KR20180136555A - 영상 코딩 시스템에서 인트라 예측 방법 및 장치 - Google Patents

영상 코딩 시스템에서 인트라 예측 방법 및 장치 Download PDF

Info

Publication number
KR20180136555A
KR20180136555A KR1020187035034A KR20187035034A KR20180136555A KR 20180136555 A KR20180136555 A KR 20180136555A KR 1020187035034 A KR1020187035034 A KR 1020187035034A KR 20187035034 A KR20187035034 A KR 20187035034A KR 20180136555 A KR20180136555 A KR 20180136555A
Authority
KR
South Korea
Prior art keywords
ciip
intra prediction
current block
current
prediction mode
Prior art date
Application number
KR1020187035034A
Other languages
English (en)
Inventor
장형문
이범식
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20180136555A publication Critical patent/KR20180136555A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/33Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the spatial domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명에 따른 인트라 예측 방법은 비트스트림으로부터 인트라 예측 모드에 관한 정보를 획득하는 단계, 상기 인트라 예측 모드에 관한 정보를 기반으로 현재 블록에 대한 인트라 예측 모드를 결정하는 단계, 상기 현재 블록에 대한 CIIP(coefficient induced intra prediction) 적용 여부를 판단하는 단계, 상기 CIIP 적용 여부를 기반으로 상기 현재 블록에 대한 주변 샘플들을 도출하는 단계, 상기 인트라 예측 모드 및 상기 주변 샘플들을 기반으로 현재 블록에 대한 예측 샘플들을 생성하는 단계를 포함함을 특징으로 한다. 본 발명에 따르면 수정 또는 개선된 주변 샘플들을 생성할 수 있으며, 이를 통하여 인트라 예측 성능을 향상시킬 수 있다.

Description

영상 코딩 시스템에서 인트라 예측 방법 및 장치
본 발명은 영상 코딩에 관한 기술로서, 보다 상세하게는 영상 코딩 시스템에서 인트라 예측 방법 및 장치에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 전송되는 정보량 또는 비트량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 영상 데이터를 저장하는 경우, 전송 비용과 저장 비용이 증가된다.
이에 따라, 고해상도, 고품질 영상의 정보를 효과적으로 전송하거나 저장하고, 재생하기 위해 고효율의 영상 압축 기술이 요구된다.
본 발명의 기술적 과제는 인트라 예측 효율을 높이는 방법 및 장치를 제공함에 있다.
본 발명의 다른 기술적 과제는 주변 블록의 변환 계수(transform coefficient)들를 이용하여 인트라 예측 샘플을 생성하는 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 주변 블록에 대한 변환 계수들에 스케일링 메트릭스를 적용하여 주변 샘플을 도출하고, 상기 주변 샘플을 기반으로 인트라 예측 샘플을 생성하는 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 현재 블록에 대한 CIIP(coefficient induced intra prediction) 적용 여부를 적응적으로 결정하는 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 PU 또는 CU 단위로 CIIP 적용 여부를 적응적으로 결정하는 방법 및 장치를 제공함에 있다.
본 발명의 일 실시예에 따르면, 디코딩 장치에 의하여 수행되는 인트라 예측 방법을 제공한다. 상기 인트라 예측 방법은 비트스트림으로부터 인트라 예측 모드에 관한 정보를 획득하는 단계, 상기 인트라 예측 모드에 관한 정보를 기반으로 현재 블록에 대한 인트라 예측 모드를 결정하는 단계, 상기 현재 블록에 대한 CIIP(coefficient induced intra prediction) 적용 여부를 판단하는 단계, 상기 CIIP 적용 여부를 기반으로 상기 현재 블록에 대한 주변 샘플들을 도출하는 단계, 상기 인트라 예측 모드 및 상기 주변 샘플들을 기반으로 현재 블록에 대한 예측 샘플들을 생성하는 단계를 포함함을 특징으로 한다.
본 발명의 다른 일 실시예에 따르면, 인코딩 장치에 의하여 수행되는 인트라 예측 방법을 제공한다. 상기 인트라 예측 방법은 현재 블록에 대한 인트라 예측 모드를 결정하는 단계, 상기 현재 블록에 대한 CIIP(coefficient induced intra prediction) 적용 여부를 판단하는 단계, 상기 CIIP 적용 여부를 기반으로 상기 현재 블록에 대한 주변 샘플들을 도출하는 단계, 상기 인트라 예측 모드 및 상기 주변 샘플들을 기반으로 현재 블록에 대한 예측 샘플들을 생성하는 단계, 및 상기 인트라 예측 모드에 관한 정보를 인코딩하여 출력하는 단계를 포함함을 특징으로 한다.
본 발명의 또 다른 일 실시예에 따르면, 인트라 예측을 수행하는 디코딩 장치를 제공한다. 상기 디코딩 장치는 비트스트림으로부터 인트라 예측 모드에 관한 정보를 획득하는 엔트로피 디코딩부, 상기 인트라 예측 모드에 관한 정보를 기반으로 현재 블록에 대한 인트라 예측 모드를 결정하고, 상기 현재 블록에 대한 CIIP(coefficient induced intra prediction) 적용 여부를 판단하고, 상기 CIIP 적용 여부를 기반으로 상기 현재 블록에 대한 주변 샘플들을 도출하고, 상기 인트라 예측 모드 및 상기 주변 샘플들을 기반으로 현재 블록에 대한 예측 샘플들을 생성하는 예측부를 포함함을 특징으로 한다.
본 발명의 또 다른 일 실시예에 따르면, 인트라 예측을 수행하는 인코딩 장치를 제공한다. 상기 인코딩 장치는 현재 블록에 대한 인트라 예측 모드를 결정하고, 상기 현재 블록에 대한 CIIP(coefficient induced intra prediction) 적용 여부를 판단하고, 상기 CIIP 적용 여부를 기반으로 상기 현재 블록에 대한 주변 샘플들을 도출하고, 상기 인트라 예측 모드 및 상기 주변 샘플들을 기반으로 현재 블록에 대한 예측 샘플들을 생성하는 예측부, 및 상기 인트라 예측 모드에 관한 정보를 인코딩하여 출력하는 엔트로피 인코딩부를 포함함을 특징으로 한다.
본 발명에 따르면 현재 블록의 인트라 예측에 적합한 주변 샘플들을 도출할 수 있으며, 이를 통하여 인트라 예측 성능을 향상시킬 수 있다.
본 발명에 따르면 기존에는 주변 블록의 복원 샘플이 현재 블록의 인트라 예측을 위한 주변 샘플들로 이용되었던 것과 달리, 주변 블록의 변환 계수에 CIIP 스케일링을 적용하여 수정 또는 개선된 주변 샘플들을 생성할 수 있으며, 이를 통하여 인트라 예측 성능을 향상시킬 수 있다.
또한, 본 발명에 따르면 주변 블록의 CBF(coded block flag), 인트라 예측 모드 및/또는 주변 블록에 대한 CIIP 적용 여부 등을 기반으로 적응적으로 현재 블록에 대한 CIIP 적용 여부를 결정할 수 있으며, 이를 통하여 예측 효율을 향상시킬 수 있다.
도 1은 본 발명이 적용될 수 있는 비디오 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 2는 본 발명이 적용될 수 있는 비디오 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3은 CIIP를 고려한 인트라 예측 방법을 개략적으로 나타낸다.
도 4는 본 발명에 따른 PU 디코딩 절차를 예시적으로 나타낸다.
도 5는 본 발명에 따른 TU 디코딩 절차를 예시적으로 나타낸다.
도 6은 본 발명에 따른 현재 블록에 대한 예측 샘플 생성 절차를 예시적으로 나타낸다.
도 7은 본 발명에 따른 PU 디코딩시 CIIP 플래그 유도 방법을 예시적으로 나타낸다.
도 8은 현재 PU를 기준으로 주변 블록들 및 주변 참조샘플들을 예시적으로 나타낸다.
도 9는 본 발명에 따른 인트라 예측 모드들을 예시적으로 나타낸다.
도 10은 현재 PU의 인트라 예측 모드가 좌상단 대각 방향의 예측방향을 갖는 경우(ex. 인트라 예측 모드 #18) 고려되는 주변 블록들 중에 CBF가 1인 블록이 있는 경우의 예를 나타낸다.
도 11은 현재 PU의 인트라 예측 모드가 좌상단 대각 방향의 예측방향을 갖는 경우 고려되는 주변 블록들 중에 CBF가 1인 블록이 없는 경우의 예를 나타낸다.
도 12는 CBF 참조 블록 위치를 예시적으로 나타낸다.
도 13은 현재 PU의 인트라 예측 모드가 카테고리 0에 속할 경우에 참조 블록들의 예를 나타낸다.
도 14는 현재 PU의 인트라 예측 모드가 카테고리 1에 속할 경우에 참조 블록들의 예를 나타낸다.
도 15 내지 도 18은 각각 현재 PU의 인트라 예측 모드가 카테고리 2 내지 5에 속할 경우에 참조 블록들의 예를 나타낸다.
도 19는 비정방형 형태의 현재 PU에 대한 참조 블록들의 위치를 예시적으로 나타낸다.
도 20 및 21은 비정방형 형태의 현재 PU에 대한 참조 블록들의 위치를 예시적으로 나타낸다.
도 22는 참조블록의 CIIP 플래그가 0인 경우에 대한 예이다.
도 23은 참조블록의 CIIP 플래그가 1인 경우에 대한 예이다.
도 24는 다수의 참조블록이 존재하는 경우에 대한 예이다.
도 25는 CIIP 참조 블록 위치를 예시적으로 나타낸다.
도 26은 다수의 참조 블록들이 존재하는 경우에 대한 예를 나타낸다.
도 27은 참조블록과 현재 PU의 인트라 예측모드가 동일하고, 상기 참조블록에 대한 CIIP 플래그가 0인 경우에 대한 예이다.
도 28은 참조블록과 현재 PU의 인트라 예측모드가 동일하고, 상기 참조블록에 대한 CIIP 플래그가 1인 경우에 대한 예이다.
도 29는 참조블록과 현재 PU의 인트라 예측모드가 다른 경우에 대한 예이다.
도 30는 다양한 인트라 예측 모드를 갖는 다수의 참조 블록들이 존재하는 경우에 대한 예시이다.
도 31은 본 발명에 따른 인코딩 장치에 의한 인트라 예측 방법의 예를 개략적으로 나타낸다.
도 32는 본 발명에 따른 디코딩 장치에 의한 인트라 예측 방법의 예를 개략적으로 나타낸다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정 실시예에 한정하려고 하는 것이 아니다. 본 명세서에서 상용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명의 기술적 사상을 한정하려는 의도로 사용되는 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 도는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 발명에서 설명되는 도면상의 각 구성들은 서로 다른 특징적인 기능들에 관한 설명의 편의를 위해 독립적으로 도시된 것으로서, 각 구성들이 서로 별개의 하드웨어나 별개의 소프트웨어로 구현된다는 것을 의미하지는 않는다. 예컨대, 각 구성 중 두 개 이상의 구성이 합쳐져 하나의 구성을 이룰 수도 있고, 하나의 구성이 복수의 구성으로 나뉘어질 수도 있다. 각 구성이 통합 및/또는 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성 요소에 대해서 중복된 설명은 생략한다.
본 명세서에서 픽처(picture)는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, 슬라이스(slice)는 코딩에 있어서 픽처의 일부를 구성하는 단위이다. 하나의 픽처는 복수의 슬라이스로 구성될 수 있으며, 필요에 따라서 픽처 및 슬라이스는 서로 혼용되어 사용될 수 있다.
픽셀(pixel) 또는 펠(pel)은 하나의 픽처(또는 영상)을 구성하는 최소의 단위를 의미할 수 있다. 또한, 픽셀에 대응하는 용어로서 '샘플(sample)'이 사용될 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 휘도(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 채도(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다.
유닛(unit)은 영상 처리의 기본 단위를 나타낸다. 유닛은 픽처의 특정 영역 및 해당 영역에 관련된 정보 중 적어도 하나를 포함할 수 있다. 유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, M×N 블록은 M개의 열과 N개의 행으로 이루어진 샘플들 또는 변환 계수(transform coefficient)들의 집합을 나타낼 수 있다.
도 1은 본 발명이 적용될 수 있는 비디오 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 1을 참조하면, 비디오 인코딩 장치(100)는 픽처 분할부(105), 예측부(110), 감산부(115), 변환부(120), 양자화부(125), 재정렬부(130), 엔트로피 인코딩부(135), 역양자화부(140), 역변환부(145), 가산부(150), 필터부(155) 및 메모리(160)을 포함한다.
픽처 분할부(105)는 입력된 픽처를 적어도 하나의 처리 유닛(processing unit)으로 분할할 수 있다. 이 때, 처리 유닛 코딩 유닛 블록(coding unit, CU), 예측 유닛(prediction unit, PU) 또는 변환 유닛(transform unit, TU)일 수 있다. 코딩 유닛은 코딩의 유닛 블록이고, 최대 코딩 유닛(largest coding unit, LCU)으로부터 쿼드 트리 구조(quad-tree structure)를 따라서 하위(deeper) 뎁스의 코딩 유닛들로 분할(split)될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 최소 코딩 유닛(smallest coding unit, SCU)이 설정된 경우 코딩 유닛은 최소 코딩 유닛보다 더 작은 코딩 유닛으로 분할될 수 없다. 여기서 최종 코딩 유닛이라 함은 예측 유닛 또는 변환 유닛으로 파티셔닝 또는 분할되는 기반이 되는 코딩 유닛을 의미한다. 예측 유닛은 코딩 유닛 블록으로부터 파티셔닝(partitioning)되는 블록으로서, 샘플 예측의 유닛 블록일 수 있다. 이 때, 예측 유닛은 서브 블록(sub block)으로 나뉠 수도 있다. 변환 유닛은 코딩 유닛 블록으로부터 쿼드 트리 구조를 따라서 분할 될 수 있으며, 변환 계수를 유도하는 유닛 블록 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 유닛 블록일 수 있다.
이하, 코딩 유닛은 코딩 블록(coding block, CB), 예측 유닛은 예측 블록(prediction block, PB), 변환 유닛은 변환 블록(transform block, TB) 으로 불릴 수 있다.
예측 블록 또는 예측 유닛은 픽처 내에서 블록 형태의 특정 영역을 의미할 수 있고, 예측 샘플의 어레이(array)를 포함할 수 있다. 또한, 변환 블록 또는 변환 유닛은 픽처 내에서 블록 형태의 특정 영역을 의미할 수 있고, 변환 계수 또는 레지듀얼 샘플의 어레이를 포함할 수 있다.
예측부(110)는 처리 대상 블록(이하, 현재 블록이라 함)에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측 블록을 생성할 수 있다. 예측부(110)에서 수행되는 예측의 단위는 코딩 블록일 수 있고, 변환 블록일 수도 있고, 예측 블록일 수도 있다.
예측부(110)는 현재 블록에 인트라 예측이 적용되는지 인터 예측이 적용되는지를 결정할 수 있다. 일 예로, 예측부(110)는 CU 단위로 인트라 예측 또는 인터 예측이 적용되는지를 결정할 수 있다.
인트라 예측의 경우에, 예측부(110)는 현재 블록이 속하는 픽처(이하, 현재 픽처) 내의 현재 블록 외부의 참조 샘플을 기반으로 현재 블록에 대한 예측 샘플을 유도할 수 있다. 이 때, 예측부(110)는 (i) 현재 블록의 주변(neighboring) 참조 샘플들의 평균(average) 혹은 인터폴레이션(interpolation)을 기반으로 예측 샘플을 유도할 수 있고, (ii) 현재 블록의 주변 참조 샘플들 중 예측 샘플에 대하여 특정 (예측) 방향에 존재하는 참조 샘플을 기반으로 상기 예측 샘플을 유도할 수도 있다. (i)의 경우는 비방향성 모드 또는 비각도 모드, (ii)의 경우는 방향성(directional) 모드 또는 각도(angular) 모드라고 불릴 수 있다. 인트라 예측에서 예측 모드는 예를 들어 33개의 방향성 예측 모드와 적어도 2개 이상의 비방향성 모드를 가질 수 있다. 비방향성 모드는 DC 예측 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 예측부(110)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측의 경우에, 예측부(110)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 샘플을 기반으로, 현재 블록에 대한 예측 샘플을 유도할 수 있다. 예측부(110)는 스킵(skip) 모드, 머지(merge) 모드, 및 MVP(motion vector prediction) 모드 중 어느 하나를 적용하여 현재 블록에 대한 예측 샘플을 유도할 수 있다. 스킵 모드와 머지 모드의 경우에, 예측부(110)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 예측 샘플과 원본 샘플 사이의 차(레지듀얼)가 전송되지 않는다. MVP 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하여 현재 블록의 움직임 벡터 예측자로 이용하여 현재 블록의 움직임 벡터를 유도할 수 있다.
인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처(reference picture)에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 움직임 정보(motion information)는 움직임 벡터와 참조 픽처 인덱스를 포함할 수 있다. 예측 모드 정보와 움직임 정보 등의 정보는 (엔트로피) 인코딩되어 비트스트림 형태로 출력될 수 있다.
스킵 모드와 머지 모드에서 시간적 주변 블록의 움직임 정보가 이용되는 경우에, 참조 픽처 리스트(reference picture list) 상의 최상위 픽처가 참조 픽처로서 이용될 수도 있다. 참조 픽처 리스트(Picture Order Count)에 포함되는 참조 픽처들은 현재 픽처와 해당 참조 픽처 간의 POC(Picture order count) 차이 기반으로 정렬될 수 있다. POC는 픽처의 디스플레이 순서에 대응하며, 코딩 순서와 구분될 수 있다.
감산부(115)는 원본 샘플과 예측 샘플 간의 차이인 레지듀얼 샘플을 생성한다. 스킵 모드가 적용되는 경우에는, 상술한 바와 같이 레지듀얼 샘플을 생성하지 않을 수 있다.
변환부(120)는 변환 블록 단위로 레지듀얼 샘플을 변환하여 변환 계수(transform coefficient)를 생성한다. 변환부(120)는 해당 변환 블록의 사이즈와, 해당 변환 블록과 공간적으로 겹치는 코딩 블록 또는 예측 블록에 적용된 예측 모드에 따라서 변환을 수행할 수 있다. 예컨대, 상기 변환 블록과 겹치는 상기 코딩 블록 또는 상기 예측 블록에 인트라 예측이 적용되었고, 상기 변환 블록이 4×4의 레지듀얼 어레이(array)라면, 레지듀얼 샘플은 DST(Discrete Sine Transform)를 이용하여 변환되고, 그 외의 경우라면 레지듀얼 샘플은 DCT(Discrete Cosine Transform)를 이용하여 변환할 수 있다.
양자화부(125)는 변환 계수들을 양자화하여, 양자화된 변환 계수들을 생성할 수 있다.
재정렬부(130)는 양자화된 변환 계수들을 재정렬한다. 재정렬부(130)는 계수들 스캐닝(scanning) 방법을 통해 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있다. 여기서 재정렬부(130)는 별도의 구성으로 설명하였으나, 재정렬부(130)는 양자화부(125)의 일부일 수 있다.
엔트로피 인코딩부(135)는 양자화된 변환 계수들에 대한 엔트로피 인코딩을 수행할 수 있다. 엔트로피 인코딩은 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 인코딩 방법을 포함할 수 있다. 엔트로피 인코딩부(135)는 양자화된 변환 계수 외 비디오 복원에 필요한 정보들(예컨대 신택스 요소(syntax element)의 값 등)을 함께 또는 별도로 인코딩할 수도 있다. 엔트로피 인코딩된 정보들은 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다.
역양자화부(140)는 양자화부(125)에서 양자화된 값(양자화된 변환 계수)들을 역양자화하고, 역변환부(145)는 역양자화부(135)에서 역양자화된 값들을 역변환하여 레지듀얼 샘플을 생성한다.
가산부(150)는 레지듀얼 샘플과 예측 샘플을 합쳐서 픽처를 복원한다. 레지듀얼 샘플과 예측 샘플은 블록 단위로 더해져서 복원 블록이 생성될 수 있다. 여기서 가산부(150)는 별도의 구성으로 설명하였으나, 가산부(150)는 예측부(110)의 일부일 수 있다.
복원된 픽처(reconstructed picture)에 대하여 필터부(155)는 디블록킹 필터 및/또는 샘플 적응적 오프셋(sample adaptive offset)을 적용할 수 있다. 디블록킹 필터링 및/또는 샘플 적응적 오프셋을 통해, 복원 픽처 내 블록 경계의 아티팩트나 양자화 과정에서의 왜곡이 보정될 수 있다. 샘플 적응적 오프셋은 샘플 단위로 적용될 수 있으며, 디블록킹 필터링의 과정이 완료된 후 적용될 수 있다. 필터부(155)는 ALF(Adaptive Loop Filter)를 복원된 픽처에 적용할 수도 있다. ALF는 디블록킹 필터 및/또는 샘플 적응적 오프셋이 적용된 후의 복원된 픽처에 대하여 적용될 수 있다.
메모리(160)는 복원 픽처 또는 인코딩/디코딩에 필요한 정보를 저장할 수 있다. 여기서 복원 픽처는 상기 필터부(155)에 의하여 필터링 절차가 완료된 복원 픽처일 수 있다. 상기 저장된 복원 픽처는 다른 픽처의 (인터) 예측을 위한 참조 픽처로 활용될 수 있다. 예컨대, 메모리(160)는 인터 예측에 사용되는 (참조) 픽처들을 저장할 수 있다. 이 때, 인터 예측에 사용되는 픽처들은 참조 픽처 세트(reference picture set) 혹은 참조 픽처 리스트(reference picture list)에 의해 지정될 수 있다.
도 2는 본 발명이 적용될 수 있는 비디오 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 2를 참조하면, 비디오 디코딩 장치(200)는 엔트로피 디코딩부(210), 재정렬부(220), 역양자화부(230), 역변환부(240), 예측부(250), 가산부(260), 필터부(270), 메모리(280)를 포함한다.
비디오 정보를 포함하는 비트스트림이 입력되면, 비디오 디코딩 장치는(200)는 비디오 인코딩 장치에서 비디오 정보가 처리된 프로세스에 대응하여 비디오를 복원할 수 있다.
예컨대, 비디오 디코딩 장치(200)는 비디오 인코딩 장치에서 적용된 처리 유닛을 이용하여 비디오 디코딩을 수행할 수 있다. 따라서 비디오 디코딩의 처리 유닛 블록은 코딩 유닛 블록, 예측 유닛 블록 또는 변환 유닛 블록일 수 있다. 코딩 유닛 블록은 디코딩의 유닛 블록으로서 최대 코딩 유닛 블록으로부터 쿼드 트리 구조를 따라서 분할될 수 있다. 예측 유닛 블록은 코딩 유닛 블록으로부터 파티셔닝되는 블록으로서, 샘플 예측의 유닛 블록일 수 있다. 이 때, 예측 유닛 블록은 서브 블록으로 나뉠 수도 있다. 변환 유닛 블록은 코딩 유닛 블록으로부터 쿼드 트리 구조를 따라서 분할 될 수 있으며, 변환 계수를 유도하는 유닛 블록 또는 변환 계수로부터 레지듀얼 신호를 유도하는 유닛 블록일 수 있다.
엔트로피 디코딩부(210)는 비트스트림을 파싱하여 비디오 복원 또는 픽처 복원에 필요한 정보를 출력할 수 있다. 예컨대, 엔트로피 디코딩부(210)는 지수 골롬 부호화, CAVLC 또는 CABAC 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 비디오 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값 들을 출력할 수 있다.
보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈을 수신하고, 디코딩 대상 구문 요소 정보와 주변 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 문맥(context) 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)를 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다.
엔트로피 디코딩부(210)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(230)로 제공되고, 엔트로피 디코딩부(210)에서 엔트로피 디코딩이 수행된 레지듀얼 값, 즉 양자화된 변환 계수는 재정렬부(220)로 입력될 수 있다.
재정렬부(220)는 양자화되어 있는 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 재정렬부(220)는 인코딩 장치에서 수행된 계수 스캐닝에 대응하여 재정렬을 수행할 수 있다. 여기서 재정렬부(220)는 별도의 구성으로 설명하였으나, 재정렬부(220)는 양자화부(230)의 일부일 수 있다.
역양자화부(230)는 양자화되어 있는 변환 계수들을 (역)양자화 파라미터를 기반으로 역양자화하여 변환 계수를 출력할 수 있다. 이 때, 양자화 파라미터를 유도하기 위한 정보는 인코딩 장치로부터 시그널링될 수 있다.
역변환부(240)는 변환 계수들을 역변환하여 레지듀얼 샘플들을 유도할 수 있다.
예측부(250)는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측 블록을 생성할 수 있다. 예측부(250)에서 수행되는 예측의 단위는 코딩 블록일 수도 있고, 변환 블록일 수도 있고, 예측 블록일 수도 있다.
예측부(250)는 상기 예측에 관한 정보를 기반으로 인트라 예측을 적용할 것인지 인터 예측을 적용할 것인지를 결정할 수 있다. 이 때, 인트라 예측과 인터 예측 중 어느 것을 적용할 것인지를 결정하는 단위와 예측 샘플을 생성하는 단위는 상이할 수 있다. 아울러, 인터 예측과 인트라 예측에 있어서 예측 샘플을 생성하는 단위 또한 상이할 수 있다. 예를 들어, 인터 예측과 인트라 예측 중 어느 것을 적용할 것인지는 CU 단위로 결정할 수 있다. 또한 예를 들어, 인터 예측에 있어서 PU 단위로 예측 모드를 결정하고 예측 샘플을 생성할 수 있고, 인트라 예측에 있어서 PU 단위로 예측 모드를 결정하고 TU 단위로 예측 샘플을 생성할 수도 있다.
인트라 예측의 경우에, 예측부(250)는 현재 픽처 내의 주변 참조 샘플을 기반으로 현재 블록에 대한 예측 샘플을 유도할 수 있다. 예측부(250)는 현재 블록의 주변 참조 샘플을 기반으로 방향성 모드 또는 비방향성 모드를 적용하여 현재 블록에 대한 예측 샘플을 유도할 수 있다. 이 때, 주변 블록의 인트라 예측 모드를 이용하여 현재 블록에 적용할 예측 모드가 결정될 수도 있다.
인터 예측의 경우에, 예측부(250)는 참조 픽처 상에서 움직임 벡터에 의해 참조 픽처 상에서 특정되는 샘플을 기반으로 현재 블록에 대한 예측 샘플을 유도할 수 있다. 예측부(250)는 스킵(skip) 모드, 머지(merge) 모드 및 MVP 모드 중 어느 하나를 적용하여 현재 블록에 대한 예측 샘플을 유도할 수 있다. 이때, 비디오 인코딩 장치에서 제공된 현재 블록의 인터 예측에 필요한 움직임 정보, 예컨대 움직임 벡터, 참조 픽처 인덱스 등에 관한 정보는 상기 예측에 관한 정보를 기반으로 획득 또는 유도될 수 있다
스킵 모드와 머지 모드의 경우에, 주변 블록의 움직임 정보가 현재 블록의 움직임 정보로 이용될 수 있다. 이 때, 주변 블록은 공간적 주변 블록과 시간적 주변 블록을 포함할 수 있다.
예측부(250)는 가용한 주변 블록의 움직임 정보로 머지 후보 리스트를 구성하고, 머지 인덱스가 머지 후보 리스트 상에서 지시하는 정보를 현재 블록의 움직임 벡터로 사용할 수 있다. 머지 인덱스는 인코딩 장치로부터 시그널링될 수 있다. 움직임 정보는 움직임 벡터와 참조 픽처를 포함할 수 있다. 스킵 모드와 머지 모드에서 시간적 주변 블록의 움직임 정보가 이용되는 경우에, 참조 픽처 리스트 상의 최상위 픽처가 참조 픽처로서 이용될 수 있다.
스킵 모드의 경우, 머지 모드와 달리 예측 샘플과 원본 샘플 사이의 차이(레지듀얼)이 전송되지 않는다.
MVP 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하여 현재 블록의 움직임 벡터가 유도될 수 있다. 이 때, 주변 블록은 공간적 주변 블록과 시간적 주변 블록을 포함할 수 있다.
일 예로, 머지 모드가 적용되는 경우, 복원된 공간적 주변 블록의 움직임 벡터 및/또는 시간적 주변 블록인 Col 블록에 대응하는 움직임 벡터를 이용하여, 머지 후보 리스트가 생성될 수 있다. 머지 모드에서는 머지 후보 리스트에서 선택된 후보 블록의 움직임 벡터가 현재 블록의 움직임 벡터로 사용된다. 상기 예측에 관한 정보는 상기 머지 후보 리스트에 포함된 후보 블록들 중에서 선택된 최적의 움직임 벡터를 갖는 후보 블록을 지시하는 머지 인덱스를 포함할 수 있다. 이 때, 예측부(250)는 상기 머지 인덱스를 이용하여, 현재 블록의 움직임 벡터를 도출할 수 있다.
다른 예로, MVP(Motion Vector Prediction) 모드가 적용되는 경우, 복원된 공간적 주변 블록의 움직임 벡터 및/또는 시간적 주변 블록인 Col 블록에 대응하는 움직임 벡터를 이용하여, 움직임 벡터 예측자 후보 리스트가 생성될 수 있다. 즉, 복원된 공간적 주변 블록의 움직임 벡터 및/또는 시간적 주변 블록인 Col 블록에 대응하는 움직임 벡터는 움직임 벡터 후보로 사용될 수 있다. 상기 예측에 관한 정보는 상기 리스트에 포함된 움직임 벡터 후보 중에서 선택된 최적의 움직임 벡터를 지시하는 예측 움직임 벡터 인덱스를 포함할 수 있다. 이 때, 예측부(250)는 상기 움직임 벡터 인덱스를 이용하여, 움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보 중에서, 현재 블록의 예측 움직임 벡터를 선택할 수 있다. 인코딩 장치의 예측부는 현재 블록의 움직임 벡터와 움직임 벡터 예측자 간의 움직임 벡터 차분(MVD)을 구할 수 있고, 이를 인코딩하여 비트스트림 형태로 출력할 수 있다. 즉, MVD는 현재 블록의 움직임 벡터에서 상기 움직임 벡터 예측자를 뺀 값으로 구해질 수 있다. 이 때, 예측부(250)는 상기 예측에 관한 정보에 포함된 움직임 벡터 차분을 획득하고, 상기 움직임 벡터 차분과 상기 움직임 벡터 예측자의 가산을 통해 현재 블록의 상기 움직임 벡터를 도출할 수 있다. 예측부는 또한 참조 픽처를 지시하는 참조 픽처 인덱스 등을 상기 예측에 관한 정보로부터 획득 또는 유도할 수 있다.
가산부(260)는 레지듀얼 샘플과 예측 샘플을 더하여 현재 블록 혹은 현재 픽처를 복원할 수 있다. 가산부(260)는 레지듀얼 샘플과 예측 샘플을 블록 단위로 더하여 현재 픽처를 복원할 수도 있다. 스킵 모드가 적용된 경우에는 레지듀얼이 전송되지 않으므로, 예측 샘플이 복원 샘플이 될 수 있다. 여기서는 가산부(260)를 별도의 구성으로 설명하였으나, 가산부(260)는 예측부(250)의 일부일 수도 있다.
필터부(270)는 복원된 픽처에 디블록킹 필터링 샘플 적응적 오프셋, 및/또는 ALF 등을 적용할 수 있다. 이 때, 샘플 적응적 오프셋은 샘플 단위로 적용될 수 있으며, 디블록킹 필터링 이후 적용될 수도 있다. ALF는 디블록킹 필터링 및/또는 샘플 적응적 오프셋 이후 적용될 수도 있다.
메모리(280)는 복원 픽처 또는 디코딩에 필요한 정보를 저장할 수 있다. 여기서 복원 픽처는 상기 필터부(270)에 의하여 필터링 절차가 완료된 복원 픽처일 수 있다. 예컨대, 메모리(280)는 인터 예측에 사용되는 픽처들을 저장할 수 있다. 이 때, 인터 예측에 사용되는 픽처들은 참조 픽처 세트 혹은 참조 픽처 리스트에 의해 지정될 수도 있다. 복원된 픽처는 다른 픽처에 대한 참조 픽처로서 이용될 수 있다. 또한, 메모리(280)는 복원된 픽처를 출력 순서에 따라서 출력할 수도 있다.
비디오 또는 픽처를 코딩함에 있어서, 코딩 효율을 위하여 상술한 바와 같이 인트라 예측 또는 인터 예측이 적용될 수 있다. 이 중에서 인트라 예측이 적용되는 경우, 현재 블록을 위하여, 현재 픽처 내의 상기 현재 블록의 주변 샘플들이 참조 샘플들로 활용될 수 있다. 그러나, 이와 같은 주변 샘플들을 기반으로 상기 현재 블록에 대한 인트라 예측을 수행하는 경우, 어느 정도의 오차가 발생할 수밖에 없으며, 이는 결국 레지듀얼 신호에 대한 데이터량의 증가를 유발하게 되고, 이로 인하여 코딩 효율이 감소되게 된다.
한편, 인트라 예측을 수행함에 있어, 인트라 예측 효율을 높이기 위하여, 상기 현재 픽처 내의 상기 주변 샘플들을 그대로 사용하기보다는 수정된(modified) 주변 샘플들을 도출하여 참조 샘플들로 사용할 수 있다. 상기 수정된 주변 샘플들은 상기 주변 샘플들을 포함하는 주변 블록의 변환 계수들에 스케일링 마스크(scaling mask)를 적용하여 도출될 수 있다. 이하, 상기 주변 블록의 변환 계수들에 스케일링 마스크를 적용하여 도출된 상기 수정된 주변 샘플들을 이용하여 인트라 예측을 수행하는 방법은, CIIP(coefficient induced intra prediction)이라고 불릴 수 있다. 즉, CIIP는 인트라 예측에서는, 주변 블록의 변환 계수들에 스케일링 마스크를 적용한 후 역변환하여 상기 주변 블록에 대한 수정된 레지듀얼 샘플들을 생성하고, 상기 수정된 레지듀얼 샘플들을 기반으로 상기 주변 블록 내의 상기 수정된 주변 샘플들을 생성하여, 상기 수정된 주변 샘플들을 이용하여 상기 현재 블록에 대한 인트라 예측이 수행될 수 있다. 다시 말하면, CIIP는 현재 블록의 예측 샘플이 원본 샘플과 유사하게 도출될 수 있도록, 주변 블록에 대한 주파수 도메인에서의 스케일링 마스크 적용을 기반으로 수정된 주변 샘플들을 도출하고, 상기 수정된 주변 샘플들을 기반으로 인트라 예측을 수행하는 방법으로 볼 수 있다. 상기 스케일링 마스크는 스케일링 메트릭스라고 불릴 수 있으며, 주파수 도메인에서 적용되는 필터의 일종으로, 주파수 도메인에서 원본 영상과 예측 영상간의 통계적 특성을 기반으로 학습된 정보를 이용하여 도출될 수 있다. 상기 스케일링 메트릭스의 사이즈는 상기 변환 계수들의 사이즈와 같거나 작을 수 있다. 상기 변환 계수들에 상기 스케일링 마스크를 적용하는 절차는 CIIP 스케일링 절차로 불릴 수 있다. CIIP를 기반으로 현재 블록의 샘플값과 유사한 값을 갖는 수정된 주변 샘플을 도출할 수 있으며, 이를 기반으로 인트라 예측 성능이 향상될 수 있다.
CIIP 적용 여부는 CIIP 플래그를 기반으로 결정될 수 있으며, CIIP 플래그가 1인 경우, 주변블록의 변환 계수들에 CIIP 스케일링이 적용되고, 스케일링된 변환 계수들이 역변환되어 수정된 레지듀얼 샘플들이 생성되고, 상기 수정된 레지듀얼 샘플들을 기반으로 수정된 주변 샘플들이 도출되고, 상기 수정된 주변 샘플들을 기반으로 현재블록에 대한 인트라 예측(즉, 현재블록 내의 예측 샘플들 생성)이 수행된다. 여기서 주변 블록이라 함은 현재 블록의 인트라 예측을 위한 주변 샘플들 중 적어도 하나를 포함하는 블록일 수 있다. 또는 상기 주변 블록이라 함은 상기 현재 블록의 인트라 예측을 위한 주변 샘플들 중 상기 현재 블록에 적용되는 예측 모드에 따라 선택된 주변 샘플들 중 적어도 하나를 포함하는 블록일 수도 있다.
한편, CIIP 플래그가 0인 경우, 주변 블록의 기존 복원 샘플을 기반으로 현재블록에 대한 인트라 예측이 수행될 수 있다.
CIIP를 고려한 인트라 예측을 수행하는 방법은 다음과 같이 나타내어질 수 있다.
도 3은 CIIP를 고려한 인트라 예측 방법을 개략적으로 나타낸다. 도 3의 절차는 코딩 장치에 의하여 수행될 수 있다. 상기 코딩 장치는 인코딩 장치 또는 디코딩 장치를 포함할 수 있다.
도 3을 참조하면, 코딩 장치는 CIIP 적용 여부에 따라 다른 절차에 따라 현재 블록에 대한 인트라 예측을 수행할 수 있다.
먼저, 현재 블록에 CIIP가 적용되는 경우, 코딩 장치는 주변 블록의 양자화된 변환 계수들(300)을 역양자화하여 변환 계수들을 도출하고(S305), 상기 변환 계수들에 CIIP 스케일링을 적용한다(S310). 이 경우 상술한 바와 같이 코딩 장치는 미리 정해진 스케일링 마스크를 상기 변환 계수들에 적용할 수 있다.
코딩 장치는 CIIP 스케일링된 변환 계수들을 역변환하여(S315), 수정된 레지듀얼 샘플(320)을 도출한다. 코딩 장치는 상기 주변 블록의 프리딕터(predictor, 325)와 상기 수정된 레지듀얼 샘플(320)을 기반으로 CIIP 복원 픽처(330)를 생성할 수 있다. 상기 프리딕터(325)는 예측 샘플이라고 불릴 수 있다. 여기서 상기 주변 블록의 상기 프리딕터(325)을 구함에 있어서, 상기 주변 블록에 대하여는 CIIP가 적용되지 않을 수 있다. 즉, 상기 주변 블록의 상기 프리딕터(325)는 CIIP가 적용되지 않는 일반 인트라 예측 방법을 통하여 생성되었을 수 있다. 또한, 여기서 CIIP 복원 픽처(330)는 CIIP 복원 샘플(CIIP reconstructed sample, 335)을 포함한다. 코딩 장치는 상기 CIIP 복원 샘플(335)을 기반으로 상기 현재 블록의 참조 샘플(수정된 주변 샘플)을 도출한다(S340). 코딩 장치는 상기 도출된 참조 샘플을 기반으로 상기 현재 블록의 인트라 예측 모드에 따라 상기 현재 블록의 프리딕터, 즉 예측 샘플을 생성할 수 있다(S345).
한편, 상기 현재 블록에 CIIP가 적용되지 않는 경우, 코딩 장치는 주변 블록의 양자화된 변환 계수들(350)을 역양자화하여 변환 계수들을 도출하고(S355), 상기 변환 계수들을 역변환하여(S365), 레지듀얼 샘플(370)을 도출한다. 이 경우 코딩 장치는 상기 변환 계수들에 CIIP 스케일링 절차를 적용하지 않는다. 코딩 장치는 상기 주변 블록의 프리딕터(325)와 상기 레지듀얼 샘플(370)을 기반으로 복원 픽처(380)를 생성할 수 있다. 상기 복원 픽처(380)는 복원 샘플(385)을 포함한다. 코딩 장치는 상기 복원 샘플(385)을 기반으로 상기 현재 블록의 참조 샘플(주변 샘플)을 도출한다(S390). 코딩 장치는 상기 도출된 참조 샘플을 기반으로 상기 현재 블록의 인트라 예측 모드에 따라 상기 현재 블록의 프리딕터를 생성할 수 있다(S395).
인트라 예측 절차를 수행함에 있어서, 구체적인 인트라 예측 모드(ex. DC 모드, 플래너 모드, 앵귤러 모드 등)는 PU에서 결정되고, 주변 참조 샘플들을 기반으로 예측 샘플을 생성하는 절차는 TU에서 수행될 수 있다. PU에 인트라 예측이 적용되는 경우, 상기 PU의 영역은 하나 이상의 TU들의 영역을 포함할 수 있다. 이 경우, 상기 하나 이상의 TU들은 동일한 인트라 예측 모드를 공유할 수 있다.
CIIP가 적용 여부에 따른 PU의 디코딩 절차는 구체적으로 다음과 같이 수행될 수 있다.
도 4는 본 발명에 따른 PU 디코딩 절차를 예시적으로 나타낸다. 도 4의 절차는 디코딩 장치에 의하여 수행될 수 있다. 상술한 현재 블록은 예를 들어 TU에 대응할 수 있다.
도 4를 참조하면, 디코딩 장치는 인트라 예측 모드를 결정한다(S400). 디코딩 장치는 MPM(most probable mode) 또는 리메이닝(remaining) 모드가 적용되는지 여부에 따라 상기 인트라 예측 모드를 결정할 수 있다. 여기서 상기 인트라 예측 모드는 DC 모드, 플래너 모드 또는 앵귤러 모드들 중 하나일 수 있다.
MPM 모드가 적용되는 경우 상기 PU의 좌측 또는 상측 주변 블록에 대한 인트라 예측 모드를 기반으로 MPM 리스트를 결정하고, 상기 MPM 리스트를 기반으로 상기 인트라 예측 모드를 결정할 수 있다. 이 경우 예를 들어 상기 좌측 또는 상측 주변 블록이 가용하지 않거나(ex. 상기 좌측 또는 상측 주변 블록이 픽처 바깥쪽에 위치하는 경우) 또는 상기 좌측 또는 상측 주변 블록이 인터 예측 모드로 코딩된 경우, 상기 좌측 또는 상측 주변 블록에 대한 인트라 예측 모드는 DC 모드로 설정될 수 있다. 또는 리메이닝 모드가 적용되는 경우 상기 MPM 리스트에 포함되지 않는 나머지 모드들 중에서 특정 인트라 예측 모드를 지시하는 정보가 시그널링될 수 있다.
디코딩 장치는 상기 인트라 예측 모드가 비-CIIP 모드(non-CIIP mode)에 해당하는지 여부를 확인한다(S410). 예를 들어, 후술하는 바와 같이 인트라 예측 모드들 중 일부에 대하여는 CIIP 모드가 적용되지 않는 것으로 설정될 수 있으며, 이는 비-CIIP 모드라고 불릴 수 있다. 한편, 비-CIIP 모드가 설정되지 않은 경우 상기 S410 절차는 생략될 수 있다.
상기 결정된 인트라 예측 모드가 상기 비-CIIP 모드에 속하지 않는 경우 디코딩 장치는 CIIP 플래그를 파싱 및 확인한다(S420). 디코딩 장치는 상기 CIIP 플래그를 기반으로 TU에 CIIP가 적용되는지 여부를 결정하고, 상기 TU를 디코딩한다(S430). 만약 상기 CIIP가 적용되는 경우, 디코딩 장치는 상술한 바와 같이 상기 TU의 주변 블록의 변환 계수들에 대하여 CIIP 스케일링 절차를 적용하여, 수정된 주변 샘플을 도출하고, 상기 수정된 주변 샘플을 기반으로 상기 결정된 인트라 예측 모드에 따라 예측 샘플을 생성한다. 만약 상기 CIIP가 적용되지 않는 경우, 디코딩 장치는 상기 TU의 상기 주변 블록의 변환 계수들을 기반으로 CIIP 스케일링 절차 없이 주변 샘플을 도출하고, 상기 주변 샘플을 기반으로 상기 결정된 인트라 예측 모드에 따라 예측 샘플을 생성한다.
디코딩 장치는 상기 TU가 상기 PU 영역 내의 마지막 TU인지 확인한다(S440). 일 예로, 상기 PU 영역 내에 하나의 TU가 존재하는 경우, 해당 TU가 마지막 TU일 수 있다. 다른 예로, 상기 PU 영역 내에 복수(예를 들어 4개)의 TU들이 존재하는 경우, 상기 TU들 중 미리 정의된 스캔 순서(ex. 래스터(raster) 스캔 순서)에 따라 마지막으로 디코딩되는 TU가 상기 마지막 TU일 수 있다.
만약 상기 TU가 상기 PU 영역 내의 상기 마지막 TU인 경우, 디코딩 장치는 상기 PU 디코딩 절차를 종료할 수 있다. 만약 상기 TU가 상기 PU 영역 내의 상기 마지막 TU가 아닌 경우, 디코딩 장치는 다음(next) TU를 디코딩한다.
한편, 비록 도 4에서는 하나의 CIIP 플래그에 따라 상기 PU 내 TU들의 CIIP 적용 여부가 결정되는 것으로 도시되었으나, 이는 예시로서 CIIP 적용 여부는 상기 PU 내 각 TU별로 별도로 지시될 수도 있다.
한편, 상술한 TU 디코딩 절차는 구체적으로 예를 들어 다음과 같이 수행될 수 있다.
도 5는 본 발명에 따른 TU 디코딩 절차를 예시적으로 나타낸다. 도 5의 절차는 디코딩 장치에 의하여 수행될 수 있다. 도 5에서 현재 블록은 TU에 대응할 수 있다.
도 5를 참조하면, 디코딩 장치는 현재 블록에 대한 양자화된 변환 계수들을 획득한다(S550). 디코딩 장치는 비트스트림으로부터 상기 양자화된 변환 계수들을 획득할 수 있다.
디코딩 장치는 상기 양자화된 변환 계수들을 역양자화하여(S510) 상기 현재 블록에 대한 변환 계수들을 도출하고, 상기 현재 블록에 대한 변환 계수들을 역변환하여(S520), 상기 현재 블록에 대한 레지듀얼 샘플들을 획득할 수 있다(S530).
한편, 디코딩 장치는 주변 블록에 대한 양자화된 변환계수들을 획득한다(S540). 디코딩 장치는 상기 비트스트림으로부터 상기 주변 블록에 대한 양자화된 변환 계수들을 획득할 수 있다.
디코딩 장치는 상기 주변 블록에 대한 양자화된 변환 계수들을 역양자화하여(S550), 상기 주변 블록에 대한 변환 계수들을 도출한다. 만약 현재 블록에 CIIP가 적용되는 경우, 상기 주변 블록에 대한 변환 계수들에 CIIP 스케일링 절차를 적용하고(S560), 상기 CIIP 스케일링된 변환 계수들을 역변환하여(S570) 상기 주변 블록에 대한 수정된 레지듀얼 샘플들을 획득할 수 있다. 상기 수정된 레지듀얼 샘플들을 기반으로 상기 현재 블록에 대한 수정된 주변 샘플들을 참조 샘플들로 도출할 수 있으며, 상기 참조 샘플들을 기반으로 상기 현재 블록에 대한 예측 샘플들을 획득할 수 있다(S580).
만약 현재 블록에 CIIP가 적용되지 않는 경우, 상기 S560 절차는 생략될 수 있으며, 상기 주변 블록에 대한 변환 계수들이 역변환되고(S570), 상기 주변 블록에 대한 레지듀얼 샘플들이 획득될 수 있다. 이 경우 상기 주변 블록에 대한 레지듀얼 샘플들을 기반으로 상기 현재 블록에 대한 주변 샘플들을 참조 샘플들로 도출할 수 있으며, 상기 참조 샘플들을 기반으로 상기 현재 블록에 대한 예측 샘플들을 획득할 수 있다(S580).
상기 주변 블록에 대한 양자화된 변환 계수들을 기반으로 수행되는 역양자화, CIIP 스케일링 및/또는 역변환 절차는 상기 주변 블록의 정보를 기반으로 수행될 수 있다. 예를 들어 현재 블록은 8×8 사이즈의 TU이고, 상기 주변 블록은 4×4 사이즈의 TU인 경우, 상기 주변 블록에 대한 양자화된 변환 계수들을 기반으로 수행되는 역양자화, CIIP 스케일링 및/또는 역변환 절차는 상기 4×4 사이즈의 TU에 대하여 수행될 수 있다.
디코딩 장치는 상기 현재 블록에 대한 레지듀얼 샘플들과 상기 현재 블록에 대한 예측 샘플들을 기반으로 상기 현재 블록에 대한 복원 샘플들을 생성할 수 있다(S590). 이 경우 디코딩 장치는 상기 현재 블록에 대한 레지듀얼 샘플들과 상기 현재 블록에 대한 예측 샘플들을 대응하는 위치 또는 페이즈에 따라 가산함으로써, 상기 복원 샘플들을 생성할 수 있다.
한편, 상술한 현재 블록의 예측 샘플들을 생성하는 절차는 구체적으로 예를 들어 다음과 같이 수행될 수 있다.
도 6은 본 발명에 따른 현재 블록에 대한 예측 샘플 생성 절차를 예시적으로 나타낸다.
도 6을 참조하면, 디코딩 장치는 주변 블록의 양자화된 변환 계수들을 획득하고, 상기 양자화된 변환 계수들을 역변환하여 변환 계수들을 획득한다(S650).
디코딩 장치는 현재 블록에 CIIP가 적용되는지 여부를 확인한다(S655). 상기 CIIP 적용 여부는 CIIP 플래그를 기반으로 결정될 수 있으며, 상기 CIIP 플래그의 값이 1이면 상기 현재 블록에 CIIP가 적용됨을 나타내고, 상기 CIIP 플래그의 값이 0이면, 상기 현재 블록에 CIIP가 적용되지 않음을 나타낼 수 있다.
디코딩 장치는 상기 현재 블록에 CIIP가 적용되는 경우, 상기 변환 계수들에 CIIP 스케일링 절차를 적용한다(S660). 상기 CIIP 스케일링 절차는 상술한 바와 같이 소정의 스케일링 메트릭스를 기반으로 수행될 수 있다.
디코딩 장치는 CIIP 스케일링된 변환 계수들(CIIP가 적용되는 경우) 또는 변환 계수들(CIIP가 적용되지 않는 경우)을 역변환하여 상기 주변 블록에 대한 (수정된) 레지듀얼 샘플들을 획득한다(S670). 디코딩 장치는 상기 주변 블록의 예측 모드에 따라 구해진 상기 주변 블록의 예측 샘플들과 상기 주변 블록에 대한 레지듀얼 샘플들을 기반으로 상기 주변 블록의 (수정된) 복원 샘플들을 생성할 수 있으며, 상기 (수정된) 복원 샘플들을 기반으로 상기 현재 블록의 (수정된) 주변 샘플들을 도출할 수 있다. 상기 (수정된) 주변 샘플들은 상기 현재 블록의 인트라 예측을 위한 참조 샘플들로 활용될 수 있다.
이 경우, 상술한 바와 같이 상기 CIIP 적용 여부는 PU 단위 또는 TU 단위로 결정될 수 있다. 이 경우 상기 CIIP 플래그는 PU 단위 또는 TU 단위에서 시그널링될 수 있다.
예를 들어, 상기 CIIP 플래그는 PU 신텍스(syntax)에 포함될 수 있다. 이 경우 상기 PU 신텍스는 예를 들어 다음과 같은 신텍스 요소(syntax element)들을 포함할 수 있다.
Figure pct00001
여기서 ciip_flag 신텍스 요소는 상술한 CIIP 플래그에 대응한다. IntraPredModeY는 상기 현재 블록의 인트라 예측 모드를 나타내며, 구체적으로 상기 현재 블록의 루마 성분(luma component)에 대한 인트라 예측 모드를 나타낼 수 있다. NON_CIIP_PRED_MODE_INTRA는 상술한 비-CIIP 예측 모드에 대응한다. 즉, 인트라 예측 모드들 중 일부에 대하여는 CIIP 모드가 적용되지 않는 것으로 설정된 경우, 상기 NON_CIIP_PRED_MODE_INTRA는 상기 CIIP 모드가 적용되지 않는 것으로 설정된 인트라 예측 모드를 나타낸다.
상기 표에서 서술된 바와 같이 상기 현재 블록의 인트라 예측 모드가 비-CIIP 예측 모드가 아닌 경우에 상기 PU 신텍스에 포함될 수 있다. 다시 말하면, 디코딩 장치는 상기 현재 블록의 인트라 예측 모드가 비-CIIP 예측 모드가 아닌 경우에 한하여, 상기 ciip_flag 신텍스 요소를 파싱할 수도 있다. 또는 복잡도를 줄이기 위하여 상기 ciip_flag 신텍스 요소는 상기 PU 신텍스에 항상 포함될 수도 있다.
한편, 본 발명에 따르면 현재 PU의 주변 블록의 레지듀얼 신호에 관한 정보를 기반으로 CIIP 플래그를 유도할 수도 있다. 상기 레지듀얼 신호는 레지듀얼 샘플들에 관한 정보를 포함할 수 있다. 상술한 바와 같이 CIIP는 주변 블록의 레지듀얼 신호를 이용하여 현재 블록의 예측샘플들을 생성하는 과정에서 CIIP 스케일링 메트릭스를 적용하여 현재블록의 예측샘플과 원본샘플과의 에러를 최소화하여, 인트라 예측 성능을 높일 수 있다. 이에 따라, CIIP 모드가 적용되는 경우, 주변 블록의 레지듀얼 신호는 스케일링 메트릭스를 적용하여 생성될 수 있다. 그러나 상기 주변 블록이 양자화 등에 관한 특정 특성을 갖는 경우, 예를 들어 상기 주변 블록의 양자화된 변환계수들이 없거나, 그 값이 모두 0인 경우에는 CIIP 스케일링을 적용하여도 그 출력값에 영향이 없다. 따라서 현재 블록이 이러한 주변 블록을 기반으로 인트라 예측을 수행하는 경우, 인코딩 장치는 상기 CIIP 플래그를 디코딩 장치로 전송하지 않고, 디코딩 장치는 내부적으로 또는 묵시적으로 상기 CIIP 플래그를 0으로 유도할 수 있다. 즉, 특정 상황에서 디코딩 장치는 상기 CIIP 플래그를 파싱하지 않을 수 있으며, 이 경우 디코딩 장치는 상기 CIIP 플래그의 값을 0으로 유도할 수 있다.
도 7은 본 발명에 따른 PU 디코딩시 CIIP 플래그 유도 방법을 예시적으로 나타낸다.
도 7을 참조하면, 디코딩 장치는 인트라 예측 모드를 결정한다(S700). 여기서 상기 인트라 예측 모드는 DC 모드, 플래너 모드 또는 앵귤러 모드들 중 하나일 수 있다.
디코딩 장치는 상기 인트라 예측 모드가 비-CIIP 모드(non-CIIP mode)에 해당하는지 여부를 확인한다(S710). 한편, 비-CIIP 모드가 설정되지 않은 경우 상기 S410 절차는 생략될 수 있다.
상기 결정된 인트라 예측 모드가 상기 비-CIIP 모드에 속하지 않는 경우, 디코딩 장치는 현재 PU의 주변 블록의 CBF(coded bit flag)가 0인지 확인한다(S715). 예를 들어 상기 CBF가 1이면, 이는 해당 TU가 0이 아닌(not equal to 0) 하나 또는 그이상의(one or more) 변환계수 레벨들을 포함함을 나타낼 수 있다. 상기 CBF는 cbf_luma 신텍스 요소에 대응될 수 있다. 여기서 주변 블록은 예를 들어 현재 PU의 좌측, 상측, 좌상측, 좌하측 또는 우상측에 위치하는 주변 블록들 중 하나일 수 있다. 상기 주변 블록은 예를 들어, 상기 주변 블록들 중 특정 주변 블록일 수 있다. 상기 특정 주변 블록은 후술하는 바와 같이 예를 들어 상기 인트라 예측 모드에 따라 결정될 수 있다.
만약 상기 주변 블록의 CBF가 0이 아닌 경우, 디코딩 장치는 CIIP 플래그를 파싱 및 확인한다(S720). 디코딩 장치는 상기 CIIP 플래그를 기반으로 상기 TU에 CIIP가 적용되는지 여부를 결정하고, 상기 TU를 디코딩할 수 있다(S730). 만약 상기 CIIP가 적용되는 경우, 디코딩 장치는 상술한 바와 같이 상기 TU의 주변 블록의 변환 계수들에 대하여 CIIP 스케일링 절차를 적용하여, 수정된 주변 샘플을 도출하고, 상기 수정된 주변 샘플을 기반으로 상기 결정된 인트라 예측 모드에 따라 예측 샘플을 생성한다. 만약 상기 CIIP가 적용되지 않는 경우(상기 결정된 인트라 예측 모드가 상기 비-CIIP 모드에 속하는 경우, 상기 주변 블록의 CBF가 0인 경우 또는 상기 CIIP 플래그의 값이 0인 경우), 디코딩 장치는 상기 TU의 상기 주변 블록의 변환 계수들을 기반으로 CIIP 스케일링 절차 없이 주변 샘플을 도출하고, 상기 주변 샘플을 기반으로 상기 결정된 인트라 예측 모드에 따라 예측 샘플을 생성한다.
디코딩 장치는 상기 TU가 상기 PU 영역 내의 마지막 TU인지 확인한다(S740).
만약 상기 TU가 상기 PU 영역 내의 상기 마지막 TU인 경우, 디코딩 장치는 상기 PU 디코딩 절차를 종료할 수 있고, 만약 상기 TU가 상기 PU 영역 내의 상기 마지막 TU가 아닌 경우, 디코딩 장치는 다음(next) TU를 디코딩할 수 있음은 상술한 바와 같다.
한편, 상기 PU의 주변에는 다수의 주변 블록들이 존재할 수 있으며, 일 예로, 다음과 같은 주변 블록들이 상기 PU 및/또는 상기 PU 영역 내 TU들의 CIIP 적용 여부 판단을 위하여 이용될 수 있다.
도 8은 현재 PU를 기준으로 주변 블록들 및 주변 참조샘플들을 예시적으로 나타낸다. 여기서 주변 참조샘플들은 상기 현재 PU 영역 내 TU들에 CIIP가 적용되는지 여부를 판단하기 위하여 참조되는 샘플들로서, 도 8에서는 빗금 영역(hatched area)에 해당한다. 상기 주변 참조샘플들은 상기 현재 PU 영역 내 하나 이상의 TU들의 인트라 예측을 위하여 사용되는 주변샘플들과 동일할 수도 있고 다를 수도 있다. 예를 들어, 상기 현재 PU 영역 내 상기 PU의 사이즈와 동일한 사이즈의 하나의 TU가 존재하는 경우, 상기 현재 PU의 주변 참조샘플들과 상기 TU의 주변샘플들은 동일할 수 있다. 다른 예로, 상기 현재 PU 영역 내 복수의 TU들이 존재하는 경우, 상기 PU의 주변 참조샘플들 중 일부가 상기 TU들의 인트라 예측을 위하여 사용될 수 있다.
도 8을 참조하면, 현재 PU의 사이즈가 N×N인 경우, 총 2N+1개의 주변 참조샘플들이 존재할 수 있다. 이 경우 주변 참조샘플을 포함하고 있는 주변 블록의 CBF가 0인 경우, 상기 현재 PU에 대하여는 CIIP가 적용되지 않는 것으로 판단될 수 있다. 여기서 상기 현재 PU에 대하여는 CIIP가 적용되지 않는다고 함은 상기 현재 PU 영역 내 하나 이상의 TU들에 대하여는 CIIP 가 적용되지 않는 것을 나타낼 수 있다. 이하 같다. 따라서, 이 경우 디코딩 장치는 CIIP 플래그를 파싱 또는 디코딩하지 않고도 상기 CIIP 플래그의 값을 0으로 유도할 수 있다.
구체적으로 예를 들어, 상기 주변 참조샘플들을 포함하고 있는 주변 블록들 각각의 CBF가 모두 0인 경우, 상기 현재 PU에 대하여는 CIIP가 적용되지 않는 것으로 설정 또는 판단될 수 있다. 또한, 상기 주변 참조샘플들을 포함하고 있는 주변 블록들 각각의 CBF 중에서 1 값을 갖는 CBF가 있는 경우, 상기 현재 PU에 대하여 CIIP를 적용할지 여부를 결정하기 위하여, 디코딩 장치는 CIIP 플래그를 파싱 또는 디코딩할 수 있다.
다른 예로, 상기 현재 PU의 주변 참조샘플들을 포함하는 주변 블록들 중 상기 현재 PU에 대한 인트라 예측 모드를 기반으로 선택된 하나 또는 그이상의 주변 블록들만이 상기 PU 및/또는 상기 PU 영역 내 TU들의 CIIP 적용 여부 판단을 위하여 이용될 수 있다. 즉, 이 경우 인트라 예측 모드별로 참조되는 위치의 샘플들을 포함하는 블록의 CBF를 고려하여 상기 현재 PU에 대한 CIIP 적용 여부를 판단할 수 있다. 예를 들어, 인트라 예측 모드는 다음과 같이 총 35개의 예측 모드를 포함할 수 있다.
인트라 예측 모드 연관된 이름(associated name)
0 인트라 플래너
1 인트라 DC
2...34 인트라 앵귤러2...인트라 앵귤러34
여기서, 인트라 예측 모드 #0은 인트라 플래너 모드를 나타내고, 인트라 예측 모드 #1은 인트라 DC 모드를 나타낸다. 인트라 예측 모드 #2...#34는 각각 인트라 앵귤러2 모드...인트라 앵귤러34 모드를 나타낸다.
여기서 상기 인트라 플래너 모드 및 인트라 DC 모드는 인트라 비방향성 모드라 불릴 수 있고, 상기 인트라 앵귤러2 내지 인트라 앵귤러34 모드는 인트라 방향성 모드라 불릴 수 있다.
도 9는 본 발명에 따른 인트라 예측 모드들을 예시적으로 나타낸다.
도 9를 참조하면, 인트라 예측 모드 #0 및 #1은 방향성을 갖지 않으며, 주변 샘플들의 양방향 보간, 또는 주변 샘플들의 평균값을 기반으로 예측 샘플이 도출될 수 있다. 한편, 인트라 예측 모드 #2 내지 #34는 도시된 바와 같은 방향성을 가지며, 예측 샘플의 위치를 기준으로 해당 예측방향에 위치하는 주변 (참조)샘플을 기반으로 상기 예측 샘플이 도출될 수 있다. 이 경우 만약 상기 해당 예측방향 위치에 정수 샘플(integer sample) 단위의 주변 샘플이 존재하지 않는 경우, 상기 해당 방향 위치에 인접하는 두 정수 샘플들의 보간을 통하여 분수 샘플(fractional sample)을 생성하고, 상기 분수 샘플을 기반으로 상기 예측 샘플이 도출될 수도 있다.
따라서, 상기 인트라 예측 모드에 따라서 상기 현재 PU의 주변 참조샘플들 중에서 전부 또는 특정 일부만 고려될 수 있다.
도 10은 현재 PU의 인트라 예측 모드가 좌상단 대각 방향의 예측방향을 갖는 경우(ex. 인트라 예측 모드 #18) 고려되는 주변 블록들 중에 CBF가 1인 블록이 있는 경우의 예를 나타낸다.
도 10을 참조하면, 현재 PU의 사이즈는 16×16 (샘플 단위)이고, 빗금친 영역은 현재 PU의 인트라 예측 모드가 좌상단 대각 방향의 예측방향을 갖는 경우 고려되는 주변 참조샘플들은 나타낸다. 이 경우, 상기 빗금친 영역을 포함하는 주변 블록들만이 상기 현재 PU의 CIIP 적용 여부 판단을 위하여 고려된다. 즉, 상기 빗금친 영역의 주변 참조샘플들을 포함하는 주변 블록들의 CBF들이 모두 0인 경우, 상기 현재 PU에 CIIP가 적용되지 않는 것으로 판단할 수 있고, 상기 빗금친 영역의 주변 참조샘플들을 포함하는 상기 주변 블록들의 CBF들 중 하나라도 1인 경우, CIIP 플래그를 기반으로 상기 CIIP 적용 여부를 판단할 수 있다.
도 10에서 상기 주변 참조샘플들 중 일부는 CBF가 1인 블록에 속해 있으므로, 상기 현재 PU 영역 내의 TU들에 대한 인트라 예측에 있어서 CIIP가 가용하고, CIIP 플래그를 확인하여 이를 기반으로 상기 현재 PU에 대한 CIIP 적용 여부를 판단할 수 있다.
한편, 도 11은 현재 PU의 인트라 예측 모드가 좌상단 대각 방향의 예측방향을 갖는 경우 고려되는 주변 블록들 중에 CBF가 1인 블록이 없는 경우의 예를 나타낸다.
도 11을 참조하면, 현재 PU의 사이즈는 16×16 (샘플 단위)이고, 빗금친 영역은 현재 PU의 인트라 예측 모드가 좌상단 대각 방향의 예측방향을 갖는 경우 고려되는 주변 참조샘플들은 나타낸다. 도 11에서 상기 주변 참조샘플들은 모두 CBF가 0인 블록들에 속해 있으므로, 상기 현재 PU 영역 내의 TU들에 대한 인트라 예측에 있어서 CIIP가 가용하지 않고, 따라서 디코딩 장치는 CIIP 플래그 확인 없이도, 상기 현재 PU에 대하여 CIIP가 적용되지 않는 것으로 판단할 수 있다.
상기와 같이 현재 PU의 주변에 다양한 사이즈의 블록들이 존재하고, 인트라 예측 모드를 활용하여 예측 샘플을 생성하는 경우, 인트라 예측 모드에 따라 미리 정해진 카테고리의 영역에 위치한 참조 블록들만의 CBF를 고려하여 상기 CIIP 적용 여부를 판단할 수 있다. 이 경우 인트라 예측 모드에 따라 고려되는 참조 블록들은 예를 들어 다음과 같이 설정될 수 있다.
카테고리 인트라 예측 모드 CBF 참조 블록 위치
카테고리 0 14...22 B,C,D
카테고리 1 8...13 B
카테고리 2 23...28 D
카테고리 3 2...7 A,B
카테고리 4 29...34 D,E
카테고리 5 0 A,B,C,D,E
표에서 보이는 바와 같이 각 인트라 예측 모드에 따라 6개의 카테고리로 구분되어, 각 카테고리에 속한 인트라 예측 모드는 해당 CBF 참조 블록 위치에 존재하는 참조 블록의 CBF를 고려한다. 한편, 인트라 예측 모드 #1은 일 예로, 상기 카테고리 5에 속할 수 있다. 다른 예로, 상기 인트라 예측 모드 #1이 선택된 경우 상기 CIIP가 적용되지 않는 것으로 판단될 수 있다. 이 경우 상기 인트라 예측 모드 #1은 비-CIIP 예측 모드로 설정될 수도 있다.
상기 CBF 참조 블록 위치를 나타내는 A, B, C, D, E 중 예를 들어 상기 A는 상기 현재 PU의 좌하측 영역, 상기 B는 상기 현재 PU의 좌측 영역, 상기 C는 상기 현재 PU의 좌상측 영역, 상기 D는 상기 현재 PU의 상측 영역, 상기 E는 상기 현재 PU의 우상측 영역에 대응할 수 있다.
도 12는 CBF 참조 블록 위치를 예시적으로 나타낸다.
도 12를 참조하면, 현재 PU의 사이즈는 8×8이고, 상기 CBF 참조 블록 위치를 나타내는 A, B, C, D, E 중 예를 들어 상기 A는 상기 현재 PU의 좌하측 영역, 상기 B는 상기 현재 PU의 좌측 영역, 상기 C는 상기 현재 PU의 좌상측 영역, 상기 D는 상기 현재 PU의 상측 영역, 상기 E는 상기 현재 PU의 우상측 영역에 대응한다.
구체적으로 예를 들어, 상기 현재 PU의 좌상단(top-left) 샘플 포지션이 (0,0)이고, 상기 현재 PU의 높이가 H, 상기 현재 PU의 너비가 W인 경우, 상기 A는 (-1,H)...(-1,2H-1) 포지션의 참조 샘플들이 위치하는 영역을 나타낼 수 있고, 상기 B는 (-1,0)...(-1,H-1) 포지션의 참조 샘플들이 위치하는 영역을 나타낼 수 있고, 상기 C는 (-1,-1) 포지션의 참조 샘플이 위치하는 영역을 나타낼 수 있고, 상기 D는 (0,-1)...(W-1,-1) 포지션의 참조 샘플들이 위치하는 영역을 나타낼 수 있고, 상기 E는 (W,-1)...(2W-1, -1) 포지션의 참조 샘플들이 위치하는 영역을 나타낼 수 있다.
구체적인 카테고리에 따른 CBF 참조 블록 위치는 예를 들어 다음과 같이 나타내어질 수 있다.
도 13은 현재 PU의 인트라 예측 모드가 카테고리 0에 속할 경우에 참조 블록들의 예를 나타낸다.
도 13을 참조하면, 현재 PU의 인트라 예측 모드가 카테고리 0에 속할 경우, 즉 상기 현재 PU의 상기 인트라 예측 모드가 14 내지 22 중 어느 하나인 경우, B,C,D 영역에 위치하는 참조 블록들의 CBF를 기반으로, 상기 현재 PU에 대한 CIIP 적용 여부를 판단할 수 있다. 이 경우 상기 B, C, D 영역은 도 13의 빗금 영역에 대응할 수 있다. 디코딩 장치는 상기 빗금 영역에 위치한 참조 블록(TU)들의 CBF들이 모두 0인 경우, 상기 CIIP 플래그를 0으로 유도할 수 있고, 상기 빗금 영역에 위치한 참조 블록(TU)들의 CBF들 중 하나라도 0이 아닌 경우, 인코딩 장치는 CIIP 플래그를 디코딩 장치로 전송하고, 디코딩 장치는 상기 CIIP 플래그를 기반으로 상기 현재 PU에 대한 CIIP 적용 여부를 판단한다.
도 14는 현재 PU의 인트라 예측 모드가 카테고리 1에 속할 경우에 참조 블록들의 예를 나타낸다.
도 14을 참조하면, 현재 PU의 인트라 예측 모드가 카테고리 1에 속할 경우, B 영역에 위치하는 하나 이상의 참조 블록들의 CBF를 기반으로, 상기 현재 PU에 대한 CIIP 적용 여부를 판단할 수 있다. 이 경우 상기 B 영역은 도 14의 빗금 영역에 대응할 수 있다. 디코딩 장치는 상기 빗금 영역에 위치한 참조 블록(TU)들의 CBF들이 모두 0인 경우, 상기 CIIP 플래그를 0으로 유도할 수 있고, 상기 빗금 영역에 위치한 참조 블록(TU)들의 CBF들 중 하나라도 0이 아닌 경우, 인코딩 장치는 CIIP 플래그를 디코딩 장치로 전송하고, 디코딩 장치는 상기 CIIP 플래그를 기반으로 상기 현재 PU에 대한 CIIP 적용 여부를 판단한다.
도 15 내지 도 18은 각각 현재 PU의 인트라 예측 모드가 카테고리 2 내지 5에 속할 경우에 참조 블록들의 예를 나타낸다.
도 15 내지 도 18에서 도시된 바와 같이, 현재 PU의 인트라 예측 모드가 카테고리 2에 속할 경우 D 영역에 위치하는 하나 이상의 참조 블록들의 CBF를 기반으로 상기 현재 PU에 대한 CIIP 적용 여부를 판단할 수 있고, 상기 현재 PU의 상기 인트라 예측 모드가 카테고리 3에 속할 경우 A, B 영역에 위치하는 하나 이상의 참조 블록들의 CBF를 기반으로 상기 현재 PU에 대한 CIIP 적용 여부를 판단할 수 있고, 상기 현재 PU의 상기 인트라 예측 모드가 카테고리 4에 속할 경우 D, E 영역에 위치하는 하나 이상의 참조 블록들의 CBF를 기반으로 상기 현재 PU에 대한 CIIP 적용 여부를 판단할 수 있고, 상기 현재 PU의 상기 인트라 예측 모드가 카테고리 5에 속할 경우 A, B, C, D, E 영역에 위치하는 참조 블록들의 CBF를 기반으로 상기 현재 PU에 대한 CIIP 적용 여부를 판단할 수 있다. 여기서 각 도면의 빗금 영역은 각 카테고리에 따른 CBF 참조 영역에 대응할 수 있음은 상술한 바와 같다.
한편, PU는 CU로부터 파티셔닝되며, 파티셔닝 모드(또는 타입)에 따라 비정방형(non-square) 형태를 가질 수 있다. 현재 PU가 비정방형 형태로 파티셔닝되었을 경우에도 고려되는 참조 영역에 일부 차이가 있을 뿐이며, 동일한 방법에 따라 참조 블록들의 CBF를 기반으로 상기 현재 PU의 CIIP 적용 여부를 판단할 수 있다.
도 19는 비정방형 형태의 현재 PU에 대한 참조 블록들의 위치를 예시적으로 나타낸다. 도 19에서 현재 PU의 파티션 타입은 PART_2N×N 일 수 있다.
도 19를 참조하면, 상기 현재 PU의 높이가 H이고, 상기 현재 PU의 너비가 W이며, 상기 H와 상기 W는 각각 4와 8로 다르다. 이 경우 CBF 참조 블록 위치를 나타내는 A, B, C, D, E 중 예를 들어 상기 A는 상기 현재 PU의 좌하측 영역, 상기 B는 상기 현재 PU의 좌측 영역, 상기 C는 상기 현재 PU의 좌상측 영역, 상기 D는 상기 현재 PU의 상측 영역, 상기 E는 상기 현재 PU의 우상측 영역에 대응한다.
구체적으로 상기 현재 PU의 좌상단(top-left) 샘플 포지션이 (0,0)인 경우, 상기 A는 (-1,H)...(-1,2H-1) 포지션의 참조 샘플들이 위치하는 영역을 나타낼 수 있고, 상기 B는 (-1,0)...(-1,H-1) 포지션의 참조 샘플들이 위치하는 영역을 나타낼 수 있고, 상기 C는 (-1,-1) 포지션의 참조 샘플이 위치하는 영역을 나타낼 수 있고, 상기 D는 (0,-1)...(W-1,-1) 포지션의 참조 샘플들이 위치하는 영역을 나타낼 수 있고, 상기 E는 (W,-1)...(2W-1, -1) 포지션의 참조 샘플들이 위치하는 영역을 나타낼 수 있다.
도 20 및 21은 비정방형 형태의 현재 PU에 대한 참조 블록들의 위치를 예시적으로 나타낸다. 도 20 및 21에서 현재 PU의 파티션 타입은 PART_2N×nU 일 수 있다. 구체적으로 도 20은 현재 PU의 파티션 인덱스가 0인 경우이고, 도 21은 현재 PU의 파티션 인덱스가 1인 경우이다.
도 20 및 도 21을 참조하면, 상기 현재 PU가 비정방형 형태를 갖는 경우에도, 인트라 예측 모드에 따라 대응 참조 영역 상의 참조 블록들을 기반으로 CIIP 적용 여부를 판단할 수 있다. 상기 도 21에서 상기 현재 PU의 우상측 E 영역에 위치하는 주변 블록은 래스터 스캔 순서에 따라 아직 디코딩되지 않았으며, 따라서, 상기 E 영역의 주변 블록은 가용하지 않다. 이 경우 상기 가용하지 않은 상기 E 영역의 주변 블록은 상기 CIIP 적용 여부를 판단을 위한 참조 블록에서 제외될 수 있다.
한편, 상기 현재 PU의 주변 참조샘플들을 포함하는 주변 블록들 중 상기 현재 PU에 대한 인트라 예측 모드에 따라 결정된 하나 또는 그이상의 참조 블록들의 CIIP 적용 여부를 고려하여 상기 PU 및/또는 상기 PU 영역 내 TU들의 CIIP 적용 여부를 판단할 수 있다. CIIP 스케일링 메트릭스는 인트라 예측 모드에 따라 결정될 수 있다. 이 경우 참조 블록이 CIIP가 이미 적용되어 복원된 블록인지 여부에 따라 현재 PU에 대한 CIIP 적용 여부가 결정될 수 있다. 즉, 참조 블록의 복원 샘플들을 생성함에 있어, 이미 CIIP 스케일링 절차가 적용된 경우 상기 참조 블록의 복원 샘플들과 원 샘플들 간 에러가 최소화되었다고 볼 수 있으며, 이 경우 상기 참조 블록을 기반으로 현재 PU 영역 내 TU들의 인트라 예측을 수행함에 있어서 CIIP 적용이 불필요할 수 있다. 따라서, 디코딩 장치는 특정 조건 하에서 현재 PU의 인트라 예측 모드에 따른 참조 블록의 CIIP 플래그를 기반으로 상기 현재 PU의 CIIP 플래그를 유도할 수 있다.
도 22는 참조블록의 CIIP 플래그가 0인 경우에 대한 예이다.
도 22를 참조하면, 현재 PU의 인트라 예측 모드 인덱스는 10이다. 이 경우 참조 블록은 상기 PU의 좌측에 위치하게 된다. 디코딩 장치는 상기 참조 블록의 CIIP 플래그를 확인하고, 상기 참조 블록의 CIIP 플래그가 0인 경우, 상기 현재 PU를 위한 CIIP 플래그를 파싱 및 획득한다. 이 경우 디코딩 장치는 상기 현재 PU를 위한 CIIP 플래그를 기반으로 상기 현재 PU에 대한 CIIP 적용 여부를 판단할 수 있다.
도 23은 참조블록의 CIIP 플래그가 1인 경우에 대한 예이다.
도 23을 참조하면, 현재 PU의 인트라 예측 모드 인덱스는 26이다. 이 경우 참조 블록은 상기 PU의 상측에 위치하게 된다. 디코딩 장치는 상기 참조 블록의 CIIP 플래그를 확인하고, 상기 참조 블록의 CIIP 플래그가 1인 경우, 상기 현재 PU를 위한 CIIP 플래그가 0인 것으로 유도한다. 즉, 이 경우 인코딩 장치는 상기 현재 PU를 위한 CIIP 플래그를 디코딩 장치로 전송하지 않으며, 디코딩 장치는 상기 현재 PU를 위한 CIIP 플래그의 파싱 없이도, 상기 CIIP 플래그의 값을 0으로 유도한다.
한편, 현재 PU의 인트라 예측 모드에 따른 예측 방향에 다수의 참조 블록들이 존재할 수도 있다.
도 24는 다수의 참조블록이 존재하는 경우에 대한 예이다.
도 24를 참조하면, 현재 PU의 주변에 다양한 사이즈의 블록들이 존재할 수 있으며, 현재 PU의 인트라 예측 모드 인덱스는 26이고, 상기 현재 PU의 상측에 두 참조 블록들이 존재할 수 있고, 이 경우 상기 참조 블록들의 CIIP 플래그는 다른 값을 가질 수 있다. 즉, 하나의 참조 블록의 CIIP 플래그는 0이나, 다른 참조 블록의 CIIP 플래그는 1일 수 있다.
이 경우 인트라 예측 모드들을 미리 정해진 카테고리에 따라 구분하고, 해당 카테고리에 대응하는 위치의 하나 이상의 참조 블록들을 우선순위에 따라 고려하여, 상기 현재 PU에 대한 CIIP 플래그를 유도할 수 있다.
먼저 인트라 예측 모드에 따라 미리 정해진 카테고리의 영역에 위치한 참조 블록들이 고려될 수 있다. 이 경우 인트라 예측 모드에 따라 고려되는 참조 블록들은 예를 들어 다음과 같이 설정될 수 있다.
카테고리 인트라 예측 모드 참조 블록 위치
카테고리 0 0, 1 A
카테고리 1 2...6 B
카테고리 2 7...13 C
카테고리 3 14...22 A
카테고리 4 23...29 D
카테고리 5 30...34 E
상기 참조 블록 위치를 나타내는 A, B, C, D, E 중 예를 들어 상기 A는 상기 현재 PU의 좌상측 영역, 상기 B는 상기 현재 PU의 좌하측 영역, 상기 C는 상기 현재 PU의 좌측 영역, 상기 D는 상기 현재 PU의 상측 영역, 상기 E는 상기 현재 PU의 우상측 영역에 대응할 수 있다.
도 25는 CIIP 참조 블록 위치를 예시적으로 나타낸다.
도 25를 참조하면, 현재 PU의 사이즈는 8×8이고, 상기 CIIP 참조 블록 위치를 나타내는 A, B, C, D, E 중 예를 들어 상기 A는 상기 현재 PU의 좌상측 영역, 상기 B는 상기 현재 PU의 좌하측 영역, 상기 C는 상기 현재 PU의 좌측 영역, 상기 D는 상기 현재 PU의 상측 영역, 상기 E는 상기 현재 PU의 우상측 영역에 대응한다.
구체적으로 예를 들어, 상기 현재 PU의 좌상단(top-left) 샘플 포지션이 (0,0)이고, 상기 현재 PU의 높이가 H, 상기 현재 PU의 너비가 W인 경우, 상기 A는 (-1,-1) 포지션의 참조 샘플이 위치하는 영역을 나타낼 수 있고, 상기 B는 (-1,H)...(-1,2H-1) 포지션의 참조 샘플들이 위치하는 영역을 나타낼 수 있고, 상기 C는 (-1,0)...(-1,H-1) 포지션의 참조 샘플들이 위치하는 영역을 나타낼 수 있고, 상기 D는 (0,-1)...(W-1,-1) 포지션의 참조 샘플들이 위치하는 영역을 나타낼 수 있고, 상기 E는 (W,-1)...(2W-1, -1) 포지션의 참조 샘플들이 위치하는 영역을 나타낼 수 있다.
상기 인트라 예측 모드에 따른 카테고리를 기반으로 결정된 참조 블록 위치(또는 영역)에 참조 블록들이 다수 존재하는 경우, 우선순위를 기반으로 상기 참조 블록들 중 상대적으로 좌측 또는 상측에 위치하는 참조 블록의 CIIP 플래그를 기반으로 상기 현재 PU에 대한 CIIP 적용 여부가 결정될 수 있다.
예를 들어, 상기 D 영역에 위치한 참조 블록들 중 1번 샘플이 포함된 좌측 참조 블록의 CIIP 플래그가 0이기 때문에, 현재 PU의 CIIP 플래그의 값은 0으로 유도될 수 있다. 한편, 주변 블록들 중 우선순위에 따른 주변 블록의 CIIP 플래그가 1인 경우에는 상기 현재 PU에 대한 CIIP 플래그를 파싱하고, 상기 파싱된 CIIP 플래그를 기반으로 상기 현재 PU에 대한 CIIP 적용 여부가 판단될 수 있다.
도 26은 다수의 참조 블록들이 존재하는 경우에 대한 예를 나타낸다.
도 26을 참조하면, 현재 PU의 인트라 예측 모드 인덱스는 26이고, 상기 현재 PU의 상측인 D 영역에 두 참조 블록들이 존재한다. 이 경우 상기 두 참조 블록들 중 좌측 참조 블록의 CIIP 플래그는 1이므로, 디코딩 장치는 상기 현재 PU에 대한 CIIP 플래그를 파싱하고, 상기 파싱된 CIIP 플래그를 기반으로 상기 현재 PU에 대한 CIIP 적용 여부를 판단할 수 있다.
한편, 상기 현재 PU의 하나 또는 그이상의 참조 블록들의 인트라 예측 모드를 고려하여 상기 PU 및/또는 상기 PU 영역 내 TU들의 CIIP 적용 여부를 판단할 수 있다. 즉, 이 경우 현재 PU의 인트라 예측 모드별로 참조되는 참조 블록의 인트라 예측 모드를 기반으로 상기 현재 PU에 대한 CIIP 적용 여부를 판단할 수 있다.
CIIP 모드의 경우, 상술한 바와 같이, 인트라 예측 모드에 따라 다른 CIIP 스케일링 메트릭스가 적용될 수 있다. 즉, 현재 PU의 인트라 예측 모드에 대응하는 스케일링 메트릭스가 현재 TU의 주변블록의 변환 계수에 적용하여 수정된 레지듀얼 샘플들을 생성하고, 상기 현재 TU에 대한 예측 샘플들과 상기 수정된 레지듀얼 샘플들을 기반으로 복원 샘플들을 생성하므로, 주변블록의 인트라 예측 모드 역시 현재 PU에 대한 CIIP 적용 여부 판단을 위하여 중요하다. 이는 인트라 예측 모드에 다라 주변블록의 변환계수의 특성이 다를 수 있기 때문이다. 따라서, 본 발명에 따르면 현재 PU의 참조블록의 인트라 예측모드가 현재 블록의 인트라 예측 모드와 동일한지 여부를 기반으로 상기 현재 PU에 대한 CIIP 적용 여부를 판단할 수 있다.
도 27은 참조블록과 현재 PU의 인트라 예측모드가 동일하고, 상기 참조블록에 대한 CIIP 플래그가 0인 경우에 대한 예이다.
도 27을 참조하면, 현재 PU의 인트라 예측 모드 인덱스는 10이다. 이 경우 참조 블록은 상기 PU의 좌측에 위치하게 된다. 상기 참조 블록의 인트라 예측 모드가 상기 현재 PU의 인트라 예측 모드와 동일하고, 상기 참조 블록에 대한 CIIP 플래그가 0인 경우, 디코딩 장치는 상기 현재 PU를 위한 CIIP 플래그를 파싱 및 획득한다.
도 28은 참조블록과 현재 PU의 인트라 예측모드가 동일하고, 상기 참조블록에 대한 CIIP 플래그가 1인 경우에 대한 예이다.
도 28을 참조하면, 참조 블록의 인트라 예측 모드가 현재 PU의 인트라 예측 모드와 동일하고, 상기 참조 블록에 대한 CIIP 플래그가 1인 경우, 디코딩 장치는 상기 현재 PU에 대하여 CIIP가 적용되지 않는 것으로 판단한다. 즉 이 경우, 디코딩 장치는 CIIP 플래그의 파싱 없이도, 상기 CIIP 플래그가 0을 나타내는 것으로 판단한다. 이는 상기 참조 블록이 이미 CIIP 모드를 기반으로 인트라 예측되었고, 상기 참조 블록이 현재 PU와 동일한 인트라 예측 모드를 갖기 때문에, 동일한 카테고리의 스케일링 메트릭스가 적용되었기에, 상기 참조 블록과 상기 현재 블록은 동일 또는 유사한 특성을 갖는 것으로 판단할 수 있고, 따라서 현재 PU에 대하여는 별도의 CIIP 플래그 송수신 없이, 인코딩 장치 및 디코딩 장치는 상기 현재 PU에 대하여 CIIP가 적용되지 않는 것으로 판단할 수 있다.
도 29는 참조블록과 현재 PU의 인트라 예측모드가 다른 경우에 대한 예이다.
도 29를 참조하면, 현재 PU의 인트라 예측 모드 인덱스는 10이고, 참조 블록의 인트라 예측 모드 인덱스는 0으로 서로 다르다. 이 경우 디코딩 장치는 상기 참조 블록에 대한 CIIP 적용 여부와는 무관하게, 상기 현재 PU에 대한 CIIP 플래그를 파싱 및 획득하고, 상기 CIIP 플래그를 기반으로 기반으로 상기 PU에 대한 CIIP 적용 여부를 판단할 수 있다.
따라서, 현재 PU와 참조 블록의 인트라 예측 모드 동일 여부와, 상기 참조 블록에 대한 CIIP 모드 적용 여부를 기반으로, 현재 PU에 대한 CIIP 플래그 파싱 및/또는 CIIP 적용 여부 판단 절차는 다음과 같이 구분될 수 있다.
현재 PU와 참조 블록의 인트라 예측 모드 동일 여부 참조 블록의 CIIP 플래그 현재 PU의 CIIP 플래그
동일 0 Parsing
1 Infer 0
다름 0 Parsing
1 Parsing
상기 표에 따르면, 디코딩 장치는 현재 PU와 참조 블록의 인트라 예측 모드가 동일하고 상기 참조 블록의 CIIP 플래그가 1인 경우 상기 현재 PU에 대한 CIIP 플래그는 0으로 유도하며, 이 경우 인코딩 장치는 상기 현재 PU에 대한 CIIP 플래그를 전송하지 않을 수 있다.
나머지 경우에는 디코딩 장치는 상기 인코딩 장치로부터 비트스트림 형태로 전송된 상기 현재 PU에 대한 CIIP 플래그를 파싱하여 획득하고, 상기 현재 PU에 대한 CIIP 플래그를 기반으로 상기 현재 PU에 대한 CIIP 적용 여부를 판단한다.
한편, 현재 PU의 인트라 예측 모드 및 주변 블록들의 분할 구조에 따라 다수의 참조 블록들이 고려될 수 있다. 이 경우 다수의 참조 블록들이 다양한 인트라 예측 모드를 가질 수도 있다. 이 경우 참조 샘플들의 개수를 기준으로 CIIP 플래그를 유도할지 여부를 결정할 수 있다. 이 경우, 예를 들어 고려되는 참조 샘플들 중 반 이상이 상기 현재 PU와 동일한 인트라 예측 모드를 갖는 하나 이상의 참조 블록들에 위치하는 경우 상기 현재 PU에 대하여는 CIIP가 적용되지 않는 것으로 판단되고, 상기 현재 PU에 대한 CIIP 플래그는 0으로 유도될 수 있다.
도 30는 다양한 인트라 예측 모드를 갖는 다수의 참조 블록들이 존재하는 경우에 대한 예시이다.
도 30를 참조하면, 현재 PU의 인트라 예측 모드 인덱스는 10이고, 따라서 상기 현재 PU의 좌측에 위치하는 주변 블록들이 참조 블록들이 될 수 있다. 이 경우, 만약 현재 PU의 높이가 H일 경우 참조 샘플의 개수는 H개이고 이 중 동일한 인트라 예측모드를 기반으로 디코딩된 참조 샘플의 개수가 H/2개 이상일 경우 상기 현재 PU에 대한 CIIP 플래그는 0으로 유도될 수 있다. 즉, 예측샘플들을 생성하기 위하여 필요한 참조픽셀의 개수가 N일 경우 N/2 이상의 참조픽셀들이 현재 PU의 인트라 예측모드(또는 예측방향)와 동일한 인트라 예측모드(또는 예측방향)을 기반으로 디코딩되었을 경우 상기 현재 PU에 대한 CIIP 플래그의 값을 0으로 유도한다.
상기 도 30에서는 3개의 참조 블록들이 존재하며, 상기 참조 블록들 중 하나만 인트라 예측 모드 인덱스 10을 갖는다. 이와 같이 참조하는 방향의 참조픽셀의 개수가 H/2개 미만일 경우 디코딩 장치는 상기 현재 PU에 대한 CIIP 플래그를 파싱 및 획득하고, 상기 현재 PU에 대한 CIIP 플래그를 기반으로 상기 현재 PU에 대한 CIIP 적용 여부를 판단할 수 있다.
한편, 본 실시예에 따른 경우, 상술한 표 4와 같이 현재 PU의 인트라 예측 모드에 따라 참조 블록의 위치 또는 영역은 미리 결정될 수 있다.
본 발명에 따른 상술한 인트라 예측 방법은 예를 들어 다음과 같은 순서도를 기반으로 수행될 수도 있다.
도 31은 본 발명에 따른 인트라 예측 방법의 예를 개략적으로 나타낸다. 도 31에서 개시된 방법은 인코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 31의 S3100 내지 S3130은 상기 인코딩 장치의 예측부에 의하여 수행될 수 있고, S3140은 상기 인코딩 장치의 엔트로피 인코딩부에 의하여 수행될 수 있다.
도 31을 참조하면, 인코딩 장치는 현재 블록에 대한 인트라 예측 모드를 결정한다(S3100). 여기서 상기 인트라 예측 모드는 DC 모드, 플래너 모드 또는 앵귤러 모드들 중 하나일 수 있다. 여기서 상기 현재 블록은 현재 TU에 대응될 수 있다. 예를 들어, 현재 CU로부터 적어도 하나의 PU 및 적어도 하나의 TU가 도출될 수 있다. 이 경우, 상기 PU의 영역 내에 하나 또는 복수의 TU가 존재할 수 있다. 예를 들어, 현재 CU에서 인터/인트라 예측 타입이 결정되고, 구체적인 인트라 예측 모드는 PU에서 결정될 수 있다. 이 경우 상기 PU 영역 내의 TU들은 상기 결정된 인트라 예측 모드를 공유할 수 있다. 인코딩 장치는 RD(rate-distortion) 코스트를 기반으로 최적의 인트라 예측 모드를 결정할 수 있다.
인코딩 장치는 상기 현재 블록에 대한 CIIP 적용 여부를 판단한다(S3110). 인코딩 장치는 상기 RD 코스트를 기반으로 상기 현재 블록에 대한 상기 CIIP 적용 여부를 판단할 수 있다. 이 경우 인코딩 장치는 상기 CIIP 적용 여부를 나타내는 CIIP 플래그를 생성하고, 후술하는 바와 같이 비트스트림을 통하여 상기 CIIP 플래그를 디코딩 장치로 전송할 수 있다. 한편, 특정 조건에 따라 상기 RD 코스트를 고려하지 않고도 상기 CIIP가 상기 현재 블록에 적용되지 않는 것으로 판단할 수 있다. 즉, 특정 조건을 만족하는 경우 상기 현재 블록에 대하여는 상기 CIIP가 적용되지 않는 것으로 미리 설정될 수 있다. 이 경우 인코딩 장치는 상기 CIIP 플래그를 생성하여 디코딩 장치로 전송하는 절차를 수행하지 않을 수 있다.
예를 들어, 인코딩 장치는 상기 현재 블록에 대한 상기 인트라 예측 모드가 미리 정의된 비-CIIP 예측 모드에 속하는지 여부를 판단할 수 있다. 만약 상기 인트라 예측 모드가 상기 미리 정의된 비-CIIP 예측 모드에 속하는 경우, 인코딩 장치는 상기 현재 블록에 상기 CIIP가 적용되지 않는 것으로 판단할 수 있다. 또는 만약 상기 인트라 예측 모드가 상기 미리 정의된 비-CIIP 예측 모드에 속하지 않는 경우, 인코딩 장치는 상기 현재 블록에 대한 상기 CIIP 적용 여부를 판단하고, 상기 CIIP 적용 여부를 나타내는 CIIP 플래그를 생성할 수 있다.
한편, 상기 CIIP 적용 여부를 판단하기 위하여 참조되는 참조 블록들이 정의될 수 있다. 예를 들어, 상기 현재 블록은 현재 PU의 영역 내에 위치하고, 상기 현재 PU의 주변 블록들 중에서 상기 인트라 예측 모드에 따라 하나 이상의 참조 블록들이 도출될 수 있다.
일 예로, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 14 내지 22 중 하나인 경우 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌측, 좌상측 또는 상측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 8 내지 13 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 23 내지 28 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 상측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 2 내지 7 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌하측 또는 좌측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 0인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌하측, 좌측, 좌상측, 상측 또는 우상측 영역에 위치할 수 있다.
다른 예로, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 0 내지 1 중 하나인 경우 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌상측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 2 내지 6 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌하측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 7 내지 13 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 14 내지 22 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌상측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 23 내지 29인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 상측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 30 내지 34 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 우상측 영역에 위치할 수 있다.
인코딩 장치는 상기 하나 이상의 참조 블록들의 CBF(coded bit flag), 인트라 예측 모드 또는 CIIP 적용 여부 중 적어도 하나를 기반으로 상기 현재 블록에 대한 CIIP 적용 여부를 판단할 수 있다.
일 예로, 상기 하나 이상의 참조 블록들이 값 0의 CBF를 갖는 경우, 상기 현재 블록에 상기 CIIP가 적용되지 않는 것으로 설정될 수 있다. 상기 하나 이상의 참조 블록들 중 적어도 하나가 값 1의 CBF를 갖는 경우, 인코딩 장치는 상기 현재 블록에 대한 CIIP 적용 여부를 별도로 판단하고, 상기 CIIP 플래그를 생성할 수 있다.
다른 예로, 상기 하나 이상의 참조 블록들 중 특정 참조 블록에 상기 CIIP가 적용된 경우, 상기 상기 현재 블록에 상기 CIIP가 적용되지 않는 것으로 설정될 수 있다. 여기서, 상기 특정 참조 블록은 상기 참조 블록들 중 상대적으로 좌측 또는 상측에 위치하는 참조 블록일 수 있다. 상기 하나 이상의 참조 블록들 중 특정 참조 블록에 상기 CIIP가 적용되지 않은 경우, 인코딩 장치는 상기 현재 블록에 대한 CIIP 적용 여부를 별도로 판단하고, 상기 CIIP 플래그를 생성할 수 있다.
또 다른 예로, 상기 하나 이상의 참조 블록들에 상기 CIIP가 적용되고 상기 하나 이상의 참조 블록들이 상기 현재 블록에 대한 인트라 예측 모드와 동일한 인트라 예측 모드를 갖는 경우, 상기 상기 현재 블록에 상기 CIIP가 적용되지 않는 것으로 설정될 수 있다. 상기 하나 이상의 참조 블록들에 상기 CIIP가 적용되지 않거나 상기 하나 이상의 참조 블록들은 상기 현재 블록에 대한 인트라 예측 모드와 동일한 인트라 예측 모드를 갖지 않는 경우, 인코딩 장치는 상기 현재 블록에 대한 CIIP 적용 여부를 별도로 판단하고, 상기 CIIP 플래그를 생성할 수 있다.
인코딩 장치는 상기 현재 블록에 대한 주변 샘플들을 도출한다(S3120). 인코딩 장치는 인트라 예측에 활용하기 위하여, 상기 현재 블록의 주변 샘플들을 도출한다. 예를 들어, 상기 현재 블록의 좌상단 샘플 포지션을 (0,0)이라고 하고, 상기 현재 블록의 높이를 H, 너비를 W라고 할 경우, 상기 주변 샘플들은 (-1,2N-1)...(-1,-1), 그리고 (0,-1)...(2N-1,-1)까지의 샘플들을 포함할 수 있다.
구체적으로 인코딩 장치는 주변 블록에 대한 양자화된 변환 계수들을 획득하고, 상기 양자화된 변환 계수들을 양자화하여 변환 계수들을 획득할 수 있다. 인코딩 장치는 상기 변환 계수들을 기반으로 레지듀얼 샘플들 또는 수정된 레지듀얼 샘플들을 도출할 수 있다.
만약 상기 현재 블록에 상기 CIIP가 적용되지 않는 경우, 인코딩 장치는 상기 변환 계수들을 역변환하여 상기 레지듀얼 샘플들을 도출할 수 있다.
만약 상기 현재 블록에 상기 CIIP가 적용되지 않는 경우, 인코딩 장치는 상기 변환 계수들에 CIIP 스케일링 절차가 수행된 후 CIIP 스케일링된 변환 계수들을 역변환하여 상기 수정된 레지듀얼 샘플들을 도출할 수 있다. 이 경우 상기 CIIP 스케일링 절차는 소정의 스케일링 메트릭스를 기반으로 수행될 수 있다. 상기 스케일링 메트릭스는 상기 현재 블록에 대한 상기 인트라 예측 모드에 따라 결정될 수 있다.
인코딩 장치는 상기 레지듀얼 샘플들 또는 상기 수정된 레지듀얼 샘플들을 기반으로 상기 주변 샘플들을 도출할 수 있다.
인코딩 장치는 상기 인트라 예측 모드 및 상기 주변 샘플들을 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성한다(S3130). 인코딩 장치는 상기 인트라 예측 모드에 따라 상기 주변 샘플들 중 일부 또는 전부를 이용하여 상기 예측 샘플들을 생성할 수 있다.
인코딩 장치는 상기 인트라 예측 모드에 관한 정보를 인코딩하여 출력한다(S3140). 인코딩 장치는 상기 인트라 예측 모드에 관한 정보를 인코딩하여 비트스트림 형태로 출력할 수 있다. 상기 비트스트림은 네트워크 또는 저장매체를 통하여 디코딩 장치로 전송될 수 있다. 또한, 인코딩 장치는 상기 현재 블록에 대한 레지듀얼에 관한 정보를 인코딩하여 상기 비트스트림 형태로 출력할 수도 있다. 상기 현재 블록에 대한 레지듀얼에 관한 정보는 상기 현재 블록에 대한 레지듀얼 샘플들에 관한 양자화된 변환 계수들을 포함할 수 있다.
한편, 인코딩 장치는 상기 생성된 CIIP 플래그를 인코딩하여 상기 비트스트림 형태로 출력할 수도 있다.
도 32는 본 발명에 따른 인트라 예측 방법의 예를 개략적으로 나타낸다. 도 32에서 개시된 방법은 디코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 32의 S3200은 상기 디코딩 장치의 엔트로피 디코딩부에 의하여 수행될 수 있고, 상기 S3210 내지 S3240은 상기 디코딩 장치의 예측부에 의하여 수행될 수 있다.
도 32을 참조하면, 디코딩 장치는 비트스트림으로부터 인트라 예측 모드에 관한 정보를 획득한다(S3200). 디코딩 장치는 인코딩 장치로부터 수신한 상기 비트스트림을 디코딩하고 상기 인트라 예측 모드에 관한 정보를 획득할 수 있다. 상기 비트스트림은 네트워크 또는 저장매체를 통하여 수신될 수 있다.
디코딩 장치는 상기 인트라 예측 모드에 관한 정보를 기반으로 현재 블록에 대한 인트라 예측 모드를 결정한다(S3210). 여기서 상기 인트라 예측 모드는 DC 모드, 플래너 모드 또는 앵귤러 모드들 중 하나일 수 있다. 여기서 상기 현재 블록은 현재 TU에 대응될 수 있다. 예를 들어, 현재 CU로부터 적어도 하나의 PU 및 적어도 하나의 TU가 도출될 수 있다. 이 경우, 상기 PU의 영역 내에 하나 또는 복수의 TU가 존재할 수 있다. 예를 들어, 현재 CU에서 인터/인트라 예측 타입이 결정되고, 구체적인 인트라 예측 모드는 PU에서 결정될 수 있다. 이 경우 상기 PU 영역 내의 TU들은 상기 결정된 인트라 예측 모드를 공유할 수 있다.
디코딩 장치는 상기 현재 블록에 대한 CIIP 적용 여부를 판단한다(S3220). 디코딩 장치는 상기 비트스트림으로부터 CIIP 플래그를 파싱 또는 획득하고, 상기 CIIP 플래그를 기반으로 상기 현재 블록에 대한 상기 CIIP 적용 여부를 판단할 수 있다. 또한, 특정 조건에 따라 상기 CIIP 플래그를 수신 또는 파싱하지 않고도 상기 CIIP가 상기 현재 블록에 적용되지 않는 것으로 판단 또는 유도 수 있다. 즉, 특정 조건을 만족하는 경우 상기 현재 블록에 대하여는 상기 CIIP가 적용되지 않는 것으로 미리 설정될 수 있다.
예를 들어, 디코딩 장치는 상기 현재 블록에 대한 상기 인트라 예측 모드가 미리 정의된 비-CIIP 예측 모드에 속하는지 여부를 판단할 수 있다. 만약 상기 인트라 예측 모드가 상기 미리 정의된 비-CIIP 예측 모드에 속하는 경우, 디코딩 장치는 상기 현재 블록에 상기 CIIP가 적용되지 않는 것으로 판단할 수 있다. 또는 만약 상기 인트라 예측 모드가 상기 미리 정의된 비-CIIP 예측 모드에 속하지 않는 경우, 디코딩 장치는 상기 비트스트림으로부터 상기 현재 블록에 대한 상기 CIIP 플래그를 획득하고, 상기 상기 현재 블록에 대한 상기 CIIP 플래그를 기반으로 상기 현재 블록에 대한 CIIP 적용 여부를 판단할 수 있다.
한편, 상기 CIIP 적용 여부를 판단하기 위하여 참조되는 참조 블록들이 정의될 수 있다. 예를 들어, 상기 현재 블록은 현재 PU의 영역 내에 위치하고, 상기 현재 PU의 주변 블록들 중에서 상기 인트라 예측 모드에 따라 하나 이상의 참조 블록들이 도출될 수 있다.
일 예로, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 14 내지 22 중 하나인 경우 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌측, 좌상측 또는 상측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 8 내지 13 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 23 내지 28 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 상측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 2 내지 7 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌하측 또는 좌측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 0인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌하측, 좌측, 좌상측, 상측 또는 우상측 영역에 위치할 수 있다.
다른 예로, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 0 내지 1 중 하나인 경우 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌상측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 2 내지 6 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌하측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 7 내지 13 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 14 내지 22 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌상측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 23 내지 29인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 상측 영역에 위치하고, 상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 30 내지 34 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 우상측 영역에 위치할 수 있다.
디코딩 장치는 상기 하나 이상의 참조 블록들의 CBF(coded bit flag), 인트라 예측 모드 또는 CIIP 적용 여부 중 적어도 하나를 기반으로 상기 현재 블록에 대한 CIIP 적용 여부를 판단할 수 있다.
일 예로, 상기 하나 이상의 참조 블록들이 값 0의 CBF를 갖는 경우, 상기 현재 블록에 상기 CIIP가 적용되지 않는 것으로 설정될 수 있다. 이 경우 디코딩 장치는 상기 CIIP 플래그의 수신 또는 파싱 없이도 상기 현재 블록에 상기 CIIP가 적용되지 않는 것으로 판단할 수 있다. 한편, 상기 하나 이상의 참조 블록들 중 적어도 하나가 값 1의 CBF를 갖는 경우, 디코딩 장치는 상기 비트스트림으로부터 상기 현재 블록에 대한 상기 CIIP 플래그를 획득하고 상기 현재 블록에 대한 상기 CIIP 플래그를 기반으로 상기 현재 블록에 대한 CIIP 적용 여부를 판단할 수 있다.
다른 예로, 상기 하나 이상의 참조 블록들 중 특정 참조 블록에 상기 CIIP가 적용된 경우, 상기 상기 현재 블록에 상기 CIIP가 적용되지 않는 것으로 설정될 수 있다. 이 경우 디코딩 장치는 상기 CIIP 플래그의 수신 또는 파싱 없이도 상기 현재 블록에 상기 CIIP가 적용되지 않는 것으로 판단할 수 있다. 여기서, 상기 특정 참조 블록은 상기 참조 블록들 중 상대적으로 좌측 또는 상측에 위치하는 참조 블록일 수 있다. 한편, 상기 하나 이상의 참조 블록들 중 특정 참조 블록에 상기 CIIP가 적용되지 않은 경우, 디코딩 장치는 상기 비트스트림으로부터 상기 현재 블록에 대한 상기 CIIP 플래그를 획득하고 상기 현재 블록에 대한 상기 CIIP 플래그를 기반으로 상기 현재 블록에 대한 CIIP 적용 여부를 판단할 수 있다.
또 다른 예로, 상기 하나 이상의 참조 블록들에 상기 CIIP가 적용되고 상기 하나 이상의 참조 블록들이 상기 현재 블록에 대한 인트라 예측 모드와 동일한 인트라 예측 모드를 갖는 경우, 상기 상기 현재 블록에 상기 CIIP가 적용되지 않는 것으로 설정될 수 있다. 이 경우 디코딩 장치는 상기 CIIP 플래그의 수신 또는 파싱 없이도 상기 현재 블록에 상기 CIIP가 적용되지 않는 것으로 판단할 수 있다. 한편, 상기 하나 이상의 참조 블록들에 상기 CIIP가 적용되지 않거나 상기 하나 이상의 참조 블록들은 상기 현재 블록에 대한 인트라 예측 모드와 동일한 인트라 예측 모드를 갖지 않는 경우, 디코딩 장치는 상기 비트스트림으로부터 상기 현재 블록에 대한 상기 CIIP 플래그를 획득하고 상기 현재 블록에 대한 상기 CIIP 플래그를 기반으로 상기 현재 블록에 대한 CIIP 적용 여부를 판단할 수 있다.
디코딩 장치는 상기 현재 블록에 대한 주변 샘플들을 도출한다(S3230). 디코딩 장치는 인트라 예측에 활용하기 위하여, 상기 현재 블록의 주변 샘플들을 도출한다. 예를 들어, 상기 현재 블록의 좌상단 샘플 포지션을 (0,0)이라고 하고, 상기 현재 블록의 높이를 H, 너비를 W라고 할 경우, 상기 주변 샘플들은 (-1,2N-1)...(-1,-1), 그리고 (0,-1)...(2N-1,-1)까지의 샘플들을 포함할 수 있다.
구체적으로 디코딩 장치는 상기 비트스트림으로부터 주변 블록에 대한 양자화된 변환 계수들을 획득하고, 상기 양자화된 변환 계수들을 양자화하여 변환 계수들을 획득할 수 있다. 디코딩 장치는 상기 변환 계수들을 기반으로 레지듀얼 샘플들 또는 수정된 레지듀얼 샘플들을 도출할 수 있다.
만약 상기 현재 블록에 상기 CIIP가 적용되지 않는 경우, 디코딩 장치는 상기 변환 계수들을 역변환하여 상기 레지듀얼 샘플들을 도출할 수 있다.
만약 상기 현재 블록에 상기 CIIP가 적용되지 않는 경우, 디코딩 장치는 상기 변환 계수들에 CIIP 스케일링 절차가 수행된 후 CIIP 스케일링된 변환 계수들을 역변환하여 상기 수정된 레지듀얼 샘플들을 도출할 수 있다. 이 경우 상기 CIIP 스케일링 절차는 소정의 스케일링 메트릭스를 기반으로 수행될 수 있다. 상기 스케일링 메트릭스는 상기 현재 블록에 대한 상기 인트라 예측 모드에 따라 결정될 수 있다.
디코딩 장치는 상기 레지듀얼 샘플들 또는 상기 수정된 레지듀얼 샘플들을 기반으로 상기 주변 샘플들을 도출할 수 있다.
디코딩 장치는 상기 인트라 예측 모드 및 상기 주변 샘플들을 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성한다(S3240). 디코딩 장치는 상기 인트라 예측 모드에 따라 상기 주변 샘플들 중 일부 또는 전부를 이용하여 상기 예측 샘플들을 생성할 수 있다.
디코딩 장치는 상기 비트스트림으로부터 상기 현재 블록에 대한 레지듀얼에 관한 정보를 획득할 수 있다. 디코딩 장치는 상기 현재 블록에 대한 상기 레지듀얼에 관한 정보를 상기 기반으로 상기 현재 블록에 대한 레지듀얼 샘플들을 도출하고, 상기 현재 블록에 대한 예측 샘플들 및 상기 현재 블록에 대한 레지듀얼 샘플들을 기반으로 복원 샘플들을 생성할 수 있다. 상기 현재 블록에 대한 상기 레지듀얼에 관한 정보는 상기 현재 블록에 대한 양자화된 변환 계수들을 포함할 수 있다. 디코딩 장치는 상기 복원 샘플들을 기반으로 복원 픽처를 생성할 수 있다.
상술한 본 발명에 따르면 현재 블록의 인트라 예측에 적합한 주변 샘플들을 도출할 수 있으며, 이를 통하여 인트라 예측 성능을 향상시킬 수 있다.
또한, 본 발명에 따르면 기존에는 주변 블록의 복원 샘플이 현재 블록의 인트라 예측을 위한 주변 샘플들로 이용되었던 것과 달리, 주변 블록의 변환 계수에 CIIP 스케일링을 적용하여 수정 또는 개선된 주변 샘플들을 생성할 수 있으며, 이를 통하여 인트라 예측 성능을 향상시킬 수 있다.
또한, 본 발명에 따르면 주변 블록의 CBF(coded block flag), 인트라 예측 모드 및/또는 주변 블록에 대한 CIIP 적용 여부 등을 기반으로 적응적으로 현재 블록에 대한 CIIP 적용 여부를 결정할 수 있으며, 이를 통하여 예측 효율을 향상시킬 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 할 것이다.
상술한 본 발명에 따른 방법은 소프트웨어 형태로 구현될 수 있으며, 본 발명에 따른 인코딩 장치 및/또는 디코딩 장치는 예를 들어 TV, 컴퓨터, 스마트폰, 셋톱박스, 디스플레이 장치 등의 영상 처리를 수행하는 장치에 포함될 수 있다.
본 발명에서 실시예들이 소프트웨어로 구현될 때, 상술한 방법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다. 프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다.

Claims (15)

  1. 디코딩 장치에 의하여 수행되는 인트라 예측 방법에 있어서,
    비트스트림으로부터 인트라 예측 모드에 관한 정보를 획득하는 단계;
    상기 인트라 예측 모드에 관한 정보를 기반으로 현재 블록에 대한 인트라 예측 모드를 결정하는 단계;
    상기 현재 블록에 대한 CIIP(coefficient induced intra prediction) 적용 여부를 판단하는 단계;
    상기 CIIP 적용 여부를 기반으로 상기 현재 블록에 대한 주변 샘플들을 도출하는 단계; 및
    상기 인트라 예측 모드 및 상기 주변 샘플들을 기반으로 현재 블록에 대한 예측 샘플들을 생성하는 단계를 포함함을 특징으로 하는, 인트라 예측 방법.
  2. 제1항에 있어서,
    상기 비트스트림으로부터 주변 블록에 대한 양자화된 변환 계수들을 획득하는 단계;
    상기 양자화된 변환 계수들을 역양자화하여 변환 계수들을 획득하는 단계;
    상기 변환 계수를 기반으로 레지듀얼 샘플들 또는 수정된 레지듀얼 샘플들을 도출하는 단계; 및
    상기 레지듀얼 샘플들 또는 상기 수정된 레지듀얼 샘플들을 기반으로 상기 주변 샘플들을 도출하는 단계를 더 포함하되,
    상기 현재 블록에 상기 CIIP가 적용되지 않는 경우 상기 변환 계수들을 역변환하여 상기 레지듀얼 샘플들이 도출되고,
    상기 현재 블록에 상기 CIIP가 적용되지 않는 경우 상기 변환 계수들에 CIIP 스케일링 절차가 수행된 후 CIIP 스케일링된 변환 계수들을 역변환하여 상기 수정된 레지듀얼 샘플들이 도출되는 것을 특징으로 하는, 인트라 예측 방법.
  3. 제2항에 있어서,
    상기 CIIP 스케일링 절차는 소정의 스케일링 메트릭스를 기반으로 수행됨을 특징으로 하는, 인트라 예측 방법.
  4. 제3항에 있어서,
    상기 스케일링 메트릭스는 상기 현재 블록에 대한 상기 인트라 예측 모드에 따라 결정되는 것을 특징으로 하는, 인트라 예측 방법.
  5. 제2항에 있어서,
    상기 현재 블록에 대한 상기 인트라 예측 모드가 미리 정의된 비-CIIP 예측 모드에 속하는지 여부를 판단하는 단계를 더 포함하되,
    상기 인트라 예측 모드가 상기 미리 정의된 비-CIIP 예측 모드에 속하는 경우, 상기 현재 블록에 상기 CIIP가 적용되지 않는 것으로 판단되는 것을 특징으로 하는, 인트라 예측 방법.
  6. 제5항에 있어서,
    상기 인트라 예측 모드가 상기 미리 정의된 비-CIIP 예측 모드에 속하지 않는 경우, 상기 비트스트림으로부터 상기 현재 블록에 대한 CIIP 플래그를 획득하는 단계를 더 포함하되,
    상기 현재 블록에 대한 상기 CIIP 플래그를 기반으로 상기 현재 블록에 대한 CIIP 적용 여부가 판단되는 것을 특징으로 하는, 인트라 예측 방법.
  7. 제2항에 있어서,
    상기 현재 블록은 TU(transform unit)에 대응하고,
    상기 TU는 현재 PU(prediction unit)의 영역 내에 위치하고,
    상기 현재 PU의 주변 블록들 중에서 상기 인트라 예측 모드에 따라 하나 이상의 참조 블록들이 도출되고,
    상기 하나 이상의 참조 블록들의 CBF(coded bit flag), 인트라 예측 모드 또는 CIIP 적용 여부 중 적어도 하나를 기반으로 상기 현재 블록에 대한 CIIP 적용 여부가 판단되는 것을 특징으로 하는, 인트라 예측 방법.
  8. 제7항에 있어서,
    상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 14 내지 22 중 하나인 경우 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌측, 좌상측 또는 상측 영역에 위치하고,
    상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 8 내지 13 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌측 영역에 위치하고,
    상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 23 내지 28 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 상측 영역에 위치하고,
    상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 2 내지 7 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌하측 또는 좌측 영역에 위치하고,
    상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 0인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌하측, 좌측, 좌상측, 상측 또는 우상측 영역에 위치함을 특징으로 하는, 인트라 예측 방법.
  9. 제7항에 있어서,
    상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 0 내지 1 중 하나인 경우 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌상측 영역에 위치하고,
    상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 2 내지 6 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌하측 영역에 위치하고,
    상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 7 내지 13 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌측 영역에 위치하고,
    상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 14 내지 22 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 좌상측 영역에 위치하고,
    상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 23 내지 29인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 상측 영역에 위치하고,
    상기 현재 블록에 대한 상기 인트라 예측 모드의 인덱스가 30 내지 34 중 하나인 경우, 상기 하나 이상의 참조 블록들은 상기 현재 PU의 우상측 영역에 위치함을 특징으로 하는, 인트라 예측 방법.
  10. 제7항에 있어서,
    상기 하나 이상의 참조 블록들이 값 0의 CBF를 갖는 경우, 상기 현재 블록에 상기 CIIP가 적용되지 않는 것으로 판단되고,
    상기 하나 이상의 참조 블록들 중 적어도 하나가 값 1의 CBF를 갖는 경우, 상기 비트스트림으로부터 상기 현재 블록에 대한 CIIP 플래그를 획득하고 상기 현재 블록에 대한 상기 CIIP 플래그를 기반으로 상기 현재 블록에 대한 CIIP 적용 여부가 판단되는 것을 특징으로 하는, 인트라 예측 방법.
  11. 제7항에 있어서,
    상기 하나 이상의 참조 블록들 중 특정 참조 블록에 상기 CIIP가 적용된 경우, 상기 상기 현재 블록에 상기 CIIP가 적용되지 않는 것으로 판단되고,
    상기 하나 이상의 참조 블록들 중 특정 참조 블록에 상기 CIIP가 적용되지 않은 경우, 상기 비트스트림으로부터 상기 현재 블록에 대한 CIIP 플래그를 획득하고 상기 현재 블록에 대한 상기 CIIP 플래그를 기반으로 상기 현재 블록에 대한 CIIP 적용 여부가 판단되는 것을 특징으로 하는, 인트라 예측 방법.
  12. 제11항에 있어서,
    상기 특정 참조 블록은 상기 참조 블록들 중 상대적으로 좌측 또는 상측에 위치하는 참조 블록인 것을 특징으로 하는, 인트라 예측 방법.
  13. 제7항에 있어서,
    상기 하나 이상의 참조 블록들에 상기 CIIP가 적용되고 상기 하나 이상의 참조 블록들이 상기 현재 블록에 대한 인트라 예측 모드와 동일한 인트라 예측 모드를 갖는 경우, 상기 상기 현재 블록에 상기 CIIP가 적용되지 않는 것으로 판단되고,
    상기 하나 이상의 참조 블록들에 상기 CIIP가 적용되지 않거나 상기 하나 이상의 참조 블록들은 상기 현재 블록에 대한 인트라 예측 모드와 동일한 인트라 예측 모드를 갖지 않는 경우, 상기 비트스트림으로부터 상기 현재 블록에 대한 CIIP 플래그를 획득하고 상기 현재 블록에 대한 상기 CIIP 플래그를 기반으로 상기 현재 블록에 대한 CIIP 적용 여부가 판단되는 것을 특징으로 하는, 인트라 예측 방법.
  14. 인코딩 장치에 의하여 수행되는 인트라 예측 방법에 있어서,
    현재 블록에 대한 인트라 예측 모드를 결정하는 단계;
    상기 현재 블록에 대한 CIIP(coefficient induced intra prediction) 적용 여부를 판단하는 단계;
    상기 CIIP 적용 여부를 기반으로 상기 현재 블록에 대한 주변 샘플들을 도출하는 단계;
    상기 인트라 예측 모드 및 상기 주변 샘플들을 기반으로 현재 블록에 대한 예측 샘플들을 생성하는 단계; 및
    상기 인트라 예측 모드에 관한 정보를 인코딩하여 출력하는 단계를 포함함을 특징으로 하는, 인트라 예측 방법.
  15. 제14항에 있어서,
    주변 블록에 대한 양자화된 변환 계수들을 획득하는 단계;
    상기 양자화된 변환 계수들을 역양자화하여 변환 계수들을 획득하는 단계;
    상기 변환 계수를 기반으로 레지듀얼 샘플들 또는 수정된 레지듀얼 샘플들을 도출하는 단계; 및
    상기 레지듀얼 샘플들 또는 상기 수정된 레지듀얼 샘플들을 기반으로 상기 주변 샘플들을 도출하는 단계를 더 포함하되,
    상기 현재 블록에 상기 CIIP가 적용되지 않는 경우 상기 변환 계수들을 역변환하여 상기 레지듀얼 샘플들이 도출되고,
    상기 현재 블록에 상기 CIIP가 적용되지 않는 경우 상기 변환 계수들에 CIIP 스케일링 절차가 수행된 후 CIIP 스케일링된 변환 계수들을 역변환하여 상기 수정된 레지듀얼 샘플들이 도출되는 것을 특징으로 하는, 인트라 예측 방법.
KR1020187035034A 2016-06-03 2016-06-03 영상 코딩 시스템에서 인트라 예측 방법 및 장치 KR20180136555A (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/005919 WO2017209328A1 (ko) 2016-06-03 2016-06-03 영상 코딩 시스템에서 인트라 예측 방법 및 장치

Publications (1)

Publication Number Publication Date
KR20180136555A true KR20180136555A (ko) 2018-12-24

Family

ID=60478651

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187035034A KR20180136555A (ko) 2016-06-03 2016-06-03 영상 코딩 시스템에서 인트라 예측 방법 및 장치

Country Status (3)

Country Link
US (1) US10812807B2 (ko)
KR (1) KR20180136555A (ko)
WO (1) WO2017209328A1 (ko)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175970A1 (ko) * 2019-02-28 2020-09-03 삼성전자 주식회사 크로마 성분을 예측하는 비디오 부호화 및 복호화 방법, 및 크로마 성분을 예측하는 비디오 부호화 및 복호화 장치
WO2020184821A1 (ko) * 2019-03-12 2020-09-17 엘지전자 주식회사 Mpm 리스트를 구성하는 방법 및 장치
WO2020197154A1 (ko) * 2019-03-22 2020-10-01 엘지전자 주식회사 영상 코딩 시스템에서 인트라 예측 기반 영상 디코딩 방법 및 그 장치
WO2020197155A1 (ko) * 2019-03-22 2020-10-01 엘지전자 주식회사 영상 코딩 시스템에서 영상 디코딩 방법 및 그 장치, 영상 인코딩 방법 및 그 장치
WO2020207492A1 (en) * 2019-04-12 2020-10-15 Beijing Bytedance Network Technology Co., Ltd. Interaction between matrix-based intra prediction and other coding tools
WO2020256492A1 (ko) * 2019-06-19 2020-12-24 엘지전자 주식회사 비디오/영상 코딩 시스템에서 중복 시그널링 제거 방법 및 장치
WO2020256524A1 (ko) * 2019-06-20 2020-12-24 한국전자통신연구원 블록 형태에 기반한 예측을 사용하는 영상 부호화 및 영상 복호화를 위한 방법 및 장치
WO2021006631A1 (ko) * 2019-07-08 2021-01-14 엘지전자 주식회사 스케일링 리스트 데이터의 시그널링 기반 비디오 또는 영상 코딩
WO2021006696A1 (ko) * 2019-07-11 2021-01-14 엘지전자 주식회사 변환 스킵된 잔차 신호에 대한 문맥 모델을 유도하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
WO2021006630A1 (ko) * 2019-07-08 2021-01-14 엘지전자 주식회사 스케일링 리스트 데이터 기반 영상 또는 비디오 코딩
WO2021006698A1 (ko) * 2019-07-10 2021-01-14 엘지전자 주식회사 영상 코딩 시스템에서 영상 코딩 방법 및 장치
WO2021034160A1 (ko) * 2019-08-22 2021-02-25 엘지전자 주식회사 매트릭스 인트라 예측 기반 영상 코딩 장치 및 방법
WO2021034158A1 (ko) * 2019-08-22 2021-02-25 엘지전자 주식회사 매트릭스 기반 인트라 예측 장치 및 방법
WO2021158052A1 (ko) * 2020-02-05 2021-08-12 엘지전자 주식회사 영상 코딩 시스템에서 레지듀얼 코딩에 대한 영상 디코딩 방법 및 그 장치
WO2021158051A1 (ko) * 2020-02-05 2021-08-12 엘지전자 주식회사 레지듀얼 코딩과 관련한 영상 디코딩 방법 및 그 장치
US11451784B2 (en) 2019-05-31 2022-09-20 Beijing Bytedance Network Technology Co., Ltd. Restricted upsampling process in matrix-based intra prediction
US11457207B2 (en) 2019-04-16 2022-09-27 Beijing Bytedance Network Technology Co., Ltd. Matrix derivation in intra coding mode
US11463729B2 (en) 2019-05-01 2022-10-04 Beijing Bytedance Network Technology Co., Ltd. Matrix-based intra prediction using filtering
KR20220162739A (ko) * 2020-04-02 2022-12-08 엘지전자 주식회사 Hls를 시그널링하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 컴퓨터 판독 가능한 기록 매체
US11546633B2 (en) 2019-05-01 2023-01-03 Beijing Bytedance Network Technology Co., Ltd. Context coding for matrix-based intra prediction
US11606570B2 (en) 2019-10-28 2023-03-14 Beijing Bytedance Network Technology Co., Ltd. Syntax signaling and parsing based on colour component
US11659185B2 (en) 2019-05-22 2023-05-23 Beijing Bytedance Network Technology Co., Ltd. Matrix-based intra prediction using upsampling
US11805275B2 (en) 2019-06-05 2023-10-31 Beijing Bytedance Network Technology Co., Ltd Context determination for matrix-based intra prediction
US12034915B2 (en) 2019-06-20 2024-07-09 Electronics And Telecommunications Research Institute Method and apparatus for image encoding and image decoding using prediction based on block type

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370441B (zh) * 2015-11-12 2022-07-12 Lg 电子株式会社 在图像编译***中用于系数引起的帧内预测的方法和装置
CA3239143A1 (en) * 2016-10-10 2018-04-19 Samsung Electronics Co., Ltd. Method and apparatus for encoding/decoding image
US11184639B2 (en) 2017-05-17 2021-11-23 Kt Corporation Method and device for video signal processing
KR20200028856A (ko) * 2018-09-07 2020-03-17 김기백 인트라 예측을 이용한 영상 부호화/복호화 방법 및 장치
CN111436226A (zh) 2018-11-12 2020-07-21 北京字节跳动网络技术有限公司 用于帧间预测的运动矢量存储
CN111448797B (zh) * 2018-11-16 2022-09-30 北京字节跳动网络技术有限公司 用于帧间预测插值的参考尺寸
CN113170198B (zh) 2018-11-22 2022-12-09 北京字节跳动网络技术有限公司 子块时域运动矢量预测
KR102625145B1 (ko) * 2018-12-17 2024-01-16 삼성전자주식회사 예측 모드를 시그널링하는 비디오 신호 처리 방법 및 장치
US11736692B2 (en) * 2018-12-21 2023-08-22 Samsung Electronics Co., Ltd. Image encoding device and image decoding device using triangular prediction mode, and image encoding method and image decoding method performed thereby
CN113261291A (zh) 2018-12-22 2021-08-13 北京字节跳动网络技术有限公司 基于多个参数的两步交叉分量预测模式
CN113302920A (zh) * 2019-02-01 2021-08-24 北京字节跳动网络技术有限公司 组合帧间帧内预测的扩展应用
WO2020177755A1 (en) 2019-03-06 2020-09-10 Beijing Bytedance Network Technology Co., Ltd. Usage of converted uni-prediction candidate
MX2021010980A (es) 2019-03-21 2021-10-13 Beijing Bytedance Network Tech Co Ltd Procesamiento de ponderacion mejorado de intra-interprediccion combinadas.
CN113647102A (zh) * 2019-04-09 2021-11-12 北京达佳互联信息技术有限公司 用于在视频编解码中用信号发送合并模式的方法和装置
WO2020248954A1 (en) * 2019-06-09 2020-12-17 Beijing Bytedance Network Technology Co., Ltd. Significant coefficient signaling in video coding
JP7481430B2 (ja) 2019-08-13 2024-05-10 北京字節跳動網絡技術有限公司 サブブロックに基づくインター予測における動き精度
WO2021052507A1 (en) * 2019-09-22 2021-03-25 Beijing Bytedance Network Technology Co., Ltd. Sub-picture coding and decoding of video
KR20230156810A (ko) * 2019-09-24 2023-11-14 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 픽처 인코딩/디코딩 방법, 인코더, 디코더 및 저장 매체

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101354151B1 (ko) * 2006-08-24 2014-01-28 삼성전자주식회사 영상 변환 방법 및 장치, 역변환 방법 및 장치
EP2559239A2 (en) * 2010-04-13 2013-02-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus for intra predicting a block, apparatus for reconstructing a block of a picture, apparatus for reconstructing a block of a picture by intra prediction
CN107181950B (zh) * 2010-12-08 2020-11-06 Lg 电子株式会社 一种执行内预测的编码装置和解码装置
US11102494B2 (en) * 2011-03-03 2021-08-24 Electronics And Telecommunication Research Institute Method for scanning transform coefficient and device therefor
EP3783889B1 (en) 2011-04-25 2023-06-14 LG Electronics Inc. Video decoding apparatus and video encoding apparatus
US20130188698A1 (en) * 2012-01-19 2013-07-25 Qualcomm Incorporated Coefficient level coding
US11032550B2 (en) * 2016-02-25 2021-06-08 Mediatek Inc. Method and apparatus of video coding

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210071081A (ko) * 2019-02-28 2021-06-15 삼성전자주식회사 크로마 성분을 예측하는 비디오 부호화 및 복호화 방법, 및 크로마 성분을 예측하는 비디오 부호화 및 복호화 장치
WO2020175970A1 (ko) * 2019-02-28 2020-09-03 삼성전자 주식회사 크로마 성분을 예측하는 비디오 부호화 및 복호화 방법, 및 크로마 성분을 예측하는 비디오 부호화 및 복호화 장치
US12022060B2 (en) 2019-02-28 2024-06-25 Samsung Electronics Co., Ltd. Video encoding and decoding method for predicting chroma component, and video encoding and decoding device for predicting chroma component
WO2020184821A1 (ko) * 2019-03-12 2020-09-17 엘지전자 주식회사 Mpm 리스트를 구성하는 방법 및 장치
US12010292B2 (en) 2019-03-12 2024-06-11 Lg Electronics Inc. Method and device for configuring MPM list
WO2020197154A1 (ko) * 2019-03-22 2020-10-01 엘지전자 주식회사 영상 코딩 시스템에서 인트라 예측 기반 영상 디코딩 방법 및 그 장치
WO2020197155A1 (ko) * 2019-03-22 2020-10-01 엘지전자 주식회사 영상 코딩 시스템에서 영상 디코딩 방법 및 그 장치, 영상 인코딩 방법 및 그 장치
CN113812149A (zh) * 2019-03-22 2021-12-17 Lg 电子株式会社 图像编译***中的图像解码方法和设备以及图像编码方法和设备
KR20210135258A (ko) * 2019-03-22 2021-11-12 엘지전자 주식회사 영상 코딩 시스템에서 영상 디코딩 방법 및 그 장치, 영상 인코딩 방법 및 그 장치
US11910011B2 (en) 2019-03-22 2024-02-20 Lg Electronics Inc. Intra prediction-based image decoding method and device therefor in image coding system
US11973940B2 (en) 2019-03-22 2024-04-30 Lg Electronics Inc. Image decoding method and device and image encoding method and device in image coding system
CN113812149B (zh) * 2019-03-22 2024-04-12 Lg电子株式会社 图像编译***中的图像解码方法和设备以及图像编码方法和设备
US11451782B2 (en) 2019-04-12 2022-09-20 Beijing Bytedance Network Technology Co., Ltd. Calculation in matrix-based intra prediction
US11831877B2 (en) 2019-04-12 2023-11-28 Beijing Bytedance Network Technology Co., Ltd Calculation in matrix-based intra prediction
US11425389B2 (en) 2019-04-12 2022-08-23 Beijing Bytedance Network Technology Co., Ltd. Most probable mode list construction for matrix-based intra prediction
WO2020207492A1 (en) * 2019-04-12 2020-10-15 Beijing Bytedance Network Technology Co., Ltd. Interaction between matrix-based intra prediction and other coding tools
US11457220B2 (en) 2019-04-12 2022-09-27 Beijing Bytedance Network Technology Co., Ltd. Interaction between matrix-based intra prediction and other coding tools
US11463702B2 (en) 2019-04-12 2022-10-04 Beijing Bytedance Network Technology Co., Ltd. Chroma coding mode determination based on matrix-based intra prediction
US11457207B2 (en) 2019-04-16 2022-09-27 Beijing Bytedance Network Technology Co., Ltd. Matrix derivation in intra coding mode
US11463729B2 (en) 2019-05-01 2022-10-04 Beijing Bytedance Network Technology Co., Ltd. Matrix-based intra prediction using filtering
US11546633B2 (en) 2019-05-01 2023-01-03 Beijing Bytedance Network Technology Co., Ltd. Context coding for matrix-based intra prediction
US11659185B2 (en) 2019-05-22 2023-05-23 Beijing Bytedance Network Technology Co., Ltd. Matrix-based intra prediction using upsampling
US11943444B2 (en) 2019-05-31 2024-03-26 Beijing Bytedance Network Technology Co., Ltd. Restricted upsampling process in matrix-based intra prediction
US11451784B2 (en) 2019-05-31 2022-09-20 Beijing Bytedance Network Technology Co., Ltd. Restricted upsampling process in matrix-based intra prediction
US11805275B2 (en) 2019-06-05 2023-10-31 Beijing Bytedance Network Technology Co., Ltd Context determination for matrix-based intra prediction
WO2020256492A1 (ko) * 2019-06-19 2020-12-24 엘지전자 주식회사 비디오/영상 코딩 시스템에서 중복 시그널링 제거 방법 및 장치
US11716465B2 (en) 2019-06-19 2023-08-01 Lg Electronics Inc. Method and device for removing overlapping signaling in video/image coding system
US11533475B2 (en) 2019-06-19 2022-12-20 Lg Electronics Inc. Method and device for removing overlapping signaling in video/image coding system
WO2020256524A1 (ko) * 2019-06-20 2020-12-24 한국전자통신연구원 블록 형태에 기반한 예측을 사용하는 영상 부호화 및 영상 복호화를 위한 방법 및 장치
US12034915B2 (en) 2019-06-20 2024-07-09 Electronics And Telecommunications Research Institute Method and apparatus for image encoding and image decoding using prediction based on block type
US11503343B2 (en) 2019-07-08 2022-11-15 Lg Electronics Inc. Video or image coding based on signaling of scaling list data
WO2021006630A1 (ko) * 2019-07-08 2021-01-14 엘지전자 주식회사 스케일링 리스트 데이터 기반 영상 또는 비디오 코딩
US11425401B2 (en) 2019-07-08 2022-08-23 Lg Electronics Inc. Scaling list data-based image or video coding
US11778237B1 (en) 2019-07-08 2023-10-03 Lg Electronics Inc. Video or image coding based on signaling of scaling list data
WO2021006631A1 (ko) * 2019-07-08 2021-01-14 엘지전자 주식회사 스케일링 리스트 데이터의 시그널링 기반 비디오 또는 영상 코딩
US11653008B2 (en) 2019-07-08 2023-05-16 Lg Electronics Inc. Scaling list data-based image or video coding
WO2021006698A1 (ko) * 2019-07-10 2021-01-14 엘지전자 주식회사 영상 코딩 시스템에서 영상 코딩 방법 및 장치
US11606579B2 (en) 2019-07-10 2023-03-14 Lg Electronics Inc. Image coding method and device in image coding system
US11895338B2 (en) 2019-07-10 2024-02-06 Lg Electronics Inc. Image coding method and device in image coding system
WO2021006696A1 (ko) * 2019-07-11 2021-01-14 엘지전자 주식회사 변환 스킵된 잔차 신호에 대한 문맥 모델을 유도하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
US11924466B2 (en) 2019-08-22 2024-03-05 Lg Electronics Inc. Matrix-based intra prediction device and method
WO2021034160A1 (ko) * 2019-08-22 2021-02-25 엘지전자 주식회사 매트릭스 인트라 예측 기반 영상 코딩 장치 및 방법
WO2021034158A1 (ko) * 2019-08-22 2021-02-25 엘지전자 주식회사 매트릭스 기반 인트라 예측 장치 및 방법
US11606570B2 (en) 2019-10-28 2023-03-14 Beijing Bytedance Network Technology Co., Ltd. Syntax signaling and parsing based on colour component
CN115349258A (zh) * 2020-02-05 2022-11-15 Lg电子株式会社 图像编码***中用于残差编码的图像解码方法及其设备
WO2021158052A1 (ko) * 2020-02-05 2021-08-12 엘지전자 주식회사 영상 코딩 시스템에서 레지듀얼 코딩에 대한 영상 디코딩 방법 및 그 장치
WO2021158051A1 (ko) * 2020-02-05 2021-08-12 엘지전자 주식회사 레지듀얼 코딩과 관련한 영상 디코딩 방법 및 그 장치
US11812019B2 (en) 2020-02-05 2023-11-07 Lg Electronics Inc. Image decoding method for residual coding in image coding system, and apparatus therefor
CN115336274A (zh) * 2020-02-05 2022-11-11 Lg电子株式会社 与残差编码关联的图像解码方法以及用于其的装置
CN115336274B (zh) * 2020-02-05 2023-05-26 Lg电子株式会社 与残差编码关联的图像解码方法以及用于其的装置
CN115349258B (zh) * 2020-02-05 2023-05-12 Lg电子株式会社 图像编码***中用于残差编码的图像解码方法及其设备
KR20220162739A (ko) * 2020-04-02 2022-12-08 엘지전자 주식회사 Hls를 시그널링하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 컴퓨터 판독 가능한 기록 매체

Also Published As

Publication number Publication date
US20190306511A1 (en) 2019-10-03
US10812807B2 (en) 2020-10-20
WO2017209328A1 (ko) 2017-12-07

Similar Documents

Publication Publication Date Title
KR20180136555A (ko) 영상 코딩 시스템에서 인트라 예측 방법 및 장치
EP3588952B1 (en) Transform method in image coding system and apparatus for same
US10757407B2 (en) Method and device for performing image decoding on basis of intra prediction in image coding system
KR102160667B1 (ko) 비디오 코딩 시스템에서 인트라 예측 방법 및 장치
JP7235899B2 (ja) 非分離二次変換に基づいた画像コーディング方法及びその装置
US10721479B2 (en) Intra prediction method and apparatus in image coding system
US20200036985A1 (en) Method and apparatus for block partitioning and intra prediction in image coding system
KR101552634B1 (ko) 예측 단위의 파티션 모드에 기초한 계수 스캔 방법 및 장치
KR20180068334A (ko) 영상 코딩 시스템에서 계수 유도 인트라 예측 방법 및 장치
JP6025726B2 (ja) 動画復号化装置
KR102315455B1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20190029737A (ko) 영상 코딩 시스템에서 조도 보상 기반 인터 예측 방법 및 장치
KR20180059443A (ko) 영상 코딩 시스템에서 움직임 벡터 정제 기반 인터 예측 방법 및 장치
KR20180030791A (ko) 비디오 코딩 시스템에서 인트라 예측 방법 및 장치
KR102568879B1 (ko) 어파인 움직임 예측에 기반한 영상 코딩 방법 및 그 장치
KR20180044943A (ko) 영상 코딩 시스템에서 인트라 예측 방법 및 장치
US11838546B2 (en) Image decoding method and apparatus relying on intra prediction in image coding system
KR20190029748A (ko) 영상 코딩 시스템에서 인터 예측 방법 및 장치
KR20180044935A (ko) 비디오 코딩 시스템에서 인트라 예측 방법 및 장치
KR20180134975A (ko) 비디오 코딩 시스템에서 인트라 예측 방법 및 장치
KR20180019547A (ko) 영상 코딩 시스템에서 필터 뱅크를 이용한 영상 필터링 방법 및 장치
KR20180050333A (ko) 영상 코딩 시스템에서 필터링 방법 및 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application