KR20180117023A - Amine-functionalized MOF based carbon dioxide adsorbents comprising binders - Google Patents

Amine-functionalized MOF based carbon dioxide adsorbents comprising binders Download PDF

Info

Publication number
KR20180117023A
KR20180117023A KR1020170163658A KR20170163658A KR20180117023A KR 20180117023 A KR20180117023 A KR 20180117023A KR 1020170163658 A KR1020170163658 A KR 1020170163658A KR 20170163658 A KR20170163658 A KR 20170163658A KR 20180117023 A KR20180117023 A KR 20180117023A
Authority
KR
South Korea
Prior art keywords
carbon dioxide
dobpdc
binder
een
amine
Prior art date
Application number
KR1020170163658A
Other languages
Korean (ko)
Other versions
KR102217979B1 (en
Inventor
홍창섭
이화영
강민정
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of KR20180117023A publication Critical patent/KR20180117023A/en
Application granted granted Critical
Publication of KR102217979B1 publication Critical patent/KR102217979B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to an amine-functionalized metal-organic framework (MOF)-based carbon dioxide adsorbent containing a binder. More specifically, the present invention relates to an amine-functionalized MOF-based carbon dioxide adsorbent containing a binder, which is capable of effectively collecting carbon dioxide in an actual fluidized bed by using the binder, and also maintains adsorption ability upon reuse since mechanical strength is improved. According to the present invention, mechanical strength can be improved due to the binding of the binder with the metal ion present in the amine-functionalized porous MOF, and can be controlled according to the content of the binder.

Description

결합제를 포함하는 아민 기능화 MOF 기반의 이산화탄소 흡착제{Amine-functionalized MOF based carbon dioxide adsorbents comprising binders}[0001] Amine-functionalized MOF-based carbon dioxide adsorbents comprising a binder [

본 발명은 결합제를 포함하는 아민 기능화 MOF 기반의 이산화탄소 흡착제에 관한 것으로, 더욱 상세하게는 결합제를 이용함으로써 실제 유동층에서도 효과적으로 이산화탄소를 포집할 수 있을 뿐만 아니라 기계적 강도가 향상되어 재사용시 흡착 능력을 유지할 수 있는 결합제를 포함하는 아민 기능화 MOF 기반의 이산화탄소 흡착제에 관한 것이다.The present invention relates to an amine-functionalized MOF-based carbon dioxide adsorbent comprising a binder, and more particularly, to a carbon dioxide adsorbent which can effectively capture carbon dioxide in an actual fluidized bed by using a binder and has improved mechanical strength, Functional MOF-based carbon dioxide adsorbent comprising an amine-functionalized amine-functionalized carbon dioxide adsorbent.

지구 온난화의 주범인 CO2 배출량의 30-40%는 화력발전소에서 발생하며, 배가스에서의 CO2 농도는 150 mbar이다. 가스와 고체 흡착제의 사이에서의 효과적인 흡착을 위한 유동층에서는 층의 바닥에서부터 흡착과정이 진행되고, 층의 윗부분에 도달하면 약 30 mbar까지 CO2의 농도가 감소하게 된다. 따라서 유동층에서 사용되는 고체 흡착제는 넓은 범위의 CO2 농도에서 흡착이 가능해야 한다.30-40% of CO 2 emissions, which are the main cause of global warming, are generated in thermal power plants and the CO 2 concentration in the flue gas is 150 mbar. In the fluidized bed for efficient adsorption between the gas and the solid adsorbent, the adsorption process proceeds from the bottom of the bed, and the CO 2 concentration decreases to about 30 mbar when it reaches the top of the bed. Therefore, the solid adsorbent used in the fluidized bed should be able to adsorb at a wide range of CO 2 concentrations.

또한, 흡착 과정 후, 흡착제는 재생기로 옮겨져 재활성화 되는데 기존의 흡착제들은 고농도 CO2 및 저온 환경에서 탈착과정이 잘 이뤄지지 않아 재사용에 문제가 있었다. 따라서, 저농도에서의 높은 흡착능 뿐만 아니라 고농도에서 탈착이 잘 이루어지는 흡착제에 대한 연구가 활발히 이루어지고 있다.In addition, after the adsorption process, the adsorbent is transferred to the regenerator and reactivated. However, the conventional adsorbents have problems in the reuse because the desorption process is not performed well in the high concentration CO 2 and low temperature environment. Therefore, researches have been made actively on adsorbents capable of high desorption at high concentration as well as high adsorption ability at low concentration.

고체 흡착제 중 금속-유기 골격체(MOF, metal-organic framework)는 큰 표면적을 갖고 있고, 기공을 조절할 수 있다는 이점이 있어, CO2 포집을 위한 효과적인 흡착제로 사용하기 위한 연구가 진행 중에 있다. 기존 연구에서는 루이스산으로 작용하는 열린 금속 자리(open metal sites)를 이용했으며, 이것은 CO2 분자와의 강한 상호작용을 유발해 높은 CO2 포집능을 보여 주었다. 하지만, 수분이 있는 환경에서 열린 금속 자리와 상호작용한 물분자는 제거하기가 힘들고, 이에 따라 CO2 포집능까지 감소하는 문제점이 존재한다. The metal-organic framework (MOF) of the solid adsorbent has a large surface area and has the advantage of controlling the pore, and studies are underway to use it as an effective adsorbent for CO 2 capture. Previous studies have used open metal sites that function as Lewis acids, leading to strong interactions with CO 2 molecules and high CO 2 capture capacity. However, there is a problem in that water molecules interacting with the open metal sites in a watery environment are difficult to remove, thereby decreasing their ability to capture CO 2 .

이에, 후-합성 변형(post-synthetic modification)을 통한 아민 기능화된 금속-유기 골격체(MOF)가 보고되었으며, 상기 MOF는 유동층에서 저농도 CO2를 선택적으로 흡착할 뿐만 아니라 재활용이 가능하다는 장점이 있는 것으로 알려졌다. 그러나, 상기 MOF의 기반의 이산화탄소 흡착제의 경우에는 실제 공정에서 재사용할 경우 기계적인 마모로 인하여 흡착 능력이 급격히 감소하게 된다는 문제점이 존재한다.Thus, an amine-functionalized metal-organic skeleton (MOF) through post-synthetic modification has been reported, and the MOF has the advantage of selectively adsorbing low-concentration CO 2 in the fluidized bed, . However, in the case of the carbon dioxide adsorbent based on the MOF, there is a problem that the adsorption ability is drastically reduced due to mechanical abrasion when reused in an actual process.

따라서, MOF의 기계적 강도 향상을 통해 실제 공정에서 재사용시 기계적인 마모를 줄임으로써 흡착 능력을 유지할 수 있는 흡착제의 개발이 요구되는 실정이다.Therefore, it is required to develop an adsorbent capable of maintaining the adsorption ability by reducing the mechanical wear upon reuse in the actual process through improvement of the mechanical strength of the MOF.

대한민국 공개특허 제10-2015-0007484호Korean Patent Publication No. 10-2015-0007484

본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 기계적 강도가 향상되어 실제 공정에서 재사용시 기계적인 마모로 인한 이산화탄소 흡착능 감소를 방지할 수 있는 이산화탄소 흡착제 및 이의 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a carbon dioxide adsorbent and a method of manufacturing the carbon dioxide adsorbent which can improve the mechanical strength and prevent carbon dioxide adsorption capability from being reduced due to mechanical wear upon re- .

본 발명은 상기 과제를 해결하기 위하여, 결합제; 및 일차 아민기를 함유한 다가 아민이 도입된 다공성 금속-유기 골격체;를 포함하는 이산화탄소 흡착제를 제공한다.In order to solve the above-described problems, the present invention provides a bonding agent, And a porous metal-organic skeleton into which a polyamine containing a primary amine group is introduced.

또한, 본 발명은 일차 아민기를 함유한 다가 아민이 도입된 다공성 금속-유기 골격체 분말을 결합제와 혼합하는 단계; 상기 혼합물에 물을 첨가 및 반죽하여 성형하는 단계; 및 상기 성형된 혼합물을 건조시키는 단계;를 포함하는 이산화탄소 흡착제의 제조방법을 제공한다.The present invention also relates to a method for preparing a porous metal-organic skeleton powder, which comprises mixing a porous metal-organic skeleton powder into which a polyamine having a primary amine group is introduced, Adding water to the mixture, kneading and molding the mixture; And drying the molded mixture. The present invention also provides a method for producing a carbon dioxide adsorbent.

본 발명에 따르면, 상기 결합제는 산화알루미늄(Al2O3), 하이드로탈사이트(hydrotalcite), 수크로오스(sucrose), 셀룰로오스(cellulose), 건식 실리카(fumed silica), 실리카 졸(Silica sol) 및 알루미나 졸(Alumina sol)로 이루어진 군에서 선택될 수 있다.According to the present invention, the binder is selected from the group consisting of aluminum oxide (Al 2 O 3 ), hydrotalcite, sucrose, cellulose, fumed silica, silica sol, (Alumina sol).

본 발명에 따르면, 상기 다공성 금속-유기 골격체와 상기 결합제는 80:20 내지 97:3의 중량비로 혼합될 수 있다.According to the present invention, the porous metal-organic skeleton and the binder may be mixed in a weight ratio of 80:20 to 97: 3.

본 발명에 따르면, 상기 혼합물과 상기 물은 1:0.5-5의 중량비로 혼합될 수 있다. According to the present invention, the mixture and the water may be mixed at a weight ratio of 1: 0.5-5.

본 발명에 따르면, 상기 혼합물을 구형 펠릿(pellet) 형태로 성형할 수 있다.According to the present invention, the mixture can be molded into spherical pellets.

본 발명에 따르면, 상기 다가 아민은 하기 화학식 1 내지 15로 표시되는 화합물 중에서 선택될 수 있다.According to the present invention, the polyhydric amine may be selected from compounds represented by the following general formulas (1) to (15).

[화학식 1 내지 15][Chemical Formula 1 to Chemical Formula 15]

Figure pat00001
Figure pat00001

본 발명에 따르면, 상기 다공성 금속-유기 골격체는 M2(dobpdc), M2(dobdc), M2(dondc) 및 M2(dotpdc)로 이루어진 군에서 선택될 수 있고, 여기서, 금속 M은 Mg, Ti, V, Cr, Mn, Co, Ni, Cu 또는 Zn이고, dobpdc는 4,4'-디옥시도-3,3'-비페닐디카복실레이트이며, dobdc는 2,5-디옥시도-1,4-벤젠디카복실레이트이고, dondc는 1,5-디옥사이드-2,6-나프탈렌디카복실레이트이고, dotpdc는 4,4'-디옥시도-3,3'-트리페닐디카복실레이트일 수 있다.According to the present invention, the porous metal-organic skeleton may be selected from the group consisting of M 2 (dobpdc), M 2 (dobdc), M 2 (dondc) and M 2 (dotpdc) Dobpdc is 4,4'-dioxido-3,3'-biphenyldicarboxylate, dobdc is 2,5-dioxane, -1,4-benzenedicarboxylate, dondc is 1,5-dioxide-2,6-naphthalenedicarboxylate, and dotpdc is 4,4'-dioxido-3,3'-triphenyldicarboxylate Lt; / RTI >

본 발명에 따르면, 아민 기능화된 다공성 금속-유기 골격체(MOF)에 존재하는 금속 이온과 결합제의 결합으로 인하여 기계적 강도를 향상시킬 수 있으며, 결합제의 함량에 따라 기계적 강도를 조절할 수 있는 이산화탄소 흡착제 및 그 제조방법을 제공할 수 있다.According to the present invention, a carbon dioxide adsorbent capable of improving mechanical strength due to binding of a metal ion and a binder present in an amine-functionalized porous metal-organic skeleton (MOF) and controlling mechanical strength according to the content of the binder, And a manufacturing method thereof can be provided.

따라서, 본 발명에 따른 이산화탄소 흡착제는 실제 공정 적용시에 기계적 마모 현상을 방지함으로써 재사용시에도 이산화탄소 흡착능력을 우수하게 유지할 수 있다.Therefore, the carbon dioxide adsorbent according to the present invention can prevent the mechanical abrasion phenomenon at the time of applying the actual process, so that the carbon dioxide adsorption ability can be maintained even when reused.

도 1은 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 PXRD 패턴이다.
도 2는 본 발명에 사용된 아민 기능화된 다공성 금속-유기 골격체(een-Mg2(dobpdc))의 열무게분석(TGA) 곡선을 나타낸 그래프이다.
도 3은 본 발명에 사용된 een-Mg2(dobpdc)과 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 N-H 신축모드 IR 스펙트럼이다.
도 4는 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 SEM 이미지이다.
도 5는 15% CO2 조건하에서, 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 TGA 곡선을 나타낸 그래프이다.
도 6은 15% CO2 조건하에서, 실시예 1에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 TGA 곡선을 나타낸 그래프이다.
도 7은 15% CO2 조건하에서, 실시예 3에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 TGA 곡선을 나타낸 그래프이다.
도 8은 15% CO2 조건하에서, 실시예 5에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 TGA 곡선을 나타낸 그래프이다.
도 9는 15% CO2 조건하에서, 실시예 7에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 TGA 곡선을 나타낸 그래프이다.
도 10은 실시예 1에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 N2 흡착 등온선을 나타낸 그래프이다.
도 11은 실시예 6에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 N2 흡착 등온선을 나타낸 그래프이다.
도 12는 실시예 7에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 N2 흡착 등온선을 나타낸 그래프이다.
도 13은 실시예 1에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 흡착 및 탈착 사이클을 나타낸 그래프이다.
도 14는 실시예 5에 따라 제조된 이산화탄소 흡착제의 흡착 및 탈착 사이클을 나타낸 그래프이다.
1 is a PXRD pattern of the carbon dioxide adsorbent prepared according to Examples 1 to 7. FIG.
2 is a graph showing a thermogravimetric analysis (TGA) curve of the amine-functionalized porous metal-organic skeleton (een-Mg 2 (dobpdc)) used in the present invention.
3 is an NH stretch mode IR spectrum of een-Mg 2 (dobpdc) used in the present invention and the carbon dioxide adsorbent prepared according to Examples 1 to 7. FIG.
Fig. 4 is an SEM image of the carbon dioxide adsorbent prepared according to Examples 1 to 7. Fig.
5 is a graph showing the TGA curves of the carbon dioxide adsorbent prepared according to Examples 1 to 7 under 15% CO 2 conditions.
6 is a graph showing a TGA curve according to the mixing ratio of the binder of carbon dioxide adsorbent and een-Mg 2 (dobpdc) prepared according to Example 1 under 15% CO 2 condition.
7 is a graph showing the TGA curve according to the mixing ratio of the binder of carbon dioxide adsorbent and een-Mg 2 (dobpdc) prepared according to Example 3 under 15% CO 2 condition.
8 is a graph showing a TGA curve according to the mixing ratio of the binder of carbon dioxide adsorbent and een-Mg 2 (dobpdc) prepared according to Example 5 under 15% CO 2 condition.
9 is a graph showing a TGA curve according to the mixing ratio of the binder of carbon dioxide adsorbent and een-Mg 2 (dobpdc) prepared according to Example 7 under 15% CO 2 condition.
10 is a graph showing the N 2 adsorption isotherm according to the mixing ratio of the binder of carbon dioxide adsorbent and een-Mg 2 (dobpdc) prepared according to Example 1. FIG.
11 is a graph showing the N 2 adsorption isotherm according to the mixing ratio of the binder of carbon dioxide adsorbent and een-Mg 2 (dobpdc) prepared according to Example 6. FIG.
12 is a graph showing N 2 adsorption isotherms according to the mixing ratio of een-Mg 2 (dobpdc) and the binder of the carbon dioxide adsorbent prepared according to Example 7. FIG.
13 is a graph showing adsorption and desorption cycles according to the mixing ratio of een-Mg 2 (dobpdc) and the binder of the carbon dioxide adsorbent prepared according to Example 1. Fig.
14 is a graph showing adsorption and desorption cycles of a carbon dioxide adsorbent produced according to Example 5. FIG.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 다공성 금속-유기 골격체의 기계적 강도 향상을 통해 실제 공정에서 재사용시 기계적 마모로 인한 이산화탄소 흡착능 감소를 방지할 수 있는 이산화탄소 흡착제 및 이의 제조방법을 제공하고자 한다.The present invention provides a carbon dioxide adsorbent and a method of manufacturing the carbon dioxide adsorbent that can prevent carbon dioxide adsorption ability from being reduced due to mechanical abrasion during reuse in an actual process through improvement of the mechanical strength of the porous metal-organic skeleton.

이에, 본 발명은 결합제; 및 일차 아민기를 함유한 다가 아민이 도입된 다공성 금속-유기 골격체;를 포함하는 이산화탄소 흡착제를 제공한다.Accordingly, the present invention provides a bonding agent comprising: a binder; And a porous metal-organic skeleton into which a polyamine containing a primary amine group is introduced.

이때, 상기 결합제는 산화알루미늄(Al2O3), 하이드로탈사이트(hydrotalcite), 수크로오스(sucrose), 셀룰로오스(cellulose), 건식 실리카(fumed silica), 실리카 졸(Silica sol) 및 알루미나 졸(Alumina sol)로 이루어진 군에서 선택될 수 있다.The binder may be selected from the group consisting of aluminum oxide (Al 2 O 3 ), hydrotalcite, sucrose, cellulose, fumed silica, silica sol and alumina sol ). ≪ / RTI >

본 발명은 상기 결합제의 도입을 통해 다공성 금속-유기 골격체의 기계적 강도 향상을 통해 재사용시에도 이산화탄소 흡착능을 우수하게 유지할 수 있는바, 하기 실시예의 결과로부터 알 수 있는 바와 같이 상기 다공성 금속-유기 골격체와 상기 결합제는 80:20 내지 97:3의 중량비로 혼합되는 것이 바람직하다.As a result of the improvement of the mechanical strength of the porous metal-organic skeleton through the introduction of the binder, the carbon dioxide adsorbing ability can be maintained even when reused. As can be seen from the results of the following examples, the porous metal- And the binder are mixed in a weight ratio of 80:20 to 97: 3.

한편, 상기 다공성 금속-유기 골격체는 결정성 고체로서 다공성을 지니므로 기체 흡착에 유리하다. 바람직하게는 본 발명의 다공성 금속-유기 골격체는 공동 쪽으로 고밀도의 열린 금속자리(open metal sites)를 포함할 수 있다.On the other hand, since the porous metal-organic skeleton is a crystalline solid and has porosity, it is advantageous for gas adsorption. Preferably, the porous metal-organic skeleton of the present invention may include high density open metal sites into the cavity.

본 발명에 따르면, 상기 다공성 금속-유기 골격체는 M2(dobpdc), M2(dobdc), M2(dondc) 및 M2(dotpdc)로 이루어진 군에서 선택될 수 있다. 이 경우, 금속 M은 Mg, Ti, V, Cr, Mn, Co, Ni, Cu 또는 Zn일 수 있으며, 바람직하게는 Mg이다. 또한, 상기 dobpdc는 4,4'-디옥시도-3,3'-비페닐디카복실레이트이며, dobdc는 2,5-디옥시도-1,4-벤젠디카복실레이트이고, dondc는 1,5-디옥사이드-2,6-나프탈렌디카복실레이트이고, dotpdc는 4,4'-디옥시도-3,3'-트리페닐디카복실레이트이다.According to the present invention, the porous metal-organic skeleton may be selected from the group consisting of M 2 (dobpdc), M 2 (dobdc), M 2 (dondc) and M 2 (dotpdc). In this case, the metal M may be Mg, Ti, V, Cr, Mn, Co, Ni, Cu or Zn, Also, dobpdc is 4,4'-dioxido-3,3'-biphenyldicarboxylate, dobdc is 2,5-dioxido-1,4-benzenedicarboxylate, dondc is 1, 5-dioxide-2,6-naphthalenedicarboxylate, and dotpdc is 4,4'-dioxido-3,3'-triphenyl dicarboxylate.

또한, 상기 다공성 금속-유기 골격체는 일차 아민기를 함유한 다가 아민이 도입된 것을 사용하는 것이 바람직하다. 이러한 다공성 금속-유기 골격체의 아민기능화를 통해 이산화탄소 흡착제가 낮은 농도의 이산화탄소를 포집할 수 있다. 특히, 공기 중 이산화탄소 포집을 위해서는 다공성 금속-유기 골격체의 공동 안에 고밀도의 아민기가 도입된 것을 사용하는 것이 바람직하다. 상기 고밀도의 아민기 도입을 통해 아민기와 CO2의 탄소 원자 간의 상호작용에 의한 흡착엔탈피를 획기적으로 향상시킬 수 있다. 이러한 아민 기능화는 상기 다공성 금속-유기 골격체의 열린 금속자리에 아민기가 그래프트됨으로써 달성되며, 열린 금속자리는 루이스 산(Lewis acid)으로 작용한다. 이 경우, 일차 아민기는 2개의 수소기를 포함함으로써 열린 금속자리에 잘 배위 결합될 수 있다. 또한, 남아있는 자유 아민기는 공동으로 들어오는 CO2를 효과적으로 포집할 수 있다.The porous metal-organic skeleton is preferably one having a polyamine introduced with a primary amine group. The amine functionalization of these porous metal-organic skeletons allows the carbon dioxide sorbent to capture low concentrations of carbon dioxide. Particularly, in order to trap carbon dioxide in the air, it is preferable to use a porous metal-organic skeleton in which a high-density amine group is introduced. The enthalpy of adsorption due to the interaction between the amine group and the carbon atom of CO 2 can be remarkably improved through the introduction of the high density amine group. This amine functionalization is accomplished by grafting amine groups to the open metal sites of the porous metal-organic skeleton and the open metal sites serve as Lewis acids. In this case, the primary amine group can be well coordinated to open metal sites by containing two hydrogen groups. In addition, the remaining free amine groups can effectively trap the incoming CO 2 .

본 발명에 따른 다가 아민은 2개, 3개, 또는 그 이상의 개수의 아민기 말단을 가질 수 있다. 보다 상세하세는, 상기 다가 아민은 양쪽 말단 각각에 1차 아민기를 포함할 수 있다. 양쪽 말단에 일차 아민기가 존재하는 다가 아민의 경우, 곁가지에 다양한 치환기의 도입이 가능하며, 저압 조건에서 이산화탄소 흡착은 1차 아민기를 통해, 이산화탄소 탈착은 곁가지를 통해 용이하게 조절할 수 있다. 특히, 다가 아민에 존재하는 곁가지는, 다공성 금속-유기 골격체와 아민 간의 결합이 분해되는 것을 방해함으로써 흡착제의 구조적 안정성을 향상시키는데 중요한 역할을 수행할 수 있다. 한편, 상기 다가 아민의 자유 아민기는 일차 아민일 수있다.The polyamines according to the present invention may have two, three, or more amine-terminated ends. More specifically, the polyhydric amines may include primary amine groups at each of the two ends. In the case of polyamines having primary amine groups at both ends, it is possible to introduce various substituents into the side branches. At low pressure, the carbon dioxide adsorption can be easily controlled through the primary amine group and the carbon dioxide desorption can be easily controlled through the side branches. In particular, the side chain present in the polyvalent amine can play an important role in improving the structural stability of the adsorbent by interfering with the decomposition of the bond between the porous metal-organic skeleton and the amine. On the other hand, the free amine group of the polyvalent amine may be a primary amine.

구체적으로, 본 발명의 다가 아민은 하기 화학식 1 내지 15로 표시되는 화합물 중에서 선택될 수 있다.Specifically, the polyvalent amine of the present invention can be selected from the compounds represented by the following general formulas (1) to (15).

[화학식 1 내지 15][Chemical Formula 1 to Chemical Formula 15]

Figure pat00002
Figure pat00002

한편, 본 발명에서는 다공성 금속-유기 골격체의 기계적 강도 향상을 통해 실제 공정에서 재사용시 기계적 마모로 인한 이산화탄소 흡착능 감소를 방지할 수 있는 이산화탄소 흡착제의 제조방법을 제공하는바, 본 발명에 따른 이산화탄소 흡착제의 제조방법은 하기의 단계를 포함한다.In the meantime, the present invention provides a method for producing a carbon dioxide adsorbent capable of preventing a decrease in carbon dioxide adsorption ability due to mechanical abrasion during reuse in an actual process through improvement in the mechanical strength of the porous metal-organic skeleton, Comprises the following steps.

(a) 일차 아민기를 함유한 다가 아민이 도입된 다공성 금속-유기 골격체 분말을 결합제와 혼합하는 단계;(a) mixing a porous metal-organic skeletal powder having a polyamine with a primary amine group introduced therein with a binder;

(b) 상기 혼합물에 물을 첨가 및 반죽하여 성형하는 단계; 및(b) adding water to the mixture and kneading the mixture; And

(c) 상기 성형된 혼합물을 건조시키는 단계.(c) drying the molded mixture.

이때, 상기 결합제의 종류, 다공성 금속-유기 골격체 분말과 상기 결합제의 혼합 비율, 다가 아민과 다공성 금속-유기 골격체의 종류에 대한 내용은 상기 이산화탄소 흡착제에서 설명한 것과 동일하다.At this time, contents of the binder, the mixing ratio of the porous metal-organic skeleton powder and the binder, and the types of the polyamine and the porous metal-organic skeleton are the same as those described in the carbon dioxide adsorbent.

또한, 상기 (b) 단계에서 상기 일차 아민기를 함유한 다가 아민이 도입된 다공성 금속-유기 골격체 분말을 결합제의 혼합물과 상기 물은 1:0.5-5의 중량비로 혼합되는 것이 바람직하며, 상기 혼합물을 반죽하여 성형 시 구형 펠릿(pellet) 형태로 성형하는 것이 바람직하다.In addition, in the step (b), the mixture of the binder and the water is preferably mixed at a weight ratio of 1: 0.5-5, wherein the mixture of the porous metal-organic skeleton powder containing the primary amine group- Is kneaded and molded into a spherical pellet shape during molding.

이하에서는 바람직한 실시예 등을 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예 등은 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments and the like. It will be apparent to those skilled in the art, however, that these examples are provided for further illustrating the present invention and that the scope of the present invention is not limited thereto.

실시예Example

결합제와 Binder and 아민기능화된Amine-functionalized 다공성 금속-유기  Porous metal-organic 골격체를Skeletal 이용한 이산화탄소 흡착제의 제조 Preparation of Carbon Dioxide Adsorbent Used

아민 기능화 MOF로는 een-Mg2(dobpdc)(Ethylethylenediamine, een; 4,4’-Dihydroxy-[1,1’-byphenyl-3,3’-dicarboxylic acid, dobpdc)를 사용하였다. 먼저 상기 een-Mg2(dobpdc)를 molecular sieve 에 거르는 과정을 거쳐 100 μm 이하의 een-Mg2(dobpdc)을 얻은 뒤, 그라인더로 갈아 분말화된 een-Mg2(dobpdc) 흡착제를 수득하였다. 다음으로, 상기 분말화된 een-Mg2(dobpdc)를 결합제인 산화알루미늄(Al2O3), 하이드로탈사이트(hydrotalcite), 수크로오스(sucrose), 셀룰로오스(cellulose), 건식 실리카(fumed silica), 실리카 졸(Silica sol) 및 알루미나 졸(Alumina sol)과 각각 80:20~95:5의 중량비로 균일하게 혼합하였다. 상기 균일하게 혼합된 혼합물에 물을 1:1의 중량비로 첨가하고, 혼합물을 반죽하여 구형의 펠릿(pellet) 형태로 성형하였다. 상기 뭉쳐진 구형 펠릿을 랩으로 밀폐하여 12시간 동안 건조시킨 후, 상기 랩을 개폐하여 12시간 동안 건조시켜 본 발명에 따른 이산화탄소 흡착제를 제조하였다(실시예 1: een-Mg2(dobpdc)@Al2O3, 실시예 2: een-Mg2(dobpdc)@hydrotalcite, 실시예 3: een-Mg2(dobpdc)@sucrose, 실시예 4: een-Mg2(dobpdc)@cellulose, 실시예 5: een-Mg2(dobpdc)@fumed silica, 실시예 6: een-Mg2(dobpdc)@Silica sol, 실시예 7: een-Mg2(dobpdc)@Alumina sol).As amine functionalized MOF, een-Mg 2 (dobpdc) (Ethylethylenediamine, een; 4,4'-Dihydroxy- [1,1'-byphenyl-3,3'-dicarboxylic acid, dobpdc) was used. First, to obtain the een-Mg 2 (dobpdc) the rear obtained een-Mg 2 (dobpdc) of less than 100 μm, and transfer to grinding powdered een-Mg 2 (dobpdc) adsorbent through a process of filtering the molecular sieve. Next, the powdered een-Mg 2 (dobpdc) is mixed with a binder such as aluminum oxide (Al 2 O 3 ), hydrotalcite, sucrose, cellulose, fumed silica, Were uniformly mixed with silica sol (Silica sol) and alumina sol (Alumina sol) at a weight ratio of 80:20 to 95: 5, respectively. Water was added to the uniformly mixed mixture at a weight ratio of 1: 1, and the mixture was kneaded and molded into a spherical pellet shape. After the united spherical pellet was tightly closed to wrap dry for 12 hours, followed by to open and close the wrap dried for 12 hours to prepare a carbon dioxide absorbent according to the invention (Example 1: een-Mg 2 (dobpdc ) @Al 2 O 3, example 2: een-Mg 2 (dobpdc ) @hydrotalcite, example 3: een-Mg 2 (dobpdc ) @sucrose, example 4: een-Mg 2 (dobpdc ) @cellulose, example 5: een -Mg 2 (dobpdc) @fumed silica, example 6: een-Mg 2 (dobpdc ) @Silica sol, example 7: een-Mg 2 (dobpdc ) @Alumina sol).

도 1은 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 PXRD 패턴이다(PXRD 데이터 (빨강), een-Mg2(dobpdc) 성형체 (파랑), 결합제 (검정), (a) een-Mg2(dobpdc)@Al2O3, (b) een-Mg2(dobpdc)@Hydrotalcite, (c) een-Mg2(dobpdc)@Sucrose, (d) een-Mg2(dobpdc)@Cellulose, (e) een-Mg2(dobpdc)@fumed silica, (f) een-Mg2(dobpdc)@Silica sol, (g) een-Mg2(dobpdc)@Alumina sol).Figure 1 is a PXRD pattern of carbon dioxide sorbent prepared according to Examples 1 to 7 (PXRD data (red), een-Mg 2 (dobpdc) shaped body (blue), binder (black), (a) een-Mg 2 dobpdc) @Al 2 O 3, ( b) een-Mg 2 (dobpdc) @Hydrotalcite, (c) een-Mg 2 (dobpdc) @Sucrose, (d) een-Mg 2 (dobpdc) @Cellulose, (e) een-Mg 2 (dobpdc) @ fumed silica, (f) een-Mg 2 (dobpdc) @ silica sol, (g) een-Mg 2 (dobpdc) @ Alumina sol).

이를 통해 본 발명에 따라 제조된 이산화탄소 흡착제는 기존의 Mg2(dobpdc) 골격체가 가지는 구조적 특징을 결합제를 이용해 합성한 후에도 유지하고 있다는 것을 확인하였다.As a result, it was confirmed that the carbon dioxide adsorbent prepared according to the present invention retained the structural characteristics of the existing Mg 2 (dobpdc) skeleton even after synthesis using a binder.

amine 기능화 MOF 안정성 실험Amine functionalized MOF stability experiment

본 발명에 사용된 een-Mg2(dobpdc)의 실제 공정에 필요한 펠릿 형태로 만드는 온도 조건하에서 안정성을 평가하였다. een-Mg2(dobpdc) 흡수제를 pellet 형태로 만들기 위하여 spray drier 장비를 이용하게 되는데, 상기 장비는 주입구와 배출구가 200 ℃ 이상의 고온에서 진행되기 때문에 고온에서 een이 MOF의 열린 금속자리에 결합되어 있는 것과, MOF 자체의 안정함을 유지하지 여부를 확인하였다. 구체적으로 상기 een-Mg2(dobpdc) 흡착제의 열적 안정성을 조사하기 위해 TGA 장비를 이용하여 온도를 증가시키며 열 무게를 분석하였다. The stability was evaluated under the temperature conditions which made the pellets necessary for the actual process of een-Mg 2 (dobpdc) used in the present invention. In order to make the een-Mg 2 (dobpdc) absorbent into a pellet form, a spray drier equipment is used. Since the injection port and the discharge port are operated at a high temperature of 200 ° C. or higher, een is bonded to the open metal spot of the MOF And the stability of the MOF itself was maintained. Specifically, to investigate the thermal stability of the een-Mg 2 (dobpdc) adsorbent, the temperature was increased and the thermal weight was analyzed using a TGA instrument.

도 2는 본 발명에 사용된 아민 기능화된 다공성 금속-유기 골격체(een-Mg2(dobpdc))의 열무게분석(TGA) 곡선을 나타낸 그래프이다((a) N2 상태 (b) 공기 상태 (c) N2 상태, 흡착제에 물 첨가).2 is a graph showing a thermogravimetric analysis (TGA) curve of the amine functionalized porous metal-organic skeleton (een-Mg 2 (dobpdc)) used in the present invention (a) N 2 state (b) (c) N 2 state, adding water to the adsorbent).

측정 결과, N2 상태에서 een-Mg2(dobpdc)은 288 ℃에서 een 이 손실되는 것으로 보여지고, 445 ℃에서는 MOF 자체가 무너지는 것으로 확인되었다. 또한, 기존 공기 상태에서 een-Mg2(dobpdc) 은 247 ℃에서 een이 손실되는 것으로 보여지고, 332 ℃에서 MOF가 무너지는 것으로 확인되었다. 마지막으로, 질소 분위기에서 성형하지 않은 흡착제에 물을 첨가한 후 열 무게 분석을 실험한 결과 een은 256 ℃에서 손실되는 것으로 보이고, MOF는 448 ℃에서 무너지는 것으로 확인되었다. 이를 통해 본 발명에 사용된 een-Mg2(dobpdc)은 고온에서 열적으로 안정함을 확인하였다.As a result, een-Mg 2 (dobpdc) in the N 2 state was found to lose een at 288 ° C, and it was confirmed that MOF itself collapsed at 445 ° C. In addition, een-Mg 2 (dobpdc) was found to lose een at 247 ° C in the conventional air condition, and it was confirmed that MOF collapsed at 332 ° C. Finally, the addition of water to the unadsorbed adsorbent in a nitrogen atmosphere resulted in the loss of een at 256 ° C and the disappearance of MOF at 448 ° C. As a result, it was confirmed that the een-Mg 2 (dobpdc) used in the present invention was thermally stable at a high temperature.

적외선 스펙트럼과 Infrared Spectrum and SEMSEM 연구 Research

도 3은 본 발명에 사용된 een-Mg2(dobpdc)과 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 N-H 신축모드 IR 스펙트럼이다.3 is an NH stretch mode IR spectrum of een-Mg 2 (dobpdc) used in the present invention and the carbon dioxide adsorbent prepared according to Examples 1 to 7. FIG.

이를 통해 결합제를 도입한 후에도 N-H 결합이 유지됨을 확인하였다.Through this, it was confirmed that the N-H bond was retained even after introducing the binder.

도 4는 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 SEM 이미지이다((a) een-Mg2(dobpdc)@Al2O3, (b) een-Mg2(dobpdc)@Hydrotalcite, (c) een-Mg2(dobpdc)@Sucrose, (d) een-Mg2(dobpdc)@Cellulose, (e) een-Mg2(dobpdc)@fumed silica, (f) een-Mg2(dobpdc)@Silica sol, (g) een-Mg2(dobpdc)@Alumina sol)).4 is a SEM image of the carbon dioxide adsorbent prepared according to Examples 1 to 7 ((a) een-Mg 2 (dobpdc) @ Al 2 O 3 , (b) een-Mg 2 (dobpdc) ) een-Mg 2 (dobpdc) @Sucrose, (d) een-Mg 2 (dobpdc) @Cellulose, (e) een-Mg 2 (dobpdc) @fumed silica, (f) een-Mg 2 (dobpdc) @Silica sol, (g) een-Mg 2 (dobpdc) @Alumina sol)).

이를 통해 본 발명의 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제는 모두 een-Mg2(dobpdc)이 결합제 표면에 결합되어 있는 형상임을 확인하였다.Thus, it was confirmed that all of the carbon dioxide adsorbents prepared according to Examples 1 to 7 of the present invention had a form in which een-Mg 2 (dobpdc) was bonded to the surface of the binder.

이산화탄소 흡착 평가Carbon dioxide adsorption evaluation

본 발명의 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제(아민기능화 MOF와 결합제의 혼합 중량비는 80:20)의 흡착 성능을 평가하기 위해, 실시예 1 내지 5에 따른 이산화탄소 흡착제를 15% 이산화탄소 85% 질소분위기에서 130 ℃로 전처리 후, 40 ℃ 흡착, 130 ℃ 탈착 조건에서 TG를 측정하였다. In order to evaluate the adsorption performance of the carbon dioxide adsorbent (mixing weight ratio of amine functionalized MOF and binder: 80:20) prepared according to Examples 1 to 7 of the present invention, the carbon dioxide adsorbent according to Examples 1 to 5 was mixed with 15% carbon dioxide 85 % Nitrogen atmosphere at 130 캜, TG was measured at 40 캜 adsorption and 130 캜 desorption.

도 5는 15% CO2 조건하에서, 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 TGA 곡선을 나타낸 그래프이다((a) een-Mg2(dobpdc)@Al2O3, (b) een-Mg2(dobpdc)@Hydrotalcite, (c) een-Mg2(dobpdc)@Sucrose, (d) een-Mg2(dobpdc)@Cellulose, (e) een-Mg2(dobpdc)@fumed silica, (f) een-Mg2(dobpdc)@Silica sol, (g) een-Mg2(dobpdc)@Alumina sol)).5 is a graph showing the TGA curves of the carbon dioxide adsorbent prepared according to Examples 1 to 7 under 15% CO 2 ((a) een-Mg 2 (dobpdc) @ Al 2 O 3 , (b) een- Mg 2 (dobpdc) @Hydrotalcite, ( c) een-Mg 2 (dobpdc) @Sucrose, (d) een-Mg 2 (dobpdc) @Cellulose, (e) een-Mg 2 (dobpdc) @fumed silica, (f ) een-Mg 2 (dobpdc) @Silica sol, (g) een-Mg 2 (dobpdc) @Alumina sol)).

측정 결과, 실시예 1에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Al2O3)의 경우 7.33 wt%, 실시예 2에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Hydrotalcite)는 6.11 wt%, 실시예 3에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Sucrose)는 6.48 wt%, 실시예 4에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Cellulose)는 4.94 wt%, 실시예 5에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Fumed Silica)는 9.84 wt%, 실시예 6에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Silica sol)는 8.57 wt%, 실시예 7에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Alumina sol)는 11.45 wt%의 흡착량을 보여주었다. As a result of the measurement, 7.33 wt% of the carbon dioxide adsorbent according to Example 1 (een-Mg 2 (dobpdc) @ Al 2 O 3 ) and 6.1% of the carbon dioxide adsorbent (een-Mg 2 (dobpdc) @Hydrotalcite) (een-Mg 2 (dobpdc) @ Sucrose) according to Example 3 was 6.48 wt% and the carbon dioxide adsorbent (een-Mg 2 (dobpdc) @Cellulose) according to Example 4 was 4.94 wt% (Een-Mg 2 (dobpdc) @ Fumed Silica) according to Example 5 contained 9.84 wt%, 8.57 wt% of the een-Mg 2 (dobpdc @ Silica sol) according to Example 6, (Een-Mg 2 (dobpdc) @ Alumina sol) showed an adsorption amount of 11.45 wt%.

결합제 비율에 따른 이산화탄소 흡착 평가Evaluation of Carbon Dioxide Adsorption by Binder Ratio

상기 이산화탄소 흡착 평가를 통해 흡착량이 우수한 실시예 1, 3, 5, 7에 따른 이산화탄소 흡착제에 대하여 결합제의 비율에 따른 이산화탄소 흡착능력을 평가하였다. The carbon dioxide adsorbent according to Examples 1, 3, 5, and 7 having excellent adsorbed amount was evaluated through carbon dioxide adsorption evaluation.

구체적으로, 실시예 1, 3, 5, 7에 따른 이산화탄소 흡착제 제조시 결합제와 아민기능화 MOF의 비율을 각각 20:80, 15:85, 10:90, 5:95로 조절하여 흡착제를 제조하였으며, 상기 제조된 이산화탄소 흡착제를 15% 이산화탄소 85% 질소분위기에서 130 ℃로 전처리 후, 40 ℃ 흡착, 130 ℃ 탈착 조건에서 TG를 측정하였다. Specifically, adsorbents were prepared by adjusting the ratios of the binder and amine functionalized MOF to 20:80, 15:85, 10:90, and 5:95, respectively, in the preparation of the carbon dioxide adsorbent according to Examples 1, 3, 5, The prepared carbon dioxide adsorbent was pretreated at 130 ° C in an atmosphere of 15% carbon dioxide and 85% nitrogen, and TG was measured at 40 ° C and at 130 ° C desorption conditions.

도 6 내지 도 9는 15% CO2 조건하에서, 실시예 1(도 6), 실시예 3(도 7), 실시예 5(도 8), 실시예 7(도 9)에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 TGA 곡선을 나타낸 그래프이다.Under 6 to 9 is 15% CO 2 conditions, Example 1 (FIG. 6), Example 3 (Fig. 7), Example 5 (Figure 8) Example 7 The carbon dioxide adsorbent produced according to (9) (Dobpdc) and een-Mg 2 (dobpdc).

측정 결과, 실시예 1에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Al2O3)의 경우 20:80의 비율은 7.33 wt%, 15:85의 비율은 11.11 wt%, 10:90의 비율은 12.44 wt%, 5:95의 비율은 13.27 wt%의 이산화탄소 흡착량을 보여주었다(een-Mg2(dobpdc)의 흡착량은 15.09 wt%). 이를 통해 결합제의 비율이 높을수록 이산화탄소 흡착 성능이 떨어짐을 확인하였으며, 다만 결합제와 아민기능화 MOF의 비율이 15:85-5:95인 경우에는 흡착제의 성능 감소가 크지 않음을 확인하였다(도 6, 결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 5:95, (b) 10:90, (c) 15:85, (d) 20:80).As a result of the measurement, in the case of the carbon dioxide adsorbent (een-Mg 2 (dobpdc) @ Al 2 O 3 ) according to Example 1, the ratio of 20:80 was 7.33 wt%, the ratio of 15:85 was 11.11 wt% The ratio of carbon dioxide adsorption of 12.44 wt% and 5:95 ratio was 13.27 wt% (the adsorption amount of een-Mg 2 (dobpdc) was 15.09 wt%). As a result, it was confirmed that the adsorption performance of the adsorbent was not significantly decreased when the ratio of the binder and the amine-functional MOF was 15: 85-5: 95 (FIG. 6, The mixing ratio of the binder and een-Mg 2 (dobpdc) is (a) 5:95, (b) 10:90, (c) 15:85, and (d) 20:80.

또한, 실시예 3에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Sucrose)의 경우, 20:80의 비율은 6.47 wt%, 15:85의 비율은 6.22 wt%, 10:90의 비율은 8.69 wt%, 5:95의 비율은 10.34 wt%의 이산화탄소 흡착량을 보여주었다(een-Mg2(dobpdc)의 흡착량은 15.09 wt%). 이를 통해 결합제의 비율이 높을수록 이산화탄소 흡착 성능이 떨어짐을 확인하였으며, 다만 결합제와 아민기능화 MOF의 비율이 10:90-5:95인 경우에는 흡착제의 성능 감소가 크지 않음을 확인하였다(도 7, 결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 5:95, (b) 10:90, (c) 15:85, (d) 20:80).In the case of the carbon dioxide adsorbent (een-Mg 2 (dobpdc) @ Sucrose) according to Example 3, the ratio of 20:80 was 6.47 wt%, the ratio of 15:85 was 6.22 wt%, the ratio of 10:90 was 8.69 The adsorption amount of een-Mg 2 (dobpdc) was 15.09 wt%, and the ratio of 5 wt% to 95 wt% showed 10.34 wt% of carbon dioxide adsorption. As a result, it was confirmed that the adsorption performance of the adsorbent was not significantly decreased when the ratio of the binder and the amine-functionalized MOF was 10: 90-5: 95 (FIG. 7, The mixing ratio of the binder and een-Mg 2 (dobpdc) is (a) 5:95, (b) 10:90, (c) 15:85, and (d) 20:80.

또한, 실시예 5에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Fumed Silica)의 경우, 15:85의 비율은 11.42 wt%, 10:90의 비율은 13.05 wt%, 5:95의 비율은 13.10 wt%, 그리고 3:97의 비율은 13.41 wt%의 이산화탄소 흡착량을 보여주었다(een-Mg2(dobpdc)의 흡착량은 15.09 wt%). 이를 통해 결합제의 비율이 높을수록 이산화탄소 흡착 성능이 떨어짐을 확인하였으며, 다만, 결합제와 아민기능화 MOF의 비율이 10:90-3:97인 경우에는 흡착제의 성능 감소가 크지 않음을 확인하였다(도 8, 결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 3:97, (b) 5:95, (c) 10:90, (d) 15:85).In the case of the carbon dioxide adsorbent (een-Mg 2 (dobpdc) @ Fumed Silica) according to Example 5, the ratio of 15:85 was 11.42 wt%, the ratio of 10:90 was 13.05 wt%, the ratio of 5:95 13.10 wt%, and the ratio of 3:97 showed a carbon dioxide adsorption amount of 13.41 wt% (the adsorption amount of een-Mg 2 (dobpdc) was 15.09 wt%). As a result, it was confirmed that the adsorption performance of the adsorbent was not decreased when the ratio of the binder and the amine-functional MOF was 10: 90-3: 97 (see FIG. 8 , The mixing ratio of the binder and een-Mg 2 (dobpdc) is (a) 3:97, (b) 5:95, (c) 10:90, and (d) 15:85.

또한, 실시예 7에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Alumina sol)의 경우, 15:85의 비율은 10.15 wt%, 10:90의 비율은 11.45 wt%, 5:95의 비율은 12.38 wt%의 이산화탄소 흡착량을 보여주었다(een-Mg2(dobpdc)의 흡착량은 15.09 wt%). 이를 통해 결합제의 비율이 높을수록 이산화탄소 흡착 성능이 떨어짐을 확인하였으며, 다만, 결합제와 아민기능화 MOF의 비율이 10:90-5:95인 경우에는 흡착제의 성능 감소가 크지 않음을 확인하였다(도 6, 결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 5:95, (b) 10:90, (c) 15:85, (d) 20:80).In the case of the carbon dioxide adsorbent (een-Mg 2 (dobpdc) @ Alumina sol) according to Example 7, the ratio of 15:85 was 10.15 wt%, the ratio of 10:90 was 11.45 wt%, the ratio of 5:95 The adsorption amount of een-Mg 2 (dobpdc) was 15.09 wt%. As a result, it was confirmed that the adsorption performance of the adsorbent was not significantly decreased when the ratio of the binder and the amine-functional MOF was 10: 90-5: 95 (see FIG. 6 , The mixing ratio of the binder and een-Mg 2 (dobpdc) is (a) 5:95, (b) 10:90, (c) 15:85, and (d) 20:80.

기체 흡착 특성 평가Evaluation of gas absorption characteristics

다음으로, 상기 실시예 1, 6, 7에 따른 이산화탄소 흡착제의 기체 흡착 특성을 평가하기 위하여, 결합제의 비율에 따른 N2 흡착 등온선을 측정하였다. Next, to evaluate the gas adsorption characteristics of the carbon dioxide adsorbent according to Examples 1, 6, and 7, N 2 adsorption isotherms were measured according to the ratio of the binder.

도 10은 실시예 1에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 N2 흡착 등온선을 나타낸 그래프이다(결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 5:95, (b) 10:90, (c) 15:85).10 is a graph showing N 2 adsorption isotherms according to the mixing ratio of een-Mg 2 (dobpdc) and the binder of the carbon dioxide adsorbent prepared according to Example 1. (The mixing ratio of the binder and een-Mg 2 (dobpdc) is a) 5:95, (b) 10:90, (c) 15:85).

도 11은 실시예 6에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 N2 흡착 등온선을 나타낸 그래프이다(결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 10:90).FIG. 11 is a graph showing N 2 adsorption isotherms according to the mixing ratio of een-Mg 2 (dobpdc) and the binder of the carbon dioxide adsorbent prepared according to Example 6. (The mixing ratio of the binder and een-Mg 2 (dobpdc) a) 10:90).

도 12는 실시예 7에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 N2 흡착 등온선을 나타낸 그래프이다(결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 5:95, (b) 10:90, (c) 15:85).FIG. 12 is a graph showing N 2 adsorption isotherms according to the mixing ratio of een-Mg 2 (dobpdc) and the binder of the carbon dioxide adsorbent prepared according to Example 7. The mixing ratio of the binder and een-Mg 2 (dobpdc) a) 5:95, (b) 10:90, (c) 15:85).

측정 결과, 실시예 1에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Al2O3)의 경우 결합제와 아민기능화 MOF의 비율이 5:95인 경우에는 129 m2/g, 10:90은 104 m2/g, 15:95는 234 m2/g로 측정되었는바, 이를 통해 아민기능화 MOF인 een-Mg2(dobpdc)의 BET인 807 m2/g 보다 작은 표면적을 가진다는 것을 확인하였다. 또한, 부수지 않은 펠렛 (빨강), 부순 펠렛 (파랑) 사이의 BET 차이가 크지 않음을 확인하였는바, 본 발명에 따른 이산화탄소 흡착제는 결합제와 아민기능화 MOF가 서로 균일하게 섞여 있음을 확인하였다.As a result of the measurement, in the case of the carbon dioxide adsorbent (een-Mg 2 (dobpdc) @ Al 2 O 3 ) according to Example 1, when the ratio of the binder and amine functional MOF was 5:95, 129 m 2 / g, 104 m 2 / g and 15:95 was measured as 234 m 2 / g, which confirmed that the surface area was smaller than 807 m 2 / g BET of the amine-functional MOF een-Mg 2 (dobpdc) . Also, it was confirmed that the BET difference between the non-crumb pellets (red) and the crushed pellets (blue) was not large, and it was confirmed that the carbon dioxide adsorbent according to the present invention uniformly mixed the binder and the amine-functionalized MOF.

실시예 6에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Silica sol)의 경우 결합제와 아민기능화 MOF의 비율이 10:90인 경우 71 m2/g로, 기존 측정한 een-Mg2(dobpdc) BET인 807 m2/g 보다 작은 표면적을 가진다는 것을 확인하였다. 또한, 부수지 않은 펠렛 (빨강), 부순 펠렛 (파랑) 사이의 BET 차이가 크지 않음을 확인하였는바, 본 발명에 따른 이산화탄소 흡착제는 결합제와 아민기능화 MOF가 서로 균일하게 섞여 있음을 확인하였다.Example 6 carbon dioxide adsorbent for (een-Mg 2 (dobpdc) @Silica sol) , if the ratio of the binder and the amine-functionalized MOF 10:90 71 m 2 / g, the existing measuring a een-Mg 2 (according to the dobpdc ) BET of less than 807 m 2 / g. Also, it was confirmed that the BET difference between the non-crumb pellets (red) and the crushed pellets (blue) was not large, and it was confirmed that the carbon dioxide adsorbent according to the present invention uniformly mixed the binder and the amine-functionalized MOF.

실시예 7에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Alumina sol)의 경우 결합제와 아민기능화 MOF의 비율이 5:95인 경우에는 92 m2/g, 10:90은 117 m2/g, 15:95는 108 m2/g로 측정되었는바, 이를 통해 아민기능화 MOF인 een-Mg2(dobpdc)의 BET인 807 m2/g 보다 작은 표면적을 가진다는 것을 확인하였다. 또한, 부수지 않은 펠렛 (빨강), 부순 펠렛 (파랑) 사이의 BET 차이가 크지 않음을 확인하였는바, 본 발명에 따른 이산화탄소 흡착제는 결합제와 아민기능화 MOF가 서로 균일하게 섞여 있음을 확인하였다.In the case of the carbon dioxide adsorbent (een-Mg 2 (dobpdc) @ Alumina sol) according to Example 7, 92 m 2 / g was obtained when the ratio of the binder and amine functional MOF was 5:95, and 117 m 2 / g was 10:90 , 15:95 was measured at 108 m 2 / g, which confirmed that it had a surface area of less than 807 m 2 / g, which is the BET of the amine functionalized MOF een-Mg 2 (dobpdc). Also, it was confirmed that the BET difference between the non-crumb pellets (red) and the crushed pellets (blue) was not large, and it was confirmed that the carbon dioxide adsorbent according to the present invention uniformly mixed the binder and the amine-functionalized MOF.

온도-스윙 흡착(Temperature - Swing Adsorption ( TSATSA ) 평가) evaluation

Mg2(dobpdc) 플랫폼의 열린 금속 자리로의 일차 다이아민 기능화는 낮은 이산화탄소 압력에서 질소 대비 높은 이산화탄소 선택성과 흡착량을 제공한다. 그러나 높은 탈착 온도가 요구되는 물질은 재생의 문제를 야기하는바, 본 발명에서는 결합제의 도입에 따른 이산화탄소 흡착과 탈착의 순환력을 평가하는 실험을 진행하였다.The primary diamine functionalization to the open metal sites of the Mg 2 (dobpdc) platform provides high carbon dioxide selectivity and adsorption over nitrogen at low CO 2 pressures. However, a material requiring a high desorption temperature causes a problem of regeneration. In the present invention, an experiment was conducted to evaluate the circulation ability of adsorption and desorption of carbon dioxide upon introduction of a binder.

구체적으로 상기 실시예 1에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Al2O3)를 결합제의 비율별로 제조하고, 상기 제조된 흡착제 시료들을 130 ℃에서 4시간 동안 N2로 전처리하였다. 전처리된 시료들은 40 ℃에서 30분 동안 15% 이산화탄소로 흡착을 하고 130 ℃에서 30분 동안 100% CO2로 탈착하였다. 도 13은 실시예 1에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 흡착 및 탈착 사이클을 나타낸 그래프이다(결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 5:95, (b) 10:90).Specifically, a carbon dioxide adsorbent (een-Mg 2 (dobpdc) @ Al 2 O 3 ) according to Example 1 was prepared by the ratio of the binder, and the prepared adsorbent samples were pretreated with N 2 at 130 ° C for 4 hours. Pretreatment samples were adsorbed with 15% carbon dioxide for 30 min at 40 ° C and 100% CO 2 for 30 min at 130 ° C. 13 is a graph showing adsorption and desorption cycles depending on the mixing ratio of the binder of the carbon dioxide adsorbent and een-Mg 2 (dobpdc) prepared in Example 1. The mixing ratio of the binder and een-Mg 2 (dobpdc) a) 5:95, (b) 10:90).

측정 결과, 실시예 1에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Al2O3)는 결합제와 아민기능화 MOF의 비율이 5:95인 경우에는 10번의 흡·탈착 과정에서 12 wt% 이상, 비율이 10:90인 경우에는 10번의 흡·탈착 과정에서 10 wt% 이상의 흡착량을 유지하는 것을 확인하였다. 이를 통해, 본 발명에 따른 이산화탄소 흡착제는 결합제의 도입을 통해 아민 기능화된 다공성 금속-유기 골격체(MOF)의 기계적 강도가 향상되는바, 재사용시에도 우수한 이산화탄소 흡착성능을 유지한다는 것을 확인하였다.As a result of the measurement, the carbon dioxide adsorbent (een-Mg 2 (dobpdc) @ Al 2 O 3 ) according to Example 1 was found to have a content of 12 wt% or more in the 10 adsorption / desorption processes when the ratio of the binder and the amine- , And when the ratio is 10:90, it was confirmed that the adsorption amount of 10 wt% or more was retained in 10 adsorption / desorption processes. As a result, it was confirmed that the carbon dioxide adsorbent according to the present invention improved the mechanical strength of the amine-functionalized porous metal-organic skeleton (MOF) through the introduction of the binder, thereby maintaining excellent carbon dioxide adsorption performance even during reuse.

또한, 상기 실시예 5에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Fumed Silica)를 결합제와 een-Mg2(dobpdc)의 혼합 비율을 10:90으로 제조하고, 상기 제조된 흡착제 시료를 140 ℃에서 4시간 동안 N2로 전처리하였다. 전처리된 시료들은 40 ℃에서 30분 동안 15% 이산화탄소로 흡착을 하고 140 ℃에서 30분 동안 100% CO2로 탈착하였다. 도 14는 실시예 5에 따라 제조된 이산화탄소 흡착제의 흡착 및 탈착 사이클을 나타낸 그래프이다(결합제와 een-Mg2(dobpdc)의 혼합 비율은 10:90).The mixing ratio of the binder and een-Mg 2 (dobpdc) was adjusted to 10:90 by using a carbon dioxide adsorbent (een-Mg 2 (dobpdc) @ Fumed Silica) according to Example 5, in ℃ for 4 hours pre-treated with N 2. Pretreatment samples were adsorbed with 15% CO 2 for 30 min at 40 ° C and 100% CO 2 for 30 min at 140 ° C. 14 is a graph showing the adsorption and desorption cycles of the carbon dioxide adsorbent produced according to Example 5. The mixing ratio of the binder and een-Mg 2 (dobpdc) is 10:90.

측정 결과, 실시예 1에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Fumed Silica)는 42번의 흡·탈착 과정에서 10 wt% 이상의 흡착량을 유지하는 것을 확인하였다. 이를 통해, 본 발명에 따른 이산화탄소 흡착제는 결합제의 도입을 통해 아민 기능화된 다공성 금속-유기 골격체(MOF)의 기계적 강도가 향상되는바, 재사용시에도 우수한 이산화탄소 흡착성능을 유지한다는 것을 확인하였다.As a result of the measurement, it was confirmed that the carbon dioxide adsorbent (een-Mg 2 (dobpdc) @ Fumed Silica) according to Example 1 maintained an adsorption amount of 10 wt% or more in the adsorption / desorption process of No. 42. As a result, it was confirmed that the carbon dioxide adsorbent according to the present invention improved the mechanical strength of the amine-functionalized porous metal-organic skeleton (MOF) through the introduction of the binder, thereby maintaining excellent carbon dioxide adsorption performance even during reuse.

Claims (12)

결합제; 및
일차 아민기를 함유한 다가 아민이 도입된 다공성 금속-유기 골격체;를 포함하는 이산화탄소 흡착제.
Binder; And
A porous metal-organic skeleton into which a polyamine containing a primary amine group is introduced.
제1항에 있어서,
상기 결합제는 산화알루미늄(Al2O3), 하이드로탈사이트(hydrotalcite), 수크로오스(sucrose), 셀룰로오스(cellulose), 건식 실리카(fumed silica), 실리카 졸(Silica sol) 및 알루미나 졸(Alumina sol)로 이루어진 군에서 선택되는 것을 특징으로 하는 이산화탄소 흡착제.
The method according to claim 1,
The binder may be selected from the group consisting of aluminum oxide (Al 2 O 3 ), hydrotalcite, sucrose, cellulose, fumed silica, silica sol and alumina sol Wherein the carbon dioxide adsorbent is selected from the group consisting of carbon dioxide adsorbents.
제1항에 있어서,
상기 다공성 금속-유기 골격체와 상기 결합제는 80:20 내지 97:3의 중량비로 혼합되는 것을 특징으로 하는 이산화탄소 흡착제.
The method according to claim 1,
Wherein the porous metal-organic skeleton and the binder are mixed at a weight ratio of 80:20 to 97: 3.
제1항에 있어서,
상기 다가 아민은 하기 화학식 1 내지 15로 표시되는 화합물 중에서 선택되는 것을 특징으로 하는 이산화탄소 흡착제.
[화학식 1 내지 15]
Figure pat00003
The method according to claim 1,
Wherein the polyvalent amine is selected from compounds represented by the following general formulas (1) to (15).
[Chemical Formula 1 to Chemical Formula 15]
Figure pat00003
제1항에 있어서,
상기 다공성 금속-유기 골격체는 M2(dobpdc), M2(dobdc), M2(dondc) 및 M2(dotpdc)로 이루어진 군에서 선택되는 것을 특징으로 하는 이산화탄소 흡착제:
여기서, 금속 M은 Mg, Ti, V, Cr, Mn, Co, Ni, Cu 또는 Zn이고, dobpdc는 4,4'-디옥시도-3,3'-비페닐디카복실레이트이며, dobdc는 2,5-디옥시도-1,4-벤젠디카복실레이트이고, dondc는 1,5-디옥사이드-2,6-나프탈렌디카복실레이트이고, dotpdc는 4,4'-디옥시도-3,3'-트리페닐디카복실레이트이다.
The method according to claim 1,
Wherein the porous metal-organic skeleton is selected from the group consisting of M 2 (dobpdc), M 2 (dobdc), M 2 (dondc) and M 2 (dotpdc)
Wherein the metal M is Mg, Ti, V, Cr, Mn, Co, Ni, Cu or Zn, dobpdc is 4,4'- Dioxido-1,4-benzenedicarboxylate, dondc is 1,5-dioxide-2,6-naphthalenedicarboxylate, dotpdc is 4,4'-dioxido-3,3 ' -Triphenyl dicarboxylate.
일차 아민기를 함유한 다가 아민이 도입된 다공성 금속-유기 골격체 분말을 결합제와 혼합하는 단계;
상기 혼합물에 물을 첨가 및 반죽하여 성형하는 단계; 및
상기 성형된 혼합물을 건조시키는 단계;를 포함하는 이산화탄소 흡착제의 제조방법.
Mixing a porous metal-organic skeletal powder having a polyamine with a primary amine group introduced therein with a binder;
Adding water to the mixture, kneading and molding the mixture; And
And drying the molded mixture.
제6항에 있어서,
상기 결합제는 산화알루미늄(Al2O3), 하이드로탈사이트(hydrotalcite), 수크로오스(sucrose), 셀룰로오스(cellulose), 건식 실리카(fumed silica), 실리카 졸(Silica sol) 및 알루미나 졸(Alumina sol)로 이루어진 군에서 선택되는 것을 특징으로 하는 이산화탄소 흡착제의 제조방법.
The method according to claim 6,
The binder may be selected from the group consisting of aluminum oxide (Al 2 O 3 ), hydrotalcite, sucrose, cellulose, fumed silica, silica sol and alumina sol Wherein the carbon dioxide adsorbent is selected from the group consisting of:
제6항에 있어서,
상기 다공성 금속-유기 골격체 분말과 상기 결합제는 80:20 내지 97:3의 중량비로 혼합되는 것을 특징으로 하는 이산화탄소 흡착제의 제조방법.
The method according to claim 6,
Wherein the porous metal-organic skeleton powder and the binder are mixed at a weight ratio of 80:20 to 97: 3.
제6항에 있어서,
상기 혼합물과 상기 물은 1:0.5-5의 중량비로 혼합되는 것을 특징으로 하는 이산화탄소 흡착제의 제조방법.
The method according to claim 6,
Wherein the mixture and the water are mixed at a weight ratio of 1: 0.5-5.
제6항에 있어서,
상기 혼합물을 구형 펠릿(pellet) 형태로 성형하는 것을 특징으로 하는 이산화탄소 흡착제의 제조방법.
The method according to claim 6,
Characterized in that the mixture is molded into a spherical pellet shape.
제6항에 있어서,
상기 다가 아민은 하기 화학식 1 내지 15로 표시되는 화합물 중에서 선택되는 것을 특징으로 하는 이산화탄소 흡착제의 제조방법.
[화학식 1 내지 15]
Figure pat00004
The method according to claim 6,
Wherein the polyvalent amine is selected from compounds represented by the following general formulas (1) to (15).
[Chemical Formula 1 to Chemical Formula 15]
Figure pat00004
제6항에 있어서,
상기 다공성 금속-유기 골격체는 M2(dobpdc), M2(dobdc), M2(dondc) 및 M2(dotpdc)로 이루어진 군에서 선택되는 것을 특징으로 하는 이산화탄소 흡착제의 제조방법:
여기서, 금속 M은 Mg, Ti, V, Cr, Mn, Co, Ni, Cu 또는 Zn이고, dobpdc는 4,4'-디옥시도-3,3'-비페닐디카복실레이트이며, dobdc는 2,5-디옥시도-1,4-벤젠디카복실레이트이고, dondc는 1,5-디옥사이드-2,6-나프탈렌디카복실레이트이고, dotpdc는 4,4'-디옥시도-3,3'-트리페닐디카복실레이트이다.
The method according to claim 6,
Wherein the porous metal-organic skeleton is selected from the group consisting of M 2 (dobpdc), M 2 (dobdc), M 2 (dondc) and M 2 (dotpdc)
Wherein the metal M is Mg, Ti, V, Cr, Mn, Co, Ni, Cu or Zn, dobpdc is 4,4'- Dioxido-1,4-benzenedicarboxylate, dondc is 1,5-dioxide-2,6-naphthalenedicarboxylate, dotpdc is 4,4'-dioxido-3,3 ' -Triphenyl dicarboxylate.
KR1020170163658A 2017-04-18 2017-11-30 Amine-functionalized MOF based carbon dioxide adsorbents comprising binders KR102217979B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170049641 2017-04-18
KR20170049641 2017-04-18

Publications (2)

Publication Number Publication Date
KR20180117023A true KR20180117023A (en) 2018-10-26
KR102217979B1 KR102217979B1 (en) 2021-02-19

Family

ID=64099158

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170163658A KR102217979B1 (en) 2017-04-18 2017-11-30 Amine-functionalized MOF based carbon dioxide adsorbents comprising binders

Country Status (1)

Country Link
KR (1) KR102217979B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109748597A (en) * 2019-03-20 2019-05-14 苏州北美国际高级中学 A kind of presoma method that mutually gelling prepares mullite porous ceramic
CN110548486A (en) * 2019-08-09 2019-12-10 中国华电科工集团有限公司 CO 2 adsorbent and preparation method thereof
KR20200138618A (en) * 2019-06-01 2020-12-10 고려대학교 산학협력단 Hydrophobic silane-coated amine-grafted MOF/alumina composites for carbon dioxide capture
WO2020256450A1 (en) 2019-06-19 2020-12-24 한국과학기술원 Structured metal-organic framework fiber adsorbent for capturing carbon dioxide and manufacturing method therefor
WO2021153933A1 (en) * 2020-01-30 2021-08-05 고려대학교 산학협력단 Alkanolamine/amine-grafted metal-organic framework-based carbon dioxide adsorbent
KR20210097609A (en) * 2020-01-30 2021-08-09 고려대학교 산학협력단 Alkanolamine/amine-grafted metal-organic framework for carbon dioxide capture
US20220134307A1 (en) * 2018-12-07 2022-05-05 Commenwealthe Scientific and Industrial Research Organisation Adsorption and desorption apparatus
CN114479103A (en) * 2022-01-24 2022-05-13 华中科技大学 Metal organic framework molding material and preparation method and application thereof
CN115400795A (en) * 2022-04-24 2022-11-29 安徽大学 LDH/MOF composite photocatalyst with low-concentration carbon dioxide conversion capacity and preparation method thereof
WO2023068651A1 (en) 2021-10-22 2023-04-27 한국과학기술원 Method for manufacturing electrified fiber sorbent, and electrical and electromagnetic swing adsorption process
KR20230171559A (en) 2022-06-14 2023-12-21 한국과학기술원 Fiber adsorbent for adsorption of carbon dioxide and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060079589A (en) * 2005-01-03 2006-07-06 한국전력공사 Highly attrition resistant and dry regenerable sorbents for carbon dioxide capture
KR20110139222A (en) * 2009-03-20 2011-12-28 바스프 에스이 Process for separating off acidic gases by means of metal-organic frameworks impregnated with amines
KR20130051015A (en) * 2004-11-09 2013-05-16 더 리젠츠 오브 더 유니버시티 오브 미시간 Shaped bodies containing metal-organic frameworks
KR101468292B1 (en) * 2013-03-08 2014-12-02 고려대학교 산학협력단 Carbon dioxide absorbent
KR20150007484A (en) 2013-07-11 2015-01-21 서울과학기술대학교 산학협력단 Novel Zn-MOF compounds, and carbon dioxide sorption and heterogeneous catalysts for transesterification comprising the same
KR20150056986A (en) * 2013-11-18 2015-05-28 한국화학연구원 Method for manufacturing hybrid nanoporous shaped bodies and the hybrid nanoporous shaped bodies thereby
KR101707821B1 (en) * 2015-08-13 2017-02-17 고려대학교 산학협력단 Preparation of Mg-MOF and its amine-functionalization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130051015A (en) * 2004-11-09 2013-05-16 더 리젠츠 오브 더 유니버시티 오브 미시간 Shaped bodies containing metal-organic frameworks
KR20060079589A (en) * 2005-01-03 2006-07-06 한국전력공사 Highly attrition resistant and dry regenerable sorbents for carbon dioxide capture
KR20110139222A (en) * 2009-03-20 2011-12-28 바스프 에스이 Process for separating off acidic gases by means of metal-organic frameworks impregnated with amines
KR101468292B1 (en) * 2013-03-08 2014-12-02 고려대학교 산학협력단 Carbon dioxide absorbent
KR20150007484A (en) 2013-07-11 2015-01-21 서울과학기술대학교 산학협력단 Novel Zn-MOF compounds, and carbon dioxide sorption and heterogeneous catalysts for transesterification comprising the same
KR20150056986A (en) * 2013-11-18 2015-05-28 한국화학연구원 Method for manufacturing hybrid nanoporous shaped bodies and the hybrid nanoporous shaped bodies thereby
KR101707821B1 (en) * 2015-08-13 2017-02-17 고려대학교 산학협력단 Preparation of Mg-MOF and its amine-functionalization

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220134307A1 (en) * 2018-12-07 2022-05-05 Commenwealthe Scientific and Industrial Research Organisation Adsorption and desorption apparatus
CN109748597A (en) * 2019-03-20 2019-05-14 苏州北美国际高级中学 A kind of presoma method that mutually gelling prepares mullite porous ceramic
WO2020246746A3 (en) * 2019-06-01 2021-01-28 고려대학교 산학협력단 Carbon dioxide adsorbent based on hydrophobic silane-coated amine-functionalized mof/alumina composite
KR20200138618A (en) * 2019-06-01 2020-12-10 고려대학교 산학협력단 Hydrophobic silane-coated amine-grafted MOF/alumina composites for carbon dioxide capture
CN114375224A (en) * 2019-06-19 2022-04-19 韩国科学技术院 Structured metal-organic framework fiber adsorbents for carbon dioxide capture and methods of making same
KR20200145906A (en) 2019-06-19 2020-12-31 한국과학기술원 Structured MOF fiber sorbent for capturing carbon dioxide and method of manufacturing the same
WO2020256450A1 (en) 2019-06-19 2020-12-24 한국과학기술원 Structured metal-organic framework fiber adsorbent for capturing carbon dioxide and manufacturing method therefor
CN110548486A (en) * 2019-08-09 2019-12-10 中国华电科工集团有限公司 CO 2 adsorbent and preparation method thereof
WO2021153933A1 (en) * 2020-01-30 2021-08-05 고려대학교 산학협력단 Alkanolamine/amine-grafted metal-organic framework-based carbon dioxide adsorbent
KR20210097609A (en) * 2020-01-30 2021-08-09 고려대학교 산학협력단 Alkanolamine/amine-grafted metal-organic framework for carbon dioxide capture
WO2023068651A1 (en) 2021-10-22 2023-04-27 한국과학기술원 Method for manufacturing electrified fiber sorbent, and electrical and electromagnetic swing adsorption process
KR20230057956A (en) 2021-10-22 2023-05-02 한국과학기술원 Manufacturing Method of Electrified Fiber Sorbent for Electric and Electromagnetic Swing Adsorption Process
CN114479103A (en) * 2022-01-24 2022-05-13 华中科技大学 Metal organic framework molding material and preparation method and application thereof
CN115400795A (en) * 2022-04-24 2022-11-29 安徽大学 LDH/MOF composite photocatalyst with low-concentration carbon dioxide conversion capacity and preparation method thereof
CN115400795B (en) * 2022-04-24 2023-10-03 安徽大学 LDH/MOF composite photocatalyst with low-concentration carbon dioxide conversion capability and preparation method thereof
KR20230171559A (en) 2022-06-14 2023-12-21 한국과학기술원 Fiber adsorbent for adsorption of carbon dioxide and manufacturing method thereof

Also Published As

Publication number Publication date
KR102217979B1 (en) 2021-02-19

Similar Documents

Publication Publication Date Title
KR20180117023A (en) Amine-functionalized MOF based carbon dioxide adsorbents comprising binders
Liu et al. Advances in post‐combustion CO2 capture by physical adsorption: from materials innovation to separation practice
US10744485B2 (en) MOF-derived porous carbon materials for carbon dioxide capture
Lin et al. Enhanced selective CO 2 adsorption on polyamine/MIL-101 (Cr) composites
Choi et al. Structural effects of amine polymers on stability and energy efficiency of adsorbents in post-combustion CO2 capture
KR102057165B1 (en) Metal organic framework, production and use thereof
Ullah et al. Insights of CO2 adsorption performance of amine impregnated mesoporous silica (SBA-15) at wide range pressure and temperature conditions
US11794164B2 (en) Pcstructures including supported polyamines and methods of making the supported polyamines
Montazerolghaem et al. A metal–organic framework MIL-101 doped with metal nanoparticles (Ni & Cu) and its effect on CO 2 adsorption properties
KR102002640B1 (en) Manufacturing method of mesoporous silica materials as CO2 adsorbent with inroduction of Amin functional group
US11305256B2 (en) Hybrid zeolitic imidazolate framework and a method of capturing carbon dioxide
Park et al. A study on the effect of the amine structure in CO2 dry sorbents on CO2 capture
KR20160085355A (en) Regenerative adsorbents of modified amines on nano-structured supports
Liu et al. Mesocellular silica foam supported polyamine adsorbents for dry CO2 scrubbing: Performance of single versus blended polyamines for impregnation
KR101490202B1 (en) Microporous carbon dioxide adsorbents and method for manufacturing the same
Bali et al. Potassium incorporated alumina based CO2 capture sorbents: Comparison with supported amine sorbents under ultra-dilute capture conditions
KR102028613B1 (en) Amine-functionalized MOF-based CO2 adsorbents
Mouline et al. Amine-functionalized polycarbosilane hybrids for CO2-selective membranes
Knowles et al. Amine-functionalised mesoporous silicas as CO2 adsorbents
Manianglung et al. Synergistic effect of blended primary and secondary amines functionalized onto the silica on CO 2 capture performance
US20140286844A1 (en) Sorbents for carbon dioxide capture
KR101546888B1 (en) Covalent Organic Polymers with Troeger's Base Functionalities and Adsorbent of Carbon Dioxide Comprising the Same
KR102276693B1 (en) Hydrophobic silane-coated amine-grafted MOF/alumina composites for carbon dioxide capture
US20220032268A1 (en) Amine-appended chemical sorbent
CN109894098A (en) A kind of preparation method of polyamine base porous compound material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant