KR20180067121A - Integration Control Method Based On Prediction Information and Vehicle thereof - Google Patents

Integration Control Method Based On Prediction Information and Vehicle thereof Download PDF

Info

Publication number
KR20180067121A
KR20180067121A KR1020160168531A KR20160168531A KR20180067121A KR 20180067121 A KR20180067121 A KR 20180067121A KR 1020160168531 A KR1020160168531 A KR 1020160168531A KR 20160168531 A KR20160168531 A KR 20160168531A KR 20180067121 A KR20180067121 A KR 20180067121A
Authority
KR
South Korea
Prior art keywords
vehicle
control
integrated control
turning
awd
Prior art date
Application number
KR1020160168531A
Other languages
Korean (ko)
Other versions
KR102370943B1 (en
Inventor
김남한
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020160168531A priority Critical patent/KR102370943B1/en
Publication of KR20180067121A publication Critical patent/KR20180067121A/en
Application granted granted Critical
Publication of KR102370943B1 publication Critical patent/KR102370943B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/22Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/109Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/114Yaw movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/18Four-wheel drive vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • B60W2710/207Steering angle of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/12Lateral speed
    • B60W2720/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Vehicle Body Suspensions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

According to the present invention, through an integration control method based on prediction information, an electronic control suspension (ECS) and all wheel drive (AWD) are controlled with front vehicle prediction turning information acquired with vehicle to vehicle communication by an integration control controller (10), and at the same time, electronic stability control (ESC) is controlled with subject vehicle turning information based on an internal sensor mounted in a subject vehicle (1-1). Therefore, when the ECS, the AWD, and the ESC are integrally controlled, torque vectoring of the ESC is delayed for driving sense of difference not to be generated, and integration control performance can be expanded in all driving situations.

Description

예측정보 기반 통합제어방법 및 차량{Integration Control Method Based On Prediction Information and Vehicle thereof}[0001] The present invention relates to an integrated control method based on prediction information,

본 발명은 통합제어에 관한 것으로, 특히 전방 주행중인 앞 차량으로부터 예측된 선회 정보에 기반되어 보조 샤시제어 시스템을 최적 제어할 수 있는 예측정보 기반 통합제어방법 및 차량에 관한 것이다.The present invention relates to integrated control, and more particularly, to a predictive information-based integrated control method and vehicle capable of optimally controlling an auxiliary chassis control system based on turning information predicted from a front vehicle traveling in front of the vehicle.

최근 들어 차량에 ESC와 AWD 및 ECS와 같은 보조 샤시제어 시스템을 통합하여 구축된 전자 샤시제어 시스템이 적용됨으로써 이들의 성능 최적화를 위한 통합 제어 기능이 적용되고 있다.In recent years, integrated control functions have been applied to optimize the performance of electronic chassis control systems, which are constructed by integrating ESC, auxiliary control systems such as AWD and ECS in vehicles.

일례로, 통합 제어는 차량의 언더스티어 또는 오버스티어 경향에 대해 ESC(Electronic Stability Control)의 토크 벡터링(Torque Vectoring)에 의한 제동력 제어, AWD(All Wheel Drive)의 구동륜 토크 배분을 통한 요(Yaw)거동향상, ECS(Electronic Control Suspension)의 전후륜 댐퍼 감쇠력 제어를 통한 롤(Roll)운동 향상 등을 종합적으로 제어한다.For example, the integrated control may include a braking force control by torque vectoring of an electronic stability control (ESC), a yaw control by a driving wheel torque distribution of an AWD (All Wheel Drive) And improvement of roll motion through control of damping force of front and rear damper of ECS (Electronic Control Suspension).

그 결과 통합 제어는 ESC, AWD, ECS의 제어 성능을 최적화함으로써 개별제어 대비 차량의 R&H(Riding and Handling)성능을 크게 향상시켜 준다.As a result, the integrated control greatly improves Riding and Handling (R & H) performance of the vehicle compared to individual control by optimizing the control performance of ESC, AWD and ECS.

국내 공개특허공보 10-2005-0022380(2005년03월08일)Korean Patent Publication No. 10-2005-0022380 (Mar. 08, 2005)

하지만 상기 통합제어방법은 하기와 같은 한계성 또한 극복 과제로 갖고 있다. 첫째 반응성 측면의 불리함으로, 이는 내부센서 이용하여 차량 상태 파악 후 제어를 실시함에 기인된다. 여기서, 내부 센서는 차량에 탑재된 수직가속도 센서, 휠속센서, 조향각센서, 요레이트센서 등을 포함한다. 둘째 효과 측면의 미비함으로, 이는 주행 한계 영역을 제외하고 목표거동과 에러량이 적으므로 통합제어가 이루어지더라도 그 효과가 미비함에 기인된다. 셋째 운전자 이질감 발생으로, 이는 ESC의 토크 벡터링 제어(Torque Vectoring Control)가 엔진 구동력 증가와 제동력 인가 방식으로 구현됨으로써 빈번한 ESC 작동아 주행 이질감 발생으로 이어짐에 기인된다.However, the integrated control method has the following limitations. First, it is disadvantageous in terms of reactivity, which is attributed to the control of the vehicle after grasping the state of the vehicle using an internal sensor. Here, the internal sensor includes a vertical acceleration sensor mounted on the vehicle, a wheel speed sensor, a steering angle sensor, a yaw rate sensor, and the like. Second, it is due to the ineffectiveness even if the integrated control is performed because the target behavior and the error amount are small except for the driving limit area. Third, it is caused by the occurrence of heterogeneity of driver, which leads to frequent occurrence of ESC runaway heterogeneity due to the implementation of ESC torque vectoring control with increasing engine driving force and braking force application.

이에 상기와 같은 점을 감안한 본 발명은 앞차의 선회정보로부터 미리 예측된 선회제어가 실시됨으로써 ECS와 AWD 및 ESC의 통합제어 시 ESC의 토크 벡터링 지연으로 주행 이질감을 발생시키지 않으면서 통합제어 성능을 모든 주행상황으로 확장하고, 특히 V2V 통신(Vehicle to Vehicle Communication)으로 앞차의 선회 조건이 예측되는 예측정보 기반 통합제어방법 및 차량의 제공에 목적이 있다.Therefore, according to the present invention, it is possible to control the integrated control performance of all of the control systems without generating a running disturbance due to the torque vectoring delay of the ESC in the integrated control of the ECS, the AWD, and the ESC by performing the anticipated turning control from the turn- The present invention aims to provide an integrated control method and a vehicle based on predictive information in which the turning condition of a forward vehicle is predicted by V2V communication (Vehicle to Vehicle Communication).

상기와 같은 목적을 달성하기 위한 본 발명의 통합제어방법은 (A) 앞차 예측선회정보가 V2V 통신으로 앞 차량의 횡가속도와 요레이트로 검출되는 단계, (B) 상기 횡가속도와 상기 요레이트가 앞차량 평균 횡가속도와 앞차량 평균 요레이트로 계산되는 단계, (C) 상기 앞차량 평균 횡가속도와 상기 앞차량 평균 요레이트로 앞차량 선회 판단이 이루어지는 단계, (D) 상기 앞차량 선회 판단에 앞차선회등급이 적용되는 단계, (E) 상기 앞차선회등급으로 ECS와 AWD가 제어되는 단계, (F) 상기 자차선회정보가 자 차량의 횡가속도와 요레이트로 검출되어 ESC가 제어되는 단계로 이루어지는 것을 특징으로 하는 한다.According to another aspect of the present invention, there is provided an integrated control method comprising the steps of: (A) detecting, by the V2V communication, the vehicle ahead acceleration and a yaw rate; (C) a step of determining whether the preceding vehicle is turning at the front vehicle average lateral acceleration and the front vehicle average yaw rate, (D) (E) the ECS and the AWD are controlled by the preceding vehicle turning grade, (F) the ESC is controlled by detecting the vehicle turning information and the yaw rate of the vehicle .

바람직한 실시예로서, 상기 앞차선회등급은 Level 0,1,2,3로 분류되고, 상기 Level 0은 직진으로 정의되며, 상기 Level 1은 완속 선회, 상기 Level 2는 노말 선회, 상기 Level 3은 급 선회로 구분된다. 상기 Level 0은 상기 AWD의 전후 구동토크 비가 가속성능 우선에 두고 제어되는 반면 상기 Level 1, 상기 Level 2,상기 Level 3의 각각은 상기 ECS의 댐핑력에 대한 전류 제어와 상기 AWD의 구동토크 비에 대한 후륜 구동 비율 증가 제어로 이루어진다. 상기 Level 1의 상기 전류 제어와 상기 후륜 구동 비율 증가제어 기준 시 상기 Level 2는 상기 Level 1의 상기 전류 제어와 상기 후륜 구동 비율 증가제어 보다 큰 값이고, 상기 Level 3은 상기 Level 2의 상기 전류 제어와 상기 후륜 구동 비율 증가제어 보다 큰 값이 적용된다.In a preferred embodiment, the forward turning class is classified into Levels 0, 1, 2, and 3, the Level 0 is defined as a straight line, Level 1 is a smooth turn, Level 2 is a normal turn, It is divided into turning. The Level 0, the Level 2, and the Level 3 are controlled by the current control for the damping force of the ECS and the driving torque ratio of the AWD while the forward and backward driving torque ratios of the AWD are controlled with acceleration performance priority, And the rear wheel drive ratio increase control. The level 2 is greater than the current control of the level 1 and the rear wheel drive ratio increase control based on the current control of the level 1 and the control of increasing the rear wheel drive ratio and the level 3 is the current control of the level 2 And a value larger than the rear wheel drive ratio increase control is applied.

바람직한 실시예로서, 상기 ECS와 상기 AWD의 각 제어에는 상기 자차선회정보가 합산되며, 상기 ESC의 제어에는 상기 자차선회정보가 피드백된다.As a preferred embodiment, the above-mentioned car navigation information is added to each control of the ECS and the AWD, and the car navigation information is fed back to the control of the ESC.

상기와 같은 목적을 달성하기 위한 본 발명의 차량은 V2V 통신으로 획득된 앞차 예측선회정보로 ECS와 AWD를 각각 제어하고 동시에 자 차량의 탑재 내부 센서에 기반된 자차선회정보로 ESC로 제어하는 통합제어 컨트롤러; 상기 ECS, t아기 AWD, 상기 ESC로 구성된 전자 샤시제어 시스템; 상기 통합제어 컨트롤러로 제공되는 앞차량선회예측정보를 자 차량의 앞차량의 상기 V2V 통신으로 가능하게 하는 V2V 통신모듈;이 포함되는 것을 특징으로 하는 차량.In order to accomplish the above object, the present invention provides an integrated control system for controlling ECS and AWD as front-end predictive turning information obtained by V2V communication, and ESC as self-turning information based on the onboard sensor of the vehicle, controller; An electronic chassis control system composed of the ECS, the baby AWD, and the ESC; And a V2V communication module that enables the preceding vehicle turning prediction information provided to the integrated control controller to be made in the V2V communication of the preceding vehicle of the own vehicle.

바람직한 실시예로서, 상기 통합제어 컨트롤러에는 통합제어 맵이 연계되고, 상기 통합제어 맵에는 가속선회 상항에서 하중이동으로 인한 언더스티어 경향 및 오버스티어 경향에 대한 댐핑력 분배에 따른 선회 특성이 반영된 ECS 댐핑 맵, 가속선회 상항에서 하중이동으로 인한 언더스티어 경향 및 오버스티어 경향에 대한 토크 분배에 따른 선회 특성이 반영된 AWD 토크 배분비 맵이 포함된다.In a preferred embodiment, the integrated control map is associated with an integrated control map, and the integrated control map includes an ECS damping that reflects the understeer tendency due to the load movement in the acceleration turning phase and the turning characteristic according to the damping force distribution with respect to the oversteer tendency Map, an understeer tendency due to the load movement in the acceleration turning phase, and an AWD torque distribution allocation map reflecting the turning characteristics according to the torque distribution with respect to the oversteer tendency.

바람직한 실시예로서, 상기 탑재 내부 센서는 수직가속도 센서, 휠속센서, 조향각센서, 요레이트센서로 구성되고, 상기 통합제어 컨트롤러로 각 검출값을 제공한다.In a preferred embodiment, the onboard internal sensor is constituted by a vertical acceleration sensor, a wheel speed sensor, a steering angle sensor, and a yaw rate sensor, and provides the detected values to the integrated control controller.

이러한 본 발명의 차량은 예측정보를 근거로 통합제어를 수행함으로써 하기와 같은 장점 및 효과를 구현한다.The vehicle of the present invention realizes the following advantages and effects by performing integrated control based on the prediction information.

첫째, ECS와 AWD를 이용한 선제어로 ESC의 개입을 늦추는 통합제어가 구현된다. 둘째, ESC의 개입을 늦춤으로써 토크 벡터링 제어에 따른 운전자의 이질감이 완화된다. 셋째, ESC의 토크 벡터링 제어를 줄여줌으로써 브레이크 패드 및 디스크 내구감소 및 에너지 손실이 크게 저감된다. 넷째, 주행 한계영역뿐만 아니라 일반적인 주행상황에서의 통합제어 성능이 개선된다. 다섯째, 전방 주행 상태 수집에 V2V 통신을 이용함으로써 고 신뢰도를 갖는 정보 획득이 용이하다.First, integrated control is implemented to delay ESC intervention by line control using ECS and AWD. Second, delaying the intervention of the ESC alleviates the driver's sense of heterogeneity due to torque vectoring control. Third, by reducing the torque vectoring control of ESC, brake pad and disk endurance reduction and energy loss are greatly reduced. Fourth, integrated control performance in general driving situations as well as driving limits is improved. Fifth, it is easy to acquire highly reliable information by using V2V communication for collecting forward driving condition.

도 1은 본 발명에 따른 V2V 통합제어모드와 독립 통합제어모드로 구분되어 실행되는 예측정보 기반 통합제어방법의 순서도이고, 도 2는 본 발명에 따른 예측정보 기반 통합제어방법이 구현되는 차량의 예이며, 도 3은 본 발명에 따른 차량이 통합제어 중 V2V 통합제어모드로 제어되는 상태이고, 도 4는 본 발명에 따른 예측정보 기반 통합제어를 위한 통합제어 맵중 AWD 토크 배분비 맵의 예이며, 도 5는 본 발명에 따른 예측정보 기반 통합제어를 위한 통합제어 맵중 ECS 댐핑 맵의 예이며, 도 6은 본 발명에 따른 차량의 ECS와 AWD 및 ESC의 예측정보 기반 통합제어 상태이며, 도 7의 (가),(나)는 본 발명에 따른 V2V 통합제어모드가 주행 한계영역과 일반 주행상황에 적용되는 상태이다.FIG. 1 is a flow chart of a predictive information-based integrated control method that is divided into a V2V integrated control mode and an independent integrated control mode according to an embodiment of the present invention. FIG. 2 shows an example of a vehicle FIG. 3 is a view showing a state in which the vehicle according to the present invention is controlled in the V2V integrated control mode during integrated control, FIG. 4 is an example of an AWD torque distribution allocation map in the integrated control map for predictive information based integrated control according to the present invention, FIG. 5 is an example of an ECS damping map in an integrated control map for predictive information based integrated control according to the present invention, FIG. 6 is an integrated control state based on prediction information of ECS, AWD and ESC of a vehicle according to the present invention, (A) and (b) show a state in which the V2V integrated control mode according to the present invention is applied to the running limit zone and the general running situation.

이하 본 발명의 실시 예를 첨부된 예시도면을 참조로 상세히 설명하며, 이러한 실시 예는 일례로서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 실시 예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, which illustrate exemplary embodiments of the present invention. The present invention is not limited to these embodiments.

도 1을 참조하면, 통합제어방법은 V2V 통신(Vehicle to Vehicle Communication)에 의한 선행 차량정보에 기반된 앞차예측선회정보로 AWD와 ECS 및 ESC의 제어 값을 출력하는 V2V 통합제어모드(S10-1~S80-4), 차량 탑재 내부 센서의 검출값에 기반된 자차선회정보로 ESC의 제어 값을 출력하는 독립통합제어모드(S10-2,S100)로 구분된다. 특히 상기 V2V 통합제어모드(S10-1~S80-4)는 앞차예측선회정보에 자차선회정보를 합산(add)하여 AWD와 ECS에 대한 제어를 수행하고 반면 상기 독립통합제어모드(S10-2,S100)는 AWD와 ECS 제어로 검출된 자차선회정보의 피드백으로 ECS에 대한 제어를 수행함으로써 ESC의 TVC 개입이 지연된다.Referring to FIG. 1, the integrated control method includes a V2V integrated control mode (S10-1) for outputting control values of AWD, ECS, and ESC as predicted future turning information based on preceding vehicle information by V2V communication (Vehicle to Vehicle Communication) S80-4), and an independent integrated control mode (S10-2, S100) for outputting a control value of the ESC as self-turning information based on the detection value of the in-vehicle internal sensor. In particular, the V2V integrated control modes (S10-1 to S80-4) perform control on AWD and ECS by adding the car turning information to the next-estimated turning turn information, while the independent integrated control modes (S10-2, S100) delays the TVC intervention of the ESC by performing control on the ECS by feedback of the self-turning information detected by the AWD and ECS control.

그러므로 상기 통합제어방법은 AWD와 ECS 제어를 위한 V2V 통합제어모드와 ESC 제어를 위한 독립통합제어모드로 구분된 예측정보 기반 통합제어로 정의되고, 그 결과 상기 예측정보 기반 통합제어방법은 AWD와 ECS 및 ESC에 대한 통합 제어가 이루어지면서도 ESC의 TVC 개입 지연 효과와 더불어 차량의 모든 주행상황에서 통합제어의 성능을 향상시켜줄 수 있다.Therefore, the integrated control method is defined as a predictive information based integrated control divided into a V2V integrated control mode for AWD and ECS control and an independent integrated control mode for ESC control. As a result, And ESC, it is possible to improve the performance of the integrated control in all the driving situations of the vehicle in addition to the delay effect of the TVC intervention of the ESC.

도 2를 참조하면, 차량(1)은 전자 샤시제어 시스템(3), 센서 유닛(5), 통합제어 컨트롤러(10), V2V 통신모듈(20)을 포함한다.2, the vehicle 1 includes an electronic chassis control system 3, a sensor unit 5, an integrated control controller 10, and a V2V communication module 20.

구체적으로 상기 전자 샤시제어 시스템(3)은 ESC와 AWD 및 ECS를 통합하여 구축된다, 상기 ESC는 TVC에 의한 제동력 제어, 상기 AWD는 구동륜 토크 배분을 통한 요거동향상, 상기 ECS는 전후륜 댐퍼 감쇠력 제어를 통한 롤(Roll)운동 향상을 구현하고, 통합제어 컨트롤러(10)로 제어된다.Specifically, the electronic chassis control system 3 is constructed by integrating ESC, AWD, and ECS. The ESC is a braking force control by the TVC, the AWD is a yawing motion improvement by the distribution of the driving wheel torque, the ECS is a front- Roll motion improvement through control, and is controlled by the integrated controller 10.

구체적으로 상기 센서 유닛(5)은 수직가속도 센서, 휠속센서, 조향각센서, 요레이트센서로 구성된다. 상기 수직가속도 센서는 자이로 센서와 같이 경사로 판단에 적용되는 차량의 기울어짐을 검출하며, 상기 휠속센서는 ??속도를 검출하고, 상기 조향각센서는 조향휠의 조타각을 검출하며, 상기 요레이트센서는 G 센서와 같이 차량의 횡 가속도를 검출하고, 이들 검출값을 통합제어 컨트롤러(10)로 제공한다.Specifically, the sensor unit 5 includes a vertical acceleration sensor, a wheel speed sensor, a steering angle sensor, and a yaw rate sensor. Wherein the vertical acceleration sensor detects inclination of a vehicle applied to the inclination determination such as a gyro sensor, the wheel speed sensor detects a speed, the steering angle sensor detects a steering angle of the steering wheel, G sensors, and provides these detected values to the integrated controller 10,

구체적으로 상기 통합제어 컨트롤러(10)는 전자 샤시제어 시스템(3)을 피드백제어하고, 센서 유닛(5)의 검출값을 이용하여 ESC와 AWD 및 ECS의 각각을 종합적으로 제어한다. 특히 상기 통합제어 컨트롤러(10)는 통합제어 맵(10-1)과 연계되고, 상기 통합제어 맵(10-1)은 ESC와 AWD 및 ECS의의 V2V 통합제어모드와 독립통합제어모드를 위한 데이터 매칭이 가능한 매칭 테이블을 구비한다.Specifically, the integrated control controller 10 performs feedback control of the electronic chassis control system 3, and comprehensively controls ESC, AWD, and ECS using the detection values of the sensor unit 5. In particular, the integrated control controller 10 is associated with the integrated control map 10-1, and the integrated control map 10-1 includes data matching for the V2V integrated control mode of ESC, AWD, and ECS, And a matching table capable of this.

구체적으로 상기 V2V 통신모듈(20)은 GPS와 통신모듈로 구성되고, 차량 간 통신을 통해 서로에 대한 위치 및 속도 등의 주행정보를 주고 받아 선행 차량정보로 확보하고, 이들 정보를 통합제어 컨트롤러(10)로 제공한다.Specifically, the V2V communication module 20 is composed of a GPS and a communication module. The V2V communication module 20 exchanges driving information such as a position and a speed with respect to each other through inter-vehicle communication, acquires it as preceding vehicle information, 10).

이하 상기 통합제어방법을 도 2 내지 도 7을 참조로 상세히 설명한다. 이 경우 제어주체는 통합제어 맵(10-1)과 연계된 통합제어 컨트롤러(10)이고, 제어 대상은 ESC와 AWD 및 ECS로 구성된 전자 샤시제어 시스템(3)이다.Hereinafter, the integrated control method will be described in detail with reference to FIG. 2 to FIG. In this case, the control subject is the integrated control controller 10 associated with the integrated control map 10-1, and the control target is the electronic chassis control system 3 composed of ESC, AWD, and ECS.

통합제어 컨트롤러(10)는 S10-1과 같이 자차의 전방을 주행하고 있는 선행차량과 V2V 통신을 통해 확보된 앞차예측선회정보에 기반되어 S100-1의 V2V 통합제어모드를 수행하고 동시에 S10-2와 같이 자차의 내부 탑재 센서를 통해 확보된 자차선회정보에 기반되어 S100-2의 독립 통합제어모드를 수행한다. 도 2를 참조하면, 상기 앞차예측선회정보는 V2V 통신모듈(20)을 통해 확보된 선행차량의 횡가속도와 요레이트 검출값을 포함한다. 상기 자차선회정보는 차량(1)의 센서 유닛(5)을 구성하는 수직가속도 센서, 휠속센서, 조향각센서, 요레이트센서로부터 검출된 자차의 횡가속도와 요레이트 검출값을 포함한다.The integrated control controller 10 performs the V2V integrated control mode of S100-1 based on the next-estimated predicted turning information secured through the V2V communication with the preceding vehicle traveling ahead of the preceding vehicle as in S10-1, And the independent integrated control mode of S100-2 is performed based on the self-turning information secured by the internal mounting sensor of the own vehicle as shown in FIG. Referring to FIG. 2, the next-order predicted turning information includes a lateral acceleration of the preceding vehicle secured through the V2V communication module 20 and a yaw rate detection value. The car turning information includes the lateral acceleration of the vehicle detected from the vertical acceleration sensor, the wheel speed sensor, the steering angle sensor, and the yaw rate sensor and the yaw rate detection value that constitute the sensor unit 5 of the vehicle 1.

이어 통합제어 컨트롤러(10)는 S100-1의 V2V 통합제어모드를 S20 내지 S50으로 구분된 앞차 예측선회정보 획득단계, S60의 앞차선회 판단단계, S70-1내지 S80-4의 자차 예측선회 구분단계, S90의 자차 선회 수행단계로 구현한다. 동시에 통합제어 컨트롤러(10)는 S100-2의 독립 통합제어모드를 구현한다.Then, the integrated control controller 10 sets the V2V integrated control mode of S100-1 as the next-stage predicted turning information acquisition step classified as S20 to S50, the next-wheel turning determination step of S60, the step S70-1 to S80-4 , And S90. At the same time, the integrated control controller 10 implements the independent integrated control mode of S100-2.

일례로, 상기 앞차 예측선회정보 획득단계(S20~S50)는 S20의 자 차량 통신모듈과 앞 차량 통신모듈의 V2V 통신 활성화 단계, S30의 자 차량 통신모듈을 통해 횡가속도와 요레이트가 포함된 다수의 정보 수신단계, S40의 수신정보 평균화를 위한 앞 차량 대수 확인 단계, S50의 앞 차량들의 수신정보 평균화 단계로 수행된다. 도 3을 참조하면, 상기 앞차 예측선회정보 획득은 자신의 차량을 자 차량(1-1)으로 하여 앞쪽에서 주행중인 차량을 전방 차량(1-2)으로 하며 전방 차량(1-2)의 앞쪽에서 주행중인 차량을 선행 차량(1-3)으로 한다. 그러므로 상기 V2V 통합제어모드는 적어도 2대 이상에서 확보된 횡가속도와 요레이트 정보가 평균되어 앞차예측선회정보를 확보한다. 일례로, 자 차량(1-1)의 V2V 통신모듈(20)은 전방 차량(1-2)의 V2V 통신모듈로부터 제1 횡가속도와 제1 요레이트 정보를 얻고 동시에 선행 차량(1-3)의 V2V 통신모듈로부터 제2 횡가속도와 제2 요레이트 정보를 얻어 통합제어 컨트롤러(10)로 전송한다. 그러면 통합제어 컨트롤러(10)는 제1,2 횡가속도와 제1,2 요레이트의 각각에 대한 평균값 계산한다.For example, in the step S20 to S50, the V2V communication activation step of the sub-vehicle communication module and the front vehicle communication module in S20, and the plurality of the sub- A step S40 for checking the number of front vehicles for averaging the received information, and a step S50 for averaging the receiving information of the preceding vehicles. 3, it is assumed that the vehicle ahead of the preceding vehicle 1-2 is obtained by using the own vehicle 1-1 as its own vehicle, The preceding vehicle 1 - 3 is used. Therefore, in the V2V integrated control mode, the lateral acceleration and the yaw rate information secured in at least two units are averaged to secure the predicted turning information of the next target. For example, the V2V communication module 20 of the subject vehicle 1-1 obtains the first lateral acceleration and the first yaw rate information from the V2V communication module of the preceding vehicle 1-2, The second lateral acceleration and the second yaw rate information are obtained from the V2V communication module of the integrated controller 10. Then, the integrated controller 10 calculates an average value for each of the first and second lateral acceleration and the first and second yaw rates.

일례로 상기 앞차선회 판단단계(S60)는 앞 차량 평균 횡가속도 값과 앞 차량 평균 요레이트 값을 이용하고, 4개의 앞차선회등급으로 구분된다. 상기 4개의 앞차선회등급은 Level 0,1,2,3으로 구분하고, Level 0을 직진, Level 1을 완속 선회, Level 2를 노말 선회, Level 3을 급선회로 정의한다. 여기서 상기 완속 선회와 상기 노말 선회 및 상기 급선회는 앞차량 평균 횡가속도 값과 앞 차량 평균 요레이트 값으로 구분되며, 그 상세 값은 전자 샤시제어 시스템(3)의 사양과 성능에 따라 달라진다. 상기 자차 예측선회 구분단계(S70-1내지 S80-4)는 앞차선회등급 인덱스를 A로 정의하고, S70-1의 A=0에 따른 S80-1의 Level 0의 직진제어, S70-2의 A=1에 따른 S80-2의 Level 1의 완속 선회제어, S70-3의 A=2에 따른 S80-3의 Level 2의 노말 선회제어, S70-4의 A=3에 따른 S80-4의 Level 3의 급선회 제어로 구현된다.For example, the front-wheel turning determination step S60 is divided into four front-wheel turning classes using the front vehicle average lateral acceleration value and the front vehicle average yaw rate value. Levels 0, 1, 2, and 3 are classified into Level 4, Level 2, Level 3, Level 3, and Level 3, respectively. Here, the fast turn, the normal turn, and the quick turn are classified into a front vehicle average lateral acceleration value and a front vehicle average yaw rate value, and the detailed values thereof depend on the specification and performance of the electronic chassis control system 3. The sub-vehicle-side predictive gyre sorting step S70-1 to S80-4 defines the next-wheel turning grade index as A, performs straight-line control of level 0 in S80-1 according to A = 0 in S70-1, = 1, Level 2 normal rotation control in S80-3 according to A = 2 in S70-3, Level 3 normal rotation control in Level 80 in S80-4 according to A = 3 in S70-4 As shown in FIG.

도 3을 참조하면, 통합제어 컨트롤러(10)는 ECS 댐핑 맵(10-1A)을 앞차예측선회정보로에 대해 AWD 토크 배분비 맵(10-1A)과 ECS 댐핑 맵(10-1B)으로 구분하여 연계한다.3, the integrated control controller 10 divides the ECS damping map 10-1A into an AWD torque distribution allocation map 10-1A and an ECS damping map 10-1B with respect to the next-estimated prediction turning information .

도 4를 참조하면, 통합제어 맵(10-1)중 AWD 토크 배분비 맵(10-1A)의 예를 알 수 있다. 상기 AWD 토크 배분비 맵(10-1A)은 가속선회 상항에서 하중이동으로 인한 US(Understeer) 및 OS(Oversteer) 경향에 대한 토크 분배에 따른 선회 특성을 반영하여 구축된다. 그러므로 통합제어 컨트롤러(10)는 AWD 토크 배분비 맵(10-1A)과 연계되어 US(Understeer)경향에서 전륜토크가 증대되도록 AWD를 제어하고 반면 OS(Oversteer)경향에서 후륜토크가 증대되도록 AWD를 제어할 수 있다.Referring to FIG. 4, an example of the AWD torque distribution allocation map 10-1A in the integrated control map 10-1 can be found. The AWD torque distribution allocation map 10-1A is constructed to reflect the turning characteristics according to the torque distribution with respect to US (Understeer) and OS (Oversteer) tendency due to load movement in the acceleration turning phase. Therefore, the integrated control controller 10 controls the AWD so that the front wheel torque is increased in the US (Understeer) tendency in conjunction with the AWD torque distribution allocation map 10-1A, while AWD is controlled so that the rear wheel torque is increased in the OS Can be controlled.

도 5를 참조하면, 통합제어 맵(10-1)중 ECS 댐핑 맵(10-1B)의 예를 알 수 있다. 상기 ECS 댐핑 맵(10-1B)은 가속선회 상항에서 하중이동으로 인한 US(Understeer) 및 OS(Oversteer) 경향에 대한 댐핑력 분배에 따른 선회 특성을 반영하여 구축된다. 그러므로 통합제어 컨트롤러(10)는 ECS 댐핑 맵(10-1B)과 연계되어 US(Understeer)경향에서 전륜을 SOFT로 후륜을 HARD로 하여 ECS를 제어하고 반면 OS(Oversteer)경향에서 전륜을 HARD로 후륜을 SOFT로 하여 ECS를 제어한다. 여기서 SOFT와 HARD는 쇽업소버 댐핑력으로 SOFT는 HARD대비 충격 흡수를 위한 댐핑력을 크게 가짐을 의미한다. 그 결과 ECS는 가속선회 중 US(Understeer)경향에서 타이어 횡력 감소에 따른 민첩성(agility)을 확보하고 동시에 OS(Oversteer)경향에서 타이어 횡력 감소에 따른 안정성(stability)을 확보할 수 있다.Referring to FIG. 5, an example of the ECS damping map 10-1B in the integrated control map 10-1 can be found. The ECS damping map 10-1B is constructed by reflecting the turning characteristics according to the damping force distribution with respect to US (Understeer) and OS (Oversteer) tendency due to load movement in the acceleration turning phase. Therefore, the integrated control controller 10 controls the ECS by linking the ECS damping map 10-1B to the US (Understeer) tendency, the front wheel to SOFT, and the rear wheel to HARD, while the front wheel in the OS (Oversteer) To the SOFT, and controls the ECS. Here, SOFT and HARD are shock absorber damping forces, and SOFT means that the damping force for shock absorption is greater than HARD. As a result, ECS can secure agility according to tire lateral force reduction under US (Understeer) tendency during accelerating turning while securing stability according to reduction of tire lateral force in OS (oversteer) tendency.

이후 통합제어 컨트롤러(10)는 자차 선회 수행단계(S90)를 S100-1의 V2V 통합제어모드와 S100-2의 독립 통합제어모드의 연계로 구현한다.Then, the integrated control controller 10 implements the self-vehicle turning execution step S90 in conjunction with the V2V integrated control mode of S100-1 and the independent integrated control mode of S100-2.

그 결과 ECS와 AWD는 Level 0,1,2,3에 기반된 V2V 통합제어모드 출력으로 초기 제어된 다음, Level 0,1,2,3에 기반된 V2V 통합제어모드 출력과 ECS 및 AWD의 Level 0,1,2,3 제어 후 센서유닛(3)으로 검출된 자차선회정보를 합산(add)하여 제어된다. 일례로, Level 0 제어는 가속성능 우선이므로 AWD의 전후 구동토크 비가 가속성능 우선에 두고 제어된다. Level 1 제어는 ECS의 댐핑 전류로 전륜 Soft/후륜 Hard제어 및 AWD의 구동토크 비에 대해 후륜 구동 비율 증가를 적용한다. Level 2 제어는 ECS의 댐핑 전류로 전륜 Soft/후륜 Hard 제어 및 AWD의 구동토크 비에 대해 후륜 구동 비율 증가를 적용한다. Level 3 제어는 ECS의 댐핑 전류로 전륜 Soft/후륜 Hard 제어 및 AWD의 구동토크 비에 대해 후륜 구동 비율 증가를 적용한다. 이 경우 Level 1,2,3 제어에 따른 ECS의 댐핑 전류 및 AWD의 구동토크 비는 서로 다르게 적용되며, 구체적인 제어 값은 ECS와 AWD의 사양과 성능에 따라 달라진다. 특히 통합제어 컨트롤러(10)는 S100-2의 독립 통합제어모드에서 이용하는 차속, 조향각, TPS(쓰로틀 개폐 정도)를 CAN 통신으로 획득하여 AWD 토크 배분비 맵(10-1A)과 ECS 댐핑 맵(10-1B)에 연계된 Level 1,2,3 제어에 적용한다.As a result, ECS and AWD are initially controlled by V2V integrated control mode output based on Level 0, 1, 2, 3, and then V2V integrated control mode output based on Level 0, 1, 2, 3 and ECS and AWD Level 0, 1, 2, 3 control, and is added to the detected information. For example, since the level 0 control is prioritized on acceleration performance, the front / rear drive torque ratio of the AWD is controlled with acceleration performance priority. Level 1 control applies the rear wheel drive ratio increase to the drive torque ratio of front wheel soft / rear wheel control and AWD with damping current of ECS. Level 2 control applies the rear wheel drive ratio increase to the driving torque ratio of the front / rear wheel control and AWD with the damping current of the ECS. Level 3 control applies the rear wheel drive ratio increase to the driving torque ratio of the front / rear wheel control and AWD with the damping current of the ECS. In this case, the damping current of ECS and the driving torque ratio of AWD according to Level 1, 2 and 3 control are applied differently, and the specific control value depends on the specification and performance of ECS and AWD. In particular, the integrated control controller 10 acquires the vehicle speed, the steering angle, and the TPS (throttle opening and closing degree) used in the independent integrated control mode of S100-2 via the CAN communication and outputs the AWD torque distribution allocation map 10-1A and the ECS damping map 10 -1B) to Level 1, 2, and 3 control.

그 결과 ECC는 S100-2의 독립 통합제어모드로 초기 제어된 다음, ECS 및 AWD의 Level 0,1,2,3 제어 후 센서유닛(3)으로 검출된 자차선회정보의 피드백으로 지속된다. 그러므로 ESC는 ECS와 AWD의 제어에 대해 TVC 개입을 최대한 지연할 수 있다.As a result, the ECC is initially controlled to the independent integrated control mode of S100-2, and then continues to feedback of the turning information detected by the sensor unit 3 after Level 0, 1, 2, 3 control of the ECS and AWD. Therefore, ESC can delay TVC intervention as much as possible for control of ECS and AWD.

도 6을 참조하면, V2V 통합제어모드와 독립 통합제어모드를 이용한 예측정보 기반 통합제어로 ECS와 AWD 및 ESC가 제어되는 상태를 알 수 있다. 도시된 바와 같이, 자 차량(1-1)의 언더스티어 경향과 오버스티어 경항이 ECS와 AWD 및 ESC의 제어로 제어됨을 알 수 있다. 또한 도 7의 (가)는 급선회와 같은 주행한계영역과 도 7의 (나)는 완속 또는 노말 선화와 같은 일반주행영역에 대해 각각 AWD와 ECS의 V2V 통합제어모드 제어와 ESC의 독립통합제어모드제어를 적용한 시뮬레이션 결과를 나타낸다. 도시된 바와 같이, (가)와 (나)의 양쪽 주행상황에 대해 모두 통합제어의 성능 향상됨이 입증되었다.Referring to FIG. 6, it can be seen that ECS, AWD and ESC are controlled by the integrated control based on prediction information using the V2V integrated control mode and the independent integrated control mode. As can be seen, the understeer tendency and the oversteer tendency of the subject vehicle 1-1 are controlled by the control of ECS, AWD and ESC. 7A and 7B show the V2V integrated control mode control of the AWD and the ECS and the independent integrated control mode of the ESC for the normal running area such as the slow speed or the normal line, Simulation results show that the control is applied. As shown, it has been proved that the performance of the integrated control is improved for both of the situations (A) and (B).

전술된 바와 같이, 본 실시예에 따른 차량의 예측정보 기반 통합제어방법은 통합제어 컨트롤러(10)에 의해 V2V 통신(Vehicle to Vehicle Communication)으로 획득된 앞차 예측선회정보로 ECS(Electronic Control Suspension)와 AWD(All Wheel Drive)가 제어되고 동시에 자 차량(1-1)의 탑재 내부 센서에 기반된 자차선회정보로 ESC(Electronic Stability Control)가 제어됨으로써 ECS와 AWD 및 ESC의 통합제어 시 ESC의 토크 벡터링 지연으로 주행 이질감을 발생시키지 않으면서 통합제어 성능을 모든 주행상황으로 확장할 수 있다.As described above, the predictive information-based integrated control method of the vehicle according to the present embodiment includes ECS (Electronic Control Suspension) and ECS (Electronic Control Suspension) as the next estimated predictive turning information obtained by V2V communication (Vehicle to Vehicle Communication) The electronic stability control (ESC) is controlled as the turning information of the car based on the onboard sensor of the vehicle 1-1 while the AWD (All Wheel Drive) is controlled and the torque vectoring of the ESC in the integrated control of the ECS, AWD and ESC The integrated control performance can be extended to all driving situations without delay due to drivability.

1 : 차량 1-1 : 자 차량
1-2 : 전방 차량 1-3 : 선행 차량
3 : 전자 샤시제어 시스템 5 : 센서 유닛
10 : 통합제어 컨트롤러 10-1 : 통합제어 맵
10-1A : AWD 토크 배분비 맵 10-1B : ESC 댐핑 맵
20 : V2V 통신모듈
1: vehicle 1-1: child vehicle
1-2: Front vehicle 1-3: Prior vehicle
3: electronic chassis control system 5: sensor unit
10: Integrated control controller 10-1: Integrated control map
10-1A: AWD torque distribution allocation map 10-1B: ESC damping map
20: V2V communication module

Claims (14)

통합제어 컨트롤러에 의해 차량 탑재 내부 센서에 기반된 자차선회정보와 V2V 통신(Vehicle to Vehicle Communication)에 기반된 앞차 예측선회정보가 획득되면, ECS(Electronic Control Suspension)와 AWD(All Wheel Drive)가 상기 앞차 예측선회정보로 제어되는 반면 ESC(Electronic Stability Control)가 상기 자차선회정보로 제어되는 예측정보 기반 통합제어;
가 수행되는 것을 특징으로 하는 통합제어방법.
When the integrated control controller acquires the car turning information based on the vehicle mounted internal sensor and the forward predicted turning information based on the V2V communication (Vehicle to Vehicle Communication), ECS (Electronic Control Suspension) and AWD (All Wheel Drive) An integrated control based on predictive information in which ESC (Electronic Stability Control) is controlled by the car turning information, while being controlled by the forward predicted turning information;
Is performed. ≪ / RTI >
청구항 1에 있어서, 상기 V2V 통신은 상기 자 차량과 상기 앞 차량의 V2V 통신모듈로 이루어지는 것을 특징으로 하는 통합제어방법.
2. The integrated control method according to claim 1, wherein the V2V communication comprises a V2V communication module of the child vehicle and the front vehicle.
청구항 1에 있어서, 상기 예측정보 기반 통합제어는, (A) 상기 앞차 예측선회정보가 상기 V2V 통신으로 앞 차량의 횡가속도와 요레이트로 검출되는 단계, (B) 상기 횡가속도와 상기 요레이트가 앞차량 평균 횡가속도와 앞차량 평균 요레이트로 계산되는 단계, (C) 상기 앞차량 평균 횡가속도와 상기 앞차량 평균 요레이트로 앞차량 선회 판단이 이루어지는 단계, (D) 상기 앞차량 선회 판단에 앞차선회등급이 적용되는 단계, (E) 상기 앞차선회등급으로 상기 ECS(Electronic Control Suspension)와 상기 AWD(All Wheel Drive)가 제어되는 단계, (F) 상기 자차선회정보가 자 차량의 횡가속도와 요레이트로 검출되어 상기 ESC(Electronic Stability Control)가 제어되는 단계
로 이루어지는 것을 특징으로 하는 통합제어방법.
2. The method of claim 1, wherein the predictive information-based integrated control comprises: (A) detecting the next-order predicted turning information at the lateral acceleration and yaw rate of the preceding vehicle in the V2V communication; (B) (C) a step of determining whether the preceding vehicle is turning at the front vehicle average lateral acceleration and the front vehicle average yaw rate, (D) (E) controlling the ECS (Electronic Control Suspension) and the AWD (All Wheel Drive) with the preceding vehicle turning grade, (F) determining that the car turning information is the lateral acceleration of the vehicle And the electronic stability control (ESC) is controlled
And a control unit for controlling the integrated control unit.
청구항 3에 있어서, 상기 앞차선회등급은 Level 0,1,2,3로 분류되고, 상기 Level 0은 직진으로 정의되며, 상기 Level 1,2,3의 각각은 선회로 정의되는 것을 특징으로 하는 통합제어방법.
4. The method of claim 3, wherein the forward turning class is classified into Levels 0, 1, 2, and 3, the Level 0 is defined as a straight line, and each of the Levels 1, Control method.
청구항 4에 있어서, 상기 Level 0은 상기 AWD의 전후 구동토크 비가 가속성능 우선에 두고 제어되는 것을 특징으로 하는 통합제어방법.
5. The integrated control method according to claim 4, wherein the Level 0 is controlled such that the forward / backward driving torque ratio of the AWD is prioritized on acceleration performance.
청구항 4에 있어서, 상기 Level 1은 완속 선회, 상기 Level 2는 노말 선회, 상기 Level 3은 급 선회로 구분되는 것을 특징으로 하는 통합제어방법.
The integrated control method according to claim 4, wherein the level 1 is divided into a slow rotation, the level 2 is divided into a normal rotation, and the level 3 is divided into a rapid rotation.
청구항 6에 있어서, 상기 Level 1,상기 Level 2,상기 Level 3의 각각은 상기 ECS의 댐핑력에 대한 전류 제어와 상기 AWD의 구동토크 비에 대한 후륜 구동 비율 증가 제어로 이루어지는 것을 특징으로 하는 통합제어방법.
7. The method of claim 6, wherein each of Level 1, Level 2, and Level 3 comprises a current control for the damping force of the ECS and a rear wheel drive ratio increase control for the drive torque ratio of the AWD. Way.
청구항 7에 있어서, 상기 전류 제어와 상기 후륜 구동 비율 증가제어는 상기 Level 1에서 상기 Level 2 및 상기 Level 3의 순으로 큰 값이 적용되는 것을 특징으로 하는 통합제어방법.
The integrated control method according to claim 7, wherein the current control and the rear wheel drive ratio increase control are applied in order of Level 2 and Level 3 in the Level 1.
청구항 3에 있어서, 상기 ECS(Electronic Control Suspension)와 상기 AWD(All Wheel Drive)의 각 제어에는 상기 자차선회정보가 합산되는 것을 특징으로 하는 통합제어방법.
4. The integrated control method according to claim 3, wherein the car turning information is added to each control of the ECS (Electronic Control Suspension) and the AWD (All Wheel Drive).
청구항 3에 있어서, 상기 ESC(Electronic Stability Control)의 제어에는 상기 자차선회정보가 피드백되는 것을 특징으로 하는 통합제어방법.
4. The integrated control method according to claim 3, wherein the control of the electronic stability control (ESC) comprises feedback of the turning information.
청구항 1 내지 청구항 10 중 어느 한 항에 의한 통합제어방법이 수행되는 통합제어 컨트롤러;
상기 통합제어 컨트롤러로 제어되어 차량 선회 성능을 향상시켜 주는 전자 샤시제어 시스템;
상기 통합제어 컨트롤러로 제공되는 앞차량선회예측정보를 자 차량의 앞차량의 V2V 통신(Vehicle to Vehicle Communication)으로 가능하게 하는 V2V 통신모듈;
이 포함되는 것을 특징으로 하는 차량.
An integrated control controller in which the integrated control method according to any one of claims 1 to 10 is performed;
An electronic chassis control system controlled by the integrated control controller to improve vehicle turning performance;
A V2V communication module that enables the front vehicle turning prediction information provided to the integrated control controller to be V2V communication (Vehicle to Vehicle Communication) of the subject vehicle;
And a vehicle.
청구항 11에 있어서, 상기 통합제어 컨트롤러에는 통합제어 맵이 연계되고, 상기 통합제어 맵에는 가속선회 상항에서 하중이동으로 인한 언더스티어 경향 및 오버스티어 경향에 대한 댐핑력 분배에 따른 선회 특성이 반영된 ECS 댐핑 맵, 가속선회 상항에서 상기 언더스티어 경향 및 상기 오버스티어 경향에 대한 토크 분배에 따른 선회 특성이 반영된 AWD 토크 배분비 맵이 포함되는 것을 특징으로 하는 차량.
12. The system of claim 11, wherein the integrated control map is associated with an integrated control map, wherein the integrated control map includes ECS damping that reflects the understeer tendency due to load movement in the acceleration turning phase and the turning characteristic according to the damping force distribution to oversteer tendency Map, an AWD torque distribution allocation map in which the above-mentioned under-steering tendency in the acceleration turning state and the turning characteristic in accordance with the torque distribution with respect to the over-steering tendency are reflected.
청구항 11에 있어서, 상기 전자 샤시제어 시스템에는 ECS(Electronic Control Suspension), AWD(All Wheel Drive), ESC(Electronic Stability Control)가 포함되는 것을 특징으로 하는 차량.

12. The vehicle according to claim 11, wherein the electronic chassis control system includes an ECS (Electronic Control Suspension), an AWD (All Wheel Drive), and an ESC (Electronic Stability Control).

청구항 11에 있어서, 상기 통합제어 컨트롤러에는 센서 유닛이 연계되고, 상기 센서 유닛은 수직가속도 센서, 휠속센서, 조향각센서, 요레이트센서로 구성되는 것을 특징으로 하는 차량.12. The vehicle according to claim 11, wherein the integrated control controller is associated with a sensor unit, and the sensor unit is comprised of a vertical acceleration sensor, a wheel speed sensor, a steering angle sensor, and a yaw rate sensor.
KR1020160168531A 2016-12-12 2016-12-12 Integration Control Method Based On Prediction Information and Vehicle thereof KR102370943B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160168531A KR102370943B1 (en) 2016-12-12 2016-12-12 Integration Control Method Based On Prediction Information and Vehicle thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160168531A KR102370943B1 (en) 2016-12-12 2016-12-12 Integration Control Method Based On Prediction Information and Vehicle thereof

Publications (2)

Publication Number Publication Date
KR20180067121A true KR20180067121A (en) 2018-06-20
KR102370943B1 KR102370943B1 (en) 2022-03-07

Family

ID=62769993

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160168531A KR102370943B1 (en) 2016-12-12 2016-12-12 Integration Control Method Based On Prediction Information and Vehicle thereof

Country Status (1)

Country Link
KR (1) KR102370943B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112193243A (en) * 2020-10-20 2021-01-08 河北工业大学 Multi-steering mode control method based on obstacle avoidance system
US20210139016A1 (en) * 2019-11-12 2021-05-13 Subaru Corporation Vehicle control apparatus
KR20220034299A (en) 2020-09-10 2022-03-18 현대위아 주식회사 Apparatus for controlling torque of all wheel drive vehicle and operating method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050022380A (en) 2003-08-30 2005-03-08 현대자동차주식회사 Vehicle stability control system for hybrid-electric vehicle
JP2005186762A (en) * 2003-12-25 2005-07-14 Toyota Motor Corp Integrated control system for vehicle
JP2009113516A (en) * 2007-11-01 2009-05-28 Toyota Motor Corp Vibration damping controller for vehicle
KR20110029822A (en) * 2009-09-16 2011-03-23 현대자동차주식회사 System for chassis total controlling of vehicle and method thereof
KR20130052790A (en) * 2011-11-14 2013-05-23 현대자동차주식회사 Vehicle dynamic performance improvement apparatus and method for the same
KR20140119433A (en) * 2013-04-01 2014-10-10 현대자동차주식회사 System and method for controlling driving mode
JP2015193329A (en) * 2014-03-31 2015-11-05 日立オートモティブシステムズ株式会社 Vehicle motion control system, vehicle and program
JP2016139163A (en) * 2015-01-26 2016-08-04 株式会社日立製作所 Vehicle travelling control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050022380A (en) 2003-08-30 2005-03-08 현대자동차주식회사 Vehicle stability control system for hybrid-electric vehicle
JP2005186762A (en) * 2003-12-25 2005-07-14 Toyota Motor Corp Integrated control system for vehicle
JP2009113516A (en) * 2007-11-01 2009-05-28 Toyota Motor Corp Vibration damping controller for vehicle
KR20110029822A (en) * 2009-09-16 2011-03-23 현대자동차주식회사 System for chassis total controlling of vehicle and method thereof
KR20130052790A (en) * 2011-11-14 2013-05-23 현대자동차주식회사 Vehicle dynamic performance improvement apparatus and method for the same
KR20140119433A (en) * 2013-04-01 2014-10-10 현대자동차주식회사 System and method for controlling driving mode
JP2015193329A (en) * 2014-03-31 2015-11-05 日立オートモティブシステムズ株式会社 Vehicle motion control system, vehicle and program
JP2016139163A (en) * 2015-01-26 2016-08-04 株式会社日立製作所 Vehicle travelling control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210139016A1 (en) * 2019-11-12 2021-05-13 Subaru Corporation Vehicle control apparatus
US11618436B2 (en) * 2019-11-12 2023-04-04 Subaru Corporation Controlling driving force distribution ratio in response to prediction of oversteer
KR20220034299A (en) 2020-09-10 2022-03-18 현대위아 주식회사 Apparatus for controlling torque of all wheel drive vehicle and operating method thereof
CN112193243A (en) * 2020-10-20 2021-01-08 河北工业大学 Multi-steering mode control method based on obstacle avoidance system

Also Published As

Publication number Publication date
KR102370943B1 (en) 2022-03-07

Similar Documents

Publication Publication Date Title
CN108216222B (en) Integrated control method for improving front collision avoidance performance and related vehicle
Tseng et al. The development of vehicle stability control at Ford
US7099764B2 (en) Braking control device
US10836377B2 (en) Vehicle control system and controlling method thereof
US9308797B2 (en) Suspension control system and method thereof
US8370038B2 (en) Vehicle subsystem control method and apparatus
US7979189B2 (en) Vehicle behavior control system and method
CN108973985B (en) Driver command interpreter based on combination slip
KR20180067121A (en) Integration Control Method Based On Prediction Information and Vehicle thereof
KR20170084830A (en) Yawing motion control method and apparatus for a vehicle using a suspension
KR20200081524A (en) Vehicle, and control method for the same
CN112339740B (en) Vehicle driving assistance device connected to a trailer, system comprising the device and method
KR20150128046A (en) SYSTEM AND METHOD FOR CONTROLLING VEHICLE WHEEL USING iTire SENSOR
US20230059643A1 (en) Vehicle and acceleration limit control method therefor
JP4928221B2 (en) Vehicle behavior control device
KR20240078450A (en) Apparatus for controlling drift of a vehicle, and controlling method thereof
WO2021060187A1 (en) Vehicle control device
CN112693448B (en) Automobile torque steering control method and electronic equipment
KR102347653B1 (en) Preemptive Response type Chassis Integration Control Method and Vehicle thereof
KR20230045384A (en) Electric vehicle drift control system and method therefor
US11269339B2 (en) Method and control unit for controlling a vehicle during a collision
US11047317B2 (en) Method and device for influencing the engine control of a single-track motor vehicle
US20230202461A1 (en) Device for distributing driving force, system including the same, and operation method thereof
JP7321220B2 (en) Vehicle driving support device, vehicle driving support method, and vehicle control device
KR102368880B1 (en) Driving parameter control method and apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant