KR20180136209A - Size-controllable Synthesis of Silver nanoparticles of plate shape - Google Patents

Size-controllable Synthesis of Silver nanoparticles of plate shape Download PDF

Info

Publication number
KR20180136209A
KR20180136209A KR1020170074848A KR20170074848A KR20180136209A KR 20180136209 A KR20180136209 A KR 20180136209A KR 1020170074848 A KR1020170074848 A KR 1020170074848A KR 20170074848 A KR20170074848 A KR 20170074848A KR 20180136209 A KR20180136209 A KR 20180136209A
Authority
KR
South Korea
Prior art keywords
nanoparticles
silver
plate
pvp
size
Prior art date
Application number
KR1020170074848A
Other languages
Korean (ko)
Inventor
박성수
손대희
전승엽
Original Assignee
(주) 씨에프씨테라메이트
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 씨에프씨테라메이트, 부경대학교 산학협력단 filed Critical (주) 씨에프씨테라메이트
Priority to KR1020170074848A priority Critical patent/KR20180136209A/en
Publication of KR20180136209A publication Critical patent/KR20180136209A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F1/0007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold

Abstract

The present invention relates to a manufacturing method of plate-shaped silver nanoparticles, obtained by heating reaction mixtures containing a silver precursor, PVP having a molecular weight of 10,000 to 50,000 with a terminal hydroxyl group, and a polar aprotic solvent in a closed reactor. Accordingly, the yield of the plate-shaped silver nanoparticles is increased by 90% or more, and variables of a reaction temperature and the use ratio and concentration of the PVP are adjusted to enable the thickness and length of the particles to be adjusted. Therefore, optical characteristics can be adjusted as the plate-shaped silver nanoparticles are adjusted.

Description

크기 조절이 가능한 판상형 은 나노입자의 합성 방법 {Size-controllable Synthesis of Silver nanoparticles of plate shape}The size-adjustable plate-like nanoparticles are synthesized by a method of synthesizing nanoparticles (Size-controllable Synthesis of Silver nanoparticles of plate shape)

본 발명은 크기 조절이 가능한 판상형 은 나노입자의 합성 방법에 관한 것으로, 은염과 계면활성제인 동시에 환원제인 폴리비닐피롤리돈 (PVP, polyvinylpyrrolidone)을 포함하며, 반응 용매로는 극성 비프로톤성 용매를 사용하여 판상형 은 나노입자를 제조하는 방법에 관한 것이다. The present invention relates to a method of synthesizing nanoparticles having a size capable of regulating the size of a nanoparticle, comprising silver salt, a surfactant and polyvinylpyrrolidone (PVP) as a reducing agent, and a polar aprotic solvent And a method of producing nanoparticles using the same.

판상형 은 나노입자는 삼각형(prism), 육각형(hexagonal), 원형(round) 등으로 나타나며, 높은 종횡비로 인한 광학적 특성과 2D 구조의 넓은 표면적으로 인해 투명 전도성 필름 소재나 단열 필름 소재 등으로 관심을 받고 있다. The nanoparticles in the plate-like form are represented by prisms, hexagonal, and round. Due to their high aspect ratio optical properties and large surface area of the 2D structure, they are attracted to transparent conductive film materials and adiabatic film materials. have.

판상형 은 나노 입자의 제조 방법은 여러 번 발표되었지만, 단일 단계인 액상 합성법으로 두께와 길이를 조절할 수 있는 합성 방법에 대해서는 보고된 바가 많지 않다. Though the method of producing nanoparticles has been published several times, there has been little report on the synthesis method which can control the thickness and length by a single step liquid synthesis method.

한국 지질자원 연구원에서 출원한 특허(출원 10-2010-0083910)를 보면, NH4OH, PVP 및 PdCl2를 첨가하여 은 나노입자의 입도, 두께 및 형상을 제어하고, 환원제로서 H2O2 및 용매로서 에틸렌 글리콜을 사용하여 판상형 은 나노입자를 제조하는 방법이 개시되어 있다. The patent (application 10-2010-0083910) filed by Korea Institute of Geoscience and Mineral Resources (Application 10-2010-0083910) shows that NH 4 OH, PVP and PdCl 2 are added to control the particle size, thickness and shape of silver nanoparticles and H 2 O 2 Discloses a method for producing nanoparticles in the form of a plate using ethylene glycol as a solvent.

미국의 Washington 대학의 Younan Xia 그룹은 수용액에서 PVP를 환원제로 이용하여 판상형 은 나노입자를 제조한 것을 보고하였다. (Langmuir, 2006, 8563 - 8570). 하지만, 이 방법에 따르면 판상형 입자의 비율이 80%를 넘지 못하며 두께와 길이를 조절하는 것은 거의 불가능하다. The Younan Xia group of Washington University in the USA reported that PVP was used as a reducing agent in aqueous solution to produce nanoparticles in the form of a plate. (Langmuir, 2006, 8563-8570). However, according to this method, the ratio of the plate-like particles does not exceed 80%, and it is almost impossible to control the thickness and the length.

미국의 Hsing-Lin Wang 그룹(Los Alamos National Laboratory)에서는 PVP를 환원제로써 사용하여 판상형 은 나노 입자를 제조할 수 있는 방법을 보고하였다(J. Mater. Chem. 2011, 21, 2550). 하지만 이 방법은 스핀 코팅 방법을 이용하여, 은 전구제와 PVP 고분자를 필름상으로 제조한 후, 온도를 300℃ 정도로 높여서 PVP 고분자 매트릭스 안에서 은 나노입자를 합성하는 방법이므로 실질적인 단일 단계 합성법이라 할 수 없고, 제조되는 은 나노입자의 수율 또한 제시되어 있지 않다. In the United States, Hsing-Lin Wang Group (Los Alamos National Laboratory) reported that PVP can be used as a reducing agent to produce nanoparticles in a plate-like form (J. Mater. Chem. 2011, 21, 2550). However, this method is a practical single-step synthesis method because it is a method of synthesizing silver nanoparticles in a PVP polymer matrix by preparing a silver-releasing agent and a PVP polymer in a film form using a spin coating method and then raising the temperature to about 300 ° C And the yield of silver nanoparticles to be produced is not shown.

벨기에의 Jian Ye 연구 그룹은 정육면체 큐브 형태의 은 나노 입자를 제조한 다음, 이온 연마 기술을 통해 두께 조절이 가능한 판상형 은 나노입자를 제조하는 방법을 보고하였다(Nanotechnology, 2008, 19, 325702). 하지만 기재된 물리적 방법에 의한 이온 연마 기법은 고가이며 간단하지 않은 절차를 통해 이루어질 뿐만 아니라 화학 합성법에 비해서 수율이 매우 낮다. The Jian Ye research group in Belgium reported the production of silver nanoparticles in the form of cube cubes and then nanofabrication in the form of plate-shaped silver nanoparticles that can be controlled in thickness through ionic polishing (Nanotechnology, 2008, 19, 325702). However, the ion polishing technique by the physical methods described is expensive and not only through a simple procedure but also has a very low yield compared with the chemical synthesis method.

이러한 상황에서, 판상형 은 나노입자를 단일 단계 및 높은 수율로 제조할 수 있을 뿐만 아니라, 판상형 입자의 두께와 길이를 필요에 따라 조절할 수 있는 제조방법은 가치 및 유용성이 높다. In this situation, not only can the plate-shaped nanoparticles be produced in a single step and the high yield, but also the manufacturing method which can adjust the thickness and length of the plate-like particles as needed is highly valuable and useful.

본 발명은 코팅에 적용하기 위해서 판상형 은 나노입자를 높은 효율(90% 이상)의 단일단계 합성법으로 제조할 수 있고, 판상형 은 나노입자의 두께와 길이를 필요에 따라 조절할 수 있는 방법을 개발하는 것이다. The present invention develops a method for preparing nanoparticles of tabular silver nanoparticles with a high efficiency (more than 90%) in a single-step synthesis method for application to a coating, and a method of regulating the thickness and length of nanoparticles as needed .

상기 과제를 해결하기 위해서 본 발명에서는 말단 수산화기를 갖는 PVP를 사용하고, 용매로는 극성 비프로톤성 용매를 사용하여 밀폐된 반응기에서 액상 화학반응을 진행하는 것으로, 판상형 은 나노입자의 수율을 90% 이상으로 높였을 뿐만 아니라, 반응온도 및 PVP의 사용 비율 및 농도 등의 변수를 조절해서 입자의 두께와 길이를 조절할 수 있었다. In order to solve the above problem, in the present invention, PVP having a terminal hydroxyl group is used, and as a solvent, a liquid phase chemical reaction is carried out in a closed reactor using a polar aprotic solvent. The yield of the nanoparticles of the plate- And the thickness and length of the particles were controlled by adjusting the reaction temperature, the ratio of PVP, and the concentration.

본 발명에 따른 판상형 은 나노입자의 제조방법은 특수한 기기나 재료를 사용하지 않고, 단일 단계의 액상 화학반응으로 진행되며, 대량 생산이 가능하며, 공정 변수를 조절해서 입자의 두께와 길이의 조절할 수 있다. 이렇게 판상형 은 나노입자를 조절하면 광학적 특성도 조절이 가능하다.The plate-shaped nanoparticles according to the present invention can be produced in a single-step liquid-phase chemical reaction without using any special equipment or materials, can be mass-produced, and can control the thickness and length of particles by controlling process parameters have. In this way, it is possible to control the optical properties by adjusting the nanoparticles.

도 1은 실시예 1에서 제조된 판상형 은 나노입자들의 주사전자현미경 사진을 나타낸다.
도 2는 실시예 1에서 제조된 판상형 은 나노입자들의 투과전자현미경 사진을 나타낸다.
도 3은 실시예 1에서 제조된 판상형 은 나노입자 용액의 UV-Vis-NIR 스펙트럼을 보여준다.
도 4는 실시예 2에서 제조된 판상형 은 나노입자 용액의 UV-Vis-NIR 스펙트럼을 보여준다.
도 5는 실시예 3에서 제조된 판상형 은 나노입자 용액의 UV-Vis-NIR 스펙트럼을 보여준다.
도 6은 실시예 4에서 제조된 판상형 은 나노입자 용액의 UV-Vis-NIR 스펙트럼을 보여준다.
도 7은 실시예 2에서 제조된 판상형 은 나노입자 용액의 UV-Vis-NIR 스펙트럼을 보여준다.
FIG. 1 shows a scanning electron microscope photograph of the nanoparticles of the plate-type silver prepared in Example 1. FIG.
FIG. 2 shows a transmission electron microscope photograph of the nanoparticles of the plate-type silver prepared in Example 1. FIG.
Fig. 3 shows the UV-Vis-NIR spectrum of the nanoparticle solution of the plate-like silver prepared in Example 1. Fig.
FIG. 4 shows the UV-Vis-NIR spectrum of the nanoparticle solution of the plate-shaped silver nanoparticles prepared in Example 2. FIG.
Fig. 5 shows the UV-Vis-NIR spectrum of the nanoparticle solution of the plate-like silver prepared in Example 3. Fig.
Fig. 6 shows the UV-Vis-NIR spectrum of the nanoparticle solution of the plate-type silver prepared in Example 4. Fig.
7 shows the UV-Vis-NIR spectrum of the nanoparticle solution of the plate-type silver prepared in Example 2. Fig.

이하 본 발명은 판상형 은 나노입자를 얻기 위해서 은 전구체, PVP 및 유기 용매를 포함하는 반응 혼합물을 밀폐된 반응 용기에서 가열하는 제조 방법을 통해서 판상형 은 나노입자의 크기는 10㎚ ~ 1000㎚이고, 판상형 은 나노입자의 비율이 90% 이상인 것을 특징으로 하는 판상형 은 나노입자를 제공하는 것이다. Hereinafter, the present invention will be described in detail with reference to a method for producing a plate-shaped silver nanoparticle in which a reaction mixture containing a silver precursor, PVP and an organic solvent is heated in a sealed reaction vessel. The size of the silver nanoparticles is 10 nm to 1000 nm, Wherein the silver nanoparticles have a ratio of silver nanoparticles of 90% or more.

본 발명의 제조 방법은 다음의 단계를 포함한다. The manufacturing method of the present invention includes the following steps.

1) 말단 수산기를 갖는 PVP를 포함하는 PVP용액에 은 전구체 화합물을 포함하는 은 이온 (Ag+) 용액을 첨가하여 반응 혼합물을 제조하는 단계1) preparing a reaction mixture by adding a silver ion (Ag + ) solution containing a silver precursor compound to a PVP solution containing PVP having a terminal hydroxyl group

2) 상기의 반응혼합물을 반응 용기에 넣고 밀폐시킨 상태에서 가열하는 단계2) placing the reaction mixture in a reaction vessel and heating in a sealed state

본 발명에서 사용되는, 수산기를 갖는 PVP (polyvinylpyrrolidone)는 10,000 ~ 100,000의 분자량 (Mw)을 가지며, 바람직하게는 10,000 ~ 50,000의 분자량을 가지는 것이 좋다. PVP의 분자량이 낮으면 입자 생성 속도가 빨라지며, 판상형 은 나노입자의 크기가 작아진다. PVP의 분자량이 클수록 입자 생성 속도가 느리며, 판상형 은 나노입자의 크기가 커지는 경향이 나타난다. The PVP (polyvinylpyrrolidone) having a hydroxyl group used in the present invention has a molecular weight (Mw) of 10,000 to 100,000, preferably 10,000 to 50,000. The lower the molecular weight of the PVP, the faster the particle formation rate, and the smaller the size of the nanoparticles in the plate-like form. The larger the molecular weight of PVP, the slower the particle formation rate, and the larger the size of the nanoparticles, the greater the size of the plate.

PVP는 은 전구체의 은 무게 대비 1 ~ 50의 중량비를 가지며, 바람직하게는 5 ~ 20의 중량비를 사용할 수 있다. PVP의 양이 많으면 입자 생성 속도가 빨라져서 판상형 은 나노입자의 크기가 작아진다. The PVP has a weight ratio of 1 to 50, preferably 5 to 20, by weight of the silver of the silver precursor. The higher the amount of PVP, the faster the particle generation rate, and the smaller the size of the nanoparticles of the plate type.

본 발명에서 사용할 수 있는 극성 비프로톤성 용매들은 NMP (N-methyl pyrrolidone), DMF (N,N-dimethyl formamide), DMSO (dimethyl sulfoxide), DMAC (N,N-dimethyl acetamide), THF (tetrahydrofuran), EA (ethyl acetate), aceotne, acetonitrile, MEK (methyl ethyl ketone), MIBK (methyl isobutyl ketone) 등 극성이면서 수소이온을 발생시키지 않는 용매라면 어떤 용매라도 사용이 가능하다. The polar aprotic solvents that can be used in the present invention include N-methyl pyrrolidone, N, N-dimethyl formamide, DMSO, N, N-dimethyl acetamide, THF, Any solvents can be used as long as they are polar and non-hydrogen generating solvents such as ethyl acetate (EA), aceotne, acetonitrile, methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK).

본 발명에서 사용할 수 있는 은 전구체들은 질산은 (AgNO3), 염화은 (AgCl), 브롬화은 (AgBr), 아세트산은 (CH3CO2Ag), 과염소산은 (AgClO4), 염소산은 (AgClO3), 산화은 (Ag2O), 황화은 (Ag2S) 등을 사용할 수 있으며, 표기되지 않았더라도 용액에서 은 이온 (Ag+)을 발생시키는 은염화합물이면 사용이 가능하다. Precursors are to be used in the present invention, silver nitrate (AgNO 3), silver chloride (AgCl), beuromhwaeun (AgBr), acetic acid (CH 3 CO 2 Ag), perchloric acid is (AgClO 4), acid is (AgClO 3), silver oxide (Ag 2 O), silver sulfide (Ag 2 S), or the like can be used. Even if not indicated, a silver salt compound which generates silver ions (Ag + ) in a solution can be used.

상시에 기술된 제조 방법에 있어서, 반응 혼합물을 가열시키는 단계(ii)는 외기가 차단된 상태에서, 필요에 따라 질소, 아르곤 등과 같은 비활성 기체 하에서 진행될 수 있다. In the always-described production process, the step (ii) of heating the reaction mixture can be carried out under an inert gas such as nitrogen, argon or the like, if necessary, in a state where the outside air is blocked.

제조 방법에서 가열 온도는 특별히 제한되지 않으며, 보통 50 ~ 200℃ 온도 범위에서 판상형 은 나노입자를 얻을 수 있다. 다만, 사용하는 용매에 따라 최대 반응 온도가 선택될 수 있으며, 바람직하게는 70 ~ 120℃의 온도에서 선택할 수 있다. 높은 온도에서 반응 속도가 빨라지는 것을 참조하여 선택하면 된다. The heating temperature in the production method is not particularly limited, and a nanoparticle can be obtained in a plate-shaped form at a temperature range of usually 50 to 200 ° C. However, the maximum reaction temperature may be selected depending on the solvent to be used, and it may be selected at a temperature of preferably 70 to 120 ° C. It can be selected with reference to the fact that the reaction rate is accelerated at a high temperature.

한편 가열 반응시간은 온도와 PVP 양에 의해 크게 변동되는 조건으로 0.5 ~ 120 시간에서 적절하게 선택할 수 있다. 온도가 높고, PVP 양이 많으면 입자 생성 속도가 빨라서 가열 반응시간이 짧아지고, 온도가 낮고, PVP 양이 적으면 입자 생성 속도가 느려져서 가열 반응 시간이 길어진다. On the other hand, the heating reaction time can be appropriately selected in the range of 0.5 to 120 hours under the condition that the temperature is greatly changed by the amount of PVP. When the temperature is high and the amount of PVP is high, the particle generation rate is short, the heating reaction time is short, the temperature is low, and when the amount of PVP is small, the particle generation rate is slowed and the heating reaction time is long.

본 발명의 특징 중 하나는 PVP와 은 전구체(은 이온)간의 중량비를 조절함으로써 판상형 은 나노입자의 두께와 크기를 조절할 수 있으며, 가열 반응시간을 조절해서 합성되는 나노입자의 크기를 제어할 수 있다. One of the features of the present invention is that the thickness and size of the nanoparticles can be controlled by controlling the weight ratio between PVP and silver precursor (silver ion), and the size of nanoparticles synthesized by controlling the heating reaction time can be controlled .

본 발명은, 은전구체가 용매환경에서 만들어내는 은 이온 (Ag+)과 말단 수산기를 갖는 PVP에 의해 환원되는 것이다. 은 이온을 환원시켜 나노입자가 생성될 때, 강력한 환원제를 사용하면 은 원자가 빠른 속도로 생성되기 때문에 열역학적으로 안정적인 다결정구조를 갖는 입자 또는 단결정의 육팔면체 입자들이 생성되지만, 환원력이 약한 환원제를 사용하여 은 원자의 생성 속도를 느리게 하면 반응속도론적 제어 시스템(kinetically controlled system)이 가능하여 판상형의 나노입자들을 제조하는 것이 가능하게 된다. The present invention is reduced by PVP having a silver ion (Ag +) and a terminal hydroxyl group, which silver spheres produce in a solvent environment. Since silver atoms are generated at a high rate when a strong reducing agent is used when silver nanoparticles are generated by reducing silver ions, hexagonal octahedral particles having a thermodynamically stable polycrystal structure are produced, but using a reducing agent having a weak reducing power Slowing the rate of atomic generation makes it possible to produce a kinetically controlled system to produce sheet-like nanoparticles.

본 발명의 제조방법은 다단계가 아니고, 특수한 기기설비를 필요한 것이 아니라, 단일 단계로 판상형 은 나노 입자를 높은 수율 (90% 이상)로 제조할 수 있다. 그리고 화학적 용매제조법이기 때문에 대량 합성 (bulk scale)이 가능하다. The manufacturing method of the present invention is not a multi-step method and requires no special equipment, and a nanoparticle of a plate-shape can be produced with a high yield (90% or more) in a single step. And because it is a chemical solvent preparation method, bulk scale is possible.

제조 방법에 따르면 반응시간, 은과 PVP의 비율, 반응 온도 등과 같은 반응 변수를 조절함으로써 판상형 은 나노입자의 두께 및 크기를 조절할 수 있고, 판상형 은 나노입자는 국소표면 플라즈몬 공명 (Localized Surface Plasmon Resonance, LSPR)이 일어나기 때문에 입자의 크기와 두께의 비율에 따라 흡수되는 파장이 달라진다. According to the preparation method, the thickness and size of the nanoparticles can be controlled by adjusting the reaction parameters such as the reaction time, the ratio of silver and the PVP, and the reaction temperature, and the nanoparticles of the plate-shaped nanoparticles can be controlled by Localized Surface Plasmon Resonance LSPR) occurs, the wavelength absorbed depends on the ratio of particle size and thickness.

판상형 은 나노입자는 국소표면 플라즈몬 공명 (LSPR)이 일어나기 때문에 입자의 크기와 두께의 비율에 따라 흡수되는 파장이 달라진다. 인체의 혈액 및 연부 조직에서 투과되는 적외선 영역에서 피크를 가지도록 판상형 은 나노입자를 제조하면 의공학 영역에서 활용 가능성이 높고, 두께가 얇고 면이 넓은 특성으로 인해서 배리어(barrier) 특성을 구현하기 위한 재료 또는 투명전도성 필름 소재용으로 활용될 수 있다. Because of the local surface plasmon resonance (LSPR) of the nanoparticles in the plate-like form, the wavelength absorbed depends on the ratio of the particle size and the thickness. When a nanoparticle is prepared to have a peak in the infrared region transmitted through blood and soft tissues of the human body, the nanoparticle is highly likely to be used in the medical field, and the material for realizing the barrier property due to its thin thickness and wide surface characteristics Or for transparent conductive film materials.

이하 본 발명에 따른 바람직한 실시예를 설명하겠다. Hereinafter, preferred embodiments according to the present invention will be described.

<실시예 1>&Lt; Example 1 >

9ml의 NMP (Aldrich) 에 0.5 M의 질산은을 투입하여 용액 1을 제작하고, NMP 27ml에 PVP (TCI, Mw 40,000) 1.5 g을 첨가하여 용액 2를 제작하여 밀폐 가능한 50 ml 바이알에 담았다. 교반용 자석 막대를 넣고, 밀폐시킨 뒤에 오일배스로 90도로 가열하면서, 교반을 24시간 동안 진행하였다. Solution 1 was prepared by adding 0.5 M of silver nitrate to 9 ml of NMP (Aldrich), and 1.5 g of PVP (TCI, Mw 40,000) was added to 27 ml of NMP to prepare solution 2, which was then placed in a sealable 50 ml vial. After the magnet bar for stirring was put and sealed, the stirring was continued for 24 hours while heating to 90 degrees with an oil bath.

반응 시간이 경과하면 반응을 종료하고 용액을 10,000 rpm으로 원심분리하고, 수득된 침전물을 증류수에서 분산시켰다. 재분산된 용액에서 판상형 은 나노입자의 형태 및 결정 구조를 주사전자현미경과 투과전자현미경을 통해 관찰하였고, 광 특성은 UV-Vis-NIR spectrometer로 확인하였다. When the reaction time elapsed, the reaction was terminated, the solution was centrifuged at 10,000 rpm, and the resulting precipitate was dispersed in distilled water. In the redispersed solution, the morphology and crystal structure of the nanoparticles were observed by scanning electron microscope and transmission electron microscope, and the optical properties were confirmed by UV-Vis-NIR spectrometer.

<실시예 2>&Lt; Example 2 >

<실시예 1>에서 NMP 대신 DMF (Aldrich)를 사용하는 것 이외에는 <실시예 1>과 동일하다. <Example 1> is the same as <Example 1> except that DMF (Aldrich) is used instead of NMP.

<실시예 3>&Lt; Example 3 >

<실시예 1>에서 NMP 대신 MIBK (Aldrich)를 사용하는 것 이외에는 <실시예 1>과 동일하다. <Example 1> is the same as <Example 1> except that MIBK (Aldrich) is used instead of NMP in Example 1.

<실시예 4><Example 4>

<실시예 1>에서 반응 온도를 90 도에서 110 도로 변경한 것 이외에는 <실시예 1>과 동일하다. The procedure of Example 1 was the same as that of Example 1 except that the reaction temperature was changed from 90 to 110 degrees.

<실시예 5>&Lt; Example 5 >

<실시예 1>에서 반응 시간을 24시간에서 12시간으로 변경한 것 이외에는 <실시예 1>과 동일하다.The procedure of Example 1 was the same as that of Example 1 except that the reaction time was changed from 24 hours to 12 hours.

Claims (6)

은 전구체, 말단 수산기를 가진 PVP와 극성 비프로톤성 용매를 포함하는 반응혼합물을 밀폐된 반응기에서 가열하는 것으로 이루어진 판상형 은 나노입자의 제조방법으로서, 말단 수산기를 가진 PVP는 10,000 ~ 50,000의 분자량을 가지고, 은 대비 1 ~ 20의 중량비로 사용되는 판상형 은 나노입자의 제조방법.Wherein the PVP having a terminal hydroxyl group has a molecular weight of 10,000 to 50,000, wherein the PVP having a terminal hydroxyl group has a molecular weight of 10,000 to 50,000, wherein the PVP having a terminal hydroxyl group has a molecular weight of 10,000 to 50,000 , And silver in a weight ratio of 1 to 20, based on the total weight of the silver nanoparticles. 제 1 항에 있어서, 극성 비프로톤성 용매는 NMP (N-methyl pyrrolidone), DMF (N,N-dimethyl formamide), THF (tetrahydrofuran), EA (ethyl acetate), MEK (methyl ethyl ketone), MIBK (methyl isobutyl ketone) 중 하나를 선택해서 사용하는 것을 특징으로 하는 판상형 은 나노입자의 제조방법.The process of claim 1, wherein the polar aprotic solvent is selected from the group consisting of N-methyl pyrrolidone, N, N-dimethylformamide, THF, EA, MEK, methyl isobutyl ketone) is selected and used. 제 1 항에 있어서, 판상형 은 나노입자는 크기가 10 ㎚ ~ 2㎛이고, 판상형 나노입자의 비율이 90% 이상인 것을 특징으로 하는 판상형 은 나노입자의 제조방법. The method according to claim 1, wherein the nanoparticles of the plate-shaped nanoparticles are 10 nm to 2 탆 in size and the ratio of the nanoparticles of the plate-shaped nanoparticles is 90% or more. 제 1 항에 있어서, 반응 혼합물을 70 ~ 130 ℃의 온도에서 반응하는 것을 특징으로 하는 판상형 은 나노입자의 제조방법. The method according to claim 1, wherein the reaction mixture is reacted at a temperature of 70 to 130 ° C. 제 1 항에 있어서, PVP와 은의 중량비를 조절하여서 판상형 은 나노입자의 두께 및 크기를 조절하는 것을 특징으로 하는 판상형 은 나노입자의 제조방법.The method according to claim 1, wherein the thickness and size of the nanoparticles are controlled by controlling the weight ratio of PVP to silver. 제 1 항에 있어서, 반응시간을 조절하여 판상형 은 나노입자의 크기를 제어하는 것을 특징으로하는 판상형 은 나노입자의 제조방법
The method according to claim 1, wherein the reaction time is controlled to control the size of the nanoparticles in a plate-like form,
KR1020170074848A 2017-06-14 2017-06-14 Size-controllable Synthesis of Silver nanoparticles of plate shape KR20180136209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170074848A KR20180136209A (en) 2017-06-14 2017-06-14 Size-controllable Synthesis of Silver nanoparticles of plate shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170074848A KR20180136209A (en) 2017-06-14 2017-06-14 Size-controllable Synthesis of Silver nanoparticles of plate shape

Publications (1)

Publication Number Publication Date
KR20180136209A true KR20180136209A (en) 2018-12-24

Family

ID=65009993

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170074848A KR20180136209A (en) 2017-06-14 2017-06-14 Size-controllable Synthesis of Silver nanoparticles of plate shape

Country Status (1)

Country Link
KR (1) KR20180136209A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111250729A (en) * 2020-04-02 2020-06-09 海泰纳鑫科技(成都)有限公司 Method for adjusting size of silver nanosheet
KR20210101848A (en) * 2020-02-11 2021-08-19 원형일 A synthesis method of silver particles for low temperature sintering and low temperature sintering silver particles manufactured thereof
CN115488347A (en) * 2022-09-09 2022-12-20 淮阴师范学院 Preparation method of multilayer silver nanosheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210101848A (en) * 2020-02-11 2021-08-19 원형일 A synthesis method of silver particles for low temperature sintering and low temperature sintering silver particles manufactured thereof
CN111250729A (en) * 2020-04-02 2020-06-09 海泰纳鑫科技(成都)有限公司 Method for adjusting size of silver nanosheet
CN115488347A (en) * 2022-09-09 2022-12-20 淮阴师范学院 Preparation method of multilayer silver nanosheet
CN115488347B (en) * 2022-09-09 2024-01-26 淮阴师范学院 Preparation method of multilayer silver nano-sheet

Similar Documents

Publication Publication Date Title
He et al. Preparation of polychrome silver nanoparticles in different solvents
Yong et al. Synthesis and characterization of silver oxide nanoparticles by a novel method
Liu et al. From nanocrystal synthesis to functional nanostructure fabrication: laser ablation in liquid
KR20180136209A (en) Size-controllable Synthesis of Silver nanoparticles of plate shape
JP4899229B2 (en) ZnO whisker films and methods for producing them
Onwudiwe et al. Nanosecond laser irradiation synthesis of CdS nanoparticles in a PVA system
Atkins et al. An efficient microwave-assisted synthesis method for the production of water soluble amine-terminated Si nanoparticles
Lu et al. Size-tunable uniform gold octahedra: fast synthesis, characterization, and plasmonic properties
CN101327946A (en) Micro-nanoparticle having special morphology, preparation and use thereof
Shan et al. Shape-controlled synthesis of monodispersed beta-gallium oxide crystals by a simple precipitation technique
Sun et al. A green method for synthesis of silver nanodendrites
He et al. Controlled growth and thermal decomposition of well-dispersed and uniform ZnSn (OH) 6 submicrocubes
Jana et al. Conducting nano-channels in an induced piezoelectric polymeric matrix using swift heavy ions and subsequent functionalization
Uthirakumar et al. Nanocrystalline ZnO particles: Low-temperature solution approach from a single molecular precursor
KR20170106086A (en) preparation method of copper nano-structures
Martínez-Castañón et al. Synthesis of silver particles with different sizes and morphologies
KR101533565B1 (en) High yield synthetic method of silver nano-plates with controllable aspect ratio
Wahab et al. Effect of refluxing time on the morphology of pencil like zinc oxide nanostructures prepared by solution method
KR20190053326A (en) Method to make transparent films using silver nanoparticles and infrared absorbing material
Cai et al. Large-scale synthesis of Pb1− xLaxTiO3 ceramic powders by molten salt method
KR101787083B1 (en) Preparation method of perovskite nanostructures and the perovskite nanostructures thereby
Wu et al. Low temperature growth and properties of ZnO nanorod arrays
Behboudnia et al. Facile and room temperature preparation and characterization of PbS nanoparticles in aqueous [EMIM][EtSO4] ionic liquid using ultrasonic irradiation
Roy et al. Reductant control on particle size, size distribution and morphology in the process of surface enhanced Raman spectroscopy active silver colloid synthesis
CN112777626B (en) Highly uniform zinc oxide submicron spheres with controllable particle size and preparation method thereof