KR20180116511A - Manufacturing method of carbon fiber reinforced plastics, carbon fiber reinforced resin composite and molded article using the same - Google Patents

Manufacturing method of carbon fiber reinforced plastics, carbon fiber reinforced resin composite and molded article using the same Download PDF

Info

Publication number
KR20180116511A
KR20180116511A KR1020170048661A KR20170048661A KR20180116511A KR 20180116511 A KR20180116511 A KR 20180116511A KR 1020170048661 A KR1020170048661 A KR 1020170048661A KR 20170048661 A KR20170048661 A KR 20170048661A KR 20180116511 A KR20180116511 A KR 20180116511A
Authority
KR
South Korea
Prior art keywords
carbon fiber
resin composite
reinforced resin
composite material
fiber reinforced
Prior art date
Application number
KR1020170048661A
Other languages
Korean (ko)
Inventor
박문영
유중철
박지웅
김용우
이일택
Original Assignee
주식회사 에스에이치글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스에이치글로벌 filed Critical 주식회사 에스에이치글로벌
Priority to KR1020170048661A priority Critical patent/KR20180116511A/en
Publication of KR20180116511A publication Critical patent/KR20180116511A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0496Pyrolysing the materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • B29C2045/001Bulk moulding compounds [BMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • Y02W30/625

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The present invention relates to a method for producing a carbon fiber reinforced resin composite material including recycled carbon fibers, comprising the following steps: a first step of obtained a recycled carbon fiber piece by grinding carbon fiber reinforced plastic waste in a specific size and then pyrolyzing a resin; and a second step of forming a bulk molding compound (BMC) by impregnating a thermosetting resin as a matrix into the recycled carbon fiber piece. The present invention further relates to a carbon fiber reinforced resin molded article using the same. According to the present invention, it is possible to produce molded articles and carbon fiber reinforced resin composite materials including the recycled carbon fiber, ensuring excellent mechanical properties such as tensile strength, fracture toughness, and impact strength while being applicable to automobile industries by applying the carbon fiber reinforced plastic waste.

Description

재활용 탄소섬유를 포함하는 탄소섬유 강화 수지 복합재의 제조방법, 탄소섬유 강화 수지 복합재 및 성형품{Manufacturing method of carbon fiber reinforced plastics, carbon fiber reinforced resin composite and molded article using the same}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber-reinforced resin composite material containing recycled carbon fibers, a carbon fiber-reinforced resin composite material,

본 발명은 재활용 탄소섬유를 포함하는 탄소섬유 강화 수지 복합재의 제조방법, 탄소섬유 강화 수지 복합재 및 성형품에 관한 것이다. The present invention relates to a method for producing a carbon fiber-reinforced resin composite material containing recycled carbon fiber, a carbon fiber-reinforced resin composite material and a molded article.

탄소섬유 강화 플라스틱(carbon fiber reinforced plastic)은, 가볍고, 고강도이며, 내열성과 내식성이 우수하여, 로켓부품, 항공기부품, 자동차부품, 의료용품, 스포츠용품에 널리 사용된다. Carbon fiber reinforced plastic is lightweight, high strength, excellent in heat resistance and corrosion resistance, and is widely used in rocket parts, aircraft parts, automobile parts, medical supplies, sporting goods.

이러한 탄소섬유 강화 플라스틱은, 열경화성 수지 또는 열가소성 수지가 탄소섬유직물에 주입된 후 경화되어 만들어지는데, 탄소섬유 강화 플라스틱은 폐기 처분될 때 주로 소각된다. 탄소섬유 강화 플라스틱이 소각되면 수지는 연소되어 없어지지만, 탄소섬유직물은 남아 환경을 오염시키는 문제가 발생한다.Such carbon fiber reinforced plastics are produced by curing after a thermosetting resin or a thermoplastic resin is injected into a carbon fiber fabric, and carbon fiber reinforced plastics are mainly incinerated when being disposed of. When the carbon fiber reinforced plastic is incinerated, the resin is burned out, but the carbon fiber fabric has a problem of polluting the environment.

이러한 문제점을 해결하기 위하여, 수지를 열분해하여 탄소섬유직물을 회수하고, 회수된 탄소섬유직물을 재활용하는 방법이 널리 개발되고 있다. In order to solve such a problem, a method of recovering a carbon fiber fabric by pyrolyzing the resin and recycling the recovered carbon fiber fabric has been widely developed.

또한, 탄소섬유 강화 플라스틱을 자동차 산업에 적용하기 위해서는 인장강도, 파괴인성 그리고 충격 강도와 같이 우수한 기계적 특성을 가질 뿐만 아니라 재료의 경량화에 대한 요구와 필요성이 증가하고 있다. In addition, in order to apply the carbon fiber-reinforced plastic to the automobile industry, not only have excellent mechanical properties such as tensile strength, fracture toughness and impact strength, but also demands and necessity for weight reduction of materials are increasing.

본 발명은 탄소섬유 강화 플라스틱 폐기물을 활용하는 동시에, 탄소섬유 강화 플라스틱을 자동차 산업에 적용하기 위해 인장강도, 파괴인성 그리고 충격 강도와 같이 우수한 기계적 특성을 갖는, 재활용 탄소섬유를 포함하는 탄소섬유 강화 수지 복합재의 제조방법, 탄소섬유 강화 수지 복합재 및 성형품을 제공하기 위한 것이다. The present invention relates to a carbon fiber reinforced plastic material including recycled carbon fiber, which has excellent mechanical properties such as tensile strength, fracture toughness and impact strength for applying carbon fiber reinforced plastic to the automobile industry while utilizing carbon fiber reinforced plastic waste A method for manufacturing a composite material, a carbon fiber-reinforced resin composite material, and a molded article.

본 발명의 제1양태는 탄소섬유 강화 플라스틱 폐기물을 일정 사이즈로 파쇄하고 수지를 열분해하여 재활용 탄소섬유 조각을 얻는 제1단계; 및 매트릭스로서 열경화성 수지를 상기 재활용 탄소섬유 조각에 함침시켜 벌크 몰딩 컴파운드(bulk molding compound, BMC)를 형성하는 제2단계;를 포함하는, 재활용 탄소섬유를 포함하는 탄소섬유 강화 수지 복합재의 제조방법을 제공한다.A first aspect of the present invention is a method for producing a carbon fiber-reinforced plastic waste, comprising: a first step of crushing a carbon fiber-reinforced plastic waste to a predetermined size and pyrolyzing the resin to obtain a piece of recycled carbon fiber; And a second step of impregnating a piece of the recycled carbon fiber with a thermosetting resin as a matrix to form a bulk molding compound (BMC). The method for producing a carbon fiber- to provide.

본 발명의 제2양태는 제1양태에 따른 제조방법에 의해 제조되어, 함침 수지 내에 존재하는 재활용 탄소섬유 길이가 6 내지 24 mm이고, 재활용 탄소섬유의 비율이 10 내지 60 중량%인, 재활용 탄소섬유를 포함하는 탄소섬유 강화 수지 복합재를 제공한다.A second aspect of the present invention is a carbon fiber composite material produced by the manufacturing method according to the first aspect, wherein the length of the recycled carbon fiber present in the impregnated resin is 6 to 24 mm and the ratio of the recycled carbon fiber is 10 to 60% Fiber reinforced resin composite material.

본 발명의 제3양태는 제2양태에 따른 탄소섬유 강화 수지 복합재의 일면 또는 양면에 건성 원단 또는 단향성 섬유를 적층한 후, 150 ℃ 이상에서 가압하여 열경화성 수지를 누수 또는 배출시킴으로써 건성 원단 또는 단향성 섬유에 열경화성 수지를 함침 및 성형시켜 제조된, 성형품을 제공한다.The third aspect of the present invention is a method for manufacturing a carbon fiber-reinforced resin composite according to the second aspect of the present invention, which comprises laminating a dry fabric or a monofilament fiber on one surface or both surfaces of a carbon fiber- Which is produced by impregnating and molding a thermosetting resin into a thermosetting resin.

본 발명에서 사용되는 용어 "섬유" 는 하나 이상의 모노필라멘트들의 다발로 규정된다. The term "fibers" as used herein is defined as a bundle of one or more monofilaments.

본 발명에서 사용되는 용어 "재활용 탄소섬유직물"은 탄소섬유 강화 플라스틱에서 회수되어 재활용되는 탄소섬유직물을 의미한다.As used herein, the term "recycled carbon fiber fabric" refers to a carbon fiber fabric that is recovered and recycled from carbon fiber reinforced plastics.

본 발명에서 사용되는 용어 "건성 원단(dry fiber fabric)"은 탄소섬유, 유리섬유, 아라미드, 현무암 섬유 등 강화섬유를 사용한 직물을 의미한다.The term "dry fiber fabric " as used in the present invention means a fabric using reinforcing fibers such as carbon fiber, glass fiber, aramid, and basalt fiber.

본 발명에서 사용되는 용어 "단향성 섬유(uni-directional fabric)" 는 라미네이트의 단일 방향으로, 예컨대 부하 방향 또는 워프 방향으로 전체 섬유들 중 적어도 대략 80% 를 포함하는 임의의 섬유를 의미한다. The term "uni-directional fabric " as used herein means any fiber comprising at least about 80% of the total fibers in a single direction of the laminate, e.g., in the direction of the load or warp.

탄소섬유 강화 플라스틱을 자동차 산업 등의 분야에 적용하기 위해 인장강도, 파괴인성 그리고 충격 강도와 같이 기계적 특성을 향상시킬 필요성이 증가하고 있다. 종래에 탄소섬유 강화 플라스틱의 강도 보강을 위해 바인더 화합물이나 접착제를 사용하여 보강재를 부착하였으나, 자동차 산업 등에 적용하기 위해선 강도 개선의 여지가 있었다. 본 발명자들은 재활용 탄소섬유를 사용하는 탄소섬유 강화 수지 복합재를 150 ℃ 이상에서 핫 프레스(hot press) 가압하여 매트릭스의 누수 또는 배출을 이용하여 건성 원단 또는 단향성 섬유를 함침시키며 적층함으로써 인장강도가 놀랍게 향상되는 것을 확인하였다. 본 발명은 이에 기초한 것이다.There is an increasing need to improve mechanical properties such as tensile strength, fracture toughness and impact strength in order to apply carbon fiber-reinforced plastic to fields such as the automobile industry. Conventionally, in order to reinforce the strength of the carbon fiber-reinforced plastic, a reinforcing material is attached using a binder compound or an adhesive. However, there is room for improvement in strength for application to automobile industry. The present inventors have found that when a carbon fiber reinforced resin composite material using recycled carbon fibers is hot press-pressed at a temperature of 150 ° C or more to impregnate and dry a dry or unidirectional fiber using leakage or discharge of a matrix, Respectively. The present invention is based on this.

본 발명에 따른 재활용 탄소섬유를 포함하는 탄소섬유 강화수지의 제조 방법은 크게 탄소섬유 강화 플라스틱 폐기물을 일정 사이즈로 파쇄하고 열분해하여 재활용 탄소섬유를 제조하는 과정과, 이 분쇄분말을 몰딩 컴파운드의 충진제로 첨가하여 벌크 몰딩 컴파운드를 제조하는 과정으로 이루어진다. The method for producing a carbon fiber-reinforced resin containing recycled carbon fibers according to the present invention comprises the steps of: preparing carbon fiber-reinforced plastic waste by crushing and pyrolyzing carbon fiber-reinforced plastic waste to a predetermined size to produce recycled carbon fiber; Thereby preparing a bulk molding compound.

탄소섬유는, 폴리아크릴로니트릴(PAN)계 탄소섬유, 석유·석탄 피치계 탄소섬유, 레이온계 탄소섬유, 셀룰로오스계 탄소섬유, 리그닌계 탄소섬유, 페놀계 탄소섬유, 기상(氣相) 성장계 탄소섬유 등일 수 있으나, 이에 제한되지는 않는다.The carbon fibers may be selected from the group consisting of polyacrylonitrile (PAN) carbon fibers, petroleum and coal pitch carbon fibers, rayon carbon fibers, cellulose carbon fibers, lignin carbon fibers, phenolic carbon fibers, Carbon fiber, and the like.

그 중에서도, 폴리아크릴로니트릴(PAN)계 탄소섬유를 사용하는 것이 바람직하고, 인장 탄성률은 100GPa 이상 600GPa 이하의 범위 내인 것이 바람직하고, 200GPa 이상 500GPa 이하의 범위 내인 것이 보다 바람직하다. 또한, 인장강도는 2000MPa 이상 10000MPa 이하의 범위 내인 것이 바람직하고, 3000MPa 이상 8000MPa 이하의 범위 내인 것이 보다 바람직하다.Of these, polyacrylonitrile (PAN) based carbon fibers are preferably used, and the tensile elastic modulus is preferably within a range from 100 GPa to 600 GPa, more preferably from 200 GPa to 500 GPa. The tensile strength is preferably within a range from 2000 MPa to 10000 MPa, and more preferably within a range from 3000 MPa to 8000 MPa.

제1단계에서 얻은 재활용 탄소섬유 조각은 길이가 6 내지 24 mm 인 것이 바람직하다. The piece of recycled carbon fiber obtained in the first step preferably has a length of 6 to 24 mm.

재활용 탄소섬유 길이가 24 mm를 초과하면 분쇄에 필요한 에너지 소모량이 증대되고, 점도 상승이 심하여 몰딩 컴파운드 제조시 함침이 곤란할 수 있으며 표면 확보가 미흡할 수 있으며, 6 mm 미만이면 인장 강도가 감소할 수 있다.If the length of the recycled carbon fiber exceeds 24 mm, the energy consumption required for grinding is increased, the viscosity is increased, the impregnation may be difficult and the surface hardness may be insufficient when the molding compound is manufactured. have.

본 발명은 열가소성 수지보다 높은 강도/물성 및 높은 퀄리티의 표면을 얻을 수 있도록 매트릭스로서 열경화성 수지를 사용한다. 열경화성 수지는 비닐 에스테르 수지, 에폭시 수지, 페놀 수지, 멜라민 수지 등일 수 있으나, 이에 제한되지는 않는다. 바람직하게는 비닐 에스테르 수지, 에폭시 수지 등을 사용할 수 있다. The present invention uses a thermosetting resin as a matrix to obtain a surface of high strength / physical properties and high quality than a thermoplastic resin. The thermosetting resin may be, but not limited to, a vinyl ester resin, an epoxy resin, a phenol resin, a melamine resin and the like. Vinyl ester resin, epoxy resin and the like can be preferably used.

상기 벌크 몰딩 컴파운드에 포함된 열경화성 수지의 함량은 40 내지 90 중량%인 것이 바람직하다. 40 중량% 미만이면 몰딩 컴파운드 제조시 함침이 곤란할 수 있고, 90 중량%를 초과하면 몰딩 컴파운드의 강도가 감소할 수 있다.The content of the thermosetting resin contained in the bulk molding compound is preferably 40 to 90% by weight. If it is less than 40% by weight, it may be difficult to impregnate the molding compound, and if it exceeds 90% by weight, the strength of the molding compound may be decreased.

벌크 몰딩 컴파운드는 충전재, 보강제, 안료, 개질제, 연쇄이동제, 다관능아크릴계 단량체, 안정제, 내부이형제, 중합개시제, 중합촉진제 등을 일정 비율로 섞어 제조될 수 있다. 벌크 몰딩 컴파운드의 제조는 주로 오픈 니더(open kneader)에서 행한다.The bulk molding compound may be prepared by mixing a certain proportion of filler, reinforcing agent, pigment, modifier, chain transfer agent, polyfunctional acrylic monomer, stabilizer, internal mold release agent, polymerization initiator, polymerization promoter and the like. Bulk molding compounds are mainly produced in open kneaders.

상기 벌크 몰딩 컴파운드에 포함된 재활용 탄소섬유의 함량은 10 내지 60 중량%인 것이 바람직하다. 10 중량% 미만이면 몰딩 컴파운드의 강도가 감소할 수 있고, 60 중량%를 초과하면 몰딩 컴파운드 제조시 함침이 곤란할 수 있다.The content of the recycled carbon fibers contained in the bulk molding compound is preferably 10 to 60% by weight. If the amount is less than 10% by weight, the strength of the molding compound may be decreased. If the amount is more than 60% by weight, impregnation of the molding compound may be difficult.

본 발명에서, 건성 원단(dry fiber fabric)은 탄소섬유, 유리섬유, 아라미드, 현무암 섬유 등 강화섬유를 사용한 직물일 수 있다. In the present invention, the dry fiber fabric may be a fabric using reinforcing fibers such as carbon fiber, glass fiber, aramid, and basalt fiber.

바람직하게는, 건성 원단은 건조 탄소 섬유 원단(dry carbon fiber fabric)일 수 있다.Preferably, the dry fabric may be a dry carbon fiber fabric.

본 발명에서, 단향성 섬유는 유리, 탄소, 아라미드 및 폴리머 섬유들 중 적어도 하나로부터 형성되는 섬유 다발일 수 있다.In the present invention, the unidirectional fiber can be a fiber bundle formed from at least one of glass, carbon, aramid and polymer fibers.

바람직한 구체예에서 단향성 섬유는, 형성 방향으로 위치된 섬유 다발들의 길이방향 축선과 실질적으로 평행한 정렬로 위치된 복수의 유리 섬유 다발들을 포함하는 것일 수 있다. 단향성 섬유는 성형품의 강도와 모듈러스 모두를 증가시킬 수 있다. 이에 비해, 두 개의 수직 방향들 (즉, 워프 및 웨프트)로 제직된 섬유 다발들로 형성된 워프 및 웨프트 섬유는 섬유의 강도에 기여하지 않으면서 섬유의 중량만 증가시킬 수 있다. In a preferred embodiment, the unidirectional fibers may comprise a plurality of glass fiber bundles positioned in an alignment substantially parallel to the longitudinal axis of the fiber bundles positioned in the forming direction. Unidirectional fibers can increase both strength and modulus of a molded article. On the other hand, warp and weft fibers formed of two bundles of fibers woven in two vertical directions (i.e., warp and weft) can only increase the weight of the fibers without contributing to the strength of the fibers.

본 발명의 제3양태는 제2양태에 따른 탄소섬유 강화 수지 복합재의 일면 또는 양면에 건성 원단 또는 단향성 섬유를 적층한 후, 150 ℃ 이상에서 가압하여 열경화성 수지를 누수 또는 배출시킴으로써 건성 원단 또는 단향성 섬유를 함침 및 성형시켜 제조된, 성형품을 제공한다.The third aspect of the present invention is a method for manufacturing a carbon fiber-reinforced resin composite according to the second aspect of the present invention, which comprises laminating a dry fabric or a monofilament fiber on one surface or both surfaces of a carbon fiber- And a molded product obtained by impregnating and shaping the oriented fiber.

상기 성형품은, 탄소섬유 강화 수지 복합재의 일면 또는 양면에 건성 원단 또는 단향성 섬유를 적층한 후, 150~250℃의 온도, 100~300kgf/cm2의 압력, 3~5분 Cycle의 조건으로 가압하여 제조될 수 있다.The molded product is obtained by laminating a dry fabric or a monofilament fiber on one surface or both surfaces of a carbon fiber-reinforced resin composite material, pressing the surface of the carbon fiber-reinforced resin composite material under conditions of a temperature of 150 to 250 ° C, a pressure of 100 to 300 kgf / cm 2 , .

상기 가압은 핫 프레스(hot press)로 성형하는 과정일 수 있다. The pressurization may be a process of molding by hot press.

상기 가압은 10 내지 50체적%의 압축율로 압축하는 과정일 수 있다. The pressurization may be a process of compressing at a compression rate of 10 to 50% by volume.

본 발명은 탄소섬유 강화 수지 복합재의 보강을 위해 보강재를 부착하는 방법으로 바인더 화합물이나 접착제의 사용없이, 탄소섬유 강화 수지 복합재의 일면 또는 양면에 건성 원단 또는 단향성 섬유를 적층한 후 가압하여 열경화성 수지를 누수 또는 배출시켜 건성 원단 또는 단향성 섬유에 열경화성 수지를 함침시킴과 동시에 성형하여 건성원단 또는 단향성 섬유가 부착된 탄소섬유 강화 수지 복합재 성형품을 제조하는 것을 특징으로 한다.The present invention relates to a method for attaching a reinforcing material to reinforce a carbon fiber reinforced resin composite material, which comprises laminating a dry fabric or a monofilament fiber on one side or both sides of a carbon fiber reinforced resin composite material without using a binder compound or an adhesive, Is leaked or discharged to impregnate and dry the dry fabric or the monofilament fiber with a thermosetting resin to produce a molded product of a carbon fiber-reinforced resin composite having a dry fabric or monofilament fiber adhered thereto.

본 발명의 성형품은 일면 또는 양면에 건성 원단 또는 단향성 섬유를 적용함으로써 표면(surface)을 확보할 수 있다. 표면 확보를 통하여 고품질의 제품을 얻을 수 있어, 본 발명의 성형품은 자동차 부품 중 외관, 장식(데코) 부품에 사용 가능해질 수 있다.The molded article of the present invention can secure a surface by applying a dry fabric or a monofilament fiber to one or both surfaces. Quality products can be obtained through securing the surface, and the molded article of the present invention can be used for appearance and decorative (decorative) parts of automobile parts.

본 발명은 기존 방식인 프리프레그(Prepreg(Wet Carbon fiber Fabric)) 투입 방식에 비교하여 간단한 방식으로 탄소섬유 강화 수지 복합재의 강도를 증가시킬 수 있는 구조 보강 방식일 수 있다. 프리프레그 투입 방식은 프리프레그를 원하는 두께/강도에 맞추어 적층 진공/고온/고압의 조건에서 성형하는 방식이다.The present invention can be a structure reinforcing method that can increase the strength of a carbon fiber reinforced resin composite material by a simple method as compared with a conventional filling method (Prepreg (Wet Carbon Fiber Fabric)). The prepreg injection method is a method in which the prepreg is molded under the conditions of laminated vacuum / high temperature / high pressure in accordance with a desired thickness / strength.

본 발명에 따르면, 탄소섬유 강화 플라스틱 폐기물을 활용하는 동시에, 자동차 산업 등에 적용할 수 있는 인장강도, 파괴인성 그리고 충격 강도와 같이 우수한 기계적 특성을 갖는, 재활용 탄소섬유를 포함하는 탄소섬유 강화 수지 복합재 및 성형품을 제조할 수 있다. 재활용 탄소섬유 가격은 신재 대비 약 70% 수준이다. 따라서 본 발명에 따르면 기존 탄소섬유 강화 수지 성형품 대비 약 30% 원가 저감이 가능하다. According to the present invention, it is possible to provide a carbon fiber-reinforced resin composite material including recycled carbon fibers, which has excellent mechanical properties such as tensile strength, fracture toughness and impact strength applicable to the automobile industry while utilizing carbon fiber- A molded article can be manufactured. The price of recycled carbon fiber is about 70% of that of new materials. Therefore, according to the present invention, it is possible to reduce the cost by about 30% compared to the conventional carbon fiber reinforced resin molded article.

도 1은 본 발명의 일 실시예에 따라 양면에 건성 원단이 적층된 성형품의 구조를 모식적으로 도시한 것이다.
도 2는 본 발명의 일 실시예에 따라 성형품을 제조하는 과정을 모식적으로 도시한 것이다.
FIG. 1 schematically shows a structure of a molded product in which a dry fabric is laminated on both sides according to an embodiment of the present invention.
2 is a schematic view illustrating a process of manufacturing a molded article according to an embodiment of the present invention.

이하, 본 발명의 실험예(실시예)를 예시한다. 하기의 실험예(실시예)는 본 발명의 이해를 돕도록 하기 위해 예시적으로 제공되는 것일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되는 것은 아니다.Hereinafter, an experimental example (embodiment) of the present invention will be exemplified. The following experimental examples are provided to illustrate the present invention only, and the technical scope of the present invention is not limited thereto.

실시예Example 1:  One: 탄소섬유Carbon fiber 강화 수지 복합재의 제조 Manufacture of reinforced resin composites

탄소섬유 강화 플라스틱 폐기물을 분쇄하고 수지를 열분해하여 12 mm의 길이를 가지는 탄소섬유 조각을 준비하였다. 탄소섬유는 4900 MPa의 인장강도, 230 GPa의 탄성계수, 1.80 g/cm3의 밀도를 갖는 것을 사용하였다. 또한, 매트릭스로 비닐에스테르 수지를 준비하였다. 상기 탄소섬유 조각에 비닐에스테르 수지를 함침시켜 벌크 몰딩 컴파운드를 제조하였다.Carbon fiber reinforced plastic waste was pulverized and the resin was pyrolyzed to prepare a piece of carbon fiber having a length of 12 mm. The carbon fiber used had a tensile strength of 4900 MPa, an elastic modulus of 230 GPa, and a density of 1.80 g / cm < 3 & gt ;. Further, a vinyl ester resin was prepared as a matrix. The carbon fiber piece was impregnated with a vinyl ester resin to prepare a bulk molding compound.

상기 벌크 몰딩 컴파운드 중 탄소섬유의 함량은 50 wt% 이었다.The content of carbon fiber in the bulk molding compound was 50 wt%.

실시예Example 2: 성형품의 제조 2: Production of molded article

상기 실시예 1의 벌크 몰딩 컴파운드의 일면에 건성 원단인 탄소섬유 직물(3K 평직)을 적층한 후, 약 180℃에서 핫 프레스(압력: 250kgf/cm2, 3분 사이클)하여 탄소섬유 강화 수지 성형품을 제조하였다.A carbon fiber fabric (3K plain weave) as a dry fabric was laminated on one side of the bulk molding compound of Example 1, and then hot press (pressure: 250 kgf / cm 2 , 3 minutes cycle) at about 180 캜 to obtain a carbon fiber- .

비교예Comparative Example 1 One

건조 섬유(dry fabric)로 보강하지 않는 것을 제외하고는 실시예 2와 동일한 방법으로 탄소섬유 강화 수지 성형품을 제조하였다.A carbon fiber-reinforced resin molded article was produced in the same manner as in Example 2 except that it was not reinforced with dry fabric.

실험예Experimental Example 1 One

실시예 2 및 비교예 1에서 제조된 성형품에 대해 ISO 인장시험 규격(ISO 527)에 따른 인장시험을 진행하였다. The molded articles prepared in Example 2 and Comparative Example 1 were subjected to a tensile test according to the ISO tensile test standard (ISO 527).

시험편 형상 : 도그본(dog-bone)Specimen shape: dog-bone

시험기기 : SHIMADZU사의 만능시험기(Universal testing machine)Test equipment: SHIMADZU's universal testing machine

로드셀 : 2,000 NLoad cell: 2,000 N

크로스헤드 속도(시험속도) : 5 mm/minCrosshead speed (test speed): 5 mm / min

실시예 2와 비교예 1에 따라 제조된 성형품의 인장강도 측정시, 비교예 1에 따라 제조된 성형품의 인장강도는 41.6 Mpa이었으나, 실시예 2에 따라 제조된 성형체의 인장강도는 75.3 MPa이었다. 비교예 1에 따라 제조된 성형품에 비해 실시예 1에 따라 제조된 성형품의 인장강도는 81% 증가하였다. The tensile strength of the molded article prepared in Example 2 and Comparative Example 1 was 41.6 MPa, while the tensile strength of the molded article prepared in Example 2 was 75.3 MPa. The tensile strength of the molded article produced according to Example 1 was increased by 81% as compared with the molded article prepared according to Comparative Example 1. [

Claims (9)

탄소섬유 강화 플라스틱 폐기물을 일정 사이즈로 파쇄하고 수지를 열분해하여 재활용 탄소섬유 조각을 얻는 제1단계; 및
매트릭스로서 열경화성 수지를 상기 재활용 탄소섬유 조각에 함침시켜 벌크 몰딩 컴파운드(bulk molding compound, BMC)를 형성하는 제2단계;를 포함하는, 재활용 탄소섬유를 포함하는 탄소섬유 강화 수지 복합재의 제조방법.
A first step of crushing the carbon fiber-reinforced plastic waste to a predetermined size and pyrolyzing the resin to obtain a piece of recycled carbon fiber; And
And a second step of impregnating the thermosetting resin as a matrix into the piece of recycled carbon fiber to form a bulk molding compound (BMC).
제1항에 있어서, 상기 재활용 탄소섬유 조각은 길이가 6 내지 24 mm 인 것인 탄소섬유 강화 수지 복합재의 제조방법.The method of producing a carbon fiber-reinforced resin composite material according to claim 1, wherein the piece of recycled carbon fiber has a length of 6 to 24 mm. 제1항에 있어서, 상기 탄소섬유는 폴리아크릴로니트릴(PAN)계 탄소섬유, 석유·석탄 피치계 탄소섬유, 레이온계 탄소섬유, 셀룰로오스계 탄소섬유, 리그닌계 탄소섬유, 페놀계 탄소섬유 또는 기상(氣相) 성장계 탄소섬유인 것인 탄소섬유 강화 수지 복합재의 제조방법.The carbon fiber as claimed in claim 1, wherein the carbon fibers are selected from the group consisting of polyacrylonitrile (PAN) carbon fibers, petroleum / coal pitch carbon fibers, rayon carbon fibers, cellulose carbon fibers, lignin carbon fibers, Wherein the carbon fiber-reinforced resin composite material is a carbon fiber of a carbon fiber-reinforced resin composite. 제1항에 있어서, 상기 열경화성 수지는 비닐 에스테르 수지, 에폭시 수지, 페놀 수지 또는 멜라민 수지인 것인 탄소섬유 강화 수지 복합재의 제조방법.The method of producing a carbon fiber-reinforced resin composite material according to claim 1, wherein the thermosetting resin is a vinyl ester resin, an epoxy resin, a phenol resin, or a melamine resin. 제1항에 있어서, 상기 벌크 몰딩 컴파운드에 포함된 열경화성 수지의 함량은 40 내지 90 중량%인 것인 탄소섬유 강화 수지 복합재의 제조방법.The method of producing a carbon fiber-reinforced resin composite material according to claim 1, wherein the content of the thermosetting resin contained in the bulk molding compound is 40 to 90 wt%. 제1항에 있어서, 상기 상기 벌크 몰딩 컴파운드에 포함된 재활용 탄소섬유의 함량은 10 내지 60 중량%인 것인 탄소섬유 강화 수지 복합재의 제조방법.The method of producing a carbon fiber-reinforced resin composite material according to claim 1, wherein the content of recycled carbon fibers contained in the bulk molding compound is 10 to 60 wt%. 제1항 내지 제6항 중 어느 한 항에 따른 제조방법에 의해 제조되어, 함침 수지 내에 존재하는 재활용 탄소섬유 길이가 6 내지 24 mm이고, 재활용 탄소섬유의 비율이 10 내지 60 중량%인, 재활용 탄소섬유를 포함하는 탄소섬유 강화 수지 복합재.A recycled carbon fiber produced by the manufacturing method according to any one of claims 1 to 6, wherein the length of the recycled carbon fiber present in the impregnated resin is 6 to 24 mm and the proportion of the recycled carbon fiber is 10 to 60% A carbon fiber reinforced resin composite comprising carbon fibers. 제7항에 따른 탄소섬유 강화 수지 복합재의 일면 또는 양면에 건성 원단 또는 단향성 섬유를 적층한 후, 150 ℃ 이상에서 가압하여 열경화성 수지를 누수 또는 배출시킴으로써 건성 원단 또는 단향성 섬유에 열경화성 수지를 함침 및 성형시켜 제조된, 성형품.A method for manufacturing a carbon fiber reinforced resin composite material according to claim 7, wherein a dry fabric or a monofilament fiber is laminated on one side or both sides of the carbon fiber-reinforced resin composite material, and then the laminate is pressurized at 150 DEG C or higher to leak or discharge the thermosetting resin, And molding. 제8항에 있어서, 탄소섬유 강화 수지 복합재의 일면 또는 양면에 건성 원단 또는 단향성 섬유를 적층한 후, 150~250℃의 온도, 100~300kgf/cm2의 압력, 3~5분 Cycle의 조건으로 가압하여 제조되는 것인, 성형품.The carbon fiber reinforced resin composite material according to claim 8, wherein the carbon fiber reinforced resin composite material is formed by laminating a dry fabric or a monofilament fiber on one side or both sides of the carbon fiber reinforced resin composite material and then subjecting it to a temperature of 150 to 250 ° C, a pressure of 100 to 300 kgf / cm 2 , By weight.
KR1020170048661A 2017-04-14 2017-04-14 Manufacturing method of carbon fiber reinforced plastics, carbon fiber reinforced resin composite and molded article using the same KR20180116511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170048661A KR20180116511A (en) 2017-04-14 2017-04-14 Manufacturing method of carbon fiber reinforced plastics, carbon fiber reinforced resin composite and molded article using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170048661A KR20180116511A (en) 2017-04-14 2017-04-14 Manufacturing method of carbon fiber reinforced plastics, carbon fiber reinforced resin composite and molded article using the same

Publications (1)

Publication Number Publication Date
KR20180116511A true KR20180116511A (en) 2018-10-25

Family

ID=64131906

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170048661A KR20180116511A (en) 2017-04-14 2017-04-14 Manufacturing method of carbon fiber reinforced plastics, carbon fiber reinforced resin composite and molded article using the same

Country Status (1)

Country Link
KR (1) KR20180116511A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210078823A (en) * 2019-12-19 2021-06-29 한국신발피혁연구원 Rubber composition for shoes outsole having recycled carbon fiber
EP3868534A1 (en) * 2020-02-21 2021-08-25 Palo Alto Research Center Incorporated Recyclable enhanced performance carbon fiber reinforced polymers
KR102310710B1 (en) * 2020-07-15 2021-10-12 한국생산기술연구원 Method for manufacturing heat-dissipating adhesive comprising waste carbon fiber and composition comprising the heat-dissipating adhesive

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210078823A (en) * 2019-12-19 2021-06-29 한국신발피혁연구원 Rubber composition for shoes outsole having recycled carbon fiber
EP3868534A1 (en) * 2020-02-21 2021-08-25 Palo Alto Research Center Incorporated Recyclable enhanced performance carbon fiber reinforced polymers
US20210260793A1 (en) * 2020-02-21 2021-08-26 Palo Alto Research Center Incorporated Recyclable enhanced performance carbon fiber reinforced polymers
KR102310710B1 (en) * 2020-07-15 2021-10-12 한국생산기술연구원 Method for manufacturing heat-dissipating adhesive comprising waste carbon fiber and composition comprising the heat-dissipating adhesive

Similar Documents

Publication Publication Date Title
JP6778309B2 (en) Thermoplastic (meth) acrylic resin composite material obtained by in-site polymerization and its use
Zuccarello et al. Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers
Song Pairing effect and tensile properties of laminated high-performance hybrid composites prepared using carbon/glass and carbon/aramid fibers
Rodríguez et al. Characterization of composites based on natural and glass fibers obtained by vacuum infusion
Edwards An overview of the technology of fibre-reinforced plastics for design purposes
WO2009048674A3 (en) Composite ballistic fabric structures for hard armor applications
US20190152212A1 (en) Manufacturing method of thermoplastic continuous-discontinuous fiber composite sheet
KR20180116511A (en) Manufacturing method of carbon fiber reinforced plastics, carbon fiber reinforced resin composite and molded article using the same
Sathish et al. Experimental testing on hybrid composite materials
Xiao et al. Hybrid laminated composites molded by spray lay-up process
Chen et al. Manufacturing and properties of cotton and jute fabrics reinforced epoxy and PLA composites
CN106218146A (en) Composite that a kind of case and bag flexible material is toughness reinforcing and preparation thereof and application
Saidi et al. Tensile strength of natural fiber in different type of matrix
Adekunle et al. Impact and Flexural Properties of Flax Fabrics and Lyocell Fibre Reinforced Bio-based Thermoset for Automotive and Structural Applications
KR20180079729A (en) Quasi-Isotropic Product using the fiber reinforced composite material and manufacturing method therof
Yang et al. Simple manufacturing method for a thermoplastic composite using PP-Straw
NL2014282B1 (en) Consolidation Cycle.
Arnold et al. Next generation sustainable composites: development and processing of furan-flax biocomposites
JP7473416B2 (en) Method for producing fiber-reinforced composite material
Masania et al. Effect of fibre volume content on the mechanical performance of natural fibre reinforced thermoplastic composites
Perepelkin Polymer Fibre Composites, Basic Types, Principles of Manufacture, and Properties. Part 2. Fabrication and Properties of Polymer Composite Materials.
Ramesh et al. Experimental investigation on the mechanical properties of flax, E-glass and carbon fabric reinforced hybrid epoxy resin composites
SHEWALE et al. Carbon and natural fiber reinforced polymer hybrid composite: Processes, applications, and challenges
Kamae et al. Advanced VARTM System for Aircraft Structures Materials Technologies
KR102291931B1 (en) Manufacturing method for molded article using fiber reinforcerd plastic waste comprising thermosetting plastics and molded article using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application