KR20180088568A - Short TTI 프레임 구조에서 PUSCH 처리 시간을 고려한 스케줄링 방법 - Google Patents

Short TTI 프레임 구조에서 PUSCH 처리 시간을 고려한 스케줄링 방법 Download PDF

Info

Publication number
KR20180088568A
KR20180088568A KR1020170012953A KR20170012953A KR20180088568A KR 20180088568 A KR20180088568 A KR 20180088568A KR 1020170012953 A KR1020170012953 A KR 1020170012953A KR 20170012953 A KR20170012953 A KR 20170012953A KR 20180088568 A KR20180088568 A KR 20180088568A
Authority
KR
South Korea
Prior art keywords
pusch
processing time
scheduling
transmission
retransmission
Prior art date
Application number
KR1020170012953A
Other languages
English (en)
Inventor
김기태
최우진
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to KR1020170012953A priority Critical patent/KR20180088568A/ko
Publication of KR20180088568A publication Critical patent/KR20180088568A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1205
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서는 Short TTI 프레임 구조에서 PUSCH 처리 시간을 고려한 스케줄링 방법으로, Processing time 이 서로 다른 PUSCH의 동시 스케줄링이 일어나는 단말은 non-contiguous 형태의 자원 할당을 수행하거나, Processing time 이 서로 다른 PUSCH의 동시 스케줄링이 일어나는 단말은 PAPR과 같은 최대 송신 전력을 고려하여 우선 순위를 결정하여 스케줄링하거나, 기지국과 단말의 거리에 대한 일정한 거리를 기준으로 Processing time 이 서로 다른 PUSCH전송 여부를 결정하거나, n+4 이하의 processing time을 갖는 PUSCH와 PUSCH의 재전송이 동일한 시간대에 스케줄링 될 경우에는 재전송이 우선 순위를 갖거나, n+4 이하의 processing time을 갖는 PUSCH와 legacy PUSCH의 n+4 이하 기반 PUSCH가 재전송보다 전송의 우선 순위를 갖는 방법 및 그 장치를 제공한다.

Description

Short TTI 프레임 구조에서 PUSCH 처리 시간을 고려한 스케줄링 방법{Apparatus and method of PUSCH scheduling considering PUSCH processing time in a short TTI frame structure}
본 발명에서는 3GPP LTE/LTE-A 시스템에서 short TTI 기반 PUSCH의 다양한 처리 시간을 고려할 수 있는 스케줄링 방법을 제안한다.
일실시예는 Short TTI 프레임 구조에서 PUSCH 처리 시간을 고려한 스케줄링 방법으로, Processing time 이 서로 다른 PUSCH의 동시 스케줄링이 일어나는 단말은 non-contiguous 형태의 자원 할당을 수행하거나, Processing time 이 서로 다른 PUSCH의 동시 스케줄링이 일어나는 단말은 PAPR과 같은 최대 송신 전력을 고려하여 우선 순위를 결정하여 스케줄링하거나, 기지국과 단말의 거리에 대한 일정한 거리를 기준으로 Processing time 이 서로 다른 PUSCH전송 여부를 결정하거나, n+4 이하의 processing time을 갖는 PUSCH와 PUSCH의 재전송이 동일한 시간대에 스케줄링 될 경우에는 재전송이 우선 순위를 갖거나, n+4 이하의 processing time을 갖는 PUSCH와 legacy PUSCH의 n+4 이하 기반 PUSCH가 재전송보다 전송의 우선 순위를 갖는 방법 및 장치를 제공한다.
도 1은 eNB and UE processing delays and HARQ RTT을 도시하고 있다.
도 2는 resource mapping per PRB in one subframe을 도시하고 있다.
도 3은 PHICH processing (Normal CP case in LTE/LTE-A)을 도시하고 있다.
도 4는 Legacy PUCCH uplink structure을 도시하고 있다.
도 5는 Legacy PUCCH 구성 개념도이다.
도 6은 LTE UL/DL HARQ 프로세스을 도시하고 있다.
도 7은 서로 다른 심볼 길이의 sTTI 프레임 구조 기반 sPDSCH와 sPUCCH linkage 설정의 예를 도시하고 있다.
도 8은 N+4, n+3 PUSCH의 동시 스케줄링 개념도이다.
도 9는 방안 1에 따른 n+4, n+3 PUSCH 자원 할당 방법의 예를 도시하고 있다.
도 10은 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다.
도 11은 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 명세서에서 MTC 단말은 low cost(또는 low complexity)를 지원하는 단말 또는 coverage enhancement를 지원하는 단말 등을 의미할 수 있다.   본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및/또는 coverage enhancement를 지원하기 위한 특정 카테고리로 정의된 단말을 의미할 수 있다.
다시 말해 본 명세서에서 MTC 단말은 LTE 기반의 MTC 관련 동작을 수행하는 새롭게 정의된 3GPP Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 기존의 LTE coverage 대비 향상된 coverage를 지원하거나, 혹은 저전력 소모를 지원하는 기존의 3GPP Release-12 이하에서 정의된 UE category/type, 혹은 새롭게 정의된 Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다.
본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.
기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), small cell 등 다른 용어로 불릴 수 있다.
즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, small cell 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.
상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii)에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.
따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 송신 포인트, 수신 포인트를 통칭하여 기지국으로 지칭한다.
본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.
무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.
또한, LTE, LTE-advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다.
한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.
본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다.
실시예들이 적용되는 무선통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 송수신 포인트와 단말들을 포함할 수 있다.
다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.
이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다.
이하에서는 PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 ‘PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다’는 형태로 표기하기도 한다.
또한 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.
즉, 이하에서 기재하는 물리 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.
또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 EPDCCH를 적용할 수 있다.
한편, 이하에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC시그널링을 포함한다.
eNB은 단말들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.
[Latency reduction in RAN1]
Latency reduction Study Item은 RAN plenary #69 회의에서 승인되었다 ([1]Ericsson, Huawei, “New SI proposal Study on Latency reduction techniques for LTE”, RP-150465, Shanghai, China, March 9-12, 2015.). Latency reduction의 주요 목적은 TCP throughput을 행상시키기 위해서 보다 짧은 TTI 운영을 규격화하는 것이다[[2] R2-155008, “TR 36.881 v0.4.0 on Study on Latency reduction techniques for LTE” , Ericsson (Rapporteur)]. 이를 위해 RAN2에서는 이미 short TTI에 대한 성능 검증을 수행하였다[[2] R2-155008, “TR 36.881 v0.4.0 on Study on Latency reduction techniques for LTE” , Ericsson (Rapporteur)].
아래와 같은 범위에서 RAN1에 관계된 potential impact들과 study를 수행한다([1]Ericsson, Huawei, “New SI proposal Study on Latency reduction techniques for LTE”, RP-150465, Shanghai, China, March 9-12, 2015.):
o Assess specification impact and study feasibility and performance of TTI lengths between 0.5ms and one OFDM symbol, taking into account impact on reference signals and physical layer control signaling
o backwards compatibility shall be preserved (thus allowing normal operation of pre- Rel 13 UEs on the same carrier);
Latency reduction can be achieved by the following physical layer techniques:
- short TTI
- reduced processing time in implementation
- new frame structure of TDD
3GPP RAN WG1#84회의에서 추가적으로 합의된 사항은 아래와 같다.
Agreements:
● Following design assumptions are considered:
o No shortened TTI spans over subframe boundary
o At least for SIBs and paging, PDCCH and legacy PDSCH are used for scheduling
● The potential specific impacts for the followings are studied
o UE is expected to receive a sPDSCH at least for downlink unicast
■ sPDSCH refers PDSCH carrying data in a short TTI
o UE is expected to receive PDSCH for downlink unicast
■ FFS whether a UE is expected to receive both sPDSCH and PDSCH for downlink unicast simultaneously
o FFS: The number of supported short TTIs
o If the number of supported short TTIs is more than one,
Agreements:
● Following design assumptions are used for the study
o From eNB perspective, existing non-sTTI and sTTI can be FDMed in the same subframe in the same carrier
■ FFS: Other multiplexing method(s) with existing non-sTTI for UE supporting latency reduction features
Agreements:
● In this study, following aspects are assumed in RAN1.
o PSS/SSS, PBCH, PCFICH and PRACH, Random access, SIB and Paging procedures are not modified.
● Following aspects are further studied in the next RAN1 meeting
o Note: But the study is not limited to them.
o Design of sPUSCH DM-RS
■ Alt.1: DM-RS symbol shared by multiple short-TTIs within the same subframe
■ Alt.2: DM-RS contained in each sPUSCH
o HARQ for sPUSCH
■ Whether/how to realize asynchronous and/or synchronous HARQ
o sTTI operation for Pcell and/or SCells by (e)CA in addition to non-(e)CA case
기본적으로 Average down-link latency calculation에서는 아래의 절차를 따라 latency를 계산하게 된다 [[3] R1-160927, “TR 36.881-v0.5.0 on Study on Latency reduction techniques for LTE” , Ericsson (Rapporteur)].
Following the same approach as in section B.2.1 in 3GPP TR 36.912, the LTE U-plane one-way latency for a scheduled UE consists of the fixed node processing delays and 1 TTI duration for transmission, as shown in Figure A.1 below. Assuming the processing times can be scaled by the same factor of TTI reduction keeping the same number of HARQ processes, the one way latency can be calculated as
D = 1.5 TTI (eNB processing and scheduling) + 1 TTI (transmission) + 1.5 TTI (UE processing) + n*8 TTI (HARQ retransmissions)
= (4 + n*8) TTI.
Considering a typical case where there would be 0 or 1 retransmission, and assuming error probability of the first transmission to be p, the delay is given by
D = (4 + p*8) TTI.
So, for 0% BLER, D = 4 * TTI,
And for 10% BLER, D = 4.8 * TTI.
도 1은 eNB and UE processing delays and HARQ RTT을 도시하고 있다(Figure A.1 eNB and UE processing delays and HARQ RTT).
Average UE initiated UL transmission latency calculation
Assume UE is in connected/synchronized mode and wants to do UL transmission, e.g., to send TCP ACK. Following table shows the steps and their corresponding contribution to the UL transmission latency. To be consistent in comparison of DL and UL, we add the eNB processing delay in the UL after the UL data is received by the eNB (step 7).
Table A.1 UL transmission latency calculation
Figure pat00001
In the table above, steps 1-4 and half delay of step 5 is assumed to be due to SR, and rest is assumed for UL data transmission in values shown in Table 4
Resource mapping of short TTI [[3] R1-160927, “TR 36.881-v0.5.0 on Study on Latency reduction techniques for LTE” , Ericsson (Rapporteur)]
In Figure A1.6-1 the resource map above is the legacy resource mapping per PRB in one subframe, considering 2 Antenna ports and 2 OFDM symbols control field. In Figure A1.6-1 the resource map below is the short TTI resource mapping, considering 2 OFDM symbols used for the control field in order to ensure the backward compatibility. The loss rates (Llegacy, e.g. 5% - 50%) of the PHY layer in short TTI duration are assumed.
도 2는 resource mapping per PRB in one subframe을 도시하고 있다(Figure A1.6-1: resource mapping per PRB in one subframe).
TBS Calculation of short TTI
According to the resource mapping and the TBS calculation formula given above, the loss rate of PHY layer for legacy PDSCH is calculated as follows:
Figure pat00002
For different short TTI duration, The TBS of short TTI PDSCH is calculated as the following table:
Table A1.6-2: TBS calculation for different TTI duration
Figure pat00003
[Existing PHICH]
PUSCH 수신에 대한 응답을 단말에게 보내는 DL control channel이 PHICH이다. eNB는 상향 데이터 채널에 대한 Ack/Nack을 해당 UE에게 전달해야 하기 위한 목적으로 PHICH를 운용하고 있다. 도 3과 같은 절차에 따라 Ack 또는 Nack을 나타내는 bit 정보 ‘1’ 또는 ‘-1’이 orthogonal code로 spreading 되어 Physical 12 RE들에 mapping된다.
도 3은 PHICH processing (Normal CP case in LTE/LTE-A)을 도시하고 있다.
여기에서 단말들에게는 할당되는 PHICH resource는
Figure pat00004
로 표현되는데, 그룹 내에 orthogonal 시퀀스를
Figure pat00005
라 하고, 시퀀스들이 multiplexing되는 RE set을
Figure pat00006
라 한다. 여기에서 PHICH는 PUSCH의 Lowest PRB index(
Figure pat00007
)와 UL DMRS(
Figure pat00008
)의 cyclic shift value를 기준으로 implicit하게 결정된다. 이하 구체적인 설명은 아래를 참조한다.
The PHICH resource is identified by the index pair
Figure pat00009
where
Figure pat00010
is the PHICH group number and
Figure pat00011
is the orthogonal sequence index within the group as defined by:
Figure pat00012
where
Figure pat00013
is mapped from the cyclic shift for DMRS field (according to Table 9.1.2-2) in the most recent PDCCH/EPDCCH with uplink DCI format [4] for the transport block(s) associated with the corresponding PUSCH transmission.
Figure pat00014
shall be set to zero, if there is no PDCCH/EPDCCH with uplink DCI format for the same transport block, and
● if the initial PUSCH for the same transport block is semi-persistently scheduled, or
● if the initial PUSCH for the same transport block is scheduled by the random access response grant .
Figure pat00015
is the spreading factor size used for PHICH modulation as described in subclause 6.9.1 in [[3] R1-160927, “TR 36.881-v0.5.0 on Study on Latency reduction techniques for LTE” , Ericsson (Rapporteur)].
Figure pat00016
where
Figure pat00017
is the lowest PRB index in the first slot of the corresponding PUSCH transmission
Figure pat00018
is the number of PHICH groups configured by higher layers as described in subclause 6.9 of [[3] R1-160927, “TR 36.881-v0.5.0 on Study on Latency reduction techniques for LTE” , Ericsson (Rapporteur)],
Figure pat00019
Table 9.1.2-2: Mapping between
Figure pat00020
and the cyclic shift for DMRS field
in PDCCH/EPDCCH with uplink DCI format in [4]
Figure pat00021
[Existing PUCCH]
단말이 PDSCH 수신에 대한 응답을 단말에게 보내는 DL control channel이 PUCCH다. 단말은 하향 데이터 채널에 대한 Ack/Nack 및 CQI정보등을 eNB 에게 전달하기 위해서 다양한 포맷의 PUCCH format을 사용한다.
기존의 LTE/LTE-A프레임 구조(TTI=1ms=14 OFDM symbols) 도 4과 같이 slot 기반의 PUCCH hopping을 수행하게 된다. 이러한 PUSCH hopping은 PUCCH의 주파수 다이버시티를 증가시킴으로써 결과적으로 PUCCH의 coverage를 증가시키게 된다. 이것은 기본적으로 동일 신호 또는 하나의 정보 시퀀스가 서로 다른 주파수 대역을 거쳐 전송됨으로써 다이버시티를 얻을 수 있는 이득이 존재하기 때문이다.
도 4는 Legacy PUCCH uplink structure을 도시하고 있다.
기존의 PUCCH에서 A/N을 전송함에 있어서는 format 1a,1b 기준으로 OCC(spreading) + CS(cyclic shift)로 그 자원 할당을 적용하였다. 도 5에서와 같이 slot 기준으로 기존 PUCCH는 3 심볼 RS와 4 심볼 A/N으로 설정되어 있다.
본 제안에서는 sPUCCH의 심볼 수가 작아짐을 고려하여 기존의 OCC를 제외한 Zadoff-Chu(ZC) 시퀀스의 CS 기반 A/N multiplexing 자원 할당을 제안한다. 이때에는 기존 구조와 달리 OCC spreading은 사용하지 않는다.
도 5는 Legacy PUCCH 구성 개념도이다.
ZC시퀀스는 기본적으로 아래의 RS
Figure pat00022
에서 정의되는 cyclic shift
Figure pat00023
값으로 정의된다. (TS 36.211참조)
Figure pat00024
본 제안에서는 OCC가 배제된 sPUCCH A/N 구성을 위해서 아래와 같은 기본 구조를 가정한다.
여기에서 PUCCH format 1a/b는 dynamic resource allocation을 수행하게 되는데, 기본적으로 스케줄링된 PDCCH의 CCE index를 기반으로 아래와 같은 dynamic allocation을 수행하게 된다.
Figure pat00025
여기에서 Ack/Nack을 위한 PUCCH 자원 인덱스
Figure pat00026
은 하향 자원 할당에 사용된 DCI 전송에 사용된 PDCCH의 lowest CCE index
Figure pat00027
와 상위 레이어서 전송되는
Figure pat00028
에 의해서 결정된다. 여기에서
Figure pat00029
은 결국 PUCCH format 1a/1b가 다른 PUCCH format 2/3/4 등과 분리될 수 있도록 설정된 일종의 shift 값을 위미한다.
최근 shortened TTI Work item 관련 Work scope및 3GPP RAN WG1#86회의에서 추가적으로 합의된 사항은 아래와 같다.
For Frame structure type 1: [RAN1, RAN2, RAN4]
● Specify support for a transmission duration based on 2-symbol sTTI and 1-slot sTTI for sPDSCH/sPDCCH
● Specify support for a transmission duration based on 2-symbol sTTI, 4-symbol sTTI, and 1-slot sTTI for sPUCCH/sPUSCH
o Down-selection is not precluded
● Study any impact on CSI feedback and processing time, and if needed, specify necessary modifications (not before RAN1 #86bis)
Agreement:
For FS1,2&3, a minimum timing n+3 is supported for UL grant to UL data and for DL data to DL HARQ for UEs capable of operating with reduced processing time with only the following conditions:
● A maximum TA is reduced to x ms, where x <= 0.33ms (exact value FFS);
● At least when scheduled by PDCCH
● For FS2, new DL HARQ and UL scheduling timing relations will be defined
● Details FFS
● FFS:
● Possible minimum timing of n+2 TTI
● FFS max TA in this case
● FFS what other restrictions (if any) on when reduced processing times of n+2 could be applied
● Possibility of scheduling by EPDCCH.
Agreement:
● Reduced processing time(s) are RRC configured for the UE
● Working assumption: A mechanism for dynamic fallback to legacy processing timings (n+4) is supported
● Details FFS
Working assumption can be revisited if it is not found to be feasible
상기와 같이 short TTI에 대한 Physical layer에 대한 연구가 진행 중이며, PUSCH 구체적인 스케줄링 방안이 부재되어 있다.
본 발명에서는 PUSCH(short TTI based PUSCH)에 대한 구체적인 스케줄링 방법을 제안한다.
본 발명은 기본적으로 LTE/LTE-A 시스템에서는 n+4 TTI 기반의 프로세싱 타임을 고려한 UL/DL HARQ process를 구비하였다.
도 6은 LTE UL/DL HARQ 프로세스을 도시하고 있다.
따라서 기본적으로 n+4 단위로 스케줄링과 A/N 전송이 이루어진다. 그러나 sTTI에서는 이러한 프로세싱 타임이 동일하게 적용되지 않는 환경이 만들어질 수 있다. 도 6 과 같이 기존의 LTE 프레임 구조에서는 UL/DL 서브프레임 길이가 모두 1ms 로 동일하게 된다. 따라서 n+4 의 기준 단위는 UL/DL에서 모두 동일하게 적용된다. 그러나, 도 7 와 같이 sTTI에서는 UL/DL의 길이가 서로 상이하게 달라질 수 있다.
도 7은 서로 다른 심볼 길이의 sTTI 프레임 구조 기반 sPDSCH와 sPUCCH linkage 설정의 예를 도시하고 있다.
본 발명에서는 상기 설명한 sTTI 구조와 달리 일반적인1ms TTI 구조 기반에서 processing time 감소 기반 PUSCH 전송 방법에 대해서 기술한다.
도 8은 N+4, n+3 PUSCH의 동시 스케줄링 개념도이다.
방안 1. Processing time 이 서로 다른 PUSCH의 동시 스케줄링이 일어나는 단말은 non-contiguous 형태의 자원 할당을 수행한다.
여기에서 Processing time이 서로 다르다는 것은 ‘n+4’ 기반의 PUSCH 전송이 아닌 ‘n+3’ 또는 ‘n+2’기반의 PUSCH 전송을 일컫는다. 도 8과 같은 PUSCH 스케줄링이 이러한 환경을 나타내고 있다. 여기에서 단말은 PDCCH 또는 short PDCCH를 통해서 이러한 PUSCH를 자원 할당 정보를 수신할 수 있으며, 수신된 PDCCH 또는 short PDCCH를 기준으로 n+3, n+4의 processing time 이후 상향링크 데이터 채널 PUSCH를 통한 데이터 전송을 수행하게 된다. 그러나 이러한 스케줄링에 의한 중첩이 일어날 경우에는 단말은 방안 1의 방법과 같이 non-contiguous 스케줄링을 수행할 수 있다. 이것은 기존의 non-contiguous 스케줄링과 동일한 방식이지만, 제어 정보의 indication이 두 개 또는 n개의 PDCCH 또는 short PDCCH를 통해서 전송되는 것이 다른 점이다. 이러한 스케줄링 방식은 단말은 또는 기지국은 이미 정의한 방법에 따라서 정해지기 때문에, HARQ를 n+4, n+3 프로세싱에 맞추어 운영하며, 단말은 soft buffer를 아래와 같이 나누어 운영할 수 있다.(circular buffer 기반)
1) 전체 soft buffer를 16으로 분할 → 2 codeword 가정함
A. 첫번째 8개 buffer → n+4를 위해 할당
B. 두번째 8개 buffer → n+3을 위해 할당
2) 전체 soft buffer를 14으로 분할 → 2 codeword 가정함
A. 첫번째 8개 buffer → n+4를 위해 할당
B. 두번째 6개 buffer → n+3을 위해 할당
도 9. 방안 1에 따른 n+4, n+3 PUSCH 자원 할당 방법의 예
방안 2. Processing time 이 서로 다른 PUSCH의 동시 스케줄링이 일어나는 단말은 PAPR과 같은 최대 송신 전력을 고려하여 우선 순위를 결정하여 스케줄링한다.
단말은 자신의 PAPR을 측정하여 일정 기준 값 이상일 경우에는 우선 순위를 두어 선택할 수 있다. 예를 들어 전송의 우선 순위를 n+4 기반 PUSCH가 갖는다면, 아래와 같은 조합이 가능하다.
- PAPR(or Cubit metric) > Threshold → n+3 PUSCH, n+4 PUSCH 모두 전송
- PAPR(or Cubit metric) < Threshold → n+3 PUSCH 전송, n+4 PUSCH 대기
- PAPR(or Cubit metric) < Threshold → n+3 PUSCH 전송, n+4 PUSCH 드롭
- PAPR(or Cubit metric) < Threshold → n+3 PUSCH only 전송 모드 수행
PAPR을 기본적으로 단말의 Power-amp 즉 전송 전력에 직접적인 limitation을 유발하는 인자로 Cubic metric 역시 동일한 의미를 가지고 있다. 따라서 PAPR 높다는 것은 단말이 사용할 수 있는 전송 전력의 크기가 감소한다는 것을 의미하기 때문에, 단말의 상향링크 커버리지 이슈를 유발하게 된다. 따라서 본 방안 2에서와 같이 PAPR 기반의 우선 순위를 가지고 동시 스케줄링 여부를 결정하는 것이 바람직한 PUSCH 동시 전송 스케줄링 방법이다. 이때 우선 순위를 n+3, n+2와 같이 processing time 감소 기반 PUSCH이 가질 수도 있지만, n+4 기반의 일반 PUSCH가 가질 수도 있다. 해당 정보에 대해서는 미리 설정하거나, 기지국이 특정 시그널링을 통해서 단말에게 인지시킬 수도 있다.
방안 3. 기지국과 단말의 거리에 대한 일정한 거리를 기준으로 Processing time 이 서로 다른 PUSCH전송 여부를 결정할 수 있다.
본 제안은 기본적으로 Processing time이 기존보다 짧은 n+3, n+2 PUSCH를 전송할 때 해당하는 방법으로 기지국과의 거리가 짧을수록 유리하다. 그러나 단말과 기지국 사이의 물리적 거리는 측정이 불가능하기 때문에 단말에서 측정한 ‘RSRP’, ‘RSRQ’ 또는 ‘RSRP + RSRQ 조합’ 값 등을 이용하여 간접적으로 수행할 수 있다.
즉 Processing time이 짧은 n+3 PUSCH의 전송 영역을 단말과 기지국의 거리를 기반으로 충분히 스케줄링하는 것이 가능하게 된다.
예를 들어 단말은 기존과 동일하게 L3 measurement 결과 RSRP, RSRQ를 기지국에 보고하게 된다. 이때 기지국은 스케줄링 시 해당 단말의 L3 measurement 결과를 토대로 n+3 PUSCH, n+4 PUSCH의 전송 여부를 결정할 수 있다. 이러한 경우에는 단말의 동작에는 변화가 없다.
그러나 반대로 단말이 해당 n+3 PUSCH, n+4 PUSCH의 전송을 결정해야 할 경우에는 현재의 RSRP, RSRQ 값을 기반으로 선택할 수 있다. 만일 현재 RSRP, RSRQ 값이 없는 경우에는 최근 reporting 값을 사용한다.
이러한 일정 거리 기반 PUSCH 전송에서는 해당 기준 값을 토대로 단말이 processing time 감소 PUSCH, 일반 PUSCH를 동시에 전송, 일반 PUSCH 전송, 또는 processing time 감소 PUSCH 전송을 선택적으로 수행할 수 있다.
방안 4. n+4 이하의 processing time을 갖는 PUSCH와 PUSCH의 재전송이 동일한 시간대에 스케줄링 될 경우에는 재전송이 우선 순위를 갖는다.
본 제안에서는 재전송 PUSCH와 legacy PUSCH, processing time 감소 PUSCH와 스케줄링이 중첩될 때를 가정한다. 일단 재전송PUSCH에 대해서 우선 순위를 할당하는 것이 바람직하다. 따라서 재전송 PUSCH 전송이 할당된 경우에는 기존의 PUSCH (n+4, n+3, n+2 등 포함) 전송은 다음 스케줄링으로 넘어가게 된다. 예를 들어 아래와 같이 모든 경우에 재전송이 우선순위를 가지게 된다
- 재전송(PUSCH with n+4), new data(PUSCH with n+3) → 재전송
- 재전송(PUSCH with n+3), new data(PUSCH with n+3) → 재전송
- 재전송(PUSCH with n+3), new data(PUSCH with n+4) → 재전송
그러나, latency reduction에 대한 이슈가 우선 순위가 높은 경우에는 아래와 같은 선택을 수행할 수 있다. (방안 4-1 참조)
- 재전송(PUSCH with n+4), new data(PUSCH with n+3) → new data 전송
- 재전송(PUSCH with n+3), new data(PUSCH with n+3) → 재전송
- 재전송(PUSCH with n+3), new data(PUSCH with n+4) → 재전송
방안 4-1. n+4 이하의 processing time을 갖는 PUSCH와 legacy PUSCH의 n+4 이하 기반 PUSCH가 재전송보다 전송의 우선 순위를 갖는다..
본 발명에서는 3GPP LTE/LTE-A 시스템에서 short TTI 기반 PUSCH의 다양한 처리 시간을 고려할 수 있는 스케줄링 방법을 제안한다. PUSCH의 다양한 프로세싱 타임을 고려하여 동시 스케줄링 경우에 발생할 수 있는 문제에 대한 구체적인 방법을 기술하였으며, 해당 방법은 유사 시그널 및 채널에 그 원리가 그대로 적용할 수 있으며, new frame 구조에만 그 적용이 제한되지 않는다.
도 10은 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다.
도 10을 참조하면, 또 다른 실시예에 의한 기지국(1000)은 제어부(1010)과 송신부(1020), 수신부(1030)을 포함한다.
제어부(1010)는 전술한 본 발명을 수행하기에 필요한 Short TTI 프레임 구조에서 PUSCH 처리 시간을 고려한 스케줄링 방법 및 그 장치에 따른 전반적인 기지국의 동작을 제어한다.
송신부(1020)와 수신부(1030)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다.
도 11은 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.
도 11을 참조하면, 또 다른 실시예에 의한 사용자 단말(1100)은 수신부(1110) 및 제어부(1120), 송신부(1130)을 포함한다.
수신부(1110)는 기지국으로부터 하향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.
또한 제어부(1120)는 전술한 본 발명을 수행하기에 필요한 Short TTI 프레임 구조에서 PUSCH 처리 시간을 고려한 스케줄링 방법 및 그 장치에 따른 전반적인 단말의 동작을 제어한다.
송신부(1130)는 기지국에 상향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.
전술한 실시예에서 언급한 표준내용 또는 표준문서들은 명세서의 설명을 간략하게 하기 위해 생략한 것으로 본 명세서의 일부를 구성한다. 따라서, 위 표준내용 및 표준문서들의 일부의 내용을 본 명세서에 추가하거나 청구범위에 기재하는 것은 본 발명의 범위에 해당하는 것으로 해석되어야 한다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (1)

  1. Short TTI 프레임 구조에서 PUSCH 처리 시간을 고려한 스케줄링 방법으로,
    Processing time 이 서로 다른 PUSCH의 동시 스케줄링이 일어나는 단말은 non-contiguous 형태의 자원 할당을 수행하거나,
    Processing time 이 서로 다른 PUSCH의 동시 스케줄링이 일어나는 단말은 PAPR과 같은 최대 송신 전력을 고려하여 우선 순위를 결정하여 스케줄링하거나,
    기지국과 단말의 거리에 대한 일정한 거리를 기준으로 Processing time 이 서로 다른 PUSCH전송 여부를 결정하거나,
    n+4 이하의 processing time을 갖는 PUSCH와 PUSCH의 재전송이 동일한 시간대에 스케줄링 될 경우에는 재전송이 우선 순위를 갖거나,
    n+4 이하의 processing time을 갖는 PUSCH와 legacy PUSCH의 n+4 이하 기반 PUSCH가 재전송보다 전송의 우선 순위를 갖는 방법.
KR1020170012953A 2017-01-26 2017-01-26 Short TTI 프레임 구조에서 PUSCH 처리 시간을 고려한 스케줄링 방법 KR20180088568A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170012953A KR20180088568A (ko) 2017-01-26 2017-01-26 Short TTI 프레임 구조에서 PUSCH 처리 시간을 고려한 스케줄링 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170012953A KR20180088568A (ko) 2017-01-26 2017-01-26 Short TTI 프레임 구조에서 PUSCH 처리 시간을 고려한 스케줄링 방법

Publications (1)

Publication Number Publication Date
KR20180088568A true KR20180088568A (ko) 2018-08-06

Family

ID=63252068

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170012953A KR20180088568A (ko) 2017-01-26 2017-01-26 Short TTI 프레임 구조에서 PUSCH 처리 시간을 고려한 스케줄링 방법

Country Status (1)

Country Link
KR (1) KR20180088568A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080946A1 (en) * 2020-10-16 2022-04-21 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink channel in wireless communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080946A1 (en) * 2020-10-16 2022-04-21 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink channel in wireless communication system

Similar Documents

Publication Publication Date Title
US10616916B2 (en) Methods for multiplexing scheduling request information and HARQ ACK/NACK information while transmitting and receiving PUCCH and apparatuses thereof
RU2634701C2 (ru) Обратная связь harq с использованием агрегации несущих
US11431460B2 (en) Method and apparatus for transmitting and receiving control information and data in frame structure of short transmission time interval
KR102161473B1 (ko) LTE에서 데이터 채널을 송수신하기 위한 다중 sTTI 기반 스케줄링 방법 및 그 장치
US11115976B2 (en) Method for transmitting/receiving uplink control channel in frame structure of short transmission time interval and device therefor
US10849111B2 (en) Method and apparatus for transmitting channel state information in frame structure of short transmission time interval
KR20170107372A (ko) Short TTI를 위한 프레임 구조 설정 및 정보 전송 방법 및 그 장치
KR20170114243A (ko) 공유 복조 기준 신호 기반 상향링크 데이터 채널 설정 방법 및 그 장치
KR102156670B1 (ko) 상향링크 제어 채널 송수신 시 스케줄링 요청 및 harq ack/nack 정보를 다중화하는 방법 및 그 장치
KR20180088568A (ko) Short TTI 프레임 구조에서 PUSCH 처리 시간을 고려한 스케줄링 방법
KR102120976B1 (ko) 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법 및 장치
US20180270797A1 (en) Method of transmitting and receiving downlink channel in short tti frame structure and apparatus thereof
KR20180029180A (ko) Short TTI 프레임 구조에서 sPDSCH 처리 시간을 고려한 Ack/Nack 연결 설정 방법 및 그 장치
KR20180112214A (ko) sTTI를 위한 하향 데이터 채널 Ack/Nack 충돌 방지 방법 및 그 장치
KR20190086310A (ko) LTE URLLC에서 legacy 데이터 채널 다중화 방법 및 장치
KR20180046445A (ko) Short TTI 프레임 구조에서 legacy PDCCH를 고려한 DCI 검출 방법 및 그 장치
KR20190086314A (ko) LTE URLLC에서 multi-level CSI 보고 방법 및 장치
KR20170114071A (ko) Short TTI 프레임 구조에서 sPUSCH 관련 Ack/Nack 연결 설정 방법 및 그 장치
KR20180016688A (ko) Short TTI 프레임에서 부분 중첩 참조 신호 기반 short PUCCH 설계 방법 및 그 장치
KR20170131807A (ko) Short TTI 프레임 구조에서 PUSCH와 short PUSCH 스케줄링 방법 및 그 장치
KR20190097598A (ko) Urllc를 위한 상향링크 전력 제어 방법 및 그 장치
KR102121009B1 (ko) 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법 및 장치
KR20180036909A (ko) 커버리지 확장을 위한 상향링크 데이터 채널 송수신 방법 및 장치
KR20170108202A (ko) Short TTI 프레임 구조 기반 자원 할당 방법 및 그 장치
KR20180107386A (ko) Short TTI 프레임에서 상향링크 제어 채널 및 데이터 채널 주파수 호핑 방법