KR20170102137A - Apparatus for manufacturing the gas adsorption membrane possessed of structure of textile using ZIF-7 and method for controlling the same - Google Patents

Apparatus for manufacturing the gas adsorption membrane possessed of structure of textile using ZIF-7 and method for controlling the same Download PDF

Info

Publication number
KR20170102137A
KR20170102137A KR1020160024660A KR20160024660A KR20170102137A KR 20170102137 A KR20170102137 A KR 20170102137A KR 1020160024660 A KR1020160024660 A KR 1020160024660A KR 20160024660 A KR20160024660 A KR 20160024660A KR 20170102137 A KR20170102137 A KR 20170102137A
Authority
KR
South Korea
Prior art keywords
mofs
technology
plasma treatment
manufacturing
mat
Prior art date
Application number
KR1020160024660A
Other languages
Korean (ko)
Inventor
윤석구
안성필
조홍석
이지선
장종산
황영규
Original Assignee
고려대학교 산학협력단
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단, 한국화학연구원 filed Critical 고려대학교 산학협력단
Priority to KR1020160024660A priority Critical patent/KR20170102137A/en
Publication of KR20170102137A publication Critical patent/KR20170102137A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/04Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/35Use of magnetic or electrical fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/39Electrospinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/08Patterned membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • Y02C10/10
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Provided by the present invention are: a metal-organic frameworks (MOFs) mat which is manufactured in a fabric shape through line patterning large area technology and is manufactured by being chemically and mechanically stabilized through plasma treatment technology which is second technology; and a manufacturing method thereof. The MOFs mat not only improves performance of single fabric through the plasma treatment of a fabric surface simultaneously with a fiber spinning but also is manufactured by a one-step process in a fabric shape manufacturing method through a line patterning through steps of the manufacture of line patterning large area equipment and the setting of plasma treatment optimum conditions. To achieve the above purpose, MOFs are a new organic-inorganic hybrid material having a three-dimensional crystalline structure by continuously combining organic ligands and metal ions or clusters in a crystal lattice. The MOFs have a large specific surface area and can form pores having a functional structure as well as control the size and shape of the pores according to types of metal ions and organic ligands used in synthesis. The present invention is provided to manufacture a large area mat by the provided method capable of improving the performance limitation and durability of existing MOFs mats.

Description

ZIF-7을 이용한 직물 구조의 기체 흡착 멤브레인 제조 장치 및 이의 제조 방법{Apparatus for manufacturing the gas adsorption membrane possessed of structure of textile using ZIF-7 and method for controlling the same}[0001] The present invention relates to an apparatus for producing a gas adsorbing membrane of a fabric structure using ZIF-7 and a method for manufacturing the same,

본 발명은 라인 패터닝 대면적 기술과 Plasma treatment 기술을 이용하여 십자 무늬 대면적 MOFs 매트를 구현에 관한 것이다.The present invention relates to the implementation of a cross-pattern large area MOFs mat using line patterning large area technology and plasma treatment techniques.

지구 온난화로 인해 자연생태계는 물론 인간 활동의 중심인 농업, 수산업, 산업 등 넓은 영역에 걸쳐 영향을 끼치고 있다. 또한 지구 온난화가 환경에 미치는 영향은 해수면 상승으로 인한 폭염과 폭설, 가뭄 등의 기상이변 및 온도 변화로 인한 생물들이 생존 위협이 있다. 지난 100년간 지구는 0.8 ℃의 평균 기온 상승을 보였으며, 기온상승은 집중 호우와 슈퍼 태풍의 발생으로 거대한 인명 및 재산상의 피해를 초래할 것으로 예상된다.Global warming is affecting not only natural ecosystems, but also agriculture, fisheries, and industries, which are the center of human activities. In addition, environmental impacts of global warming are threatened to survive by extreme weather events such as heatwaves, heavy snowfall, drought, and temperature changes due to sea level rise. Over the last 100 years, the earth has shown an average temperature rise of 0.8 ° C, and the rise in temperatures is expected to cause massive human and property damage due to heavy rainfall and the occurrence of super typhoons.

지구 온난화의 원인이 되는 대표적인 온실가스는 이산화탄소, 메탄, 아산화질소 등이 있으며, 이러한 가스들은 주로 인간의 산업 및 일상 생활에서 대기중으로 배출되고 있다. 이산화탄소는 석탄과, 석유와 같은 화석연료에 의해 생성되고, 메탄은 천연가스의 주성분으로 가축의 배설물에서 발생되며, 아산화질소는 산업공정이나 비료의 사용으로 발생된다. 아래 표에 따라 6개 온실가스 중에서 이산화탄소의 지구온난화지수는 1로 가장 낮지만, 전체 온실가스 배출량 중 80% 이상을 차지하고 있어 지구 온난화에 기여도가 65%로 제일 높게 평가되고 있다.Representative greenhouse gases that cause global warming include carbon dioxide, methane, nitrous oxide, etc. These gases are mainly emitted to the atmosphere in human industry and everyday life. Carbon dioxide is produced by fossil fuels such as coal and petroleum, methane is the main component of natural gas and is generated from livestock excreta, and nitrous oxide is produced by industrial processes or fertilizer use. According to the table below, the global warming index of carbon dioxide is the lowest among the six greenhouse gases, but it accounts for more than 80% of the total greenhouse gas emissions, and the contribution to global warming is highest at 65%.

온실가스green gas CO2CO2 CH4CH4 N2ON2O HFCsHFCs PFCsPFCs SF6SF6 방출주요인Emission key 화석연료의 연소Combustion of fossil fuels 음식 부식 및 가축 분뇨Food corrosion and livestock manure 질소 비료Nitrogen fertilizer 냉장고
냉매
Refrigerator
Refrigerant
세척제cleaning solution 전열제Electrothermal agent
GWPGWP 1One 2121 310310 450~11,700450 ~ 11,700 6,500~9,2006,500 ~ 9,200 23,90023,900 기여도(%)Contribution (%) 6565 1515 66 2424 증가율(%)Growth rate (%) 0.50.5 0.90.9 0.250.25 4040 잔류시간
(일)
Residence time
(Work)
50~20050 to 200 2020 120120 65~13065 ~ 130
총 방출률Total release rate 88.688.6 4.84.8 2.82.8 3.83.8

지구온난화로 인한 자연재해가 전 세계적으로 일어남으로써 여러 국가들은 지구온난화를 막기 위해 기후 변화 협약과 주요 산업국의 정상회의를 거쳐 규제를 강화하고 있으며, 우리나라도 이에 따라 1999년 이후 배출량의 증가율은 감소하는 추세를 보이고 있다. 세계 온실 가스 배출량 2위인 미국은 선진국에 요구하는 감축량은 기술의 진보 없이는 충족될 수 없기 때문에 교토 의정서 불이행과 함께 기술적 대안이 마련되어야 한다고 주장하였다. 2005년 2월 교토 의정서가 발효되고, 같은 해 12월부터 이산화탄소 포집 및 저장 기술인 CCS(Carbon dioxide Capture and Storage)에 대해 논의가 시작되었다. CCS기술이란 대용량으로 배출되는 이산화탄소를 포집한 후 저장소에 격리시켜 저장하는 기술로, 이때 혼합 기체로부터 이산화탄소만 분리하는 기술에는 분리막법, 흡착법, 흡수법 등이 있으며 몇몇 선진국에서는 많은 연구를 바탕으로 발전소 및 공장 등의 대량으로 이산화탄소를 배출하는 곳에 적용되고 있다.As natural disasters arise from global warming, many countries are strengthening regulations through climate change agreements and major industrial nations summit meetings to prevent global warming, and Korea has also reduced its growth rate since 1999 Trend. The United States, the world's second largest producer of greenhouse gas emissions, argued that technological alternatives should be developed along with the failure to implement the Kyoto Protocol because the reductions required by developed countries can not be met without technological advances. The Kyoto Protocol came into effect in February 2005, and carbon dioxide capture and storage (CCS), a carbon dioxide capture and storage technology, began to be discussed in December of the same year. CCS technology is a technology for capturing carbon dioxide emitted from a large capacity and isolating it from the storage and storing it. Techniques for separating only carbon dioxide from the mixed gas include separation membrane method, adsorption method and absorption method. In some developed countries, And a large amount of carbon dioxide is discharged from factories and the like.

분리막을 사용한 이산화탄소 등의 기체 분리 공정은 증류법, 흡착법과 같은 기존 공정에 비해 에너지 사용과 운전 비용 절감 등 경제적인 이익을 얻을 수 있어 최근 활발히 연구 중이다. 고분자막은 다른 소재에 비해 적은 비용과 단순 방법으로 제조 가능하며, 기체의 투과속도 차리오 혼합기체를 분리 할 수 있는 장점들을 가지고 있다. 그러나 고분자 분리막은 투과도와 선택도에 있어 'upper bound'를 넘지 못할 뿐만 아니라, 화학적, 열적, 기계적 안정성이 낮다는 단점이 있다. 따라서 이러한 문제를 해결하기 위해 Mixed matrix membrance (MMMs)이 활발히 연구되고 있다. MMMs란 고분자 매트릭스에 제올라이크, Carbon nanotube, MOFs 등의 무기나노입자를 첨가 및 분산 시켜 막의 물성, 특성 및 가공성 등을 향상시키는 것에 중점된다. The separation process of gas such as carbon dioxide using separation membrane is being actively studied because it can obtain economical benefits such as energy use and operation cost reduction compared to conventional processes such as distillation method and adsorption method. Polymer membranes can be manufactured with less cost and simpler method than other materials, and have advantages of separating the gas phase permeation rate mixed gas. However, polymer membranes are not only superior to the 'upper bound' in permeability and selectivity, but also have low chemical, thermal and mechanical stability. Mixed matrix membranes (MMMs) have been actively studied to solve these problems. MMMs are focused on improving the physical properties, properties and processability of a film by adding and dispersing inorganic nanoparticles such as zeolite, carbon nanotube, and MOFs to a polymer matrix.

전술한 목적을 달성하기 위한 본 발명은, MOFs(Metal-organic frameworks)은 결정 격자 내에 유기리간드와 금속 이온 또는 클러스터가 연속적으로 결합하여 3차원 결정성 구조를 가지는 새로운 유-무기 하이브리드 재료이다. MOFs는 큰 비표면적을 보이며, 합성에 사용되는 금속이온 및 유기 리간드의 종류에 따라 기공 크기와 형태가 조절 가능할 뿐만 아니라 기능성 구조를 가지는 기공을 형성할 수 있다. 이러한 특징들을 바탕으로 연로 가스흡착 및 저장 재료, 촉매, 센서, 합성 매질, 약물 전달 매체, 양성자 전도체 등의 개발에 위해 활발히 연구되고 있다. 하지만 많은 발전에도 불구하고 여전히 낮은 열적 화학적 및 기계적 안정성으로 인해 연구 분야를 벗어나 산업으로의 도입을 주춤하고 있는 실정이다. In order to accomplish the above object, the present invention is a new organic-inorganic hybrid material in which metal ligands and metal ions or clusters are continuously bonded in a crystal lattice to have a three-dimensional crystalline structure. MOFs have a large specific surface area. Depending on the types of metal ions and organic ligands used in the synthesis, pore size and shape can be controlled and pores having a functional structure can be formed. Based on these characteristics, it has been actively studied for the development of combustion gas adsorption and storage materials, catalysts, sensors, synthetic media, drug delivery media, and proton conductors. In spite of many developments, however, due to low thermal and chemical stability and mechanical stability, it is getting out of research field and slowing down introduction into industry.

본 발명은 라인 패터닝 대면적 기술과 Plasma treatment 기술을 이용하여 십자 무늬 대면적 MOFs 매트를 구현하고자 하는 발명이다. The present invention is an invention for implementing a cross-shaped large area MOFs mat using line patterning large area technology and plasma treatment technology.

본 발명에서 해결하고자 하는 바는 기존 MOFs 매트의 성능의 한계 및 내구성을 향상 시킬 수 있는 방법을 제시하고 대면적 매트를 제조하는 것이다.The object of the present invention is to provide a method for improving the performance limit and durability of a conventional MOFs mat and to manufacture a large area mat.

본 발명의 주된 목적은 전기방사 기술을 기반으로 하며, 첫번째 기술인 라인 패터닝 대면적 기술을 통해 직물 형태의 대면적 매트를 제작하고, 두번째 기술인 Plasma treatment 기술을 통해 열적 화학적 및 기계적으로 안정된 MOFs 매트 제조 방법에 있다.The main object of the present invention is to fabricate a large-area mat in the form of a fabric through line patterning large-area technology, which is the first technology based on electrospinning technology, and to manufacture a MOFs mat which is thermochemically and mechanically stable through plasma treatment .

본 발명은 라인 패터닝대면적 장비 제조 및 Plasma treatment 최적 조건 설정 단계를 거쳐, 섬유 방사와 동시에 섬유 표면의 Plasma 처리를 통해 단일 섬유의 성능을 향상 할 뿐만 아니라 라인 패터닝을 통해 직물 형태로 제작 방법으로 원스텝(ONE-STEP) 공정을 제공한다.The present invention can improve the performance of a single fiber by plasma treatment of the fiber surface simultaneously with the fiber spinning through the steps of line patterning large area equipment manufacturing and plasma treatment optimum conditions setting, (ONE-STEP) process.

상기한 바와 같은 구성을 갖는 본 발명에 따른 라인 패터닝 대면적 기술 및 플라즈마 처리 기술을 이용한 기체 흡착 멤브레인 제조 장치 및 이의 제조 방법은 다음과 같은 효과를 갖는다. The apparatus for fabricating a gas adsorption membrane using the line patterning large area technology and the plasma processing technique according to the present invention having the above-described structure and the manufacturing method thereof have the following effects.

본 발명은 라인 패터닝 대면적 기술 및 Plasma treatment 기술을 이용하여 직물 형태의 대면적 매트를 제작하는 것이며, 제조 조건에 따라 섬유의 직경, 매트의 두께 조절이 가능하다. 이를 통해 사용되는 용도에 따라 MOFs 매트 제조가 가능하다.The present invention is to fabricate a large-area mat in the form of a fabric using line patterning large-area technology and plasma treatment technology, and it is possible to control the diameter of the fiber and the thickness of the mat according to the manufacturing conditions. This makes it possible to manufacture MOFs mats depending on the application used.

본 발명은 도면에 도시된 실시 예들을 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허 청구 범위의 기술적 사상에 의해 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, it is to be understood that various changes and modifications may be made therein without departing from the scope of the invention as defined by the appended claims. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

도 1은 본 발명에 따른 라인 패터닝 대면적 기술 및 플라즈마 처리 기술을 이용한 기체 흡착 멤브레인 제조 장치 및 이의 제조 방법의 PAN/ZIF-7 용액 제조 과정 및 라인 패터닝 기술 접목한 대면적 MOFs mats 제작과정 도시한 사시도이다.
도 2는 본 발명에 따른 라인 패터닝 대면적 기술 및 플라즈마 처리 기술을 이용한 기체 흡착 멤브레인 제조 장치 및 이의 제조 방법의 GND 연결에 따른 전기 방사 모사 및 SEM 이미지이다.
도 3a는 본 발명에 따른 라인 패터닝 대면적 기술 및 플라즈마 처리 기술을 이용한 기체 흡착 멤브레인 제조 장치 및 이의 제조 방법의 멀티 노즐 간격 조절 하는 장치의 구성도이다.
도 3b는 본 발명에 따른 라인 패터닝 대면적 기술 및 플라즈마 처리 기술을 이용한 기체 흡착 멤브레인 제조 장치 및 이의 제조 방법의 Z 축 조절 및 Substrate 조절 하는 장치의 구성도이다.
도 4는 본 발명에 따른 라인 패터닝 대면적 기술 및 플라즈마 처리 기술을 이용한 기체 흡착 멤브레인 제조 장치 및 이의 제조 방법의 후처리 과정에 따른 ZIF-7/PAN fiber의 SEM 이미지와 EDX 분석 사진이다.
도 5는 본 발명에 따른 라인 패터닝 대면적 기술 및 플라즈마 처리 기술을 이용한 기체 흡착 멤브레인 제조 장치 및 이의 제조 방법의 ZIF-7/ PAN nanofiber 멤브레인의 CO2 흡착과 탈착에 대한 그래프이다.
FIG. 1 shows a process of fabricating a gas adsorption membrane using a line patterning large area technology and a plasma processing technique according to the present invention, and a process of fabricating PAN / ZIF-7 solution and line patterning technology It is a perspective view.
FIG. 2 is an SEM image of an apparatus for manufacturing a gas adsorption membrane using a line patterning large area technology and a plasma processing technique according to the present invention and a method of manufacturing the same according to the GND connection.
FIG. 3A is a block diagram of an apparatus for manufacturing a gas adsorption membrane using a line patterning large area technology and a plasma processing technique according to the present invention, and an apparatus for adjusting a multi-nozzle space in the method of manufacturing the same.
FIG. 3B is a block diagram of an apparatus for manufacturing a gas adsorption membrane using a line patterning large area technology and a plasma processing technique according to the present invention, and a device for controlling a Z axis and a substrate of the apparatus.
FIG. 4 is a SEM image and an EDX analysis image of ZIF-7 / PAN fiber according to a post-treatment process of an apparatus for manufacturing a gas adsorptive membrane using the line patterning large area technique and a plasma treatment technique according to the present invention and a method of manufacturing the same.
FIG. 5 is a graph of CO2 adsorption and desorption of a ZIF-7 / PAN nanofiber membrane in an apparatus for producing a gas adsorption membrane using the line patterning large area technology and a plasma processing technique according to the present invention and a method of manufacturing the same.

이하에서는 본 발명에 따른 라인 패터닝 대면적 기술 및 플라즈마 처리 기술을 이용한 기체 흡착 멤브레인 제조 장치 및 이의 제조 방법에 대하여 도면을 참조하여 설명하기로 한다. Hereinafter, an apparatus for manufacturing a gas adsorption membrane using a line patterning large area technology and a plasma processing technique according to the present invention and a method for manufacturing the same will be described with reference to the drawings.

라인 패터닝 기술에 의해 경사와 위사가 서로 위 아래로 교차하여 직물의 형태를 이룬 MOFs 매트는 섬유간 일정한 교차점의 증가로 기계적 강도가 증가하며, 섬유의 직경에 따라 강도 및 공극의 크기를 조절 가능하다. 또한 Plasma treatment 기술이 동시에 적용됨으로써 MOFs 나노 섬유의 표면 처리를 통해 섬유의 열적 화학적 내지 기계적 성능 증가 뿐만 아니라 수분 취약성이라는 단점을 극복할 수 있다. The MOFs mat, which is formed by crossing the warp and wefts up and down by the line patterning technique, increases the mechanical strength by increasing the intersection point between the fibers and adjusts the strength and pore size according to the fiber diameter . Also, by applying the plasma treatment technique simultaneously, it is possible to overcome the disadvantage of moisture vulnerability as well as thermochemical and mechanical performance increase of the fiber through surface treatment of MOFs nanofiber.

도1은 본 발명에 의한 십자 무늬 대면적 MOFs 매트의 전체 과정을 보여준다. FIG. 1 shows the entire process of a cross-shaped large-area MOFs mat according to the present invention.

이 때 MOFs 나노 섬유를 제조 하기 위한 용액 공정 및 전기 방사 조건은 다음과 같다. 다이메틸폼아마이드(Dimethylformamaide)를 용매로 사용한 Metal-Precursor(Zn(NO3)26H2O)와 Organic-Ligands(Benzimidazole solutions) 로 각각 8 wt%와 4 wt% 구성되어 있으며, 두 물질을 혼합 한 후 즉시 폴리머 파우더인 폴리아크릴로나이트릴(Polyacrylonitrile)를 함께 배합하여 6 wt%의 PAN/ZIF-7 용액을 제조한다. 이후 교반기를 통해 150℃ 상태에서 3일동안 혼합을 해주며, 이때 Metal-Precursor와 Organic-Ligand의 합성에 의해 ZIF-7이 생성된다. The solution process and electrospinning conditions for producing the MOFs nanofibers are as follows. It consists of 8 wt% and 4 wt% of metal-precursor (Zn (NO 3 ) 2 6H 2 O) and organic ligands (Benzimidazole solutions), respectively, using dimethylformamide as a solvent. Immediately thereafter, a polymer powder, polyacrylonitrile, is blended together to prepare a 6 wt% PAN / ZIF-7 solution. Then, the mixture is stirred for 3 days at 150 ° C. through an agitator. At this time, ZIF-7 is produced by the synthesis of Metal-Precursor and Organic-Ligand.

섬유 제작은 일정 온도와 습도를 유지하기 위해 챔버에서 이루어졌으며, 36%의 습도와 실온에서 실험 진행한다. 실린지 펌프(egato 100, KD Scientific Inc.)를 이용하여 유량 150 μL/h로 공급하고, 7 KV의 전압을 인가하여 전기 방사를 진행한다(DC power supply : EP20P2, Glassman High Voltage Inc.). 이때 사용되는 노즐의 내 외경은 각각 0.84 mm와 1.27 mm이고, 노즐과 드럼 콜렉터까지의 거리는 10 cm로 고정한다. Fiber fabrication was performed in a chamber to maintain constant temperature and humidity, and experiments were conducted at room temperature and humidity of 36%. The DC power supply (EP20P2, Glassman High Voltage Inc.) is supplied with a syringe pump (egato 100, KD Scientific Inc.) at a flow rate of 150 μL / h and a voltage of 7 KV. The inner and outer diameters of the nozzles are 0.84 mm and 1.27 mm, respectively, and the distance between the nozzle and the drum collector is fixed at 10 cm.

라인 패터닝 대면적 기술은 전기 방사 코팅 기술을 이용하고 다이아몬드 형으로 교차된 플라스틱 판으로 이루어진 드럼 콜렉터를 통해 십자 무늬의 섬유 구조를 형성한다. 도2에 따라 드럼 콜렉터에 부착되어 판들은 짝수 판과 홀수 판으로 구별할 수 있고, 짝수판과 홀수판은 내각이 30˚가 되도록 교차한다. 각 판들의 표면을 금속으로 처리하고 그 표면들은 드럼 콜렉터 오른쪽으로 각각 다른 반경의 도넛 모형 금속판과 연결된다. 그라운드 전극은 드럼 콜렉터의 오른쪽 금속 부분들을 위 아래로 움직임으로써 짝수판과 홀수판이 교대로 그라운드가 걸리도록 설계를 한다. 만일 짝수판에 그라운드 전극이 접촉이 되어 있을 경우, 전기 방사에 의해 전하가 걸려 있는 나노 섬유들은 전기적 인력에 의해 그라운드와 연결된 짝수판으로 접근하고 드럼 콜렉터에 회전에 의해 가까워진 다음 짝수판에 걸치게 되어 직선의 나노 섬유가 제작된다. 이와 같이 그라운드의 위치 변화와 드럼 콜렉터의 회전에 의해 십자 무늬의 패터닝이 구현 가능하다.The line patterning large-area technology uses the electrospin coating technology and forms a cross-shaped fiber structure through a drum collector made of a diamond-like crossed plastic plate. According to Fig. 2, the plates are attached to the drum collector so that they can be distinguished into an even plate and an odd plate, and even plates and odd plates intersect each other with an internal angle of 30 degrees. The surface of each plate is treated with a metal and the surfaces are connected to the right side of the drum collector with donut-shaped metal plates of different radii. The ground electrode moves the right metal parts of the drum collector up and down so that the even and odd plates are alternately grounded. If the ground electrode is in contact with the even plate, the nanofibers charged by electrospinning approach the even plate connected to the ground by the electrical attraction, come close to the drum collector by rotation, Linear nanofibers are produced. Patterning of a cross pattern can be realized by changing the position of the ground and rotating the drum collector.

이때 제어부는 드럼 콜렉터의 회전수 조절 부분과 그라운드 전극의 스위칭 부분으로 나눌 수 있으며, 각 제어부에 따라 나노 섬유의 교차점을 증가 시킬 수 있다. At this time, the control unit can be divided into a rotation number adjusting part of the drum collector and a switching part of the ground electrode, and the intersections of the nanofibers can be increased according to each control unit.

Plasma treatment 기술을 설명하기 앞서 플라즈마란 가스상태에서 원자나 분자로부터 전자가 분리되거나 결합하여 전자, 음이온 및 여기된 상태의 원자나 분자 등이 혼합된 가스의 방전상태를 말한다. 플라즈마 중에는 기체분자, 이온, 전자 외에 준안정하여 에너지 면에서 여기 된 원자 또는 전기적으로 중성인 입자(radical)와 플라즈마로부터 방사되는 광, 높은 에너지를 가진 자외선이 존재하며 이것들은 플라즈마 처리에서 중요한 역할을 한다. Radical은 전기적으로 중성이기 때문에 수명이 길고 표면에서 재결합하면, 수 eV의 에너지가 발생되어 물체 표면과 화학적으로 반응을 한다. 그 형태와 성질은 사용되는 가스에 의존하며, 가장 중요한 활성제는 산소 플라즈마에서의 원자 상태 산소이다. 또한 플라즈마에서 발생하는 전자는 질량이 작가 표면에 먼저 도달하여 표면에 흡착된 기체분자를 탈착 및 해리시키고 전자 충격에 의해 대부분의 화학반응을 일으키고 대전된 이온은 표면으로 가속되어 충돌한 표면에서 입자를 분리시키고 이온 충격시 발생된 에너지가 물체 표면에서 활발한 화학반응을 촉진시킨다. 플라즈마는 Hot plasma와 Cold plasma로 나눌 수 있으며, Hot plasma는 높은 온도의 전자와 무거운 원자나 분자 등의 입자들이 발생하고, 대부분 이온화가 이루어진다. 반면에 Cold plasma는 Hot plasama에 비해 낮은 온도의 전자와 입자들이 발생하고 10~40%의 낮은 이온화율이 특징이며, 낮은 압력이나 대기압에서 작동 가능하다.Before describing the plasma treatment technique, a plasma refers to a discharge state of a gas in which electrons are separated or combined from an atom or a molecule in a gaseous state to combine electrons, anions, and excited atoms or molecules. In the plasma, gas molecules, ions and electrons are metastable, and there are energetically excited atoms or electrically neutral particles, light emitted from the plasma, and ultraviolet rays with high energy, which play an important role in the plasma treatment do. Because Radical is electrically neutral and has a long lifetime and recombines on the surface, several eV of energy is generated and chemically reacts with the surface of the object. Its shape and properties depend on the gas used, and the most important activator is atomic oxygen in oxygen plasma. In addition, the electrons generated in the plasma reach the artist's surface first, desorbing and dissociating the gas molecules adsorbed on the surface, causing most chemical reactions by the electron impact, and the charged ions are accelerated to the surface, Separation and energy generated during ion bombardment promotes active chemical reactions on the surface of the object. Plasma can be divided into hot plasma and cold plasma. Hot plasma generates high temperature electrons, heavy atoms and molecules, and most of them are ionized. Cold plasma, on the other hand, generates electrons and particles at lower temperatures than hot plasmas and is characterized by a low ionization rate of 10 to 40% and can operate at low pressures or atmospheric pressures.

본 발명은 대기압에서 진행되어야 하므로 Cold plasma를 사용할 것이며, Plasma treatment 과정에서 사용하는 기체는 아르곤 가스를 사용하고 단위체 액체인 hexamethyl-disiloxane 사용함으로써 섬유의 표면 처리를 시킨다. High-frequency(RF) 플라즈마를 사용하고, 사용조건은 18 KHz의 진동수와 5KV의 전압이다. 또한 전기 방사와 함께 이루어지도록 하기 위해 드럼 콜렉터와 연결되어 있는 판과 함께 부착하고, 이 거리는 약 20 cm로 전기 방사 시 나노 섬유가 Plasma 장치에 전사되는 것을 방지한다.Since the present invention is to proceed at atmospheric pressure, cold plasma is used. In the plasma treatment process, the gas used is argon gas, and hexamethyl-disiloxane, which is a monomer liquid, is used to treat the fibers. High-frequency (RF) plasma is used and the operating conditions are a frequency of 18 KHz and a voltage of 5 KV. It is also attached with a plate connected to the drum collector to be made with electrospinning, and this distance is about 20 cm to prevent the nanofibers from being transferred to the plasma device during electrospinning.

다음으로 전기 방사의 전자동 시스템 과정을 보여준다.Next, we show the automatic system process of electrospinning.

도3a는 멀티 노즐의 간격을 조절 하는 부분으로 노즐은 각 나사선에 고정되어 있고, 레어저 센서를 이용하여 노즐의 위치를 파악하고 구동부의 모터를 통해 각 노즐들을 좌우로 움직여 노즐간의 간격을 조절할 수 있다.FIG. 3A is a section for adjusting the spacing of the multi-nozzles. The nozzles are fixed to each screw, and the gap between the nozzles can be adjusted by moving the nozzles left and right through the motor of the driving unit, have.

도3b는 노즐과 Substrate 간의 거리 조절 부분과 substrate 위치 조절 부분이다. Z 축 조절은 안정적인 거리 조절을 위해 구동부_1,2와 레이저 센서를 통해 제어 되고, substrate 위치 조절은 구동부의 모터를 이용, 모터와 연결된 고무 벨트에 의해 위치 조절이 가능하다. substrate에는 드럼콜렉터 및 Plasma 장치가 장착되고, 제어부를 통해 노즐 간격, Z축 및 substrate의 위치를 조절 할 수 있다.FIG. 3B shows a distance adjustment part between the nozzle and the substrate and a substrate position adjustment part. The Z-axis control is controlled through the drive units 1 and 2 and the laser sensor for stable distance control, and the substrate position can be adjusted by using the motor of the drive unit and the rubber belt connected to the motor. The substrate is equipped with a drum collector and a plasma device, and the position of the nozzle spacing, the Z axis and the substrate can be adjusted through the control part.

도 4는 후처리 과정을 통해 제조된 ZIF-7/PAN 단일 fiber의 SEM 이미지와 EDX 성분분석이다. SEM 이미지와 보는 것과 같이 후처리 과정을 통해 fiber 표면의 형상 변화를 알 수 있고, EDX 성분분석에 따라 PAN fiber 내 ZIF-7의 결정화가 일어났음을 나타내고 있다. 이를 통해 전기 방사와 후처리 과정을 동시에 함으로써 제조 과정의 시간 단축 뿐만 아니라 비용 절감 측면에서 두드러지는 장점이라고 할 수 있다.FIG. 4 is an SEM image and EDX component analysis of a ZIF-7 / PAN single fiber prepared through post-processing. SEM image shows that the shape of the fiber surface is changed by the post-treatment process and the crystallization of ZIF-7 in the PAN fiber occurs according to EDX component analysis. This can be said to be advantageous not only in terms of shortening the manufacturing process but also in cost reduction by simultaneously performing the electrospinning and the post-treatment process.

도 4는 후처리 과정을 통해 제조된 ZIF-7/PAN 단일 fiber의 SEM 이미지와 EDX 성분분석이다. SEM 이미지와 보는 것과 같이 후처리 과정을 통해 fiber 표면의 형상 변화를 알 수 있고, EDX 성분분석에 따라 PAN fiber 내 ZIF-7의 결정화가 일어났음을 나타내고 있다. 이를 통해 전기 방사와 후처리 과정을 동시에 함으로써 제조 과정의 시간 단축 뿐만 아니라 비용 절감 측면에서 두드러지는 장점이라고 할 수 있다.FIG. 4 is an SEM image and EDX component analysis of a ZIF-7 / PAN single fiber prepared through post-processing. SEM image shows that the shape of the fiber surface is changed by the post-treatment process and the crystallization of ZIF-7 in the PAN fiber occurs according to EDX component analysis. This can be said to be advantageous not only in terms of shortening the manufacturing process but also in cost reduction by simultaneously performing the electrospinning and the post-treatment process.

도 5는 ZIF-7/ PAN nanofiber 멤브레인의 CO2 흡착과 탈착에 대한 그래프이다. 이는 단일 PAN 멤브레인 보다 ZIF-7과 혼합된 멤브레인의 흡착율이 3배이상 높은 것을 알 수 있으며, 후처리 과정에 의해 결정화되는 ZIF-7과 섬유의 표면 형태의 변화에 따라 증가하는 것을 알수 있다. 또한 용액의 농도를 조절함에 따라 단일 fiber의 직경을 변화시켜, 멤브레인의 공극률을 변화 시킬 수 있어 다양한 기체 흡착 및 투과 시키는 멤브레인을 제조할 수 있다.Figure 5 is a graph of CO2 adsorption and desorption of a ZIF-7 / PAN nanofiber membrane. It can be seen that the adsorption rate of the membrane mixed with ZIF-7 is more than 3 times higher than that of the single PAN membrane, and it increases with the change of the surface morphology of ZIF-7 and fiber crystallized by post-treatment. Also, by controlling the concentration of the solution, the diameter of the single fiber can be changed to change the porosity of the membrane, thereby making it possible to produce a membrane capable of adsorbing and permeating various gases.

Claims (4)

라인 패터닝 대면적 기술을 통해 직물 형태의 대면적 매트를 제작하고, 두번째 기술인 Plasma treatment 기술을 통해 열적 화학적 및 기계적으로 안정화되어 제조되는 MOFs 매트.
Line patterning MOFs mat manufactured by fabricating a large area mat in the form of a fabric through large area technology and thermochemically and mechanically stabilized through the second technology Plasma treatment technology.
라인 패터닝 대면적 기술을 통해 직물 형태의 대면적 매트를 제작하고, 두번째 기술인 Plasma treatment 기술을 통해 열적 화학적 및 기계적으로 안정화되어 제조되는 MOFs 매트를 제조하는 제조 방법.
Line patterning Large-area mat in the form of a fabric is produced through large-area technology, and manufacturing method of MOFs manufactured by thermochemically and mechanically stabilized through a second technique, Plasma treatment technology.
라인 패터닝 대면적 장비 제조 및 Plasma treatment 최적 조건 설정 단계를 거쳐, 섬유 방사와 동시에 섬유 표면의 Plasma 처리를 통해 단일 섬유의 성능을 향상 할 뿐만 아니라 라인 패터닝을 통해 직물 형태로 제작 방법으로 원스텝(ONE-STEP) 공정으로 제조되는 MOFs 매트.
Line patterning Large-area equipment manufacturing and plasma treatment Optimum condition setting step, it is possible to improve the performance of single fiber through plasma treatment of fiber surface simultaneously with fiber spinning, as well as improve the performance of ONE- MOFs manufactured by the STEP process.
라인 패터닝 대면적 장비 제조 및 Plasma treatment 최적 조건 설정 단계를 거쳐, 섬유 방사와 동시에 섬유 표면의 Plasma 처리를 통해 단일 섬유의 성능을 향상 할 뿐만 아니라 라인 패터닝을 통해 직물 형태로 제작 방법으로 원스텝(ONE-STEP) 공정으로 제조되는 MOFs 매트를 제조하는 제조 방법.Line patterning Large-area equipment manufacturing and plasma treatment Optimum condition setting step, it is possible to improve the performance of single fiber through plasma treatment of fiber surface simultaneously with fiber spinning, as well as improve the performance of ONE- STEP). ≪ / RTI >
KR1020160024660A 2016-02-29 2016-02-29 Apparatus for manufacturing the gas adsorption membrane possessed of structure of textile using ZIF-7 and method for controlling the same KR20170102137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160024660A KR20170102137A (en) 2016-02-29 2016-02-29 Apparatus for manufacturing the gas adsorption membrane possessed of structure of textile using ZIF-7 and method for controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160024660A KR20170102137A (en) 2016-02-29 2016-02-29 Apparatus for manufacturing the gas adsorption membrane possessed of structure of textile using ZIF-7 and method for controlling the same

Publications (1)

Publication Number Publication Date
KR20170102137A true KR20170102137A (en) 2017-09-07

Family

ID=59925709

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160024660A KR20170102137A (en) 2016-02-29 2016-02-29 Apparatus for manufacturing the gas adsorption membrane possessed of structure of textile using ZIF-7 and method for controlling the same

Country Status (1)

Country Link
KR (1) KR20170102137A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108998894A (en) * 2018-07-26 2018-12-14 山东师范大学 A kind of super-hydrophobic MOFs nanocrystal and composite film material, preparation method and application
CN109695096A (en) * 2018-12-27 2019-04-30 南京工业大学 A kind of method of one-step method preparation air cleaning multi-stage porous nano fibrous membrane
KR20190050109A (en) * 2017-11-02 2019-05-10 숙명여자대학교산학협력단 Porous metal organic framework with fibrous structure and method for preparing the same
CN110813106A (en) * 2019-11-28 2020-02-21 吉林大学 MOFs modified double-layer structure composite electrospun nanofiber membrane, preparation method and application thereof in blood purification
CN112342693A (en) * 2020-10-30 2021-02-09 西安交通大学苏州研究院 Synthesis method of metal organic framework compound flexible film with limited growth
CN113106635A (en) * 2021-03-15 2021-07-13 广东金发科技有限公司 Electrostatic spinning nanofiber non-woven fabric and preparation method and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190050109A (en) * 2017-11-02 2019-05-10 숙명여자대학교산학협력단 Porous metal organic framework with fibrous structure and method for preparing the same
CN108998894A (en) * 2018-07-26 2018-12-14 山东师范大学 A kind of super-hydrophobic MOFs nanocrystal and composite film material, preparation method and application
CN109695096A (en) * 2018-12-27 2019-04-30 南京工业大学 A kind of method of one-step method preparation air cleaning multi-stage porous nano fibrous membrane
CN110813106A (en) * 2019-11-28 2020-02-21 吉林大学 MOFs modified double-layer structure composite electrospun nanofiber membrane, preparation method and application thereof in blood purification
CN110813106B (en) * 2019-11-28 2022-02-25 吉林大学 MOFs modified double-layer structure composite electrospun nanofiber membrane, preparation method and application thereof in blood purification
CN112342693A (en) * 2020-10-30 2021-02-09 西安交通大学苏州研究院 Synthesis method of metal organic framework compound flexible film with limited growth
CN112342693B (en) * 2020-10-30 2022-04-15 西安交通大学苏州研究院 Synthesis method of metal organic framework compound flexible film with limited growth
CN113106635A (en) * 2021-03-15 2021-07-13 广东金发科技有限公司 Electrostatic spinning nanofiber non-woven fabric and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR20170102137A (en) Apparatus for manufacturing the gas adsorption membrane possessed of structure of textile using ZIF-7 and method for controlling the same
Zhang et al. Preparation of nanofibrous metal–organic framework filters for efficient air pollution control
Mahar et al. Rapid adsorption of lead ions using porous carbon nanofibers
Bi et al. Graphene quantum dots engineered nanofiltration membrane for ultrafast molecular separation
Hu et al. Mixed-matrix membrane hollow fibers of Cu3 (BTC) 2 MOF and polyimide for gas separation and adsorption
Xiao et al. Porous metal–organic framework-based filters: Synthesis methods and applications for environmental remediation
JP5062630B2 (en) Composite fiber body, method for producing the same, filter, and fluid filtration method
US20180133658A1 (en) Adsorptive membrane
KR101823915B1 (en) Method for preparing air purifying filter impregnated with cellulose and/or powdered activated-carbon
KR101715811B1 (en) Ion exchange membrane
KR101559902B1 (en) Gas separation system using adsorptive permeation hollow fiber membrane
KR102039512B1 (en) Filter for harmful air cleaner
KR102146063B1 (en) LITHIUM ABSORBENT COMPRISING A COMPOSITE NANOSHEET IMPREGNATED WITH H2TiO3 AND METHOD FOR PRODUCING THE SAME
Wang et al. N-Rich porous carbon with high CO 2 capture capacity derived from polyamine-Incorporated metal–Organic framework materials
Lu et al. Isomer of NU-1000 with a blocking c-pore exhibits high water–vapor uptake capacity and greatly enhanced cycle stability
Armstrong et al. Hierarchical pore structures and high ZIF-8 loading on matrimid electrospun fibers by additive removal from a blended polymer precursor
Kim et al. Rational process design for facile fabrication of dual functional hybrid membrane of MOF and electrospun nanofiber towards high removal efficiency of PM2. 5 and toxic gases
Jiang et al. A highly permeable porous organic cage composite membrane for gas separation
Huang et al. High-efficiency air filter media with a three-dimensional network composed of core–shell zeolitic imidazolate Framework-8@ Tunicate nanocellulose for PM0. 3 removal
CN106732378B (en) A kind of adsorbent and its preparation and application method based on carbon nanomaterial
US10392275B2 (en) Deionizing device
Ge et al. Electrospun polyurethane/loess powder hybrids and their absorption of volatile organic compounds
Pang et al. Electrospinning UiO-66-NH2/polyacrylonitrile fibers for filtration of VOCs
Atighi et al. Metal–Organic Framework@ Graphene Oxide Composite-Incorporated Polyacrylonitrile Nanofibrous Filters for Highly Efficient Particulate Matter Removal and Breath Monitoring
Zheng et al. Electrospun fluorescent polyarylene ether nitrile nanofibrous mats and application as an adsorbent for Cu 2+ removal