KR20180001822A - Preparation method of Ultrasmall SnO2 nanoparticle-intercalated graphene/polyaniline composites - Google Patents

Preparation method of Ultrasmall SnO2 nanoparticle-intercalated graphene/polyaniline composites Download PDF

Info

Publication number
KR20180001822A
KR20180001822A KR1020160080748A KR20160080748A KR20180001822A KR 20180001822 A KR20180001822 A KR 20180001822A KR 1020160080748 A KR1020160080748 A KR 1020160080748A KR 20160080748 A KR20160080748 A KR 20160080748A KR 20180001822 A KR20180001822 A KR 20180001822A
Authority
KR
South Korea
Prior art keywords
graphene
tin
nanoparticles
sno
suspension
Prior art date
Application number
KR1020160080748A
Other languages
Korean (ko)
Other versions
KR101864933B1 (en
Inventor
심재진
웬방호아
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020160080748A priority Critical patent/KR101864933B1/en
Publication of KR20180001822A publication Critical patent/KR20180001822A/en
Application granted granted Critical
Publication of KR101864933B1 publication Critical patent/KR101864933B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light
    • B01J19/124Ultra-violet light generated by microwave irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

The present invention relates to an ultrafine tin dioxide nanoparticle-inserted graphene/polyaniline composite, and a production method thereof. When used as an active material for electrodes in super capacitors, the composite can improve speed-related properties in electrodes by having specific capacitance of 1012 F/g in the presence of 1 M of Na_2SO_4 at current density of 4 A/g, and production of the composite is possible in an effective and simple way in a short amount of time by using a solvent and ionic liquid only without additional reducing agents.

Description

초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체의 제조방법{Preparation method of Ultrasmall SnO2 nanoparticle-intercalated graphene/polyaniline composites}Preparation method of ultrasmall SnO2 nanoparticle-intercalated graphene / polyaniline composites with ultra-fine tin dioxide nanoparticles embedded therein

본 발명은 초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체의 제조방법에 관한 것이다.The present invention relates to a method for producing a graphene / polyaniline composite in which ultrafine tin dioxide nanoparticles are inserted.

슈퍼커패시터는 전극과 전해질 간의 전기화학적인 반응으로 야기되는 커패시터 거동을 이용하여 전기에너지를 저장 및 공급하는 에너지저장장치로서 기존의 전해커패시터와 이차전지에 비하여 각각 에너지밀도와 출력밀도가 월등하여 다량의 에너지를 신속하게 저장하거나 공급할 수 있는 신개념의 에너지저장동력원으로서 최근에 많은 관심을 받고 있다.The super capacitor is an energy storage device that stores and supplies electric energy by using the capacitor behavior caused by the electrochemical reaction between the electrode and the electrolyte. The super capacitor is superior in energy density and power density to the conventional electrolytic capacitor and the secondary battery, Recently, it has attracted much attention as a new concept of energy storage power source capable of storing or supplying energy quickly.

일반적으로 슈퍼커패시터용 활성전극재료는 전이금속산화물, 탄소계 재료 및 전도성 고분자로 크게 3가지 종류로 분류할 수 있으며, 특히 상기 전이금속산화물은 화합물들은 저비용, 저독성 및 구조적 또는 형태학적 우수한 유연성 때문에 고성능 슈퍼커패시터에 적용하기 위해 많은 연구가 진행되고 있다.In general, the active electrode material for a supercapacitor can be classified into three kinds of transition metal oxide, a carbon-based material and a conductive polymer, and in particular, the transition metal oxide has a high performance A lot of research is being done to apply it to supercapacitors.

상기 전이금속산화물 가운데, 이산화루테늄수화물은 산화환원반응에 의해 가역적으로 충전할 수 있기 때문에 유망한 슈퍼커패시터의 전극재료로서 고려되고 있다. 그러나 루테늄계 수계 슈퍼커패시터는 비싸며, 1 V 전위창은 소형 전자기기로 적용이 제한되며, 이와 동시에 전이금속산화물은 낮은 전도성을 나타내는 문제점이 있다. 따라서 전이금속산화물의 전기화학적 성능을 향상시키기 위한 하나의 전략은 탄소질 재료 및 전도성고분자와 같은 전기화학적으로 전도성 매트릭스를 적층시키는 방법이며, 이 전략을 통해 전극의 구조적 안정성 및 전기전도성을 향상시킬 수 있다.Of the transition metal oxides, ruthenium dioxide hydrate can be reversibly charged by a redox reaction, and thus it is considered as a promising electrode material for supercapacitors. However, ruthenium-based water-based super capacitors are expensive, and the 1 V dislocation window is limited in application to small electronic devices, and at the same time, the transition metal oxide exhibits low conductivity. Thus, one strategy to improve the electrochemical performance of transition metal oxides is to electrochemically deposit conductive matrices, such as carbonaceous materials and conductive polymers, which can improve the structural stability and electrical conductivity of the electrodes have.

개선된 전기화학적 성능을 위해, 슈퍼커패시터 전극의 전기전도성을 개선하도록 하이브리드 나노복합체를 개발하는 데에 상당한 노력이 이루어져 왔다. 그래핀, 이산화주석 및 폴리아닐린(PANI) 3원 복합체는 1 M H2SO4 및 5 mV/s의 스캔 속도에서 913.4 F/g의 최대 비축전용량을 나타내었고, 또한 1000회 이상의 긴 순환 수명을 나타내어 우수한 전기화학적 성능을 나타내었다.For improved electrochemical performance, considerable efforts have been made to develop hybrid nanocomposites to improve the electrical conductivity of supercapacitor electrodes. The graphene, tin dioxide and polyaniline (PANI) ternary complexes exhibited a maximum specific storage capacity of 913.4 F / g at 1 MH 2 SO 4 and a scan rate of 5 mV / s, Showed excellent electrochemical performance.

그러나 활물질의 표면적은 고성능 슈퍼커패시터를 위한 가장 중요한 요소 중 하나인 바, 이산화주석 입자 및 PANI 섬유는 표면적 감소로 인하여 복합체로 개질된 전극의 전기화학적 성능을 크게 감소시킬 수 있는 문제점이 있다. However, the surface area of the active material is one of the most important factors for a high-performance supercapacitor. The tin dioxide particles and the PANI fiber have a problem that the electrochemical performance of the electrode modified with the composite material can be greatly reduced due to the reduction of the surface area.

따라서 이산화주석 입자 및 PANI 섬유의 표면적을 증대시켜 효율적이고 전기화학적 성능을 크게 개선할 수 있는 슈퍼커패시터용 전극소재의 연구개발이 시급한 실정이다.Therefore, research and development of an electrode material for a supercapacitor that can efficiently increase the surface area of tin dioxide particles and PANI fiber and greatly improve the electrochemical performance is urgently needed.

대한민국공개특허 제2011-0126802호Korean Patent Publication No. 2011-0126802

본 발명의 목적은 별도의 환원제 없이 이온성액체 내에서 마이크로웨이브합성법(microwave-assisted method)을 이용하여 합성된 SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체 상에 폴리아닐린을 중합시켜 얻은 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체를 슈퍼커패시터 전극의 활물질로서 이용하여 슈퍼커패시터 전극의 높은 비축전용량 및 순환안정성을 제공하는 데에 있다.It is an object of the present invention to provide a method for preparing polyaniline nanoparticles by polymerizing polyaniline on a reduced graphene oxide graphene nanocomposite deposited with SnO 2 nanoparticles synthesized in a microwave-assisted method in an ionic liquid without a separate reducing agent And to provide a high non-storage capacity and circulation stability of a supercapacitor electrode by using a reduced oxidized graphene / polyaniline composite into which SnO 2 nanoparticles are inserted as an active material of a supercapacitor electrode.

상기 목적을 달성하기 위하여, 본 발명은 탈이온수 및 이온성액체를 혼합한 제1혼합용액에 산화그래핀을 분산시킨 후 초음파처리 하여 제1현탁액을 제조하는 단계(제1단계); 상기 제1현탁액에 주석전구체를 첨가한 후 초음파처리 하여 제2현탁액을 제조하는 단계(제2단계); 상기 제2현탁액에 마이크로웨이브를 조사하여 얻어진 나노복합체를 원심분리한 후 건조하여 SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체를 제조하는 단계(제3단계); 상기 제조된 나노복합체를 탈이온수에 분산시키고 초음파처리 하여 제조된 제3현탁액에 아닐린을 첨가한 후 고분자 중합시켜 복합체를 합성하는 단계(제4단계); 및 상기 복합체를 세척한 후 건조시켜 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체를 제조하는 단계(제5단계);를 포함하는, 초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체 제조방법을 제공한다.In order to accomplish the above object, the present invention provides a method of manufacturing a semiconductor device, comprising: (a) a step of dispersing oxidized graphene in a first mixed solution containing deionized water and an ionic liquid, and then ultrasonically treating the first mixed solution; Adding a tin precursor to the first suspension and then ultrasonifying to prepare a second suspension (second step); Centrifuging the nanocomposite obtained by irradiating the second suspension with microwaves and drying the nanocomposite to prepare a reduced graphene oxide graphene nanocomposite deposited with the SnO 2 nanoparticles (Step 3); Synthesizing a complex by polymerizing an aniline added to a third suspension prepared by dispersing the nanocomposite in deionized water and ultrasonication; And preparing a graphene / polyaniline composite in which the tin dioxide nano-particles are inserted (Step 5), and washing and drying the composite, thereby preparing a graphene / polyaniline composite ≪ / RTI >

또한 본 발명은 상기 제조방법에 의해 제조된 것을 특징으로 하는, 초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체를 제공한다.Also, the present invention provides a graphene / polyaniline composite in which ultrafine tin dioxide nanoparticles are inserted, which is produced by the above production method.

또한 본 발명은 상기 복합체를 활물질로 포함하는, 슈퍼커패시터용 전극을 제공한다.The present invention also provides an electrode for a supercapacitor, which comprises the complex as an active material.

본 발명에 따른 초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체 제조방법에 의해 제조된 복합체를 슈퍼커패시터용 전극의 활물질로 이용할 경우, 4 A/g의 전류밀도와 1 M Na2SO4 전해질에서 1012 F/g의 비축전용량을 갖는 등 이산화주석 입자 및 PANI 섬유의 표면적의 증대로 인하여 전극의 높은 속도 특성을 개선시킬 수 있으며, 특히 1500회 순환 후의 축전용량은 초기용량 대비 오직 9.0%만이 감소하여 우수한 순환안정성을 나타내며, 별도의 환원제 없이 용매와 이온성액체만을 사용하여 매우 간단하면서도 빠른 시간 내에 효과적인 방법으로 복합체를 제조할 수 있다.When the composite prepared by the method of preparing the graphene / polyaniline composite in which the ultrafine tin dioxide nanoparticle according to the present invention is inserted is used as an active material of an electrode for a supercapacitor, a current density of 4 A / g and 1 M Na 2 SO 4 The high speed characteristics of the electrode can be improved by increasing the surface area of the tin dioxide particles and the PANI fiber having a specific capacity of 1012 F / g in the electrolyte. Especially, the storage capacity after 1500 cycles is only 9.0% Is reduced to exhibit excellent cyclic stability, and the complex can be produced in a simple and rapid manner in an effective manner using only a solvent and an ionic liquid without a separate reducing agent.

도 1은 순수한 SnO2 나노입자(a), 순수한 PANI(b), SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체(c) 및 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체(d)의 SEM 이미지를 나타낸 도면이고;
도 2는 SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체(a, b) 및 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체(c, d)의 다양한 배율로 관찰한 TEM 이미지를 나타낸 도면이며;
도 3은 순수한 PANI(a), 산화그래핀(b), SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체(c) 및 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체(d)의 FTIR 스펙트럼을 나타낸 도면이고;
도 4는 SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체(a) 및 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체(b) 및 산화그래핀(삽입)의 XRD 패턴을 나타낸 도면이며;
도 5는 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체(a)의 XPS 스펙트럼 및 C 1s (b), Sn 3d (c)및 N 1s(d)의 핵심수준(core-level) 스펙트럼을 나타낸 도면을 나타낸 도면이고;
도 6은 10 V/s의 스캔속도에서, 1 M H2SO4 및 1 M Na2SO4 전해질 내에서 시험된 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극의 CV 곡선(a), 1 M H2SO4 및 1 M Na2SO4 전해질 내에서 시험된 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극의 나이퀴스트 선도(b) 및 다양한 스캔 속도에서 1 M Na2SO4 (c)와 1 M H2SO4(d)에서 시험된 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극의 CV 곡선을 나타낸 도면이며;
도 7은 다양한 전류밀도에서 Na2SO4 (a) 및 H2SO4 (b)에서 측정된 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극의 정전류방전곡선, 다양한 전류밀도에서, 1 M Na2SO4 및 1 M H2SO4에서 측정된 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극의 비축전용량 (c), 4 A/g의 전류밀도와 1 M Na2SO4 전해질용액 및 3.5 A/g의 전류밀도와 1 M H2SO4 전해질용액 내에서 순환 횟수의 함수에 대한 비축전용량의 변화(d)를 나타낸 도면이다.
1 is a pure SnO 2 nanoparticles (a), pure PANI (b), SnO 2 oxide nano-particles are deposited reduced graphene sheet nanocomposite (c), and SnO 2 is inserted, the reduced oxide nanoparticles of graphene / Lt; RTI ID = 0.0 > (d) < / RTI >
Figure 2 is observed in a variety of magnification of yes SnO 2 oxide nano-particles are deposited reduction pin sheet nanocomposite (a, b) and graphene SnO 2 oxide nano-particles are inserted into the reduced / polyaniline composite (c, d) TEM image;
3 is pure PANI (a), oxidized graphene (b), SnO 2 oxidation of the reduced nanoparticles deposited graphene sheet nanocomposite (c) and SnO 2 nano-particles are inserted into the reduced oxidation graphene / polyaniline composite (d); Fig.
FIG. 4 is a graph showing the XRD pattern of the reduced oxidized graphene nanocomposite (a) deposited with the SnO 2 nanoparticles deposited thereon and the reduced oxidized graphene / polyaniline composite (b) having the SnO 2 nanoparticles inserted and the oxidized graphene Fig.
5 shows the XPS spectrum of the reduced oxidized graphene / polyaniline composite (a) with SnO 2 nanoparticles embedded therein and the core-level of C 1s (b), Sn 3d (c) and N 1s (d) ≪ RTI ID = 0.0 > 1 < / RTI >
Figure 6 shows the CV curves (a (a)) of a reduced oxidized graphene / polyaniline composite electrode with SnO 2 nanoparticles tested in a 1 MH 2 SO 4 and 1 M Na 2 SO 4 electrolyte at a scan rate of 10 V / (B) of reduced oxidized graphene / polyaniline composite electrodes with SnO 2 nanoparticles inserted in 1 MH 2 SO 4 and 1 M Na 2 SO 4 electrolytes, and at 1 M 2 shows the CV curves of a reduced oxidized graphene / polyaniline composite electrode with SnO 2 nanoparticles tested in Na 2 SO 4 (c) and 1 MH 2 SO 4 (d);
7 shows the constant current discharge curves of reduced oxidized graphene / polyaniline composite electrodes with SnO 2 nanoparticles embedded in Na 2 SO 4 (a) and H 2 SO 4 (b) at various current densities, at various current densities (C) of the reduced oxide graphene / polyaniline composite electrode with SnO 2 nanoparticles incorporated in 1 M Na 2 SO 4 and 1 MH 2 SO 4 , current density of 4 A / g and 1 M (D) of a Na 2 SO 4 electrolyte solution and a current density of 3.5 A / g and a function of the number of circulations in a 1 MH 2 SO 4 electrolyte solution.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 발명자들은 별도의 환원제 필요 없이 이온성액체 내에서 마이크로웨이브합성법(microwave-assisted method)을 이용하여 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체를 제조할 수 있고, 이를 슈퍼커패시터 전극의 활물질로서 이용할 경우, 낮은 내부저항으로 인하여 전기화학적 특성을 향상시킬 수 있으며, 특히 현저한 비축전용량 및 우수한 순환안정성을 가질 수 있음을 밝혀내어 본 발명을 완성하였다.The inventors of the present invention can produce a reduced oxidized graphene / polyaniline composite in which SnO 2 nanoparticles are inserted in an ionic liquid by using a microwave-assisted method without requiring a separate reducing agent, When used as an active material of a capacitor electrode, can improve electrochemical characteristics owing to a low internal resistance, and can have a remarkable non-storage capacity and excellent circulation stability, thus completing the present invention.

본 발명은 탈이온수 및 이온성액체를 혼합한 제1혼합용액에 산화그래핀을 분산시킨 후 초음파처리 하여 제1현탁액을 제조하는 단계(제1단계); 상기 제1현탁액에 주석전구체를 첨가한 후 초음파처리 하여 제2현탁액을 제조하는 단계(제2단계); 상기 제2현탁액에 마이크로웨이브를 조사하여 얻어진 나노복합체를 원심분리시킨 후 건조하여 SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체를 제조하는 단계(제3단계); 상기 제조된 나노복합체를 탈이온수에 분산시키고 초음파처리 하여 제조된 제3현탁액에 아닐린을 첨가한 후 고분자중합시켜 복합체를 합성하는 단계(제4단계) 및 상기 복합체를 세척한 후 건조하여 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체를 제조하는 단계(제5단계)를 포함하는, 초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체 제조방법을 제공한다.The present invention relates to a method of preparing a first suspension by dispersing oxidized graphene in a first mixed solution obtained by mixing deionized water and an ionic liquid, followed by ultrasonication to prepare a first suspension (first step); Adding a tin precursor to the first suspension and then ultrasonifying to prepare a second suspension (second step); Centrifuging the nanocomposite obtained by irradiating the second suspension with microwaves and drying the nanocomposite to prepare a reduced graphene oxide graphene nanocomposite deposited with the SnO 2 nanoparticles (Step 3); Synthesizing a complex by polymerizing an aniline added to a third suspension prepared by dispersing the nanocomposite in deionized water and ultrasonic treatment (step 4); and washing and drying the composite, Polyaniline composite in which ultrafine tin dioxide nanoparticles are embedded, which comprises the step of preparing a graphene / polyaniline composite having particles embedded therein (fifth step).

상기 이온성액체는 1-부틸-3-메틸이미다졸리움테트라플루오로보레이트 (1-butyl-3-methylimidazolium tetrafluoroborate), 1-부틸-3-메틸이미다졸리움헥사플루오로보레이트(1-butyl-3-methylimidazolium hexafluorophosphate), 1-에틸-3-메틸이미다졸리움테트라플루오로보레이트(1-ethyl-3-methylimidazolium tetrafluoroborate) 및 1-부틸-3-메틸이미다졸리움 비스(트리플루오로메틸설포닐)이미드(1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide)로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The ionic liquid is selected from the group consisting of 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluoroborate methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide), but the present invention is not limited thereto.

상기 주석 전구체는 주석(IV)이소프로폭사이드(tin(IV) isopropoxide), 염화제1주석(II)(tin(II) chloride), 염화제2주석(tin(IV) chloride) 아세트산주석(II) (tin(II) acetate), 아세트산주석(IV)(tin(IV) acetate), 질산주석(II) (tin(II) nitrate), 질산주석(IV) (tin(IV) nitrate) 및 황산주석(II) (tin(II) sulfate)으로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The tin precursor may be selected from the group consisting of tin (IV) isopropoxide, tin (II) chloride, tin (IV) chloride, tin acetate (II) tin (II) acetate, tin (IV) acetate, tin (II) nitrate, tin (IV) nitrate and tin sulfate (II) sulfate (tin (II) sulfate), but the present invention is not limited thereto.

상기 제3단계는 상기 제2현탁액에 5 내지 15분 동안 100 내지 150 W의 마이크로파를 조사할 수 있으며, 이에 제한되는 것은 아니다.The third step may irradiate the second suspension with 100 to 150 W of microwave for 5 to 15 minutes, but is not limited thereto.

상기 마이크로파를 100 W 미만으로 조사할 경우 이산화주석이 잘 형성되지 않고 산화그래핀이 환원되지 않는 문제점이 발생할 수 있고, 또한 상기 마이크로파를 150 W 초과하여 조사할 경우 이산화주석 입자가 너무 커지고 환원된 산화그래핀이 손상되어 BET 표면적이 작아지고 축전용량이 감소하는 문제점을 야기할 수 있는 바, 합성되는 나노복합체의 성능을 고려하였을 때, 상기 마이크로파는 130 W로 조사하는 것이 보다 바람직하다.When the microwave is irradiated at less than 100 W, tin dioxide may not be formed well and the graphene oxide may not be reduced. In addition, when the microwave is irradiated in excess of 150 W, tin dioxide particles become too large, The graphene may be damaged, resulting in a problem that the BET surface area is decreased and the storage capacity is decreased. In consideration of the performance of the nanocomposite to be synthesized, it is more preferable to irradiate the microwave at 130 W.

상기 제3단계는 상기 제2현탁액에 마이크로웨이브를 조사하여 얻어진 나노복합체를 2 내지 4회 원심분리한 후 10 내지 15시간 동안 40 내지 60℃로 건조할 수 있으며, 이에 제한되는 것은 아니다.In the third step, the nanocomposite obtained by irradiating the second suspension with microwaves may be centrifuged 2 to 4 times and then dried at 40 to 60 ° C for 10 to 15 hours, but the present invention is not limited thereto.

상기 제4단계는 상기 제3현탁액에 아닐린을 첨가한 후 염화철 · 6수화물(FeCl3 · 6H2O)을 용해시킨 탈이온수를 첨가하여 고분자중합 시킬 수 있으며, 이에 제한되는 것은 아니다.The fourth step can be polymerized by adding aniline to the third suspension and adding deionized water in which iron chloride hexahydrate (FeCl 3 .6H 2 O) is dissolved, but not limited thereto.

상기 제4단계는 상기 제3현탁액에 아닐린을 첨가한 후 20 내지 28시간 동안 0 내지 5℃에서 고분자중합 시킬 수 있으며, 이에 제한되는 것은 아니다.The fourth step can be polymerized at 0 to 5 ° C for 20 to 28 hours after adding the aniline to the third suspension, but is not limited thereto.

상기 제5단계는 상기 복합체를 원심분리하여 회수하고 탈이온수 및 에탄올로 세척한 후 20 내지 28시간 동안 40 내지 60℃에서 건조할 수 있으며, 이에 제한되는 것은 아니다.In the fifth step, the complex may be recovered by centrifugation, washed with deionized water and ethanol, and then dried at 40 to 60 ° C for 20 to 28 hours, but is not limited thereto.

또한 본 발명은 상기 제조방법에 의해 제조된 것을 특징으로 하는, 초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체를 제공한다.Also, the present invention provides a graphene / polyaniline composite in which ultrafine tin dioxide nanoparticles are inserted, which is produced by the above production method.

또한 본 발명은 상기 복합체를 활물질로 포함하는, 슈퍼커패시터용 전극을 제공한다.The present invention also provides an electrode for a supercapacitor, which comprises the complex as an active material.

이하, 하기 실시예에 의해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

<실시예 1> SnO&Lt; Example 1 > 22 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체의 합성 Synthesis of Reduced Oxidized Graphene / Polyaniline Complex with Nanoparticles

1. 재료의 준비1. Preparation of materials

흑연분말(99.9995%, Alfa Aesar) 및 주석(IV)이소프로폭사이드[tin(IV) isopropoxide; TIPP, 98%, Alfa Aesar]는 받은 그대로 사용하였다.Graphite powder (99.9995%, Alfa Aesar) and tin (IV) isopropoxide [tin (IV) isopropoxide; TIPP, 98%, Alfa Aesar] were used as received.

아닐린(99 %, Aldrich)은 사용하기 전에 감압 하에서 증류하였고, 이온성액체인 1-부틸-3-메틸이미다졸리움 테트라플루오로보레이트(1-Butyl-3-methylimidazolium tetrafluoroborate; [BMIM][BF4], Ionic Liquids Technologies, >98%, 독일)는 사용하기 전에 잔존하는 물 및 유기물질과 같은 휘발성 불순물을 제거하기 위해 24시간 동안 100℃의 진공오븐에서 보관하였다. 다른 시약은 분석 등급이며, 받은 그대로 사용하였다. 물은 실험실에서 탈이온화 하여 사용하였다.Aniline (99%, Aldrich) was distilled under reduced pressure before use, and an ionic liquid, 1-Butyl-3-methylimidazolium tetrafluoroborate (BMIM) [BF 4 ], Ionic Liquids Technologies, &Gt; 98%, Germany) was stored in a vacuum oven at 100 &lt; 0 &gt; C for 24 hours to remove volatile impurities such as residual water and organic substances prior to use. The other reagents were analytical grade and used as received. Water was used by deionization in the laboratory.

2. SnO2. SnO 22 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체의 합성 Synthesis of Reduced Oxidized Graphene Nanocomposites Deposited with Nanoparticles

산화그래핀(GO)는 종래 알려진 개량된 Hummers 방법을 이용하여 흑연분말로부터 합성하였다. 5 mL의 탈이온수 및 10 g의 [bmim][BF4] 혼합물에 2분 동안 초음파처리 하여 0.015 g 산화그래핀을 분산시켜 제1현탁액을 제조하였다.Oxidized graphene (GO) was synthesized from graphite powders using the Hummers method as known in the art. 5 mL of deionized water and 10 g of [bmim] [BF 4 ] was sonicated for 2 minutes to prepare a first suspension by dispersing 0.015 g of oxidized graphene.

제1현탁액을 제조한 후에 0.15 g TIPP를 제1현탁액에 첨가하고, 2분 동안 초음파처리 하여 제2현탁액을 준비하였다. 실온에서 2시간 동안 TTIP의 가수분해(hydrolysis)를 위해, 상기 제2현탁액을 밀봉하여 일정한 상태로 유지하였다.After the first suspension was prepared, 0.15 g TIPP was added to the first suspension and sonicated for 2 minutes to prepare a second suspension. For hydrolysis of TTIP at room temperature for 2 hours, the second suspension was kept sealed and kept constant.

상기 제2현탁액을 10분 동안 130 W의 마이크로웨이브오븐에서 조사하여 SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체를 회수하였다. 실온까지 냉각한 후, 회수된 SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체를 물로 세척하고 3회 원심분리한 다음, 에탄올로 세척하고 이온성액체를 제거하기 위해 다시 3회 원심분리하고, 12시간 동안 50℃에서 진공 하에서 건조하여 SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체를 합성하였다.The second suspension was irradiated in a 130 W microwave oven for 10 minutes to recover the reduced oxidized graphene nanocomposite deposited with SnO 2 nanoparticles. After cooling to room temperature, the reduced graphene oxide graphene nanocomposite deposited with the recovered SnO 2 nanoparticles was washed with water, centrifuged three times, washed with ethanol, and centrifuged again three times to remove the ionic liquid And dried under vacuum at 50 ° C for 12 hours to synthesize a reduced graphene oxide graphene nanocomposite deposited with SnO 2 nanoparticles.

3. SnO3. SnO 22 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체의 합성 Synthesis of Reduced Oxidized Graphene / Polyaniline Complex with Nanoparticles

SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체는 종래 알려진 방법에 개량된 방법을 이용하여 합성하였다. 탈이온수 50 ml에 2분 동안 초음파처리 하여 SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체 0.1 g을 분산시켜 제3현탁액을 제조하였다.The reduced oxidized graphene / polyaniline complex with SnO 2 nanoparticles incorporated was synthesized using an improved method known in the art. Treated with 50 ml of deionized water for 2 minutes to disperse 0.1 g of the reduced oxidized graphene nanocomposite deposited with SnO 2 nanoparticles to prepare a third suspension.

상기 제3현탁액을 0 ~ 5℃까지 냉각한 후에, 제3현탁액에 2 ml 아닐린(aniline)을 첨가하고, 30분 동안 교반시킨 후 미리 냉각시킨 탈이온수 7.5 ml에 FeCl3 · 6H2O 0.408 g이 포함된 혼합용액을 빠르게 첨가하였다. 24시간 동안 0 ~ 5℃에서 중합을 수행하여 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체를 합성하였다.The third suspension was then cooled to 0 ~ 5 ℃, the third suspension in 2 ml was added to aniline (aniline), and for 30 minutes was then FeCl 3 · 6H 2 O in de-ionized water 7.5 ml was pre-cooled stirring 0.408 g Was added rapidly. Carrying out the polymerization in the 0 ~ 5 ℃ for 24 hours to SnO 2 nanoparticles were synthesized by the oxidation of the reduced graphene / polyaniline composite insert.

상기 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체를 원심분리하여 수득하였고, 탈이온수 및 에탄올로 6회 세척한 후, 24시간 동안 50℃의 진공 하에서 건조하여 최종적으로 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체를 합성하였다.The reduced graphene / polyaniline composite with the SnO 2 nanoparticles inserted therein was centrifuged, washed with deionized water and ethanol six times, and dried under vacuum at 50 ° C. for 24 hours to finally obtain SnO 2 nanoparticles To synthesize a reduced oxidized graphene / polyaniline complex.

<실험예 1> SnO<Experimental Example 1> 22 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체의 특성 분석 Characterization of reduced graphene / polyaniline complex with nanoparticles incorporated

앞서 실시예 1에 의해 제조한 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체의 특성을 분석하기 위하여, KBr법을 이용한 푸리에변환적외선분광분석(Fourier transform infrared(FTIR) spectroscopy)은 FTIR분광분석기(Bio-Rad, Excalibur Series FTS 3000)을 이용하였고, 주사전자현미경 분석(scanning electron microscopy; 이하 'SEM')은 주사전자현미경(Hitachi, S-4800)을 이용하였으며, 투과전자현미경 분석(Transmission Electron Microscopy; 이하 'TEM')은 투과전자현미경(Philips, CM-200)을 200 KV로 가속하여 관찰하였고, X선 회절분석(X-ray diffraction analysis; 이하'XRD')은 Cu Kα 조사를 이용한 X선 회절분석기(PANalytical, X'Pert-PRO MPD)를 이용하였으며, X선 광전자분광분석(X-ray Photoelectron Spectroscopy; 이하 'XPS')은 Al X선원(Al X-ray source)을 이용한 X선 광전자분광분석기(ULVAC-PHI electron spectrometer, Quantera SXM)로 각각 분석을 실시하였다.Fourier transform infrared (FTIR) spectroscopy using the KBr method was performed to investigate the characteristics of the reduced oxidized graphene / polyaniline composite with the SnO 2 nanoparticles prepared in Example 1, (Bio-Rad, Excalibur Series FTS 3000) was used, and scanning electron microscopy (SEM) was performed using a scanning electron microscope (Hitachi, S-4800) Transmission Electron Microscopy (TEM)) was observed by accelerating transmission electron microscope (Philips, CM-200) at 200 KV and X-ray diffraction analysis (XRD) X-ray photoelectron spectroscopy (hereinafter, referred to as 'XPS') was performed using an X-ray source (Al X-ray source) ULVAC-PHI electron spectrometer (Quantera SXM) Respectively.

도 1은 순수한 SnO2 나노입자, 순수한 PANI, SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체 및 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체의 SEM 이미지를 나타낸 것이다.FIG. 1 shows pure SnO 2 nanoparticles, SEM images of a reduced oxidized graphene nanocomposite deposited with pure PANI, SnO 2 nanoparticles and a reduced oxidized graphene / polyaniline composite with SnO 2 nanoparticles embedded therein.

도 1(a) 및 도 1(b)를 참조하면, 순수한 SnO2 및 순수한 PANI는 큰 입자들로 응집상이 되었음을 알 수 있다. 그러나 도 1(c)를 참조하면, SnO2 나노입자가 증착된 환원된 산화그래핀 나노복합체는 SnO2 나노입자들이 굴곡되고 주름진 환원된 산화그래핀 시트의 표면 상에 균일하게 증착되었음을 알 수 있다. SnO2 나노입자가 증착된 환원된 산화그래핀 나노복합체 및 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체는 복합체 형성 후에 순수한 SnO2 나노입자 순수한 PANI의 물리적 특성과 비교하여 현격한 변화를 나타내었으며, 환원된 산화그래핀 박판의 표면은 SnO2 및 PANI 입자로 코팅되었음을 확인하였다.Referring to FIG. 1 (a) and FIG. 1 (b), it can be seen that pure SnO 2 and pure PANI aggregated with large particles. However, reference to Figure 1 (c), SnO 2 oxide nano-particles are deposited reduced graphene nanocomposites can be seen that the SnO 2 nanoparticles winding is uniformly deposited on the surface of the corrugated reduced oxidation graphene sheet . The reduced graphene graphene nanocomposite with the SnO 2 nanoparticles deposited and the reduced graphene oxide / polyaniline composite with the SnO 2 nanoparticles embedded can form pure SnO 2 nanoparticles And It was confirmed that the surface of the reduced oxidized graphene sheet was coated with SnO 2 and PANI particles.

도 2는 복합체 형상의 추가적인 특징을 분석하기 위해, SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체(a, b) 및 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체(c, d)의 다양한 분해능으로 관찰한 TEM 이미지를 나타낸 도면이다.To Figure 2 is to analyze the additional feature of a complex shape, SnO 2 oxide nano-particles are deposited reduced graphene sheet nanocomposite (a, b), and SnO 2 of the reduced oxide nanoparticles is inserted graphene / polyaniline composite ( c, and d, respectively.

TEM 이미지에서 접힌 가장자리를 갖는 박판이 뚜렷이 나타났다. 도 2(a) 및 도 2(b)를 참조하면, SnO2 나노입자가 증착된 환원된 산화그래핀 나노복합체는 환원된 산화그래핀 박판을 덮는 약 5 nm의 평균크기를 갖는 초미세 SnO2 나노입자들을 나타내었다. 또한 도 2(c) 및 도 2(d)를 참조하면, SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체는 환원된 산화그래핀 박판이 응집되는 것을 막기 위하여 환원된 산화그래핀 시트 상에 나노 크기의 SnO2 및 PANI가 균일하게 분포되었다. 도 2(d)의 삽도를 참조하면, 제한시야전자회절(selected area electron diffraction; 이하 'SAED')을 이용하여 SnO2 결정구조를 확인하였으며, 4개의 점으로 된 고리(spotted rings)는 SnO2의 XRD 패턴과 일치함을 확인하였다.The thin image with the folded edge appeared in the TEM image. Referring to FIGS. 2 (a) and 2 (b), the reduced graphene oxide nanocomposite deposited with SnO 2 nanoparticles is coated with ultrafine SnO 2 having an average size of about 5 nm covering the reduced oxidized graphene sheet Nanoparticles. Referring to FIGS. 2 (c) and 2 (d), a reduced oxidized graphene / polyaniline composite having SnO 2 nanoparticles inserted therein is coated with a reduced oxidized graphene sheet Nano-sized SnO 2 and PANI were uniformly distributed on the surface of the substrate. Referring to the illustration of FIG. 2 (d), the SnO 2 crystal structure was confirmed using selected area electron diffraction (SAED), and the four spotted rings were SnO 2 Which is consistent with the XRD pattern.

도 3은 순수한 PANI(a), 산화그래핀(b), SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체(c) 및 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체(d)의 FTIR 스펙트럼을 나타낸 도면이다.3 is pure PANI (a), oxidized graphene (b), SnO 2 oxidation of the reduced nanoparticles deposited graphene sheet nanocomposite (c) and SnO 2 nano-particles are inserted into the reduced oxidation graphene / polyaniline composite (d). Fig.

FTIR 분석을 이용하여 순수한 PANI, 산화그래핀, SnO2 나노입자가 증착된 환원된 산화그래핀 나노복합체 및 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체의 특성을 분석하였다. 순수한 PANI 스펙트럼은 1562 cm-1(C=C, 퀴노이드 고리), 1490 cm-1(C=C, 벤제노이드 고리), 1286 cm-1(C=N) 및 1085 cm-1(C-H)에서 신축진동밴드를 나타내었다. 산화그래핀의 스펙트럼과 비교하면, 1721 cm-1(카보닐 C=O 신축진동), 1410 cm-1(C-OH 신축진동) 및 1042 cm-1(C-O 신축진동) 피크의 강도는 상당히 감소하였거나 환원 후의 피크가 나타나지 않았으므로 이를 통해 산소를 포함하는 작용기가 완전히 분해되었음을 확인하였다. 이러한 피크들의 강도는 산화그래핀의 환원에 기인하여 SnO2 나노입자가 증착된 환원된 산화그래핀 나노복합체의 스팩트럼은 상당히 낮았으며, 이는 SnO2 나노입자들과 환원된 산화그래핀 표면에 존재하는 하이드록시기의 수소원자와의 강한 상호작용에 의한 것임을 알 수 있다. 이는 SnO2 나노입자의 Sn-O-Sn의 진동에 기인하며, 약 500 cm-1 에서 새로운 강한 흡수가 나타났다.Using an FTIR analysis and analyzed the characteristics of pure PANI, graphene oxide, SnO 2 nano-particles have a reduced graphene oxide deposited nanocomposite and SnO 2 nanoparticles is inserted the reduced graphene oxide / polyaniline composite. The pure PANI spectrum was measured at 1562 cm -1 (C = C, quinoid ring), 1490 cm -1 (C═C, benzenoid ring), 1286 cm -1 (C═N) and 1085 cm -1 Stretching vibration band. Compared to the spectrum of oxidized graphene, the intensity of peaks at 1721 cm -1 (carbonyl C = O stretching vibration), 1410 cm -1 (C-OH stretching vibration) and 1042 cm -1 (CO stretching vibration) And no peaks appeared after the reduction. Thus, it was confirmed that the functional group including oxygen was completely decomposed. The intensity of these peaks was significantly lower for the reduced graphene graphene nanocomposites deposited with SnO 2 nanoparticles due to the reduction of the graphene grains, which was due to the presence of SnO 2 nanoparticles and reduced graphene And the strong interaction with the hydrogen atom of the hydroxyl group. This is due to the vibration of Sn-O-Sn of the SnO 2 nanoparticles, and a new strong absorption was observed at about 500 cm -1 .

도 4는 SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체(a) 및 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체(b) 및 산화그래핀(삽입)의 XRD 패턴을 나타낸 도면이다.FIG. 4 is a graph showing the XRD pattern of the reduced oxidized graphene nanocomposite (a) deposited with the SnO 2 nanoparticles deposited thereon and the reduced oxidized graphene / polyaniline composite (b) having the SnO 2 nanoparticles inserted and the oxidized graphene Fig.

산화그래핀 패턴은 상기 산화그래핀의 (001) 반사에 대응하는 11.3˚ 2θ에서 날카로운 피크를 나타내었고, 이는 산화그래핀이 정렬된 층상 구조인 것을 확인해 주었다. 마이크로파를 조사한 이후에는 2θ = 11.3˚의 뾰족한 피크가 사라졌는데, 이는 산화그래핀이 완벽하게 환원되었음을 나타내는 것이다. The oxidized graphene pattern showed a sharp peak at 11.3 DEG 2 &amp;thetas; corresponding to the (001) reflection of the oxidized graphene, confirming that the oxidized graphene was an aligned layered structure. After irradiation with microwaves, sharp peaks at 2θ = 11.3 ° disappeared indicating that the graphene graphene was completely reduced.

SnO2 나노입자가 증착된 환원된 산화그래핀 나노복합체 및 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체의 XRD 분석은 JCPDS 41-1445에 따라 각각 정방성(tetragonal) SnO2의 (110), (101), (211) 및 (301) 회절면에 할당된 2θ에서 26.6˚, 33.9˚, 51.9˚ 및 61.8˚의 특징적인 피크를 나타내었다. 상기 결과는 JCPDS 41-1445 기준을 충족한 것을 확인하였다. SnO 2 particles are nano yes the reduced evaporation and oxidation pin nanocomposite SnO 2 nanoparticles XRD analysis of the reduced graphene oxide / polyaniline composite insert of the respective spinning property (tetragonal) SnO 2 according to JCPDS 41-1445 ( 33.9 °, 51.9 ° and 61.8 ° in the 2θ allotted to the diffraction planes of (111), (101), (211) and (301) The above results confirmed that they satisfied the JCPDS 41-1445 standard.

약 19˚의 넓은 피크는 무정형 PANI의 존재를 나타내며, 복합체의 XRD 패턴에서 RGO에 속하는 구별되는 피크의 부재는 복합체 내에서 환원된 산화그래핀의 낮은 중량비와 SnO2의 (110)에서의 높은 피크가 겹치기 때문인 것으로 확인되었다. Broad peak at about 19˚ indicates the presence of amorphous PANI, the absence of distinct peaks belonging to RGO in the XRD pattern of the complex is a high peak in the oxidized yes low weight ratio of the fin and 110 of SnO 2 reduction in the composite As shown in Fig.

평균 결정크기를 나타내는 D는 하기 수학식 1에 의해 계산되었다.D representing the average crystal size was calculated by the following equation (1).

[수학식 1][Equation 1]

D = K λ/(β COS θ)D = K? / (? COS?)

상기 수학식 1은 디바이-쉐러법(Debye-Scherrer)에 의한 결정크기를 계산할 수 있는 식이다. 여기서 K는 쉐러상수이고, λ는 X-선의 파장 길이이며, β는 최대값의 절반에서의 피크의 폭이고, θ는 브래그 회절각이다. 2θ = 33.9˚에서 피크는 5.3 ㎚의 결정크기를 나타내었으며, 상기 값은 TEM의 측정 결과와 일치하였다.Equation (1) is an equation that can calculate the crystal size by the Debye-Scherrer method. Where K is the Scherrer constant, [lambda] is the wavelength length of the X-ray, [beta] is the width of the peak at half the maximum value, and [theta] is the Bragg diffraction angle. At 2θ = 33.9 °, the peak exhibited a crystal size of 5.3 nm, which was consistent with the TEM measurement.

도 5는 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체의 XPS 탐사스팩트럼(survey spectra) 및 복합체 스팩트럼에서 C 1s, Sn 3d 및 N 1s의 핵심수준(core-level)을 나타낸 도면이다.Figure 5 shows the core-level of C 1s, Sn 3d and N 1s in XPS survey spectra and complex spectrum of reduced oxidized graphene / polyaniline complex with SnO 2 nanoparticles inserted .

탐사스팩트럼에서 질소를 나타내는 피크를 관찰하였고, PANI의 존재를 확인하였다. 284.8 eV에서 날카로운 피크는 sp2 C의 C 1s에 할당되었다. 복합체의 C 1s XPS 스펙트럼에서 C-O-C(286.8 eV) 및 C-OH(285.4 eV) 부분은 거의 사라졌다. 상기 결과는 산화그래핀이 마이크로웨이브 하에서 그래핀으로 성공적으로 환원된 것을 나타낸다. In the exploration spectrum, a peak indicating nitrogen was observed and the presence of PANI was confirmed. A sharp peak at 284.8 eV was assigned to C 1s of sp 2 C. In the C 1s XPS spectrum of the complex, the COC (286.8 eV) and C-OH (285.4 eV) portions almost disappeared. The results indicate that the oxidized graphene was successfully reduced to graphene under microwave.

결합에너지의 두 개의 주요한 피크는 주석의 3d3/2 및 3d5/2에 각각 대응하는 복합체의 주석의 3d 스펙트럼의 496.1 eV 및 487.6 eV에서 관찰되었다. 주석의 3d3/2 및 3d5/2 사이의 피크의 거리는 8.5 eV 이었으며, 두 피크 사이의 면적비는 1 : 1.5로 확인되었고, 상기 결과는 이산화주석에 있어서 주석의 3d 결합에너지와 일치하는 것이다. 그러나, 도 2(c) 및 도 2(d)를 참조하면, 이는 TEM 이미지에서 관측된 바와 같이, 피크의 강도는 PANI 층의 코팅에 기인하여 매우 낮음을 알 수 있다.The two major peaks of the binding energy were observed at 496.1 eV and 487.6 eV of the 3d spectrum of the tin of the complex corresponding to 3d 3/2 and 3d 5/2 of the tin, respectively. The distance of the peak between 3d 3/2 and 3d 5/2 of tin was 8.5 eV and the area ratio between the two peaks was found to be 1: 1.5, and the result is consistent with the 3d binding energy of tin in the tin dioxide. However, referring to Figures 2 (c) and 2 (d), it can be seen that the intensity of the peaks is very low due to the coating of the PANI layer, as observed in the TEM image.

<실험예 2> SnO&Lt; Experimental Example 2 > 22 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체를 활물질로서 이용한 전극의 성능 분석 Performance Analysis of Electrode Using Nanoparticle-Inserted Reduced Oxide / Polyaniline Complex as Active Material

앞서 실시예 1에 의해 제조한 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체를 슈퍼커패시터 전극의 활물질(active materials)로서 이용하여 전기화학적 테스트를 수행하였다. 모든 전기화학적 분석, 즉, 순환전압전류법(cyclic voltammogram; 이하 'CV'), 대시간전위차법(chronopotentiometry; 이하 'CP') 및 전기화학임피던스분광법(Electrochemical impedance spectroscopy; 이하 'EIS')은 3-전극계를 갖는 정전압/정전류기 (potentiostat/galvanostat, Autolab PGSTAT 302N)에서 수행되었으며, Ag/AgCl 및 백금박편을 각각 기준전극 및 상대전극으로 사용하였다.Electrochemical tests were performed using the reduced oxidized graphene / polyaniline composite with the SnO 2 nanoparticles prepared in Example 1 as the active materials of the supercapacitor electrode. All electrochemical analyzes, namely, cyclic voltammogram (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) AgCl / AgCl and platinum flakes were used as a reference electrode and a counter electrode, respectively.

작업전극은 시료가 포함된 기 제조된 분말(2 mg, 80 중량%)을 15 중량% 아세틸렌블랙 (acetylene black)과 5 중량% 폴리테트라플루오로에틸렌 (polytetrafluoroethylene; PTFE) 바인더와 혼합하고, 유리질 탄소 종이(1.0 cm × 1.0 cm) 상에 코팅하여 제작하였으며, 상온조건에서, 1 M의 H2SO4 및 Na2SO4를 포함한 전해질용액을 사용하여 0.0 내지 0.6 V에서 측정하였다.The working electrode was prepared by mixing the prepared powder (2 mg, 80 wt%) containing the sample with 15 wt% acetylene black and 5 wt% polytetrafluoroethylene (PTFE) (1.0 cm x 1.0 cm), and measured at 0.0 to 0.6 V using an electrolyte solution containing 1 M of H 2 SO 4 and Na 2 SO 4 at room temperature.

상기 전극의 비축전용량 (CS)은 다음의 식을 이용하여 계산하였다.The non-storage capacity (C S ) of the electrode was calculated using the following equation.

[수학식 2]&Quot; (2) &quot;

Figure pat00001
Figure pat00001

상기 C s , I, t, mΔV는 각각 비축전용량 (F/g), 방전전류 (A), 방전시간(s), 활성물질의 질량 (g) 및 방전전위 범위(V)를 의미한다.The C s, I, t, m and ΔV means a respective ratio capacitance (F / g), the discharging current (A), the discharge time (s), by weight of the active material (g) and the discharge potential range (V) do.

10 mV/s의 동일한 스캔속도(도 6(a)) 및 다양한 스캔속도(도 6(c), 도 6(d))에서, 1 M의 H2SO4 전해질용액에서 측정된 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극은 1 M의 Na2SO4 전해질용액에서 측정된 전극보다 훨씬 높은 전류 및 더 직사각형에 가까운 모양을 나타내었다. 그러나 1 M의 H2SO4 전해질용액에서 측정하였을 때 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극은 CV 곡선의 모든 스캔속도에서 명확한 산화환원 피크와 높은 페러데이 축전용량을 나타내었다. 이러한 결과는 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극이 환원된 산화그래핀에서 우수한 전기화학적 이중층 커패시던스(EDLC)를 가질 뿐만 아니라, PANI과 SnO2에서 명백한 의사축전용량을 나타내는 것을 시사하고 있다. 얻어진 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극재료는 동시에 두 개의 서로 다른 에너지저장장치인 EDLC 및 페러데이 축전용량을 조합한 것을 나타내고 있다.(Fig. 6 (a)) and various scan rates (Figs. 6 (c) and 6 (d)) of 10 mV / s, SnO 2 nanoparticles measured in a 1 M H 2 SO 4 electrolyte solution The reduced oxidized graphene / polyaniline composite electrode showed much higher current and more rectangular shape than the electrode measured in the 1 M Na 2 SO 4 electrolyte solution. However, the reduced oxidized graphene / polyaniline composite electrode with SnO 2 nanoparticles embedded in a 1 M H 2 SO 4 electrolyte showed a clear redox peak and a high ferrode storage capacity at all scan speeds of the CV curve . These results are obvious pseudo power storage capacity as well as have a switch (EDLC) SnO 2 oxide nano-particles are inserted into the reduced graphene / polyaniline composite electrode is reduced oxidation Yes incidents excellent electrochemical double layer capacitance at the pin, in the PANI and SnO 2 . &Lt; / RTI &gt; The reduced oxidized graphene / polyaniline composite electrode material into which the SnO 2 nanoparticles are inserted shows that EDLC and ferrode storage capacities, which are two different energy storage devices, are combined at the same time.

EIS는 전기화학적 특성을 검토하기 위한 유용한 분석법으로서 이상적인 나이퀴스트 임피던스선도는 높은 주파수에서는 반원형, 낮은 주파수에서는 선형으로 나타난다. 도 6(c)는 1 M H2SO4 전해질용액 및 1 M Na2SO4 전해질용액에서 수행한 전극의 나이퀴스트 선도를 나타낸 것이다. 높은 주파수 영역에서 전극재료 - 전해질 계면에서의 공정과 관련된 작은 아크가 관찰되었는데, 이것은 일반적으로 이온의 전하이동저항(charge-transfer resistance; Rct)과 직접적인 관련이 있는 축전용량이라 예상되는 것이다.EIS is a useful analytical method for studying electrochemical properties. The ideal Nyquist impedance line appears semicircular at higher frequencies and linear at lower frequencies. 6 (c) is a Nyquist plot of the electrode performed in 1 MH 2 SO 4 electrolyte solution and 1 M Na 2 SO 4 electrolyte solution. In the high frequency region, a small arc associated with the process at the electrode material-electrolyte interface was observed, which is generally expected to be a capacitance that is directly related to the charge-transfer resistance (Rct) of the ion.

전극에 대한 Rct 값은 1 M H2SO4 전해질용액 및 1 M Na2SO4 전해질용액에서 각각 2.5 V 및 5.0 Ω이었다. 낮은 주파수에서는 Na2SO4 전해질용액 내에서 사용한 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극은 전형적인 축전용량 거동인 약 90˚ 직선을 나타내었다. 이러한 결과를 통해 Na2SO4 전해질용액으로 수행한 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극이 낮은 전하이동저항을 가지며, H2SO4 전해질용액 내에서 시험한 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극보다 좋은 용량 거동을 가짐을 알 수 있는데, 이는 CV 분석결과와 일치하는 것이다.The Rct values for the electrodes were 2.5 V and 5.0 Ω in 1 MH 2 SO 4 electrolyte solution and 1 M Na 2 SO 4 electrolyte solution, respectively. At low frequencies, the reduced oxide graphene / polyaniline composite electrode with SnO 2 nanoparticles implanted in a Na 2 SO 4 electrolyte solution exhibited a typical capacitance behavior of about 90 °. The results for Na 2 SO 4 oxidation of the SnO 2 nanoparticles was performed with the electrolyte solution insert reduced through graphene / polyaniline composite electrode has a low charge transfer resistance, H 2 SO 4 SnO 2 nano tested in the electrolyte solution It can be seen that the electrode has better capacity behavior than the reduced oxide graphene / polyaniline composite electrode, which is consistent with the CV analysis result.

도 7은 다양한 전류밀도에서 Na2SO4(a) 및 H2SO4(b)에서 측정된 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극의 정전류방전곡선, 다양한 전류밀도에서, 1 M Na2SO4 전해질용액 및 1 M H2SO4 전해질용액에서 측정된 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극의 비축전용량(c), 4 A/g 전류밀도에서 1 M Na2SO4 전해질용액 내 및 3.5 A/g 전류밀도에서 1 M H2SO4 전해질용액 내에서 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극의 비축전용량의 순환 횟수 함수에 대한 변화(d)를 나타낸 도면이다.7 shows the constant current discharge curves of reduced oxidized graphene / polyaniline composite electrodes with SnO 2 nanoparticles embedded in Na 2 SO 4 (a) and H 2 SO 4 (b) at various current densities, at various current densities (C), 4 A / g current density of the reduced oxide graphene / polyaniline composite electrode with SnO 2 nanoparticles inserted in 1 M Na 2 SO 4 electrolyte solution and 1 MH 2 SO 4 electrolyte solution In a 1 M Na 2 SO 4 electrolyte solution and at a current density of 3.5 A / g in a 1 MH 2 SO 4 electrolyte solution, the number of cycles of non-storage capacity of the reduced oxide graphene / polyaniline composite electrode with SnO 2 nanoparticles inserted (D) for the function.

SnO2가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극에 대해 유사한 전류밀도 및 다양한 전류밀도에서 1 M H2SO4 전해질용액 및 1 M Na2SO4 전해질용액 내에서 정전류 충전/방전시험(galvanostatic charge-discharge tests)에 의해 개선된 전기화학적 성능을 확인하였다.A reduced oxidative graphene / polyaniline composite electrode with SnO 2 incorporated was subjected to a constant current charge / discharge test (galvanostatic charge) in a 1 MH 2 SO 4 electrolyte solution and a 1 M Na 2 SO 4 electrolyte solution at similar current densities and various current densities -discharge tests) to confirm the improved electrochemical performance.

도 7(a) 및 도 7(b)는 각각 전기이중층 축전용량 및 페러데이 축전용량을 나타낸 것으로서, 이는 복합체의 다른 성분들에 기인한 것이다. SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극에 대해 얻어진 최대 비축전용량은 1 A/g의 전류밀도 및 1 M Na2SO4 전해질 내에서 1291 F/g 이었다. 상기 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극에서 얻어진 최대 비축전용량은 이전에 보고된 graphene/SnO2/PEDOT 복합체 전극(181 F/g), SnO2/PANI 복합체 전극(305 F/g) 및 RGO/SnO2/PANI 복합체 전극(913.4 F/g)보다 훨씬 높은 비축전용량 값을 가짐을 알 수 있다.Figures 7 (a) and 7 (b) show the electric double layer capacitance and the ferrode capacity, respectively, due to the different components of the composite. The maximum specific capacity obtained for the reduced oxide graphene / polyaniline composite electrode with SnO 2 nanoparticles incorporated was 1 A / g current density and 1291 F / g in 1 M Na 2 SO 4 electrolyte. The SnO 2 nanoparticles maximum specific capacitance obtained in a reduced oxidation graphene / polyaniline composite electrode inserted into the previously reported graphene / SnO 2 / PEDOT composite electrode (181 F / g), SnO 2 / PANI composite electrode ( 305 F / g) and the RGO / SnO 2 / PANI composite electrode (913.4 F / g).

한편, SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극의 방전시간은 전류밀도가 증가함에 따라 감소하였다. 작거나 무시할 정도의 전압강하는 SnO2 나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극이 낮은 내부저항을 가짐을 보여주는 것이다. 1 M Na2SO4 내에서의 충방전곡선은 충전/방전 과정 동안 우수한 가역성을 나타내는 이상적인 커패시터의 전형적인 특징인 정삼각형 형상을 나타내었다. 고원형(plateau) 충전/방전곡선은 1 M H2SO4 내에서의 페러데이 공정의 존재를 나타냈는데, 이는 상기 CV 결과와 부합한다.On the other hand, the discharge time of the reduced oxide graphene / polyaniline composite electrode with SnO 2 nanoparticles inserted decreased with increasing current density. A small or negligible voltage drop indicates that the reduced oxide graphene / polyaniline composite electrode with SnO 2 nanoparticles incorporated has a low internal resistance. The charging / discharging curve in 1 M Na 2 SO 4 showed an equilateral triangle shape, a typical characteristic of an ideal capacitor exhibiting excellent reversibility during charging / discharging. The high plateau charge / discharge curve indicated the presence of the ferrode process in 1 MH 2 SO 4 , which is consistent with the CV result.

SnO2 나노입자 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극의 순환안정성은 일정 전류밀도에서 반복된 충전-방전 측정에 의해 확인하였다(도 7(c) 및 도 7(d)). Na2SO4 전해질용액 및 H2SO4 전해질용액 내에서 1500회 순환 후에 측정된 SnO2나노입자가 삽입된 환원된 산화그래핀/폴리아닐린 복합체 전극의 용량유지율은 각각 91.0% 및 84.4%이었고, 이를 통해 우수한 순환안정성을 확인할 수 있었다.The circulating stability of the reduced oxidized graphene / polyaniline composite electrode embedded with SnO 2 nanoparticles was confirmed by repeated charge-discharge measurements at constant current density (FIG. 7 (c) and FIG. 7 (d)). The capacity retention ratios of the reduced oxide graphene / polyaniline composite electrode with SnO 2 nanoparticles inserted after 1500 cycles in Na 2 SO 4 electrolyte solution and H 2 SO 4 electrolyte solution were 91.0% and 84.4%, respectively The excellent cyclic stability was confirmed.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. Various modifications and variations are possible within the scope of the appended claims.

Claims (10)

탈이온수 및 이온성액체를 혼합한 제1혼합용액에 산화그래핀을 분산시킨 후 초음파처리 하여 제1현탁액을 제조하는 단계(제1단계);
상기 제1현탁액에 주석전구체를 첨가한 후 초음파처리 하여 제2현탁액을 제조하는 단계(제2단계);
상기 제2현탁액에 마이크로웨이브를 조사하여 얻어진 나노복합체를 원심분리시킨 후 건조하여 SnO2 나노입자가 증착된 환원된 산화그래핀 박판 나노복합체를 제조하는 단계(제3단계);
상기 제조된 나노복합체를 탈이온수에 분산시키고 초음파처리 하여 제조된 제3현탁액에 아닐린을 첨가한 후 고분자중합시켜 복합체를 합성하는 단계(제4단계); 및
상기 복합체를 세척한 후 건조하여 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체를 제조하는 단계(제5단계);를 포함하는, 초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체 제조방법.
Dispersing the graphene oxide in a first mixed solution containing deionized water and an ionic liquid, and subjecting the graphene to ultrasonic treatment to prepare a first suspension (first step);
Adding a tin precursor to the first suspension and then ultrasonifying to prepare a second suspension (second step);
Centrifuging the nanocomposite obtained by irradiating the second suspension with microwaves and drying the nanocomposite to prepare a reduced graphene oxide graphene nanocomposite deposited with the SnO 2 nanoparticles (Step 3);
Synthesizing a complex by polymerizing an aniline added to a third suspension prepared by dispersing the nanocomposite in deionized water and ultrasonication; And
Preparing a graphene / polyaniline composite in which ultrafine tin dioxide nanoparticles are embedded, wherein the graphene / polyaniline composite is prepared by washing the composite and drying it to prepare a graphene / polyaniline composite having tin dioxide nanoparticles inserted therein (Step 5) .
청구항 1에 있어서,
상기 이온성액체는,
1-부틸-3-메틸이미다졸리움테트라플루오로보레이트 (1-butyl-3-methylimidazolium tetrafluoroborate), 1-부틸-3-메틸이미다졸리움헥사플루오로보레이트(1-butyl-3-methylimidazolium hexafluorophosphate), 1-에틸-3-메틸이미다졸리움테트라플루오로보레이트(1-ethyl-3-methylimidazolium tetrafluoroborate) 및 1-부틸-3-메틸이미다졸리움 비스(트리플루오로메틸설포닐)이미드(1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide)로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체 제조방법.
The method according to claim 1,
The ionic liquid may include,
Butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate, Ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (1-butyl -3-methylimidazolium bis (trifluoromethylsulfonyl) imide). The method for producing a graphene / polyaniline composite according to claim 1, wherein the ultrafine tin dioxide nanoparticles are incorporated.
청구항 1에 있어서,
상기 주석 전구체는,
주석(IV)이소프로폭사이드(tin(IV) isopropoxide), 염화제1주석(II)(tin(II) chloride), 염화제2주석(tin(IV) chloride) 아세트산주석(II) (tin(II) acetate), 아세트산주석(IV)(tin(IV) acetate), 질산주석(II) (tin(II) nitrate), 질산주석(IV) (tin(IV) nitrate) 및 황산주석(II) (tin(II) sulfate)으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체 제조방법.
The method according to claim 1,
The tin precursor,
Tin (IV) isopropoxide, tin (II) chloride, tin (IV) chloride, tin (II) II) acetate, tin (IV) acetate, tin (II) nitrate, tin (IV) nitrate and tin tin (II) sulfate), wherein the graphene / polyaniline composite is prepared by adding ultrafine tin dioxide nanoparticles.
청구항 1에 있어서,
상기 제3단계는,
상기 제2현탁액에 5 내지 15분 동안 100 내지 150 W의 마이크로파를 조사하는 것을 특징으로 하는, 초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체 제조방법.
The method according to claim 1,
In the third step,
Wherein the second suspension is irradiated with a microwave of 100 to 150 W for 5 to 15 minutes. &Lt; RTI ID = 0.0 &gt; 15. &lt; / RTI &gt;
청구항 1에 있어서,
상기 제3단계는,
상기 제2현탁액에 마이크로웨이브를 조사하여 얻어진 나노복합체를 2 내지 4회 원심분리한 후 10 내지 15시간 동안 40 내지 60℃로 건조하는 것을 특징으로 하는, 초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체 제조방법.
The method according to claim 1,
In the third step,
Wherein the nanocomposite obtained by irradiating the second suspension with microwave is centrifuged 2 to 4 times and then dried at 40 to 60 ° C for 10 to 15 hours. / Polyaniline composite.
청구항 1에 있어서,
상기 제4단계는,
상기 제3현탁액에 아닐린을 첨가한 후 염화철 · 6수화물(FeCl3 · 6H2O)을 용해시킨 탈이온수를 첨가하여 고분자 중합 시키는 것을 특징으로 하는, 초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체 제조방법.
The method according to claim 1,
In the fourth step,
Characterized in that an aniline is added to the third suspension, and deionized water in which iron chloride hexahydrate (FeCl 3 .6H 2 O) is dissolved is added to polymerize to polymerize the grafted niobium nanoparticles. &Lt; / RTI &gt;
청구항 1에 있어서,
상기 제4단계는,
상기 제3현탁액에 아닐린을 첨가한 후 20 내지 28시간 동안 0 내지 5℃에서 고분자중합 시키는 것을 특징으로 하는, 초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체 제조방법.
The method according to claim 1,
In the fourth step,
Characterized in that aniline is added to the third suspension, and the polymer is polymerized at 0 SIMILAR 5 DEG C for 20 to 28 hours, thereby forming a graphene / polyaniline composite having ultrafine tin dioxide nanoparticles embedded therein.
청구항 1에 있어서,
상기 제5단계는,
상기 복합체를 원심분리하여 회수하고 탈이온수 및 에탄올로 세척한 후 20 내지 28시간 동안 40 내지 60℃에서 건조하는 것을 특징으로 하는, 초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체 제조방법.
The method according to claim 1,
In the fifth step,
Wherein the composite is recovered by centrifugation, washed with deionized water and ethanol, and then dried at 40 to 60 ° C for 20 to 28 hours.
청구항 1 내지 청구항 8 중 어느 한 항의 제조방법에 의해 제조된 것을 특징으로 하는, 초미세 이산화주석 나노입자가 삽입된 그래핀/폴리아닐린 복합체.8. A graphene / polyaniline composite having ultra-fine titanium dioxide nanoparticles embedded therein, which is produced by the method of any one of claims 1 to 8. 청구항 9에 있어서,
상기 복합체를 활물질로 포함하는, 슈퍼커패시터용 전극.
The method of claim 9,
Wherein the composite is used as an active material.
KR1020160080748A 2016-06-28 2016-06-28 Preparation method of Ultrasmall SnO2 nanoparticle-intercalated graphene/polyaniline composites KR101864933B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160080748A KR101864933B1 (en) 2016-06-28 2016-06-28 Preparation method of Ultrasmall SnO2 nanoparticle-intercalated graphene/polyaniline composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160080748A KR101864933B1 (en) 2016-06-28 2016-06-28 Preparation method of Ultrasmall SnO2 nanoparticle-intercalated graphene/polyaniline composites

Publications (2)

Publication Number Publication Date
KR20180001822A true KR20180001822A (en) 2018-01-05
KR101864933B1 KR101864933B1 (en) 2018-06-05

Family

ID=61001530

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160080748A KR101864933B1 (en) 2016-06-28 2016-06-28 Preparation method of Ultrasmall SnO2 nanoparticle-intercalated graphene/polyaniline composites

Country Status (1)

Country Link
KR (1) KR101864933B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108659218A (en) * 2018-05-22 2018-10-16 温州市赢创新材料技术有限公司 A kind of intercalated graphite alkene denatured conductive polyaniline and preparation method thereof
CN108715458A (en) * 2018-06-20 2018-10-30 西安工程大学 A kind of preparation method of nanoscale glass putty
CN111187496A (en) * 2020-02-12 2020-05-22 东华大学 Preparation method and application of multifunctional bio-based degradable polylactic resin
CN111204728A (en) * 2020-03-10 2020-05-29 郑州中科新兴产业技术研究院 Preparation method of ultrathin two-dimensional vanadium phosphorus oxygen composite metal oxide nanosheet
US11071336B2 (en) 2017-05-30 2021-07-27 MPOINTAERO Inc. Surgical masks
CN113903877A (en) * 2021-09-24 2022-01-07 大连理工大学 SnO (stannic oxide)2-TiO2Preparation method and application of @ rGO lithium ion battery cathode material
CN114455630A (en) * 2022-02-28 2022-05-10 哈尔滨工业大学(威海) Multi-band composite electromagnetic wave absorption material and preparation method and application thereof
US11654310B2 (en) 2020-03-16 2023-05-23 MPOINTAERO Inc. Respirator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110126802A (en) 2010-05-18 2011-11-24 삼화콘덴서공업주식회사 Active material for anode, method for manufacturing the same, and secondary battery and super capacitor including the same
JP2014093412A (en) * 2012-11-02 2014-05-19 Yokohama Rubber Co Ltd:The Polyaniline/graphene complex, and electrode material using the same
KR20160023312A (en) * 2014-08-22 2016-03-03 영남대학교 산학협력단 Synthetic method for graphene sno_2 nanocomposites
KR101623346B1 (en) * 2015-10-27 2016-05-23 한국지질자원연구원 Manufacturing method of three-dimensional iron oxide-graphene nanocomposite and supercapacitor using thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110126802A (en) 2010-05-18 2011-11-24 삼화콘덴서공업주식회사 Active material for anode, method for manufacturing the same, and secondary battery and super capacitor including the same
JP2014093412A (en) * 2012-11-02 2014-05-19 Yokohama Rubber Co Ltd:The Polyaniline/graphene complex, and electrode material using the same
KR20160023312A (en) * 2014-08-22 2016-03-03 영남대학교 산학협력단 Synthetic method for graphene sno_2 nanocomposites
KR101623346B1 (en) * 2015-10-27 2016-05-23 한국지질자원연구원 Manufacturing method of three-dimensional iron oxide-graphene nanocomposite and supercapacitor using thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11071336B2 (en) 2017-05-30 2021-07-27 MPOINTAERO Inc. Surgical masks
CN108659218A (en) * 2018-05-22 2018-10-16 温州市赢创新材料技术有限公司 A kind of intercalated graphite alkene denatured conductive polyaniline and preparation method thereof
CN108715458A (en) * 2018-06-20 2018-10-30 西安工程大学 A kind of preparation method of nanoscale glass putty
CN111187496A (en) * 2020-02-12 2020-05-22 东华大学 Preparation method and application of multifunctional bio-based degradable polylactic resin
CN111187496B (en) * 2020-02-12 2021-09-10 东华大学 Preparation method and application of multifunctional bio-based degradable polylactic resin
CN111204728A (en) * 2020-03-10 2020-05-29 郑州中科新兴产业技术研究院 Preparation method of ultrathin two-dimensional vanadium phosphorus oxygen composite metal oxide nanosheet
CN111204728B (en) * 2020-03-10 2021-09-24 辽宁盛泽精细化工科技有限公司 Preparation method of ultrathin two-dimensional vanadium phosphorus oxygen composite metal oxide nanosheet
US11654310B2 (en) 2020-03-16 2023-05-23 MPOINTAERO Inc. Respirator
CN113903877A (en) * 2021-09-24 2022-01-07 大连理工大学 SnO (stannic oxide)2-TiO2Preparation method and application of @ rGO lithium ion battery cathode material
CN114455630A (en) * 2022-02-28 2022-05-10 哈尔滨工业大学(威海) Multi-band composite electromagnetic wave absorption material and preparation method and application thereof

Also Published As

Publication number Publication date
KR101864933B1 (en) 2018-06-05

Similar Documents

Publication Publication Date Title
KR101864933B1 (en) Preparation method of Ultrasmall SnO2 nanoparticle-intercalated graphene/polyaniline composites
Racik et al. Fabrication of manganese oxide decorated copper oxide (MnO2/CuO) nanocomposite electrodes for energy storage supercapacitor devices
Deng et al. Oxygen-deficient anatase TiO 2@ C nanospindles with pseudocapacitive contribution for enhancing lithium storage
Heydari et al. Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors
Xu et al. Facile synthesis route of porous MnCo 2 O 4 and CoMn 2 O 4 nanowires and their excellent electrochemical properties in supercapacitors
Zhao et al. Facile preparation of TiO2/C3N4 hybrid materials with enhanced capacitive properties for high performance supercapacitors
Chang et al. Enhanced faradic activity by construction of pn junction within reduced graphene oxide@ cobalt nickel sulfide@ nickle cobalt layered double hydroxide composite electrode for charge storage in hybrid supercapacitor
Wei et al. Synthesis of hierarchical carbon sphere@ NiMoO4 composite materials for supercapacitor electrodes
Salehifar et al. Electrochemical study of supercapacitor performance of polypyrrole ternary nanocomposite electrode by fast Fourier transform continuous cyclic voltammetry
Harish et al. Enhanced performance on capacity retention of hierarchical NiS hexagonal nanoplate for highly stable asymmetric supercapacitor
Kim et al. Synthesis and high electrochemical performance of polyaniline/MnO 2-coated multi-walled carbon nanotube-based hybrid electrodes
Kumar et al. Ruthenium oxide nanostring clusters anchored Graphene oxide nanocomposites for high-performance supercapacitors application
KR101736096B1 (en) Preparation method of mesoporous NiCo2O4 nanostructures
Guo et al. One-pot synthesis of 2D Ti3C2/Ni2CO3 (OH) 2 composite as electrode material with superior capacity and high stability for hybrid supercapacitor
Moyseowicz Scalable one-pot synthesis of bismuth sulfide nanorods as an electrode active material for energy storage applications
Mazloum-Ardakani et al. Fabrication of a high-performance hybrid supercapacitor using a modified graphene aerogel/cerium oxide nanoparticle composite
Lee et al. Influence of cycling stability on structure and properties of MnCo2S4 nanocomposite for high-performance supercapacitors
Wang et al. Fabrication of Ti3+ doped TiO2 coated Mn3O4 nanorods with voids and channels for lithium storage
Liu et al. Facile synthesis of polypyrrole nanofiber (PPyNF)/NiO x composites by a microwave method and application in supercapacitors
Park et al. Supersonically sprayed self-aligned rGO nanosheets and ZnO/ZnMn2O4 nanowires for high-energy and high-power-density supercapacitors
Tran et al. Nanoflake manganese oxide and nickel-manganese oxide synthesized by electrodeposition for electrochemical capacitor
Morenghi et al. Asymmetric supercapacitors based on nickel decorated graphene and porous graphene electrodes
KR101743510B1 (en) Preparation method for the ultra thin cobalt oxide nanotubes-intercalated graphene composite
Liu et al. N-doped carbon coated TiO2 hollow spheres as ultralong-cycle-life Na-ion battery anodes
Gurusamy et al. Enhanced performance of charge storage supercapattery by dominant oxygen deficiency in crystal defects of 2-D MoO3-x nanoplates

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant