KR20180008056A - Method of retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI sensor data - Google Patents

Method of retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI sensor data Download PDF

Info

Publication number
KR20180008056A
KR20180008056A KR1020160089835A KR20160089835A KR20180008056A KR 20180008056 A KR20180008056 A KR 20180008056A KR 1020160089835 A KR1020160089835 A KR 1020160089835A KR 20160089835 A KR20160089835 A KR 20160089835A KR 20180008056 A KR20180008056 A KR 20180008056A
Authority
KR
South Korea
Prior art keywords
himawari
olr
satellite
channel
radiation
Prior art date
Application number
KR1020160089835A
Other languages
Korean (ko)
Other versions
KR102054909B1 (en
Inventor
김부요
이규태
조일성
지준범
정원찬
김구
Original Assignee
강릉원주대학교산학협력단
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강릉원주대학교산학협력단, 한국전자통신연구원 filed Critical 강릉원주대학교산학협력단
Priority to KR1020160089835A priority Critical patent/KR102054909B1/en
Publication of KR20180008056A publication Critical patent/KR20180008056A/en
Application granted granted Critical
Publication of KR102054909B1 publication Critical patent/KR102054909B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4266Photometry, e.g. photographic exposure meter using electric radiation detectors for measuring solar light

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

The present invention relates to an upward longwave radiation calculation method in the top of atmosphere by using the AHI sensor data of a Himawari-8 satellite. The upward longwave radiation calculation method in the top of atmosphere is provided to easily measure the amount of earth emission radiation continuously day and night and use AHI sensor data of a Himawari-8 satellite to use the measured amount as weather study materials by: providing the atmosphere top upward longwave radiation (TOA OLR) calculation method by using the AHI sensor materials of the Himawari-8 satellite using a narrow band; and also providing a coefficient calculating and applying method which converts radiation brightness and atmosphere TOA OLR by using information of infrared zone channel 12, 14, and 15 of the Himawari-8 sensor. As a specific means of the present invention to achieve the present invention, the present invention is achieved by: collecting the infrared sensor area data of spatial resolution of 2 km 2 km and three kinds of channel information of the AHI sensor of the Himawari-8 satellite, for example, information of channel 12, 14, and 15; converting the collected data value of each channel of the Himawari-8 satellite AHI sensor into radiance by using a radiance conversion coefficient; and calculating the atmosphere TOA OLR through an empirical formula by more converting the redirected and converted radiation brightness into radiation illumination.

Description

히마와리 8호 위성의 AHI 센서자료를 이용한 대기상단에서의 상향장파복사산출방법{Method of retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI sensor data}[0001] The present invention relates to a method and apparatus for detecting an upwind longwave radiation (HWA) using an AHI sensor data of a Himawari 8 satellite,

본 발명은 대기 상단에서의 상향장파복사 산출방법에 관한 것으로, 더욱 상세하게는 협대역 밴드를 사용하는 히마와리(Himawari-8)위성의 AHI(Advanced Himawari Imager)센서 자료를 이용하여 대기상단 상향장파복사 산출방안을 제시하고, 아울러, 히마와리(Himawari-8) 위성 AHI센서의 적외영역 채널 정보를 이용하여, 낮과 밤 구분없이 연속적으로 지구방출 복사량을 관측할 수 있도록 한 히마와리 8호 위성의 AHI 센서자료를 이용한 대기상단에서의 상향장파복사 산출방법에 관한 것이다.The present invention relates to a method of calculating an uplink longwave radiation at the upper end of an air conditioner, and more particularly, to a method of calculating upwave longwave radiation using an AHI (Advanced Himawari Imager) sensor data of a Himawari- AHI sensor data of Himawari 8 satellite which can observe the emission amount of the earth continuously without day and night using the infrared region channel information of Himawari-8 satellite AHI sensor. To a method for calculating upwind longwave radiation at the upper end of the atmosphere.

지구의 기후시스템은 대기권, 수권, 설빙권, 생물권, 지권 등으로 구성되어 있으며, 이와 같이, 구성된 각 권역 간 물리과정이 서로 복잡하게 얽혀 현재의 기후상태를 유지하게 된다. The Earth's climate system is composed of the atmosphere, the reservoir, the reservoir, the biosphere, the reservoir, etc. In this way, the physical processes between the constituted regions are intertwined to each other to maintain the present climate.

이러한, 기후 시스템을 움직이는 에너지의 대부분(99.98%)은 태양으로부터 공급되고, 상기 공급된 태양에너지는, 기후 시스템 속에서 여러 형태의 에너지로 변화하며 다양한 규모의 대기 대순환을 유도할 뿐 만 아니라. 주 온실기체로서 지구장파복사에 영향을 주어 복사수지에 기여하게 되는 것인바, 따라서, 정확한 지구 장파복사의 관측은, 지구 복사에너지 수지 및 변화를 이해하는데 있어, 필수적 요소라 할 수 있다. Most of the energy (99.98%) moving the climate system is supplied by the sun, and the supplied solar energy not only transforms into various forms of energy in the climate system, but also induces various atmospheric circulations of the atmosphere. As a primary greenhouse gas, it contributes to the radiative resin by affecting the long-wave radiations, and therefore accurate observations of the long-wave radiations are essential for understanding the radiative energy balance and changes.

이에, 상기 지구 복사에너지 수지는 일반적으로, 지표면에서의 하향 단파복사와, 상향장파복사, 그리고, 대기상단(TOA: Top of Atmosphere)에서의 하향 단파복사와 상향장파복사(OLR: Outgoing Longwave Radiation)를 관측함으로써 계산된다.Therefore, the earth radiant energy balance generally includes a downward short-wave radiation, an upward long-wave radiation, an outgoing longwave radiation (OLR) and a downward short-wave radiation (OLR) at the top of atmosphere (TOA) . ≪ / RTI >

이때, 지구 복사에너지 수지 중에서 대기상단에서의 상향장파복사(OLR)는, 적외 영역내에서 지표면과 대기를 통해 방출되는 총 복사속을 의미하는 것인바, 이는 전지구에 평균적으로 입사되는 태양 복사량, 예컨대, 341.3Wm-2의 크기를 100%라고 하였을때, 구름과, 대기, 그리고 지면에 의하여 약 30%(101.9Wm-2)가 반사되고, 대기상단 상향장파복사(TOA OLR)는 지면과 대기에 의하여 흡수된 에너지를 대기 외로 약 70%(238.5Wm-2)의 방출하게 되는 양이다.At this time, the OLR at the upper end of the earth's radiant energy balance means the total radiant flux emitted from the surface and the atmosphere in the infrared region, which is the average amount of solar radiation incident on the globe, , 30% (101.9 Wm -2 ) is reflected by the clouds, the atmosphere, and the ground, and the upper top longwave radiation (TOA OLR) is reflected on the ground and the atmosphere when the size of 341.3 Wm -2 is 100% The amount of absorbed energy is about 70% (238.5 Wm -2 ) of released outside the atmosphere.

여기서, 상기 대기상단 상향장파복사(TOA OLR)는 대기 조건과 수증기, 구름 등에 의하여 변화되는 것이고, 이는, 날씨와 기후 연구 등에 활용되는 것인바, 이러한, 대기상단 상향장파복사(TOA OLR)의 관측은 위성의 광대역, 혹은 협대역 밴드 복사계 센서로부터 관측된 자료에 의하여 적분된 결과, 또는, 경험적으로 구해진 결과로 추정 될 수 있다.The TOA OLR at the top of the atmosphere is changed due to atmospheric conditions, water vapor, clouds, etc. This is used for weather and climate research, and the observation of the upper atmosphere upwelling (TOA OLR) Can be estimated as a result of integration by observation data from satellite broadband or narrowband band radiometer sensors, or as a result obtained empirically.

이때, 광대역 밴드 복사계 센서에 속하는 CERES(Clouds and the Earth's Radiant Energy System; Wielicki et al., 1996 인용참조)의 경우, 전지구 영역에 대하여 관측자료를 제공해주고 있는 실정이기는 하나, 이는, 특정 지역에 대하여 하루에 한번 혹은, 하루에 두번 정도의 관측을 수행하는 것에 한정된 것으로, 따라서, 지역별로 변화가 다양한 구름, 또는 강수 활동 등에 의한 지구 방출복사량의 변화를 탐지하고, 연구하는데 적당하지 않은 문제점을 갖게 된다.In this case, in the case of CERES (Clouds and the Earth's Radiant Energy System; Wielicki et al., 1996 cited references) belonging to the broadband band radiometer sensor, the observation data are provided for the global area, It is limited to performing observations once a day or twice a day so that the change in each region has a problem that is not suitable for detecting and studying changes in the amount of released radiation due to various clouds or precipitation activities .

한편, 전술한 광대역 밴드 복사계 센서의 문제점을 일부 해결하기 위해 마련된 수단, 예컨대, 정지궤도 위성의 경우에 있어서는, 시간해상도가 조밀하여 에너지 수지와 물 순환 등의 관측과 연구가 용이한 특징을 갖는 것임을 알 수 있다.On the other hand, in the case of a geostationary satellite, a means for solving some of the problems of the broadband band radiometer sensor described above is characterized in that time resolution is dense and observation and research such as energy balance and water circulation are easy Able to know.

하지만, 이와 같은, 정지궤도 위성의 경우, 협대역 밴드 센서를 탑재하고 있기 때문에 지구 복사 수지를 산출하기 위해서는 협대역 밴드 자료를 이용하여 추정할 수 밖에 없는 것인바;However, in the case of geostationary satellites such as these, since it is equipped with a narrowband band sensor, it is inevitable to estimate using the narrowband band data in order to calculate the earth radiation balance.

따라서, 상기 정지궤도 위성에 탑재된 협대역 밴드 센서를 통해 대기상단 상향장파복사(TOA OLR)를 추정하기 위해서는 위성천정각에 따른 복사휘도와 복사조도의 관계, 그리고, 복사조도와 대기상단 상향장파복사(TOA OLR)사이의 경험적인 관계식을 필요하게 되는 또 다른 문제점을 상존되게 하는 것이다.Therefore, in order to estimate the TOA OLR using the narrowband band sensor mounted on the geosynchronous orbit satellite, the relationship between the radiance and the radiation intensity according to the satellite zenith angle, and the relationship between the radiation intensity and the upper- (TOA OLR) in order to make it possible to have another problem that requires an empirical relationship.

따라서, 본 발명은 지구 방출복사량의 변화를 용이하게 탐지하여, 이를, 효과적 연구자료로 활용하기 위해 창안된 것으로;Therefore, the present invention is designed to easily detect a change in the amount of emitted radiation and to utilize it as an effective research material;

본 발명의 목적은, 협대역 밴드를 사용하는 히마와리 8호(Himawari-8), 예컨대, 일본 기상청이 운영하는 정지궤도 기상위성으로, 2015년 7월 가동을 시작한 8번째 히마와리 인공위성의 AHI센서 자료를 이용하여, 대기상단 상향장파복사(TOA OLR) 산출방안을 제시하고, 아울러, 히마와리 8호(Himawari-8) AHI센서의 적외영역 채널 12, 14, 15번 정보를 이용하여, 복사조도와 대기상단 상향장파복사(TOA OLR)로 변환하는 계수 산출 및 적용방법 또한 제시되게 함으로써, 낮과 밤 구분없이 연속적으로 지구방출 복사량을 용이하게 관측하고, 이를, 기상연구자료로 활용할 수 있도록 한 히마와리 8호 위성의 AHI 센서자료를 이용한 대기상단에서의 상향장파복사 산출방법을 제공함에 있다.An object of the present invention is to provide an HIMARI-8 (Himawari-8) using a narrowband band, for example, a geostationary meteorological satellite operated by the Japan Meteorological Agency and providing AHI sensor data of an eighth Himawari satellite In addition, we propose a calculation method of TOA OLR at the top of the atmosphere and use the infrared region channels 12, 14 and 15 of the HIMAWARI-8 AHI sensor, (TOA OLR), it is possible to easily measure the amount of emitted radiation continuously without discriminating between day and night, and to make it possible to utilize it as weather research data, Himawari 8 satellite And a method of calculating upwind longwave radiation at the upper end of the atmosphere using the AHI sensor data of the AHI sensor.

따라서, 상기 목적을 달성하기 위한 본 발명에 따른 히마와리 8호 위성의 AHI 센서자료를 이용한 대기상단 상향장파복사 산출방법의 구체적 수단으로는;In order to accomplish the above object, there is provided a method for calculating an upper-stage upwave long-wave peak using the AHI sensor data of Himawari No. 8 satellite according to the present invention,

히마와리(Himawari-8)위성 AHI 센서의 세가지 채널별정보, 예컨대, 채널12, 채널14, 채널15의 자료와, 2km×2km의 공간해상도의 적외영역 센서자료를 수집하고;Collecting three channel-specific information of the Himawari-8 satellite AHI sensor, e.g., channel 12, channel 14, channel 15, and infrared region sensor data of 2 km x 2 km spatial resolution;

상기 수집된 히마와리(Himawari-8) 위성 AHI 센서의 채널별 자료값을 복사휘도 변환계수를 이용 복사휘도로 변환하며; Converting a data value of each channel of the collected Himawari-8 satellite AHI sensor into a radiance using a radiance conversion coefficient;

재차, 상환 변환된 복사휘도를 복사조도로 더 변환하여, 경험식을 통해 대기 상단 상향장파복사(TOA OLR)를 산출되게 함으로써, 달성된다.And further transforming the redirected converted radiance to the radiance to generate the atmospheric upper end upfield long wave radiation (TOA OLR) through the empirical equation.

이상, 본 발명에 따른 히마와리 8호 위성의 AHI 센서자료를 이용한 대기상단에서의 상향장파복사 산출방법은, 기상 위성인 히마와리 8호(Himawari-8)의 AHI센서 자료를 이용하여, 대기상단 상향장파복사(TOA OLR) 산출방안을 제시하고, 또한, AHI센서의 적외영역 채널인 12, 14, 15번 정보를 이용하여, 복사조도와 대기상단 상향장파복사(TOA OLR)로 변환하는 계수 산출 및 적용방법을 제시한 것으로써, 이는, 낮과 밤 구분없이 연속적으로 지구방출 복사량을 관측 가능하게 하고, 이와 같이, 관측된 정보를, 기상연구자료로 활용할 수 있도록 한 것으로, 매우 유용한 기대효과를 제공한다.Upward longwave radiation calculation method using the AHI sensor data of the Himawari No. 8 satellite according to the present invention is based on the AHI sensor data of the weather satellite Himawari-8, (TOA OLR) calculation, and also calculate and apply the coefficients that convert the radiance to the upper top longwave radiation (TOA OLR) using the information of 12, 14, and 15 infrared channel of AHI sensor This provides a very useful anticipatory effect by making it possible to continuously observe the emission amount of the earth continuously regardless of the day and night and to use the observed information as the weather research data .

도 1은 본 발명에 따른 대기상단 상향장파복사 산출방법에 이용되는 히마와리 위성 8호 AHI 센서의 채널별 자료 표시도
도 2는 본 발명에 따른 대기상단 상향장파복사 산출방법의 알고리즘
도 3은 본 발명에 있어, 복사휘도 변환을 위한 히마와리 위성 AHI 센서의 채널별 계수 정보표시도.
도 4는 본 발명에 있어, 대기상단 상향장파복사 산출에 사용된 히마와리 위성 AHI 센서의 채널별 분광함수 정보표시도
도 5는 본 발명에 있어, 복사조도 변환을 위해 수학식 2의 (2)식 및 (3)식에 적용하기 위한 채널별 k계수 정보표시도
도 6은 본 발명에 있어, 대기상단 상향장파복사로 변환하기 위해 수학식 2의 (4)식 및 (5)식에 적용되는 계수 정보표시도
도 7a 및 도 7b 는 본 발명에 의해 산출된 대기상단 상향장파복사의 상태도
FIG. 1 is a diagram showing data display of AHI sensor No. 8 of Himawari Satellite No. 8 used in the method of calculating the upper-end upwave long-wave radiation according to the present invention
FIG. 2 is a block diagram illustrating an algorithm of an upper-stage uplink long-
Fig. 3 is a diagram showing coefficient information for each channel of a Himawari satellite AHI sensor for radiance conversion in the present invention. Fig.
Fig. 4 is a graph showing spectral function information for each channel of the Himawari satellite AHI sensor used for calculation of the upper-side upwave long-wave radiation calculation in the present invention
FIG. 5 is a diagram showing a k-th coefficient information display per channel for applying the expressions (2) and (3) in the equation (2)
6 is a diagram showing a coefficient information display mode applied to expressions (4) and (5) of Equation (2)
Figs. 7A and 7B are diagrams showing states of the upper-stage upward longwave radiation calculated by the present invention

이하, 본 발명에 따른 히마와리 8호 위성의 AHI 센서자료를 이용한 대기상단상향장파복사 산출방법의 바람직한 실시예를 첨부도면에 의거하여 상세히 설명하기로 한다.Hereinafter, a preferred embodiment of a method for calculating an upper-stage upwave long-wave peak using the AHI sensor data of the Himawari No. 8 satellite according to the present invention will be described in detail with reference to the accompanying drawings.

먼저, 본 발명에 의해 구현되는 대기상단 상향장파복사 산출방법은, 현재 일본 기상청이 운영중에 있는 정지궤도 기상위성, 예컨대, 히마와리(Himawari-8) 위성의 AHI(Advanced Himawari Imager) 센서 정보를 기초자료로 수집 이용하는 것임을 전제로 한다.First, the upper-stage upwave long-wave radiation calculation method implemented by the present invention is a method for calculating the AHI (Advanced Himawari Imager) sensor information of a geostationary weather satellite, for example, Himawari-8 satellite currently operated by Japan Meteorological Agency, As well as to the extent that it is possible.

따라서, 본 발명의 기초정보로 이용되는 상기 히마와리(Himawari-8) 위성의 AHI 센서자료를 보다 구체적인 명시로써 살펴보면, 이는, 도 1에 표기된 바와 같은 세가지 채널, 예컨대, 오존,바람,난류를 주요 관측물체로 하며, 중심파장이 9.6㎛인 채널12, 구름,해양온도,강수를 주요 관측물체로 하며, 중심파장이 11.2㎛인 채널14, 그리고, 수증기,해양온도,재를 주요 관측물체로 하며, 중심파장은 12.4㎛인 채널15의 자료를 수집, 경험식을 통해 대기상단 상향장파복사(TOA OLR)를 추정하고, 그외, 적외영역의 센서자료는 2km×2km의 공간해상도, 예컨대, 전구 5500 ×5500 화소에 해당하는 자료를 이용한다. Therefore, the AHI sensor data of the Himawari-8 satellite used as the basic information of the present invention will be described in more detail. This is because the three channels as shown in FIG. 1, for example, ozone, wind, A channel 12 having a center wavelength of 9.6 μm, a cloud, an ocean temperature, and a precipitation as main observation objects, a channel 14 having a center wavelength of 11.2 μm, and water vapor, ocean temperature, (TOA OLR) is estimated through empirical equations. In addition, the sensor data of the infrared region has a spatial resolution of 2 km × 2 km, for example, 5500 × Use data corresponding to 5500 pixels.

이때, 대기상단 상향장파복사(TOA OLR)를 산출함에 있어, 위성천정각(sza:satellite zenith angle)이 크게 되면, 오차범위 또한 상대적으로 커지게 되는것은 자명한 것으로, 따라서, 대기상단 상향장파복사(TOA OLR) 산출시, 오차발생률을 최소화하기 위하여, 본 발명은 위성 관측각(sza:satellite zenith angle)이 80°미만인 자료만을 제한적으로 이용함이 바람직하다. At this time, in calculating the TOA OLR at the upper end, it is clear that when the satellite zenith angle is large, the error range becomes relatively large. Therefore, TOA OLR), in order to minimize the error incidence, it is preferable that the present invention use only limited data of a satellite zenith angle (sza) of less than 80 °.

이에, 전술한, 히마와리(Himawari-8) 위성 AHI 센서자료를 기초로하여 이루어지는 본 발명의 개략적인 기술적 개념, 예컨대, 대기상단 상향장파복사(TOA OLR) 산출 알고리즘을 간략하게 먼저 살펴보면, 이는, 도 2로 도시된 바와 같이, 복사휘도(Radiance) 자료를 통해 복사조도(Irradiance)로 변환한 후, 경험식을 통해 상향장파복사(TOA OLR)를 산출한다.Thus, a brief description of the above-described conceptual concept of the present invention based on the above-described Himawari-8 satellite AHI sensor data, for example, an algorithm for calculating the TOA OLR at the upper end, 2, the radiation intensity is converted into a radiation intensity (Irradiance) through the radiance data, and the upward longwave radiation (TOA OLR) is calculated through the empirical equation.

이때, 전술한 히마와리(Himawari-8) 위성 AHI 센서자료는 채널별 디지털값(Digital Number) 혹은, 시그널 값을 갖는 것이고, 따라서, 복사휘도로 변환되기 위해서는 각 위성의 변환계수를 필히 요구하게 되는 것인바, 따라서, 히마와리(Himawari-8) 위성 AHI 센서의 경우, 도 3으로 표기된 바와 같은, 채널별 고유의 계수를 통해 복사 휘도로 변환되며, 이는, 아래 수학식 1과 같다.At this time, the Himawari-8 satellite AHI sensor data has a digital value or a signal value for each channel, and therefore, the conversion coefficient of each satellite is necessarily required to be converted into the radiance. Thus, in the case of a Himawari-8 satellite AHI sensor, it is transformed into a radiance through a coefficient specific to each channel as shown in FIG. 3, as shown in Equation 1 below.

[수학식 1][Equation 1]

복사휘도(Radiance) = Gain × 채널별 디지털값DN(Digital Number) + Offset Radiance = Gain × Digital value per channel DN (Digital Number) + Offset

Gain,Offset : 선형변환상수Gain, Offset: linear conversion constant

한편, 대기중에서의 적외복사는 비등방성인 특성을 갖는다.On the other hand, infrared radiation in the atmosphere has an anisotropic nature.

따라서, 대기 상층에서의 복사조도를 계산하기 위해서는 복사휘도의 비등방성을 반드시 고려해야 한다.Therefore, in order to calculate the radiation intensity in the upper atmosphere, it is necessary to consider the anisotropy of the radiation luminance.

이에, 본 발명은, 경험 감광함수(empinical limb darkening function; Able and Gruber, 1979; Schmetz and Liu, 1988 인용참조)를 이용하여 복사휘도를 복사조도로 변환하고, 변환된 복사조도는 최종적으로 경험식에 의해 상향장파복사(TOA OLR)를 산출하게 되는 것으로, 그에 대한 산출방식은 아래 수학식 2 및 수학식 3과 같다.Accordingly, the present invention converts a radiance into a radiance using an empinical limb darkening function (Able and Gruber, 1979; see Schmetz and Liu, 1988), and the converted radiance is finally converted into an empirical formula (TOA OLR) is calculated by the following equation (2) and (3).

[수학식 2]&Quot; (2) "

- step 1 : 복사휘도의 복사조도 변환(Radiance to irradiance)- step 1: Radiance to irradiance of radiance

F = A(θ)L(θ) + B(θ) (1)F = A (?) L (?) + B (?) (1)

A(θ) = k1 + k2(secθ - 1) + k3(secθ - 1)2 (2)1) + k3 (sec? - 1) 2 (2) A (?) = K1 + k2

B(θ)= k4 + k5(secθ - 1) + k6(secθ - 1)2 (3)B (θ) = k4 + k5 (secθ - 1) + k6 (secθ - 1) 2 (3)

여기서, 상기 수학식2의 각 변수는;Here, the respective variables in the equation (2)

F : 채널 복사조도(channel irradiance)[Wm-2-1]F: channel irradiance [W m -2-1 ]

θ : 위성천정각(satellite zenith angle)θ: satellite zenith angle

L : 채널 복사휘도(channel radiance) [Wm-2-1sr-1]L: channel radiance [W m -2-1 sr -1 ]

k1 ~ k6 : 계수(coefficients)k1 to k6: coefficients

A, B : 경험 감광함수(empirical limb darkening function)(Able and Gruber, 1979; Schmetz and Liu, 1988) 이다.A, B: empirical limb darkening function (Able and Gruber, 1979; Schmetz and Liu, 1988).

- step 2 : 복사조도의 상향장파복사 변환(Irradiance to OLR)- step 2: Irradiance to OLR of the irradiance

OLR12.4 = a0 + a1F12.4 + a2F12.4 2 (4)OLR 12.4 = a 0 + a 1 F 12.4 + a 2 F 12.4 2 (4)

OLR9.6+11.2+12.4 = b0 + b1F9.6 + b2F9.6 0.5+ b3F11.2 0.5+ b5F12.4 + b6F12.4 2 (5) OLR 9.6 + 11.2 + 12.4 = b 0 + b 1 F 9.6 + b 2 F 9.6 0.5 + b 3 F 11.2 0.5 + b 5 F 12.4 + b 6 F 12.4 2 (5)

(IF F11.2 > 30 Then OLR9.6+11.2+12.4) (IF F 11.2 > 30 Then OLR 9.6 + 11.2 + 12.4 )

F : 채널별 복사조도(irradiance of channels)[Wm-2]F: irradiance of channels [Wm -2 ]

a, b : 계수(coefficients)a, b: coefficients,

이때, 상기 수학식 2에 있어, F11.2 30Wm-2보다 큰 화소인 경우 OLR9.6+11.2+12.4를 따른다.At this time, in the above Equation 2, F 11.2 For pixels larger than 30 Wm -2 , follow OLR 9.6 + 11.2 + 12.4 .

이와 같은, 이유는, 청명한 대기 조건에서 지면이 방출하는 복사량이 11.2 ㎛ 채널(채널 14)에서 크게 나타나지만, 11.4 ㎛ 채널(채널 15)에서는 민감하게 반응하지 않기 때문이다.This is because the amount of radiation emitted by the ground in a clean atmospheric condition is large in the 11.2 占 퐉 channel (channel 14), but not in the 11.4 占 퐉 channel (channel 15).

따라서, 지표면 방출을 고려하기 위하여 상기 수학식 2의 (4)식 " OLR12.4 = a0 + a1F12.4 + a2F12.4 2 " 조건에 따른, 상기 수학식 2의 (5)식 " OLR9.6+11.2+12.4 = b0 + b1F9.6 + b2F9.6 0.5+ b3F11.2 0.5+ b5F12.4 + b6F12.4 2 " 을 통해 대기상단 상향장파복사를 산출한다. Therefore, in order to consider the surface emission, the OLR (2) of the above formula (2) according to the condition of "OLR 12.4 = a 0 + a 1 F 12.4 + a 2 F 12.4 2 " 9.6 + 11.2 + 12.4 = b 0 + b 1 F 9.6 + b 2 F 9.6 0.5 + b 3 F 11.2 0.5 + b 5 F 12.4 + b 6 F 12.4 2 ".

한편, 위 단계에서 필요한 계수는 복사전달모델(SBDART:Santa Barbara Disort Atmospheric Radiative Transfer; Ricchiazzi et al., 1988 인용참조)을 이용하여, 옵션에 따라 계산된 복사휘도와 복사조도, 그리고, 대기상단 상향장파복사(TOA OLR) 결과를 통계 프로그램인 SPSS(Statistical Package for the Social Sciences; Levesque, 2007 인용참조)의 다중회귀와 비선형회귀를 이용하여 계수을 도출하였다.On the other hand, the coefficients required in the above step are calculated using the radiation brightness and radiation intensity calculated according to the option, using the radiation transfer model (SBDART: Santa Barbara Disort Atmospheric Radiative Transfer; see Ricchiazzi et al. The results of long wave radiation (TOA OLR) were derived using multiple regression and nonlinear regression of statistical program SPSS (Levesque, 2007).

또한, 여기서, 상기 복사전달모델(SBDART)을 옵션으로 하여, 대기 연직자료는 총 6개의 연직 프로파일 자료, 예컨대, US62 표준(US62 standard), 열대(tropics), 중위도 여름(mid-latitude summer), 중위도 겨울(mid-latitude winter), 북극의 여름(sub-arctic summer), 북극의 겨울(sub-arctic winter) 자료를 사용하였고, 구름광학두께는 총 5가지, 예컨대, 8,16,32,64,128로 구성하였으며, 운고는 총 8가지, 예컨대, 2,4,6,8,10,12,14,16 km로 구성하였다.In addition, where the radiative transfer model (SBDART) is optionally selected, the atmospheric vertical data may include six vertical profile data, such as the US62 standard, tropics, mid-latitude summer, We used mid-latitude winter, sub-arctic summer, and sub-arctic winter data, and the total cloud optical thickness was 5, for example 8, 16, 32, 64, 128 , And the total number of uncles was 8, for example, 2,4,6,8,10,12,14,16 km.

또한, 다중회귀와 비선형회귀 계산을 위하여, 종속변수로 대기상단 상향장파복사(TOA OLR)의 경우 3.3 ~ 100㎛의 범위로 계산을 수행하였으며, 독립변수는 각 채널마다의 복사조도로 설정하였다.For the multiple regression and nonlinear regression calculations, the calculation was performed in the range of 3.3 ~ 100㎛ for the upper top longwave radiation (TOA OLR) as the dependent variable, and the independent variable was set as the irradiance for each channel.

또한, 복사전달모델(SBDART)에 입력되는 채널별 분광반응함수(SRF:Spectral Response Function)는, 파장간격이 조밀할수록 복사전달모델(SBDART)의 구동시간이 오래걸리는 이유로 인하여, 파장간격을 0.005㎛ 변환한 채널별 분광반응함수(SRF), 예컨대, 도 4로 도시된 바와 같은, 분광반응함수를 사용하였다.Further, due to the fact that the driving time of the radiation transfer model (SBDART) is longer as the wavelength interval is narrower, the spectral response function (SRF) inputted to the radiation transfer model (SBDART) The spectral response function (SRF) for each transformed channel, for example, as shown in FIG. 4, was used.

따라서, 결론적으로, 히마와리(Himawari-8)위성 AHI 센서자료를 이용하여 대기 상단 상향장파복사(TOA OLR) 계산을 위해 사용된 계수는 도 5 및 도 6에 표기된 바와 같으며, 산출된 대기상단 상향장파복사(TOA OLR)는 도 7a 및 도 7b와 같음을 알 수 있다.Therefore, in conclusion, the coefficients used for the calculation of the upper-end upwelling long wave (TOA OLR) using the Himawari-8 satellite AHI sensor data are as shown in FIGS. 5 and 6, It can be seen that the long wave radiation (TOA OLR) is the same as in FIGS. 7A and 7B.

이때, 상기 대기상단 상향장파복사(TOA OLR)는 물체의 절대온도에 비례하여 방출되는 복사에너지로써, 절대온도가 낮은 구름에서는 낮은 값을 나타내고, 육지에서 높은 값을 보이는 것인바, 이에, 도 7a는 2015년 8월 2일 0210 UTC이고, 그림 7b는 같은 날 1410 UTC로써, 결국 본 발명에 따른 히마와리 위성 AHI 센서자료를 이용한 대기상단의 상향장파복사 산출방법은 적외영역의 채널자료를 이용하기 때문에 낮과 밤 모두 산출이 가능한 것이다. At this time, the atmospheric upper upward long wave radiation (TOA OLR) is a radiant energy radiated in proportion to the absolute temperature of the object, and is low in a low absolute temperature cloud and high in land, Is 0210 UTC on August 2, 2015, and FIG. 7b is 1410 UTC on the same day. Finally, the method of calculating the upward longwave radiation using the Himawari satellite AHI sensor data according to the present invention uses channel data of the infrared region Both day and night can be calculated.

Claims (2)

오존,바람,난류를 관측물체로 하며, 중심파장이 9.6㎛인 채널12, 구름,해양온도,강수를 관측물체로 하며, 중심파장이 11.2㎛인 채널14, 그리고, 수증기,해양온도,재를 관측물체로 하며, 중심파장이 12.4㎛인 채널15의 정보를 갖는 히마와리(Himawari-8)위성 AHI 센서의 채널별 자료와, 2km×2km의 공간해상도를 갖는 적외영역 센서자료를 수집하고;
상기 수집된 히마와리(Himawari-8) 위성 AHI 센서의 채널별 자료값을 복사휘도 변환계수를 이용 복사휘도로 변환하되, 그 변환 복사휘도는 수학식 1;
복사휘도(Radiance) = Gain × 채널별 디지털값DN(Digital Number) + Offset 로 계산되며;
상기 변환된 복사휘도를 복사조도로 더 변환한 후, 경험식을 통해 대기상단 상향장파복사(TOA OLR)를 산출하되, 상기 대기상단 상향장파복사(TOA OLR)의 산출 알고리즘은;
Figure pat00001

로 이루어짐을 특징으로 하는 히마와리 8호 위성의 AHI 센서자료를 이용한 대기상단에서의 상향장파복사 산출방법.
Ozone, wind, and turbulence, and a channel 12 having a center wavelength of 9.6 μm, a channel 14 having a center wavelength of 11.2 μm and a cloud, ocean temperature, and precipitation as observation objects, and water vapor, Collecting channel-specific data of a Himawari-8 satellite AHI sensor having information of a channel 15 having a center wavelength of 12.4 μm and infrared region sensor data having a spatial resolution of 2 km × 2 km;
The collected data values for each channel of the Himawari-8 satellite AHI sensor are converted into a radiance using a radiance conversion coefficient.
Radiance = Gain × Digital value per channel DN (Digital Number) + Offset;
Calculating a TOA OLR by calculating an empirical equation based on an empirical equation, and calculating a TOA OLR at an upper end of the atmospheric upper end of the TOA OLR;
Figure pat00001

The method of calculating the upward longwave radiation at the upper end of the air using the AHI sensor data of the Himawari No. 8 satellite.
제 1항에 있어서;
상기 대기상단 상향장파복사(TOA OLR)의 산출 수학식은;
- step 1 : 복사휘도의 복사조도변환
F = A(θ)L(θ) + B(θ) (1)
A(θ) = k1 + k2(secθ - 1) + k3(secθ - 1)2 (2)
B(θ)= k4 + k5(secθ - 1) + k6(secθ - 1)2 (3)
여기서, 상기 수학식2의 각 변수는;
F : 채널 복사조도(channel irradiance)[Wm-2-1]
θ : 위성천정각(satellite zenith angle)
L : 채널 복사휘도(channel radiance) [Wm-2-1sr-1]
k1 ~ k6 : 계수(coefficients)
A, B : 경험 감광함수(empirical limb darkening function)(Able and Gruber, 1979; Schmetz and Liu, 1988) 이다.

- step 2 : 복사조도의 상향장파복사 변환
OLR12.4 = a0 + a1F12.4 + a2F12.4 2 (4)
OLR9.6+11.2+12.4 = b0 + b1F9.6 + b2F9.6 0.5+ b3F11.2 0.5+ b5F12.4 + b6F12.4 2 (5)
(IF F11.2 > 30 Then OLR9.6+11.2+12.4)
F : 채널별 복사조도(irradiance of channels)[Wm-2]
a, b : 계수(coefficients)
로 이루어짐을 특징으로 하는 히마와리 8호 위성의 AHI 센서자료를 이용한 대기상단에서의 상향장파복사 산출방법.








The method of claim 1, further comprising:
The calculation equation of the upper-atmosphere upward upper-right wave radiation (TOA OLR)
- step 1: Radiance conversion of radiance
F = A (?) L (?) + B (?) (1)
1) + k3 (sec? - 1) 2 (2) A (?) = K1 + k2
B (θ) = k4 + k5 (secθ - 1) + k6 (secθ - 1) 2 (3)
Here, the respective variables in the equation (2)
F: channel irradiance [W m -2-1 ]
θ: satellite zenith angle
L: channel radiance [W m -2-1 sr -1 ]
k1 to k6: coefficients
A, B: empirical limb darkening function (Able and Gruber, 1979; Schmetz and Liu, 1988).

- step 2: Upward longwave copy conversion of the irradiance
OLR 12.4 = a 0 + a 1 F 12.4 + a 2 F 12.4 2 (4)
OLR 9.6 + 11.2 + 12.4 = b 0 + b 1 F 9.6 + b 2 F 9.6 0.5 + b 3 F 11.2 0.5 + b 5 F 12.4 + b 6 F 12.4 2 (5)
(IF F 11.2 > 30 Then OLR 9.6 + 11.2 + 12.4 )
F: irradiance of channels [Wm -2 ]
a, b: coefficients,
The method of calculating the upward longwave radiation at the upper end of the air using the AHI sensor data of the Himawari No. 8 satellite.








KR1020160089835A 2016-07-15 2016-07-15 Method of retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI sensor data KR102054909B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160089835A KR102054909B1 (en) 2016-07-15 2016-07-15 Method of retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI sensor data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160089835A KR102054909B1 (en) 2016-07-15 2016-07-15 Method of retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI sensor data

Publications (2)

Publication Number Publication Date
KR20180008056A true KR20180008056A (en) 2018-01-24
KR102054909B1 KR102054909B1 (en) 2019-12-12

Family

ID=61029540

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160089835A KR102054909B1 (en) 2016-07-15 2016-07-15 Method of retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI sensor data

Country Status (1)

Country Link
KR (1) KR102054909B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112837489A (en) * 2021-01-07 2021-05-25 云南电网有限责任公司电力科学研究院 Floating threshold power transmission line forest fire monitoring method based on satellite and meteorological data
CN116449331A (en) * 2023-06-20 2023-07-18 成都远望科技有限责任公司 Dust particle number concentration estimation method based on W-band radar and meteorological satellite
CN117935082A (en) * 2024-03-22 2024-04-26 青岛星科瑞升信息科技有限公司 Night image processing method and system based on machine learning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140073675A (en) * 2012-12-06 2014-06-17 한양대학교 산학협력단 Evapotranspiration estimating method using satellite and computer readable recording medium storing program performing the method
KR20140115777A (en) * 2013-03-22 2014-10-01 이화여자대학교 산학협력단 Method for estimating longwave climate feedback using sea surface temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140073675A (en) * 2012-12-06 2014-06-17 한양대학교 산학협력단 Evapotranspiration estimating method using satellite and computer readable recording medium storing program performing the method
KR20140115777A (en) * 2013-03-22 2014-10-01 이화여자대학교 산학협력단 Method for estimating longwave climate feedback using sea surface temperature

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Toshiyuki Kurino, Akihiro Uchiyama. Estimation of Total Outgoing Longwave Radiation (OLR) Flux from Geostationary Meteorological Satellite Infrared Window Radiance. Meteorological satellite center tec* *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112837489A (en) * 2021-01-07 2021-05-25 云南电网有限责任公司电力科学研究院 Floating threshold power transmission line forest fire monitoring method based on satellite and meteorological data
CN116449331A (en) * 2023-06-20 2023-07-18 成都远望科技有限责任公司 Dust particle number concentration estimation method based on W-band radar and meteorological satellite
CN116449331B (en) * 2023-06-20 2023-08-15 成都远望科技有限责任公司 Dust particle number concentration estimation method based on W-band radar and meteorological satellite
CN117935082A (en) * 2024-03-22 2024-04-26 青岛星科瑞升信息科技有限公司 Night image processing method and system based on machine learning

Also Published As

Publication number Publication date
KR102054909B1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
Box et al. Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers
KR101914061B1 (en) The method for analyzing heat island characteristic by Satellite
Schillings et al. Operational method for deriving high resolution direct normal irradiance from satellite data
Essery et al. Modelling longwave radiation to snow beneath forest canopies using hemispherical photography or linear regression
Ban-Weiss et al. Using remote sensing to quantify albedo of roofs in seven California cities, Part 1: Methods
CN108168710A (en) A kind of city tropical island effect appraisal procedure based on remote sensing technology
Wattan et al. An investigation of the performance of 14 models for estimating hourly diffuse irradiation on inclined surfaces at tropical sites
CN116519557B (en) Aerosol optical thickness inversion method
KR20180008056A (en) Method of retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI sensor data
Pinker Determination of surface albedo from satellites
Ballestrín et al. One year of solar extinction measurements at Plataforma Solar de Almería. Application to solar tower plants
Porfirio et al. A method for estimating direct normal irradiation from GOES geostationary satellite imagery: Validation and application over Northeast Brazil
Kómar et al. Analysis of diffuse irradiance from two parts of sky vault divided by solar meridian using portable spectral sky-scanner
Liu et al. Using surface stations to improve sounding retrievals from hyperspectral infrared instruments
KR20190037855A (en) Outgoing longwave radiatioin retrieval method using water vapor channel and infrared channel
CN103777205B (en) Based on the self adaptive imaging method of the polynary parameter calibration model of remote sensing image DN value
Vijayakumar et al. Optical exploration of biomass burning aerosols over a high-altitude station by combining ground-based and satellite data
Babst et al. Verification of NCEP reanalysis shortwave radiation with mesoscale remote sensing data
Zo et al. Analysis of solar radiation on the surface estimated from GWNU solar radiation model with temporal resolution of satellite cloud fraction
He et al. Using satellite-based methods to predict daylight illuminance for subtropical Hong Kong
CN114663746A (en) Regional underground water level monitoring method and device fusing multi-source data
Bouchouicha et al. Estimation of hourly global solar radiation using msg-hrv images
Hu et al. The impact of upper tropospheric humidity from Microwave Limb Sounder on the midlatitude greenhouse effect
Pereira et al. Cross validation of satellite radiation transfer models during SWERA project in Brazil
Soler et al. A study of zenith luminance on Madrid cloudless skies

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right