (measured value of light emission property in three times / measured value of light emission property in one step) x 100

우수: 90% 이상인 경우Excellent: 90% or more

보통: 50% 이상 90% 미만인 경우Medium: 50% to less than 90%

나쁨: 50% 미만인 경우Poor: Less than 50%

(4) 프린팅 적합성: 아래와 같은 기준으로 프린팅 적합성을 평가하였다.(4) Printing suitability: Printing suitability was evaluated based on the following criteria.

적합: 파손횟수 1회 이하, 발광특성 높음 및 가공안정성 우수인 경우Suitable: When the number of breakage is one or less, the emission characteristic is high and the processing stability is excellent

부적합: 파손횟수 2 이상, 발광특성 보통 이하 및 가공안정성 보통 이하인 경우Non-conformity: Number of breakage 2 or more, luminescence characteristic below normal and processing stability below normal

실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 비교예5Comparative Example 5 비교예6Comparative Example 6 필라멘트 강도Filament strength 00 00 1One 00 22 1One 22 22 22 발광 특성Luminescence characteristic 높음height 높음height 높음height 낮음lowness 높음height 높음height 높음height 높음height 높음height 가공안정성Processing stability 우수Great 우수Great 우수Great 우수Great 우수Great 나쁨Poor 우수Great 우수Great 우수Great 프린팅 적합성Printing suitability 적합fitness 적합fitness 적합fitness 부적합incongruity 부적합incongruity 부적합incongruity 부적합incongruity 부적합incongruity 부적합incongruity

상기 표 1의 결과를 통해 확인할 수 있듯이, 실시예 1 내지 3과 같이 PMMA 비드의 함량이 2 내지 10 중량부 이내일 때와 PMMA 비드의 입자 사이즈가 1 내지 20㎛ 이내 일 때 프린팅 적합성이 적합으로 평가되었다.As can be seen from the results of Table 1, when the content of PMMA beads is within 2 to 10 parts by weight and the particle size of PMMA beads is within 1 to 20 占 퐉, printing suitability is suitable Respectively.

또한, 형광물질을 PMMA 비드에 담지화 한 필라멘트의 내열 특성이 더 우수하다는 결과를 얻을 수 있었다. 또한 PMMA 형광 비드를 포함하는 필라멘트와 일반 필라멘트의 UV 조사시 발광 특성을 도 1에 나타내었으며, 조형물에 UV 조사시 발광 특성을 도 2에 나타내었다.In addition, it was found that the filament having the fluorescent material supported on the PMMA bead had better heat resistance characteristics. The light emission characteristics of the filament and the common filament including PMMA fluorescent beads in UV irradiation are shown in FIG. 1, and the light emission characteristics in UV irradiation of the molding are shown in FIG.

Claims (7)

플라스틱 수지 및 형광물질이 담지된 구형 비드를 포함하고,
상기 형광물질이 담지된 구형 비드는 지름이 1 내지 20㎛이며, 플라스틱 수지 100 중량부 대비 2 내지 10 중량부로 포함하는 것인 3D 프린터용 필라멘트 조성물.
A plastic resin and a spherical bead carrying a fluorescent material,
Wherein the spherical beads carrying the fluorescent material have a diameter of 1 to 20 占 퐉 and 2 to 10 parts by weight based on 100 parts by weight of the plastic resin.
제1항에 있어서, 상기 플라스틱 수지는 PET(Polyethylene Terephtalate), PLA(Polylactic acid), ABS(Acrylonitrile Butadiene Styrene), PP(Polypropylene), PE(Polyethylene), HIPS(High Impact Polystyrene), EVA(Ethylene Vinyl Acetate), TPO(Thermoplastic Poly Olefin), PC(Polycarbonate), PETG(glycol- modified polyethylene terephthalate), Rubber, Nylon, PEN(polyethylene naphthalate), TPE(Thermo Plastic Elastomer) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 3D 프린터용 필라멘트 조성물.The method of claim 1, wherein the plastic resin is selected from the group consisting of polyethylene terephthalate (PET), polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), polypropylene (PP), polyethylene (PE), high impact polystyrene (HIPS) Selected from the group consisting of polyethylene terephthalate (PET), polyethylene terephthalate (PETG), rubber, nylon, polyethylene naphthalate (PEN), thermo plastic elastomer (TPE) Filament composition for a 3D printer. 제1항에 있어서, 상기 형광물질은 Naphthalene계, Fluorescein계, Pyrene계, Thiophene계, Fluorene계, Carbazole계, quinine계, Resorufin계, Benzodiazole 계, Pentacene 계, Perylene계, Pyrazine계 및 이들의 조합으로 이루어진 군에서 선택되는 1종 이상인 방향족 유도체 화합물; 및 Ir, Zn, Li, Al, Ru, Pt 및 이들의 조합으로 이루어진 군에서 선택되는 1종 이상의 유기금속 복합체를 포함하는 것을 특징으로 하는 3D 프린터용 필라멘트 조성물.The method according to claim 1, wherein the fluorescent material is selected from the group consisting of Naphthalene, Fluorescein, Pyrene, Thiophene, Fluorene, Carbazole, Quinine, Resorufin, Benzodiazole, Pentacene, An aromatic derivative compound which is at least one selected from the group consisting of And at least one organometallic complex selected from the group consisting of Ir, Zn, Li, Al, Ru, Pt, and combinations thereof. 제1항에 있어서, 상기 구형 비드의 지름은 1 내지 20㎛이며, 종횡비가 0.8 내지 1인 것을 특징으로 하는 3D 프린터용 필라멘트 조성물.The filament composition for a 3D printer according to claim 1, wherein the spherical beads have a diameter of 1 to 20 탆 and an aspect ratio of 0.8 to 1. 제1항에 있어서, 상기 구형 비드는 폴리메틸메타크릴레이트(PMMA)인 것을 특징으로 하는 3D 프린터용 필라멘트 조성물.The filament composition for a 3D printer according to claim 1, wherein the spherical bead is polymethylmethacrylate (PMMA). 제1항 내지 제5항 중 어느 한 항에 따른 3D 프린터용 필라멘트 조성물로부터 제조된 3D 프린터용 필라멘트.A filament for a 3D printer made from a filament composition for a 3D printer according to any one of claims 1 to 5. 제6항에 있어서, 상기 필라멘트는 직경이 0.8 ~ 4.0mm인 것을 특징으로 하는 3D 프린터용 필라멘트.The 3D printer filament according to claim 6, wherein the filament has a diameter of 0.8 to 4.0 mm.
KR1020170126383A 2017-09-28 2017-09-28 Composition for 3D Printing and Filament for 3D Printer KR102291561B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170126383A KR102291561B1 (en) 2017-09-28 2017-09-28 Composition for 3D Printing and Filament for 3D Printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170126383A KR102291561B1 (en) 2017-09-28 2017-09-28 Composition for 3D Printing and Filament for 3D Printer

Publications (2)

Publication Number Publication Date
KR20190036906A true KR20190036906A (en) 2019-04-05
KR102291561B1 KR102291561B1 (en) 2021-08-18

Family

ID=66104293

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170126383A KR102291561B1 (en) 2017-09-28 2017-09-28 Composition for 3D Printing and Filament for 3D Printer

Country Status (1)

Country Link
KR (1) KR102291561B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020251532A1 (en) * 2019-06-10 2020-12-17 Hewlett-Packard Development Company, L.P. Three-dimensional printing
CN114096393A (en) * 2019-07-15 2022-02-25 庄信万丰股份有限公司 Method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140026554A (en) * 2011-05-10 2014-03-05 에보니크 룀 게엠베하 Multicoloured fused deposition modelling print
WO2016029137A1 (en) * 2014-08-22 2016-02-25 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
KR20160063877A (en) * 2014-11-27 2016-06-07 재단법인 한국탄소융합기술원 Manufacturing Method of Filament for 3D Print and Filament
KR20160135633A (en) * 2015-05-18 2016-11-28 (주)비앤케이 A 3d printing filament composition for reducing harmful substances and a method for preparing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140026554A (en) * 2011-05-10 2014-03-05 에보니크 룀 게엠베하 Multicoloured fused deposition modelling print
WO2016029137A1 (en) * 2014-08-22 2016-02-25 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
KR20160063877A (en) * 2014-11-27 2016-06-07 재단법인 한국탄소융합기술원 Manufacturing Method of Filament for 3D Print and Filament
KR20160135633A (en) * 2015-05-18 2016-11-28 (주)비앤케이 A 3d printing filament composition for reducing harmful substances and a method for preparing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020251532A1 (en) * 2019-06-10 2020-12-17 Hewlett-Packard Development Company, L.P. Three-dimensional printing
CN114096393A (en) * 2019-07-15 2022-02-25 庄信万丰股份有限公司 Method

Also Published As

Publication number Publication date
KR102291561B1 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
US11883994B2 (en) Fused filament fabrication using multi-segment filament
US20210292934A1 (en) Microstructured materials
KR101689304B1 (en) Filament composition for 3d printer
EP3067389A1 (en) Polymer composition for three-dimensional printer
KR102291561B1 (en) Composition for 3D Printing and Filament for 3D Printer
KR20160029494A (en) A method for manufacturing a filament for a 3D printer having antibacterial properties and a filament for a 3D printer having antibacterial property produced thereby
KR20150098142A (en) Complex filament composition for fdm type 3d printer containing metal powder
CN102470558A (en) Molded resin containing filler and glass
US11059955B2 (en) Color shift pigments for three-dimensional printing
EP3645287B1 (en) Fdm printed luminaires with surface texture
CN106280201A (en) 3 D-printing wire rod
CN102666672A (en) Method for producing thermoplastic resin composition, moulded article, and light-emitting article
KR20070005548A (en) Method for producing electrostatically non-chargeable and/or electrically derivable plastic containers, and plastic containers produced thereby
CN111989208B (en) Printing structure with metal appearance
KR101875703B1 (en) Composition of filament for 3D printer
CN100369744C (en) A barrier and a method of manufacture thereof
KR20190036754A (en) Composition for 3D Printing and Filament for 3D Printer
KR20160108089A (en) Conductive master batch and method for manufacturing thereof and method for manufacturing conductive film using the same
JP7279506B2 (en) THERMOPLASTIC RESIN POWDER, RESIN POWDER FOR 3D MODELING, 3D PRODUCT MANUFACTURING APPARATUS, AND 3D MODEL MANUFACTURING METHOD
JP3222768U (en) Modeling material
Mustafa et al. Process parameter optimization in fused deposition modeling (FDM) using response surface methodology (RSM)
CN107304286A (en) 3D prints material
JP3222767U (en) Modeling material
JPS6177802A (en) Molding for light diffusion and transmission
KR102172470B1 (en) Functional photo-curable polymer for 3D printing

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant