KR20170041955A - Mutant Genes as Diagnosis Marker for Amyotrophic Lateral Sclerosis and Diagnosis Method Using the Same - Google Patents

Mutant Genes as Diagnosis Marker for Amyotrophic Lateral Sclerosis and Diagnosis Method Using the Same Download PDF

Info

Publication number
KR20170041955A
KR20170041955A KR1020150141113A KR20150141113A KR20170041955A KR 20170041955 A KR20170041955 A KR 20170041955A KR 1020150141113 A KR1020150141113 A KR 1020150141113A KR 20150141113 A KR20150141113 A KR 20150141113A KR 20170041955 A KR20170041955 A KR 20170041955A
Authority
KR
South Korea
Prior art keywords
mutant
gene
substituted
nucleotide sequence
sequence
Prior art date
Application number
KR1020150141113A
Other languages
Korean (ko)
Other versions
KR102018369B1 (en
Inventor
기창석
김영은
김승현
이승복
Original Assignee
사회복지법인 삼성생명공익재단
한양대학교 산학협력단
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단, 한양대학교 산학협력단, 서울대학교산학협력단 filed Critical 사회복지법인 삼성생명공익재단
Priority to KR1020150141113A priority Critical patent/KR102018369B1/en
Priority to PCT/KR2016/011254 priority patent/WO2017061818A1/en
Publication of KR20170041955A publication Critical patent/KR20170041955A/en
Application granted granted Critical
Publication of KR102018369B1 publication Critical patent/KR102018369B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6887Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids from muscle, cartilage or connective tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2878Muscular dystrophy

Abstract

The present invention provides a RAPGEF2, IFT80, SSH2, XRCC3, SPAG17, PLEKHM2, CLEC4C, FRAS1, ADGRL3, PSEN1 mutant gene and mutant protein as markers for amyotrophic lateral sclerosis, and a method for diagnosing amyotrophic lateral sclerosis by using the same. An amyotrophic lateral sclerosis marker of the present invention is a new mutation discovered from a Korean ALS patient, is a very rare mutation shown at a frequency of less than 0.1% in a conventionally reported database or a mutation which has not been reported, and is a mutation which is not discovered in a normal control group. A mutant gene discovered in the present invention and/or a mutant protein coded therefrom can be very useful in finding genetic causes of ALS and diagnosing ALS. Gene or protein inspection is performed with respect to a mutant gene discovered in the present invention and/or a mutant protein coded therefrom, so amyotrophic lateral sclerosis can be early diagnosed. Also, a suitable treating method is early applied, and a treating effect can be maximized. Moreover, customized treatment according to accurate disease causes can be performed.

Description

[0001] The present invention relates to a mutant gene as a diagnostic marker for amyotrophic lateral sclerosis and to a diagnostic method using the same. [0002] As a diagnostic marker for amyotrophic lateral sclerosis,

The present invention relates to a mutant gene as a diagnostic marker for amyotrophic lateral sclerosis and a diagnostic method using the same.

Amyotrophic lateral sclerosis (ALS) is an adult neurodegenerative disease that occurs due to progressive cerebral cortex, breathing, and loss of motor neurons in the spinal cord. About 10% of patients have familial familial ALS, and about 90% of patients are sporadic without family history. Mutations in several genes including SOD1 , TARDBP , FUS , and C9orf72 have been reported to be the cause of ALS, but genetic causes have not been identified in 1/3 of familial ALS patients and in about 90% of sporadic ALS patients. In recent years, studies have been conducted to identify novel genes that cause disease by identifying de novo variants found only in patients with sporadic and healthy parents in neurological diseases.

Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.

Charcot J, Joffroy A. Arch Physiol Norm Pathol 1869; 2: 744-760 Cleveland DW, Rothstein JD. Nat Rev Neurosci 2001; 2: 806-819 Brain L, Walton JN. Oxford university press, London, 1969 Wijesekera LC, Leigh PN. Orphanet J Rare Dis 2009; 4: 3 Rowland LP, Shneider NA. N Engl J Med 2001; 344: 1688-1700 Kinsley L, Siddique T. Amyotrophic Lateral Sclerosis Overview. GeneReviews@http: //www.ncbi.nlm.nih.gov/books/NBK1450/, Seattle, University of Washington, 2001 Traynor BJ, Codd MB, Corr B, Forde C, Frost E, Hardiman O. Neurology 1999; 52: 504-509 Abhinav K et al., Neuroepidemiology 2007; 29: 44-48 Manjaly ZR et al., Amyotroph Lateral Scler 2010; 11: 439-442 Forbes RB, Colville S, Swingler RJ. Age Ageing 2004; 33: 131-134 Gouveia LO, de Carvalho M. Amyotroph Lateral Scler 2007; 8: 323-327 Haverkamp LJ, Appel V, Appel SH. Brain 1995; 118 (Pt 3): 707-719 Swinnen B, Robberecht W. Nat Rev. Neurol 2014; 10: 661-670 Chioe, Calvoe, Moglia C, Mazzini L, Mora G. J Neurol Neurosurg Psychiatry 2011; 82: 740-746 Pinto S, Pinto A, De Carvalho M. Eura Medicophys 2007; 43: 505-509 Turner MR et al., J Neurol Sci 2010; 294: 81-85 Shoesmith CL, Findlater K, Rowee, Strong MJ. J Neurol Neurosurg Psychiatry 2007; 78: 629-631 Gordon PH et al., Neurology 2006; 66: 647-653 Phukan J, Pender NP, Hardiman O. Lancet Neurol 2007; 6: 994-1003 A VB. Allg Z Psychiat Psychischgerichtliche Med 1932; 96: 364-366 See TH, Hodges JR. J Neurol 2001; 248: 260-270 Jeong Y et al., Neurology 2005; 64: 734-736 Talbot PR et al., J Neurol Neurosurg Psychiatry 1995; 58: 541-547 Mioshi E et al., Neurology 2014; 82: 149-155 Gilbert RM et al., Moving Disord 2010; 25: 1868-1875 Annesi G et al., Ann Neurol 2005; 58: 803-807 DeJesus-Hernandez M et al., Neuron 2011; 72: 245-256 Lindquist SG et al., Clin Genet 2013; 83: 279-283 Hensman Moss DJ et al., Neurology 2014; 82: 292-299 Isaacs JD et al., J Neurol Neurosurg Psychiatry 2007; 78: 750-753 Baltadzhieva R, Gurevich T, Korczyn AD. Curr Opin Neurol 2005; 18: 487-493 Brooks BR, Miller RG, Swash M, Munsat TL. Amyotroph Lateral Scler Other Motor Neuron Disord 2000; 1: 293-299 de Carvalho M et al., Clin Neurophysiol 2008; 119: 497-503 Cedarbaum JM et al., J Neurol Sci 1997; 152 Suppl 1: S1-9 Cedarbaum JM et al., J Neurol Sci 1999; 169: 13-21 A controlled trial of recombinant methionyl human BDNF in ALS: The BDNF Study Group (Phase III). Neurology 1999; 52: 1427-1433 Cudkowicz ME et al., Neurology 2003; 61: 456-464 Groeneveld GJ et al., Ann Neurol 2003; 53: 437-445 Franchignoni F, Mandrioli J, Giordanoa, Ferro S. Amyotroph Lateral Scler Frontotemporal Degener 2015: 1-7 Franchignoni F et al., J Neurol Neurosurg Psychiatry 2013; 84: 1340-1345 Harwoodce, McDermott CJ, Shaw PJ. Amyotroph Lateral Scler 2009; 10: 191-204 Gallo V et al., Ann Neurol 2009; 65: 378-385 Roelofs-Iverson RA et al., Neurology 1984; 34: 393-395 Armon C. Neuroepidemiology 2003; 22: 217-228 Chioe et al., Brain 2005; 128: 472-476 Kasarskis EJ et al., Amyotroph Lateral Scler 2009; 10: 35-41 Pasinelli P, Brown RH. Nat Rev Neurosci 2006; 7: 710-723 Kiernan MC et al., The Lancet 2011; 377: 942-955 Watkins JC, Evans RH. Annu Rev Pharmacol Toxicol 1981; 21: 165-204 Heath PR, Shaw PJ. Muscle Nerve 2002; 26: 438-458 Maher P, Davis JB. J Neurosci 1996; 16: 6394-6401 Meldrum B, Garthwaite J. Trends Pharmacol Sci 1990; 11: 379-387 Liu R et al., Ann Neurol 1998; 44: 763-770 Menzies FM et al., Brain 2002; 125: 1522-1533 Damiano M et al., J Neurochem 2006; 96: 1349-1361 Rizzardini M et al., Brain Res Bull 2006; 69: 465-474 Bruijn LI et al., Science 1998; 281: 1851-1854 Sreedharan J et al., Science 2008; 319: 1668-1672 Kwiatkowski TJ et al., Science 2009; 323: 1205-1208 Renton AE, Chioe, Traynor BJ. Nat Neurosci 2014; 17: 17-23 Sreedharan J, Brown RH, Jr. Ann Neurol 2013; 74: 309-316 Andersen PM, Al-Chalabi A. Nat Rev. Neurol 2011; 7: 603-615 Al-Chalabia, Lewis CM. Hum Hered 2011; 71: 281-288 Rosen DR et al., Nature 1993; 362: 59-62 Neumann M et al., Science 2006; 314: 130-133 Maruyama H et al., Nature 2010; 465: 223-226 Johnson JO et al., Neuron 2010; 68: 857-864 Fecto F et al., Arch Neurol 2011; 68: 1440-1446 Wu CH et al., Nature 2012; 488: 499-503 Deng HX et al., Nature 2011; 477: 211-215 Luty AA et al., Ann Neurol 2010; 68: 639-649 Kim HJ et al., Nature 2013; 495: 467-473 Chioe et al., Neurology 2008; 70: 533-537 Andersen PM. Curr Neurol Neurosci Rep 2006; 6: 37-46 Wang J, Xu G, Borchelt DR. Neurobiol Dis 2002; 9: 139-148 Gurney ME et al., Science 1994; 264: 1772-1775 Boillee S et al., Science 2006; 312: 1389-1392 Cudkowicz ME et al., Ann Neurol 1997; 41: 210-221 Andersen PM et al., Brain 1996; 119 (Pt 4): 1153-1172 Chioe et al., Neurology 2012; 79: 1983-1989 Buratti E, Baral FE. Front Biosci 2008; 13: 867-878 Winton MJ et al., J Biol Chem 2008; 283: 13302-13309 Vance C et al., Science 2009; 323: 1208-1211 Renton AE et al., Neuron 2011; 72: 257-268 Majounie E et al., Lancet Neurol 2012; 11: 323-330 Wojciechowska M, Krzyzosiak WJ. Hum Mol Genet 2011; 20: 3811-3821 Chew J et al., Science 2015 Johnson JO et al., Nat Neurosci 2014; 17: 664-666 Buratti E et al., J Biol Chem 2005; 280: 37572-37584 Rademakers R, van Blitterswijk M. Neuron 2014; 84: 241-243 Smith BN et al., Neuron 2014; 84: 324-331 Cirulli et al., Science 2015; 347: 1436-1441 Freischmidte et al., Nat Neurosci 2015 Kwon MJ et al., Neurobiol Aging 2012; 33: 1017 e1017-1023 Kim HJ et al., Neurobiol Aging 2014; 35: 1957, 1957-1958 Jang JH et al., Neurobiol Aging 2013; 34: 1311, e1317-1319 Crow JF. Nat Rev Genet 2000; 1: 40-47 Roach JC et al., Science 2010; 328: 636-639 Conrad DF et al., Nat Genet 2011; 43: 712-714 Konga et al., Nature 2012; 488: 471-475 Littler M, Morton NE. J Med Genet 1990; 27: 307-310 Ivanchuk SM, Myers SM, Eng C, Mulligan LM. Hum Mol Genet 1996; 5: 2023-2026 O'Roak BJ et al., Nature 2012; 485: 246-250 Gratten J, Visscher PM, Mowry BJ, Wray NR. Nat Genet 2013; 45: 234-238 Veltman JA, Brunner HG. Nat Rev Genet 2012; 13: 565-575 Vissers LE et al., Nat Genet 2010; 42: 1109-1112 Alexander MD et al., Ann Neurol 2002; 52: 680-683 Chioe et al., Neurobiol Aging 2011; 32: 553 e523-556 DeJesus-Hernandez M et al., Hum Mutat 2010; 31: E1377-1389 Chesia et al., Nat Neurosci 2013; 16: 851-855 Calvo et al., Neurobiol Aging 2014; 35: 1513 e1517-1513 e1511 Kim YE et al., Neurobiol Aging 2015; 36: 1604, e1617-1609 Mitchell JD. J Neurol 2000; 247: 7-12 Li H, Durbin R. Bioinformatics 2009; 25: 1754-1760 Olkowski ZL. Neuroreport 1998; 9: 239-242 Droppelmannce et al., Amyotroph Lateral Scler Frontotemporal Degener 2013; 14: 444-451 Takahashi Y et al., Am J Hum Genet 2013; 93: 900-905 Couthouis J et al., Hum Mol Genet 2012; 21: 2899-2911 Al-Chalabia et al., Hum Mol Genet 1999; 8: 157-164 Ticozzi N et al., Ann Neurol 2010; 68: 102-107 Leung CL et al., Brain Pathol 2004; 14: 290-296 Teyssou E et al., Neurobiol Aging 2014; 35: 1213.e1219-1213.e1212 Sabatelli M et al., Amyotroph Lateral Scler 2012; 13: 580-584 van Blitterswijk M et al., PLoS One 2012; 7: e48983 Munch C et al., Neurology 2004; 63: 724-726 Ng PC et al., Nucleic Acids Res 2003; 31: 3812-3814 Ramensky V, Bork P, Sunyaev S. Nucleic Acids Res 2002; 30: 3894-3900 Adzhubei IA et al., Nat Methods 2010; 7: 248-249 Chen J et al., Nucleic Acids Res 2009; 37: W305-311 Ezquerra M, Carnero C, Blesa R, Oliva R. Arch Neurol 2000; 57: 485-488 Pringle CE et al., Brain 1992; 115 (Pt 2): 495-520 Dumanchin C et al., J Med Genet 1998; 35: 672-673 Portet F et al., Neurology 2003; 61: 1136-1137 Golan MP et al., Exp Neurol 2007; 208: 264-268 Ataka S et al., Arch Neurol 2004; 61: 1773-1776 Hattori S et al., Neurosci Lett 2004; 368: 319-322 Ramana et al., J Neurol Sci 2007; 260: 78-82 Brooks WS et al., Brain 2003; 126: 783-791 Verkkoniemia et al., Neurology 2000; 54: 1103-1109 Crook R et al., Nat Med 1998; 4: 452-455 Sanders SJ et al., Nature 2012; 485: 237-241 Neale BM et al., Nature 2012; 485: 242-245 Iossifov I et al., Neuron 2012; 74: 285-299 Rebhun JF, Castro AF, Quilliam LA. J Biol Chem 2000; 275: 34901-34908 Ye T, Ip JP, Fu AK, Ip NY. Nat Commun 2014; 5: 4826 de Rooij J et al., J Biol Chem 1999; 274: 38125-38130 Pham N, Rotin D. J Biol Chem 2001; 276: 28478-28483 Ohtsuka T et al., Biochem Biophys Res Commun 1999; 265: 38-44 Hisata S et al., J Cell Biol 2007; 178: 843-860 Bilasy SE et al., Eur J Neurosci 2009; 29: 1994-2008 Lee KJ et al., Neuron 2011; 69: 957-973 Utreras E et al., Neurochem Int 2013; 62: 848-853 Beales PL et al., Nat Genet 2007; 39: 727-729 Wang C, Yuan X, Yang S. Exp Cell Res 2013; 319: 623-632 Niwa R et al., Cell 2002; 108: 233-246 Fromer M et al., Nature 2014; 506: 179-184 Riboldi E et al., J Biol Chem 2011; 286: 35329-35333 Chappell CP et al., J Immunol 2014; 192: 5789-5801 Boucrot E et al., Science 2005; 308: 1174-1178 Petrou P et al., J Biol Chem 2005; 280: 10350-10356 McGregor L et al., Nat Genet 2003; 34: 203-208 Sugita S et al., J Biol Chem 1998; 273: 32715-32724 Arcos-Burgos M et al., Mol Psychiatry 2010; 15: 1053-1066 Teves ME et al., Am J Respir Cell Mol Biol 2013; 48: 765-772 Teves ME et al., PLoS One 2015; 10: e0125936 Zhang B et al., Wang M, Tang D, Li Y, Xu M, Gu M, Cheng Z, Yu H. J Exp Bot 2015 Brenneman MA et al., Mol Cell 2002; 10: 387-395 van Blitterswijk M et al., Hum Mol Genet 2012; 21: 3776-3784

The present inventors have sought to find a new causative gene for ALS using exon sequence identification method for sporadic ALS patients and their parents. As a result, a novel mutation was found in 10 genes in ALS patients. In particular, it was confirmed that RAPGEF2 gene is a new causative gene of ALS and confirmed that the novel mutation can be usefully used for ALS diagnosis Respectively.

Accordingly, it is an object of the present invention to provide RAPGEF2 , IFT80 , SSH2 , XRCC3 , SPAG17 , PLEKHM2 , CLEC4C , FRAS1 , ADGRL3 , PSEN1 mutation genes as diagnostic markers for amyotrophic lateral sclerosis.

Another object of the present invention is to provide RapGEF2, IFT80, SSH2, XRCC3, SPAG17, CLEC4C, FRAS1, ADGRL3, PSEN1 mutant proteins as diagnostic markers for amyotrophic lateral sclerosis.

It is another object of the present invention to provide a method for providing information necessary for diagnosis of amyotrophic lateral sclerosis.

Another object of the present invention is to provide a composition for diagnosing amyotrophic lateral sclerosis.

It is still another object of the present invention to provide a kit for diagnosing amyotrophic lateral sclerosis.

Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention and claims.

According to one aspect of the present invention, the present invention provides a diagnostic marker for amyotrophic lateral sclerosis (ALS) comprising: (i) guanine at position 4069 in the nucleotide sequence of SEQ ID NO: 1 substituted by adenine, 1883 The second base, cytosine, is replaced with thymine, or RAPGEF2 in which the guanine at position 3293 is substituted with adenine Mutant genes; (Ii) a nucleotide sequence in which the guanine at position 595 in the nucleotide sequence of SEQ ID NO: 2 is substituted with adenine IFT80 Mutant genes; (Iii) a nucleotide sequence in which the guanine at position 1408 in the nucleotide sequence of SEQ ID NO: 3 is substituted with thymine SSH2 Mutant genes; ( Iv) XRCC3 in which the guanine at position 598 in the nucleotide sequence of Sequence Listing 4 is substituted with adenine Mutant genes; (V) a SPAG17 mutant gene in which the 2815th base, guanine, is substituted with thymine in the nucleotide sequence of Sequence Listing 5; (Vi) the nucleotide sequence of SEQ ID NO: 6 is substituted with cytosine thymine, 1921 + 6th base PLEKHM2 Mutant genes; ( Viii) CLEC4C having deletion of the 629th to 631st bases adenine, guanine and adenine in the nucleotide sequence of SEQ ID No. 7 Mutant genes; (Viii) In the nucleotide sequence of Sequence Listing 8, the 8393th base, cytosine, is substituted with thymine FRAS1 mutation gene; (Viii) In the nucleotide sequence of SEQ ID NO: 9, adenine at position 715 is substituted with guanine ADGRL3 Mutant genes; And (x) PSEN1 substituted with cytosine for the thymine, which is the 497th base in the nucleotide sequence of SEQ ID NO: 10 A mutant gene selected from the group consisting of mutant genes.

According to another aspect of the present invention, there is provided a diagnostic marker for amyotrophic lateral sclerosis comprising: (i) a guanine at position 4069 in the nucleotide sequence of SEQ ID NO: 1 substituted with adenine, Or guanine, which is the 3293th base, is substituted with adenineRAPGEF2 A RapGEF2 mutant protein encoded from a mutant gene; (Ii) a nucleotide sequence in which the guanine at position 595 in the nucleotide sequence of SEQ ID NO: 2 is substituted with adenineIFT80An IFT80 mutant protein encoded from a mutant gene; (Iii) a nucleotide sequence in which the guanine at position 1408 in the nucleotide sequence of SEQ ID NO: 3 is substituted with thymineSSH2 An SSH2 mutant protein encoded from a mutant gene; (Iv) the guanine at position 598 in the nucleotide sequence of Sequence Listing 4 is substituted with adenine XRCC3 An XRCC3 mutant protein encoded from a mutant gene; (V) the nucleotide sequence of SEQ ID NO: 5, wherein guanine, which is the 2815th nucleotide in the nucleotide sequence of SEQ ID NO: 5,SPAG17 A SPAG17 mutant protein encoded from a mutant gene; (Vi) deletion of the 629th to 631st bases adenine, guanine and adenine in the nucleotide sequence of SEQ ID NO: 7CLEC4C A CLEC4C mutant protein encoded from a mutant gene; (Viii) In the nucleotide sequence of Sequence Listing 8, the 8393th base, cytosine, is substituted with thymine FRAS1 A FRAS1 mutant protein encoded from a mutant gene; (Viii) In the nucleotide sequence of SEQ ID NO: 9, adenine at position 715 is substituted with guanine ADGRL3 An ADGRL3 mutant protein encoded from a mutant gene; And (iii) the thymine, which is the 497th base in the nucleotide sequence of SEQ ID NO: 10, is substituted with cytosinePSEN1 A PSEN1 mutant protein encoded by a mutant gene, and a PSEN1 mutant protein encoded from a mutant gene.

The present inventors have sought to find a new causative gene for ALS using exon sequence identification method for sporadic ALS patients and their parents. As a result, we found new mutations in 10 genes in ALS patients, especially RAPGEF2 Gene was identified as a new causative gene of ALS, and it was confirmed that the novel mutation could be used for diagnosis of ALS.

Amyotrophic lateral sclerosis (ALS) is a disease that selectively kills motor neurons and is also called Lou Gehrig's disease. It is caused by the upper motor neurons of the cerebral cortex, the lower motor neurons of the brainstem and spinal cord lower motor neurons) are gradually destroyed. Clinical symptoms start with a slowly progressing weakness (weakness) and atrophy, and are fatal diseases that progress to disease and eventually lead to death within several years due to respiratory paralysis.

In the present invention, a total of 15 Korean patients with sporadic ALS patients and their parents were subjected to the exon sequence identification method and found new mutations at exon and splice sites. Very rare and mutations that are not found in the normal Korean control group. New mutations found in patients with ALS in the present invention include RAPGEF2 c.4069G> A (p.Glu1357Lys), RAPGEF2 c.1883C> T (p.Thr628Ile), RAPGEF2 c.3293G> A (p.Arg1098His) FRAS1 c.8393C > T (p.Ala2798Val), SPAG17 c.2815G > T (p.Ala939Ser), XRCC3 c.598G > A (p.Val200Ile), IFT80 c.595G > A (p.Val199Ile), ADGRL3 c.715A > G (p.Ser239Gly), SSH2 c.1408G > T (p.Glu470 *), CLEC4C c.629_631delAGA (p.Lys210del), PLEKHM2 (c.1921 + 6C> T) and PSEN1 c.497T> C (p.Leu166Pro), among which RAPGEF2 The three mutations found in the genes were rarely reported or reported in the dbSNP141, 1000 Genome Project and EAC (Exome Aggregation Consortitum) databases with a frequency of less than 0.1% and were not found in the Korean control group. RAPGEF2 It has been confirmed that the gene may be associated with ALS.

PSEN1 c.497T> C among mutations found in patients with ALS in the present invention is a mutation previously reported in familial early onset Alzheimer's dementia (EOAD), but it is the first mutation found in ALS patients.

Other variants are variants of unknown significance (VUS) that have not been reported previously. Of the eleven novel VUS found in the present invention, ten mutations were mutations affecting amino acids located in the exon region. FRAS1 c.8393C > T (p.Ala2798Val), RAPGEF2 c.4069G > A (p.Glu1357Lys), RAPGEF2 c.1883C > T (p.Thr628Ile), RAPGEF2 c.3293G > A (p.Arg1098His), SPAG17 (p.Ala939Ser), XRCC3 c.598G> A (p.Val200Ile), IFT80 c.595G> A (p.Val199Ile), ADGRL3 c.715A> G (p.Ser239Gly) and XRCC3 c.598G > A (p.Val200Ile) is a missense mutation, and CLEC4C c.629_631delAGA (p.Lys210del) is inframe deletion, SSH2 c.1408G> T (p.Glu470 *) represents a nonsense mutation. The other one was an intron mutation located in the flanking region near the exon boundary ( PLEKHM2 c.1921 + 6C> T).

According to one embodiment of the present invention, the (i) RapGEF2 mutant protein of the present invention is a mutant protein in which glutamate, which is the 1357th amino acid residue in the amino acid sequence of SEQ ID NO: 11, is replaced by lysine, threonine which is the 628th amino acid residue is substituted with isoleucine, Arginine, the 1098th amino acid residue, is a RapGEF2 mutant protein substituted with histidine; (Ii) the IFT80 mutant protein is an IFT80 mutant protein in which valine, the 199th amino acid residue in the amino acid sequence of SEQ ID NO: 12, is replaced by isoleucine; (Iii) the SSH2 mutant protein is an SSH2 mutant protein in which glutamate, the 470th amino acid residue in the amino acid sequence of SEQ ID NO: 13, is replaced with a stop codon; (Iv) the XRCC3 mutant protein is an XRCC3 mutant protein substituted with isoleucine valine, the 200th amino acid residue in the amino acid sequence of SEQ ID NO: 14; (V) the SPAG17 mutant protein is a SPAG17 mutant protein in which alanine, the 939th amino acid residue in the amino acid sequence of Sequence Listing 15 sequence, is replaced with serine; (Vi) the CLCE4C mutant protein is a CLEC4C mutant protein in which the lysine, which is the 210th amino acid residue in the amino acid sequence of SEQ ID NO: 16, is deleted; (Iii) FRAS1 mutant protein is a FRAS1 mutant protein in which alanine, the 2798th amino acid residue in the amino acid sequence of Sequence Listing 17 sequence, is substituted with valine; (Iii) the ADGRL3 mutant protein is an ADGRL3 mutant protein substituted with serine glycine, the 239th amino acid residue in the amino acid sequence of SEQ ID NO: 18; (Iii) The PSEN1 mutant protein is a PSEN1 mutant protein substituted by leucine iprroline, which is the 166th amino acid residue in the amino acid sequence of SEQ ID NO: 19.

PLEKHM2 c.1921 + 6C> T is a mutation in the intron region that does not produce a mutant protein.

According to the present invention, mutant genes found in the present invention and / or mutant proteins encoded therefrom can be very useful for identifying genetic causes of ALS and diagnosing ALS.

According to another aspect of the present invention, the present invention provides a method for providing information necessary for diagnosis of amyotrophic lateral sclerosis comprising the steps of:

(a) from a biological sample isolated from a subject, (i) guanine at position 4069 in the nucleotide sequence of SEQ ID NO: 1 is replaced with adenine, guanine at position 1883, substituted with cytosine thymine, or guanine A RAPGEF2 mutant gene substituted with this adenine; ( Ii) an IFT80 mutant gene in which the guanine at position 595 base in the nucleotide sequence of SEQ ID NO: 2 is substituted with adenine; (Iii) a nucleotide sequence in which the guanine at position 1408 in the nucleotide sequence of SEQ ID NO: 3 is substituted with thymine SSH2 Mutant genes; (Iv) the guanine at position 598 in the nucleotide sequence of Sequence Listing 4 is substituted with adenine XRCC3 Mutant genes; (V) the nucleotide sequence of SEQ ID NO: 5, wherein guanine, which is the 2815th nucleotide in the nucleotide sequence of SEQ ID NO: 5, SPAG17 Mutant genes; (Vi) the nucleotide sequence of SEQ ID NO: 6 is substituted with cytosine thymine, 1921 + 6th base PLEKHM2 A mutant gene selected from the group consisting of mutant genes; ( Viii) CLEC4C having deletion of the 629th to 631st bases adenine, guanine and adenine in the nucleotide sequence of SEQ ID No. 7 Mutant genes; (Viii) In the nucleotide sequence of Sequence Listing 8, the 8393th base, cytosine, is substituted with thymine FRAS1 Mutant genes; (Viii) In the nucleotide sequence of SEQ ID NO: 9, adenine at position 715 is substituted with guanine ADGRL3 Mutant genes; Or (x) PSEN1 substituted with cytosine for the thymine at position 497 in the nucleotide sequence of SEQ ID NO: 10 Detecting a mRNA of the mutant gene or a mutant protein encoded by the gene; And

(b) when the mRNA or mutant protein of the mutant gene is detected in the sample, determining that the subject is amyotrophic lateral sclerosis.

The term " biological sample " in the present invention includes, but is not limited to, tissues, cells, whole blood, serum, plasma, saliva, sputum, cerebrospinal fluid or urine separated from an individual to be examined for amyotrophic lateral sclerosis It is not.

According to the present invention, in step (a), the mRNA can be detected using primers, probes and various known sequencing methods that specifically bind to the mutant gene.

Examples of methods for detecting mRNA include reverse transcriptase polymerase, competitive reverse transcriptase polymerase, real-time reverse transcriptase polymerase, RNase protection assay, northern blot, DNA microarray chip and the like. It is not.

Through the above method, it is possible to detect mRNA of the mutant gene in a subject suspected of developing the target disease, and to diagnose amyotrophic lateral sclerosis by judging whether mRNA is detected or not. The mRNA is preferably detected using a reverse transcriptase polymerization reaction using a primer specific to a mutant gene used as a diagnostic marker or a DNA microarray chip using a probe specific to the gene.

According to one embodiment of the present invention, a reverse transcriptase polymerization reaction is performed using a primer specific to a mutant gene used as a diagnostic marker, and the product is detected by electrophoresis to detect the presence or absence of the mutant gene, It is easy to diagnose atrophic lateral sclerosis.

On the other hand, a DNA microarray chip uses a DNA chip in which a nucleic acid corresponding to the mutant gene or a fragment thereof is attached to a substrate such as glass at a high density. The DNA microarray chip separates mRNA from an individual sample, Hybridization of DNA probes with labeled cDNA probes can be used to diagnose amyotrophic lateral sclerosis.

Specifically, an analysis method using a DNA microarray chip may include the following steps:

(1) isolating the mRNA of the mutant gene from the individual sample;

(2) labeling the mRNA with a fluorescent substance while synthesizing the mRNA;

(3) hybridizing the cDNA labeled with the fluorescent substance with a DNA microarray chip immobilized with a probe for a mutant gene; And

(4) analyzing the hybridized DNA microarray chip to detect the expression of the mutant gene in the individual sample.

Cy3, Cy5, FITC (poly L-lysine-fluorescein isothiocyanate), rhodamine-B-isothiocyanate (RITC), rhodamine and the like may be used as the fluorescent material suitable for the above assay method.

According to the present invention, in the step (a), the mutant protein can be measured using an antibody that specifically binds to the mutant protein.

Immunohistochemical staining, immunoprecipitation analysis, complement fixation, FACS, immunohistochemistry, Western blotting, ELISA, radioimmunoassay, radioimmunoassay, Ouchteroni immunodiffusion, rocket immunoelectrophoresis, Protein chips, and the like can be used, but the present invention is not limited thereto.

Through this method, it is possible to detect the formation amount of an antigen-antibody complex in a subject suspected of developing the target disease, and to diagnose the presence or absence of amyotrophic lateral sclerosis by judging the expression of the protein encoded from the mutant gene.

The term " antigen-antibody complex " in the present invention refers to a combination of a protein encoded by a mutant gene and an antibody specific thereto, and the formation amount of the antigen-antibody complex can be quantitatively determined through the signal intensity of the detection label .

Protein expression can be measured, for example, by ELISA. ELISAs include direct ELISA using a labeled antibody that recognizes an antigen attached to a solid support, indirect ELISA using a labeled antibody that recognizes the capture antibody in a complex of antibodies recognizing an antigen attached to a solid support, A direct sandwich ELISA using another labeled antibody that recognizes an antigen in an antibody-antigen complex, an antibody that binds to a solid support and an antigen in a complex of the antibody and a labeled antibody recognizing the antibody Indirect sandwich ELISA using a secondary antibody, and various ELISA methods.

Western blotting using one or more antibodies to the protein encoded by the mutant gene may also be used. The whole protein is separated from the sample, and the protein is separated according to the size by electrophoresis, and then transferred to the nitrocellulose membrane to react with the antibody. The amount of protein produced by the expression of the gene can be confirmed by confirming the amount of the generated antigen-antibody complex using the labeled antibody, thereby diagnosing amyotrophic lateral sclerosis.

Immunohistochemical staining using one or more antibodies against the protein encoded by the mutant gene may also be performed. After the tissue obtained from the subject is fixed, a paraffin-embedded block is prepared by a method well known in the art. They are made into sections with a thickness of several micrometers and attached to glass slides to prepare tissue section slides. Then, antibodies specific to proteins encoded from mutant genes according to the present invention are reacted according to a known method. Thereafter, the unreacted antibody is washed and removed, and reacted with a coloring reagent for observing the immune response, so that the expression of the protein can be observed under a microscope to diagnose amyotrophic lateral sclerosis.

In addition, a protein chip in which one or more antibodies against a protein encoded by the mutant gene is arranged at a predetermined position on a substrate and immobilized at high density can be used. A method for analyzing a sample using a protein chip is to separate the protein from the sample, hybridize the separated protein with the protein chip to form an antigen-antibody complex, and read the protein to confirm the presence of the protein to diagnose amyotrophic lateral sclerosis can do.

According to another aspect of the present invention, there is provided a composition for diagnosing amyotrophic lateral sclerosis comprising a detecting agent capable of detecting mRNA of the mutant gene of the present invention or a mutant protein encoded by the gene from a biological sample .

In the present invention, the detecting agent used for detecting mRNA is a primer or a probe that specifically binds to the mutant gene.

The probe or primer used in the composition for diagnosing amyotrophic lateral sclerosis of the present invention has a sequence complementary to the nucleotide sequence of the mutant gene. The term " complementary " as used herein means having complementarity enough to selectively hybridize to the nucleotide sequences described above under any particular hybridization or annealing conditions. Thus, the term " complementary " has a different meaning from the term complementary, and the primers or probes of the present invention may include one or more mismatches mismatch < / RTI > sequence.

As used herein, the term " primer " refers to a primer that, under suitable conditions (i.e., four different nucleoside triphosphates and polymerization enzymes) in a suitable buffer at a suitable temperature, - means strand oligonucleotide. Suitable lengths of the primer are typically 15-30 base pairs, depending on various factors such as temperature and use of the primer. Short primer molecules generally require lower temperatures to form a sufficiently stable hybrid complex with the template.

The sequence of the primer does not need to have a sequence completely complementary to a partial sequence of the template, and it is sufficient if the primer has sufficient complementarity within a range capable of hybridizing with the template and acting as a primer. Therefore, the primer in the present invention does not need to have a perfectly complementary sequence to the above-mentioned nucleotide sequence, which is a template, and it is sufficient that the primer has sufficient complementarity within a range capable of hybridizing to the gene sequence and acting as a primer. The design of such a primer can be easily carried out by a person skilled in the art with reference to the above-mentioned nucleotide sequence, for example, by using a program for primer design (for example, PRIMER 3 program).

As used herein, the term " probe " refers to a linear oligomer of natural or modified monomer or linkages and includes deoxyribonucleotides and ribonucleotides and can specifically hybridize to a target nucleotide sequence, Present or artificially synthesized. The probe of the present invention is preferably a single strand, and is an oligodioxyribonucleotide.

The nucleotide sequence of the marker of the present invention to be referred to in the preparation of the primer or probe can be found in Sequence Listing Nos. 1 to 10, and a primer or a probe can be designed with reference to this sequence.

Detectors used to detect proteins in the present invention are oligopeptides, monoclonal antibodies, polyclonal antibodies, chimeric antibodies, ligands, peptide nucleic acids (PNA) or aptamers. The protein detecting agent used in the present invention is preferably an antibody specific to a protein encoded by the mutant gene of the present invention.

The antibody used in the present invention is a polyclonal or monoclonal antibody, preferably a monoclonal antibody. Antibodies can be produced using methods commonly practiced in the art, such as the fusion method (Kohler and Milstein, European Journal of Immunology, 6: 511-519 (1976)), the recombinant DNA method (US Patent No. 4,816,56) Or phage antibody library methods (Clackson et al., Nature , 352: 624-628 (1991) and Marks et al . , J. Mol . Biol . , 222: 58, 1-597 (1991)). General procedures for antibody preparation are described in Harlow, E. and Lane, D., Using Antibodies: A Laboratory Manual, Cold Spring Harbor Press, New York, 1999; Zola, H., Monoclonal Antibodies: A Manual of Techniques, CRC Press, Inc., Boca Raton, Florida, 1984; And Coligan, CURRENT PROTOCOLS IN IMMUNOLOGY, Wiley / Greene, NY, 1991, the disclosures of which are incorporated herein by reference. For example, the preparation of hybridoma cells producing monoclonal antibodies is accomplished by fusing an immortalized cell line with an antibody-producing lymphocyte, and the techniques necessary for this process are well known and readily practicable by those skilled in the art. Polyclonal antibodies can be obtained by injecting a protein antigen into a suitable animal, collecting the antiserum from the animal, and then separating the antibody from the antiserum using a known affinity technique.

According to another aspect of the present invention, there is provided a kit for the diagnosis of amyotrophic lateral sclerosis comprising the composition for diagnosing amyotrophic lateral sclerosis.

The kit of the present invention is a kit for microarray, gene amplification kit or immunoassay.

When the kit of the present invention is a microarray, the probe is immobilized on the solid-phase surface of the microarray.

In the microarray of the present invention, the probe is used as a hybridizable array element and immobilized on a substrate. Preferred gases include, for example, membranes, filters, chips, slides, wafers, fibers, magnetic beads or non-magnetic beads, gels, tubing, plates, polymers, microparticles and capillaries, as suitable rigid or semi-rigid supports. The hybridization array elements are arranged and immobilized on the substrate. Such immobilization is carried out by a chemical bonding method or a covalent bonding method such as UV. For example, the hybridization array element may be bonded to a glass surface modified to include an epoxy compound or an aldehyde group, and may also be bound by UV on a polylysine coating surface. In addition, the hybridization array element may be coupled to the gas through a linker (e.g., ethylene glycol oligomer and diamine).

On the other hand, the sample DNA to be applied to the microarray of the present invention can be labeled and hybridized with the array elements on the microarray. Hybridization conditions can be varied. The detection and analysis of the hybridization degree can be variously carried out according to the labeling substance.

The label of the probe may provide a signal to detect hybridization, which may be linked to an oligonucleotide. Suitable labels include, but are not limited to, fluorescent moieties such as fluorescein, phycoerythrin, rhodamine, lissamine, and Cy3 and Cy5 (Pharmacia), chromophores, chemiluminescent moieties, magnetic particles, radioactive isotopes (P 32 and S 35 ), mass markers, electron dense particles, enzymes (alkaline phosphatase or horseradish peroxidase), substrates for enzymes, heavy metals (eg, gold) and antibodies, streptavidin, But are not limited to, haptens with specific binding partners such as biotin, digoxigenin and chelating groups. The labeling can be accomplished by a variety of methods routinely practiced in the art, such as the nick translation method, priming method (Multiprime DNA labelling systems booklet, "Amersham" (1989)) and Kai Nation method (Maxam & Gilbert, methods in Enzymology , 65: 499 (1986)). it can be carried out through the cover of a fluorescent, radioactive, to It provides a measurement, weight measurement, X- ray diffraction or absorption, magnetism, enzymatic activity, mass analysis, binding affinity, hybridization high frequency signal that can be detected by the nanocrystal.

When a probe is used, the probe is hybridized with the cDNA molecule. In the present invention, suitable hybridization conditions can be determined by a series of procedures by an optimization procedure. This procedure is performed by a person skilled in the art in a series of procedures to establish a protocol for use in the laboratory. Conditions such as, for example, temperature, concentration of components, hybridization and washing time, buffer components and their pH and ionic strength depend on various factors such as the length of the probe, the amount of guanine and cytosine, and the target nucleotide sequence. The detailed conditions for hybridization are described in Joseph Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (2001); And MLM Anderson, Nucleic Acid Hybridization, Springer-Verlag New York Inc .; NY (1999). For example, high stringency conditions were hybridized at 65 ° C in 0.5 M NaHPO 4 , 7% SDS (sodium dodecyl sulfate) and 1 mM EDTA, followed by addition of 0.1 x SSC / 0.1% SDS Lt; RTI ID = 0.0 > 68 C < / RTI > Alternatively, high stringency conditions means washing at < RTI ID = 0.0 > 48 C < / RTI > in 6 x SSC / 0.05% sodium pyrophosphate. Low stringency conditions mean, for example, washing in 0.2 x SSC / 0.1% SDS at 42 ° C.

After the hybridization reaction, a hybridization signal generated through the hybridization reaction is detected. The hybridization signal can be carried out in various ways depending on, for example, the type of label attached to the probe. For example, when a probe is labeled with an enzyme, the substrate of the enzyme can be reacted with the result of hybridization reaction to confirm hybridization. Combinations of enzymes / substrates that may be used include, but are not limited to, peroxidases (such as horseradish peroxidase) and chloronaphthol, aminoethylcarbazole, diaminobenzidine, D-luciferin, lucigenin (bis- Acetyl-3,7-dihydroxyphenox), HYR (p-phenylenediamine-HCl and pyrocatechol), TMB (tetramethylbenzidine), ABTS (2) , 2'-Azine-di [3-ethylbenzthiazoline sulfonate]), o-phenylenediamine (OPD) and naphthol / pyronine; (BCIP), nitroblue tetrazolium (NBT), naphthol-AS-B1-phosphate, and ECF substrate; alkaline phosphatase and bromochloroindoleyl phosphate; Glucose oxidase and t-NBT (nitroblue tetrazolium) and m-PMS (phenzaine methosulfate). When the probe is labeled with gold particles, it can be detected by a silver staining method using silver nitrate. Therefore, when the method of detecting the marker of the present invention is carried out based on hybridization, specifically (i) hybridizing a probe having a sequence complementary to the nucleotide sequence of the marker of the present invention to a nucleic acid sample; (ii) detecting whether the hybridization reaction has occurred.

According to one embodiment of the present invention, the diagnostic kit of the present invention may be a gene amplification kit.

The term " amplification " as used herein refers to a reaction that amplifies a nucleic acid molecule. A variety of amplification reactions have been reported in the art, including polymerase chain reaction (PCR) (US Pat. Nos. 4,683,195, 4,683,202 and 4,800,159), reverse-transcription polymerase chain reaction (RT-PCR) (Sambrook et al., Molecular Cloning. (LCR) (see, for example, A Laboratory Manual, 3rd Ed. Cold Spring Harbor Press (2001)), Miller, HI (WO 89/06700) and Davey, C. et al (EP 329,822) 17,18), Gap-LCR (WO 90/01069), repair chain reaction (EP 439,182), transcription-mediated amplification (TMA, WO 88/10315) (SEQ ID NO: 1), self-sustained sequence replication (WO 90/06995), selective amplification of target polynucleotide sequences (US Patent No. 6,410,276), consensus sequence primed polymerase chain reaction CP-PCR), U.S. Patent No. 4,437,975) (AP-PCR), U.S. Patent Nos. 5,413,909 and 5,861,245), nucleic acid sequence based amplification (NASBA), U.S. Patent No. 5,130,238, 5,409,818, 5,554,517, and 6,063,603), strand displacement amplification (21,22), and loop-mediated isothermal amplification. (LAMP) 23, but is not limited thereto. Other amplification methods that may be used are described in U.S. Patent Nos. 5,242,794, 5,494,810, 4,988,617 and U.S. Patent No. 09 / 854,317.

PCR is the most well-known nucleic acid amplification method, and many variations and applications thereof have been developed. For example, touchdown PCR, hot start PCR, nested PCR and booster PCR have been developed by modifying traditional PCR procedures to enhance the specificity or sensitivity of PCR. In addition, real-time PCR, differential display PCR (DD-PCR), rapid amplification of cDNA ends (RACE), multiplex PCR, inverse polymerase chain reaction chain reaction (IPCR), vectorette PCR and thermal asymmetric interlaced PCR (TAIL-PCR) have been developed for specific applications. For more information on PCR see McPherson, M.J., and Moller, S.G. PCR. BIOS Scientific Publishers, Springer-Verlag New York Berlin Heidelberg, N.Y. (2000), the teachings of which are incorporated herein by reference.

When the diagnostic kit of the present invention is carried out using a primer, the presence or absence of the nucleotide sequence of the marker of the present invention is examined by performing a gene amplification reaction. Therefore, in principle, the present invention uses a mRNA in a sample as a template and performs a gene amplification reaction using a primer that binds to mRNA or cDNA.

To obtain mRNA, total RNA is isolated from the sample. The isolation of total RNA can be carried out according to conventional methods known in the art (see Sambrook, J. et al., Molecular Cloning, A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (2001); Tesniere , C. et al, Plant Mol Biol Rep, 9:..... 242 (1991); Ausubel, FM et al, Current Protocols in Molecular Biology, John Willey & Sons (1987); and Chomczynski, P. et al Anal. Biochem . 162: 156 (1987)). For example, TRIzol can be used to easily isolate total RNA in a cell. Next, cDNA is synthesized from the separated mRNA, and this cDNA is amplified. Since the total RNA of the present invention is isolated from a human sample, it has a poly-A tail at the end of the mRNA, and the cDNA can be easily synthesized using the oligo dT primer and the reverse transcriptase using such a sequence characteristic ( reference: PNAS USA, 85: 8998 ( 1988); Libert F, et al, Science, 244:.... 569 (1989); and Sambrook, J. et al, Molecular Cloning A Laboratory Manual, 3rd ed Cold Spring Harbor Press (2001)). Next, the synthesized cDNA is amplified through gene amplification reaction.

The primer used in the present invention is hybridized or annealed at one site of the template to form a double-stranded structure. Nucleic acid hybridization conditions suitable for forming such a double-stranded structure can be found in Nucleic Acid Hybridization < RTI ID = 0.0 > (" , A Practical Approach, IRL Press, Washington, DC (1985).

A variety of DNA polymerases can be used in the amplification of the present invention, including the " Clenow " fragment of E. coli DNA polymerase I, the thermostable DNA polymerase and the bacteriophage T7 DNA polymerase. Preferably, the polymerase is a thermostable DNA polymerase obtainable from a variety of bacterial species, including Thermus aquaticus (Taq), Thermus thermophilus (Tth), Thermus filiformis, Thermis flavus, Thermococcus literalis, and Pyrococcus furiosus (Pfu) .

When performing the polymerization reaction, it is preferable to provide the reaction vessel with an excessive amount of the components necessary for the reaction. The excess amount of the components required for the amplification reaction means an amount such that the amplification reaction is not substantially restricted to the concentration of the component. To provide joinja, dATP, dCTP, dGTP and dTTP, such as Mg + 2 to the reaction mixtures to have a desired degree of amplification can be achieved is required. All enzymes used in the amplification reaction may be active under the same reaction conditions. In fact, buffers make all enzymes close to optimal reaction conditions. Therefore, the amplification process of the present invention can be carried out in a single reaction without changing the conditions such as the addition of reactants.

In the present invention, annealing is carried out under stringent conditions that allow specific binding between the target nucleotide sequence and the primer. The stringent conditions for annealing are sequence-dependent and vary with environmental variables.

The cDNA of the nucleotide sequence of the thus amplified marker of the present invention is analyzed by a suitable method to determine whether the nucleotide sequence of the marker of the present invention is present. For example, the presence or absence of the nucleotide sequence of the marker of the present invention is examined by performing gel electrophoresis on the result of amplification reaction described above, and observing and analyzing the resulting band. Through such an amplification reaction, when the nucleotide sequence of the marker of the present invention is found in the raw sample, it is determined that the possibility of amyotrophic lateral sclerosis is high.

According to one embodiment of the present invention, the kit of the present invention can be carried out by an immunoassay method, that is, an antigen-antibody reaction method. In this case, an antibody or an aptamer that specifically binds to the marker of the present invention described above is used.

The antibody used in the present invention is a polyclonal or monoclonal antibody, preferably a monoclonal antibody.

Such immunoassays can be performed according to various quantitative or qualitative immunoassay protocols developed in the past. The immunoassay format may include, but is not limited to, radioimmunoassays, radioimmunoprecipitation, immunoprecipitation, immunohistochemical staining, enzyme-linked immunosorbent assay (ELISA), capture-ELISA, inhibition or hardwood analysis, sandwich analysis, flow cytometry, But are not limited to, fluorescent staining and immunoaffinity purification. Methods of immunoassay or immunostaining are described in Enzyme Immunoassay, E. T. Maggio, ed., CRC Press, Boca Raton, Florida, 1980; Gaastra, W., Enzyme-linked immunosorbent assay (ELISA), in Methods in Molecular Biology, Vol. 1, Walker, J.M. ed., Humana Press, NJ, 1984; And Ed Harlow and David Lane, Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1999, which is incorporated herein by reference.

For example, if the method of the present invention is carried out according to the method radioactive immunoassay, radioactive isotope is an antibody labeled (e.g., C 14, I 125, P 32 and S 35) of detecting the marker molecules of the present invention .

When the method of the present invention is carried out by an ELISA method, a specific embodiment of the present invention comprises the steps of (i) coating the surface of a solid substrate with an unknown cell sample lysate to be analyzed; (Ii) reacting the cell lysate with an antibody to a marker as a primary antibody; (Iii) reacting the result of step (ii) with an enzyme-conjugated secondary antibody; And (iv) measuring the activity of the enzyme.

Suitable as said solid substrate are hydrocarbon polymers (e.g., polystyrene and polypropylene), glass, metal or gel, and most preferably microtiter plates.

The enzyme bound to the secondary antibody may include an enzyme catalyzing a chromogenic reaction, a fluorescence reaction, a luminescent reaction, or an infrared reaction, but is not limited thereto. For example, an alkaline phosphatase,? -Galactosidase, Radish peroxidase, luciferase, and cytochrome P450. In the case where alkaline phosphatase is used as an enzyme binding to the secondary antibody, it is preferable that the substrate is selected from the group consisting of bromochloroindole phosphate (BCIP), nitroblue tetrazolium (NBT), naphthol-AS -Bl-phosphate and ECF (enhanced chemifluorescence) are used. When horseradish peroxidase is used, chloronaphthol, aminoethylcarbazole, diaminobenzidine, D-luciferin, lucigenin (10-acetyl-3,7-dihydroxyphenoxazine), HYR (p-phenylenediamine-HCl and pyrocatechol), TMB (n-butyllithium), tetramethylbenzidine, ABTS (2,2'-Azine-di [3-ethylbenzthiazoline sulfonate]), o-phenylenediamine (OPD) and naphthol / pyronin, glucose oxidase and nitroblue tetrazolium a substrate such as phenzaine methosulfate may be used The.

When the method of the present invention is carried out in the Capture-ELISA mode, a specific embodiment of the present invention comprises the steps of (i) coating an antibody against the marker of the present invention as a capturing antibody on the surface of a solid substrate; (Ii) reacting the capture antibody with the sample; (Iii) reacting the result of step (ii) with a detecting antibody which is labeled with a signal generating label and specifically reacts with the mutant protein of the present invention; And (iv) measuring a signal originating from said label.

The detection antibody has a label that generates a detectable signal. Wherein the label is a chemical (e.g., biotin), an enzyme (alkaline phosphatase, β- galactosidase, horseradish peroxidase, and cytochrome P450), the radioactive material ((e.g., 14 C, 125 I, P 32 and S 35 ), fluorescent materials (e.g., fluorescein), luminescent materials, chemiluminescent materials and fluorescence resonance energy transfer (FRET). The various labels and labeling methods are described in Ed Harlow and David Lane, Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1999.

In the ELISA method and the capture-ELISA method, measurement of the activity of the final enzyme or measurement of the signal can be performed according to various methods known in the art. This detection of the signal enables a qualitative or quantitative analysis of the marker of the present invention. If biotin is used as a label, it can be easily detected by streptavidin. When luciferase is used, luciferin can easily detect a signal.

According to another embodiment of the present invention, an aptamer which specifically binds to the marker of the present invention can be used instead of the antibody. Aptamers are oligonucleic acid or peptide molecules, and the general contents of aptamers are described in Bock LC et al., Nature 355 (6360): 5646 (1992); Hoppe-Seyler F, Butz K "Peptide aptamers: powerful new tools for molecular medicine". J Mol Med . 78 (8): 42630 (2000); Cohen BA, Colas P, Brent R. "An artificial cell-cycle inhibitor isolated from a combinatorial library". Proc Natl Acad Sci USA . 95 (24): 142727 (1998).

By analyzing the intensity of the final signal by the above-described immunoassay, it is possible to diagnose amyotrophic lateral sclerosis.

The features and advantages of the present invention are summarized as follows:

(a) The present invention relates to a mutant protein encoded by RAPGEF2 , IFT80 , SSH2 , XRCC3 , SPAG17 , PLEKHM2 , CLEC4C , FRAS1 , ADGRL3 , PSEN1 mutant gene and the gene as a marker for amyotrophic lateral sclerosis and amyotrophic lateral A method for diagnosing sclerosis is provided.

(b) The amyotrophic lateral sclerosis marker of the present invention is a novel mutation found in Korean ALS patients and is a very rare or unreported variant with a frequency of less than 0.1% in the previously reported database and is not found in the normal control It is a variation.

(c) Mutant genes found in the present invention and / or mutant proteins encoded therefrom can be usefully used to identify genetic causes of ALS and diagnose ALS.

(d) By performing a gene or protein test on a mutant gene found in the present invention and / or a mutant protein encoded thereby, early diagnosis of amyotrophic lateral sclerosis can be made, It is possible to maximize the effect of the treatment, and further, it is possible to make customized treatment according to the precise etiology.

FIG. 1 is PSEN1 in sALS Trio -7 This is the result of analyzing the de novo variant of the gene (c.497T>C; p.Leu166Pro).
Results of the sequencing of parental proband and parents showing ac497T> C (p.Leu166Pro). The PSEN1 c.497T> C mutation was 46% (37/81) of the total readings of the originator, indicating heterozygosity of alleles. b. PSEN1 gene sequencing at the foot terminal revealed a heterozygous substitution at nucleotide position 497 from T- to -C.
Figure 2 shows the result of analysis of a novel mutation of the FRAS1 gene (c.8393C>T; p.Ala2798Val) in sALS trio-2.
Results of foot sequence and parents' exome sequencing showing ac8393C <T (p.Ala2798Val). FRAS1 The c.8393C> T mutation was 49% (26/53) of the total reading of the initiator, which means heterozygosity of alleles. b. FRAS1 at foot terminal As a result of gene sequencing, heterozygosity substitution from C- to -T appears at nucleotide position 8393.
3 shows the result of analysis of a novel mutation (c.4069G>A; p.Glu1357Lys) of the RAPGEF2 gene in sALS trio-3.
Results of foot sequence and parents' exome sequencing showing ac4069G> A (p.Glu1357Lys). RAPGEF2 c.4069G> A mutation was 52% (25/48) of the total reading of the originator, which means heterozygosity of alleles. b. RAPGEF2 gene sequencing at the foot terminal showed heterozygosity substitution from G- to -A at nucleotide position 4069.
Figure 4 shows the results of analysis of a novel mutation of the CLEC4C gene (c.629_631delAGA; p.Lys210del) in sALS trio-4.
Results of foot sequence and parents exome sequencing showing ac629_631delAGA (p.Lys210del). CLEC4C The c.629_631delAGA mutation was 53% (64/122) of the full reading of the initiator, which means heterozygosity of alleles. b. CLEC4C at the foot terminal Gene sequencing revealed heterozygous AGA deletion at nucleotide positions 629-631.
FIG. 5 shows the result of analysis of a novel mutation (c.1921 + 6C> T) of the PLEKHM2 gene in sALS trio-8.
Results of foot sequence and parents' exome sequencing showing ac1921 + 6C> T. PLEKHM2 The c.1921 + 6C> T mutation was 54% (13/24) of the total readings of the originator, indicating heterozygosity of alleles. b. At the foot terminal, PLEKHM2 Gene sequencing results in heterozygous substitutions at C- to -T at nucleotide position 1921 + 6.
6 shows the result of analysis of a novel mutation of the SSH2 gene (c.1408G>T; p.Glu470 *) in sALS trio-11.
Results of foot sequence and parents' exome sequencing showing ac1408G> T (p.Glu470 *). SSH2 The c.1408G> T mutation was 35% (42/120) of the total readings of the initiator, which means heterozygosity of alleles. b. From the foot terminal SSH2 Gene sequencing results in heterozygous substitution at nucleotide position 1408 from G- to -T.
Figure 7 shows that sALS &lt; RTI ID = 0.0 > trio-12 & New mutations in the gene (c.2815G>T; p.Ala939Ser) and XRCC3 New mutations in the gene (c.598G>A; p.Val200Ile) was analyzed.
a. Results of foot and parent exon sequencing showing c.2815G> T (p.Ala939Ser) in SPAG17 gene. The SPAG17 c.2815G> T mutation was 49% (60/122) of the full reading of the initiator, which means heterozygosity of alleles. b. At the foot terminal, SPAG17 Gene sequencing results in a heterozygous substitution at nucleotide position 2815 from G- to -T. c. XRCC3 Results of foot sequence and parents' exome sequencing showing c.598G> A (p.Val200Ile) in the gene. XRCC3 The c.598G> A mutation was 50% (17/34) of the total readings of the initiator, which means heterozygosity of alleles. d. At the foot terminal, XRCC3 Gene sequencing results in heterozygous substitutions at nucleotide position 598 from G- to -A.
Fig. 8 shows the result of analysis of a novel mutation (c.595G>A; p.Val199Ile) of IFT80 gene in sALS trio-13.
Results of foot sequence and parents' exome sequencing showing ac595G> A (p.Val199Ile). IFT80 The c.595G> A mutation was 48% (62/130) of the total readings of the originator, which means heterozygosity of alleles. b. IFT80 gene sequencing at the foot terminal revealed a heterozygosity substitution at nucleotide position 595 from G- to -A.
FIG. 9 shows the result of analysis of a novel mutation (c.715A>G; p.Ser239Gly) of ADGRL3 gene in sALS trio-15.
Results of foot sequence and parents' exome sequencing showing ac715A> G (p.Ser239Gly). ADGRL3 The c.715A> G mutation was 48% (69/145) of the total readings of the initiator, which means heterozygosity of alleles. b. As a result of ADGRL3 gene sequencing at the foot terminal, a heterozygous substitution appeared at A-to-G at nucleotide position 715.
Figure 10 shows the results of two mutations of the RAPGEF2 gene in 184 patients with SALS .
a. Exon sequencing results for mutation sites showing C to T substitution at codon 628 (c.1883C> T, p.Thr628Ile). The mutation was 49% (5919/12010) of the total reading of the foot terminal HS-374, which means heterozygosity of alleles. b. RAPGEF2 Sequencing chromatogram of c.1883C &gt; T in the gene. c. Exon sequencing results for mutation sites showing substitution of G to A in codon 1098 (c.3293G> A, p.Arg1098His). The mutation was 48% (1379/2855) of the total reading of the foot terminal HS-477, indicating heterozygosity of alleles. d. RAPGEF2 Sequencing chromatogram of c.3293G &gt; A in the gene.
11 is a schematic diagram of the mutation analyzed in the RAPGEF2 gene.
CAP_ED, the effector domain of the transcription factor CAP family; REM, Ras Exchanger motif; PDZ_signaling, PDZ domain; RasGEF, a guanine nucleotide exchange factor for Ras-like small GTPases.
FIG. 12 shows the results of measuring tissue expression levels of the RAPGEF2 gene selected from TiGER (Tissue-specific Gene Expression and Regulation, http://bioinfo.wilmer.jhu.edu/tiger/).
FIG. 13 shows the results of measuring tissue expression levels of the IFT80 gene selected from TiGER (Tissue-specific Gene Expression and Regulation, http://bioinfo.wilmer.jhu.edu/tiger/).
FIG. 14 shows the result of measuring the tissue expression level of SSH2 gene selected from TiGER (Tissue-specific Gene Expression and Regulation, http://bioinfo.wilmer.jhu.edu/tiger/).
FIG. 15 shows the results of measuring tissue expression levels of the SPAG17 gene selected from TiGER (Tissue-specific Gene Expression and Regulation, http://bioinfo.wilmer.jhu.edu/tiger/).
FIG. 16 shows the results of measurement of tissue expression levels of the XRCC3 gene selected from TiGER (Tissue-specific Gene Expression and Regulation, http://bioinfo.wilmer.jhu.edu/tiger/).
FIG. 17 shows the results of measuring tissue expression levels of PLEKHM2 gene selected from TiGER (Tissue-specific Gene Expression and Regulation, http://bioinfo.wilmer.jhu.edu/tiger/).
FIG. 18 shows the result of measurement of tissue expression level of the FRAS1 gene adopted from TiGER (Tissue-specific Gene Expression and Regulation, http://bioinfo.wilmer.jhu.edu/tiger/).
FIG. 19 is a schematic diagram of an embodiment of the present invention adopted from TiGER (Tissue-specific Gene Expression and Regulation, http://bioinfo.wilmer.jhu.edu/tiger/) ADGRL3 This is the result of measuring the tissue expression level of the gene.

Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

Example

Materials and methods

1. Target

1) sALS trio

Fifteen ALS patients and their parents who visited the Hanyang University Neurology ALS clinic were included in the ALS trio study since January 2013. All patients were born in Korea. Neurological evaluation including electromyography, clinical examination and appropriate imaging method was performed for each patient for clinical diagnosis. All ALS patients were diagnosed by a neurologist specializing in neuromuscular disease and confirmed to meet the revised El Escorial diagnostic criteria (32, 113). The ALS trio study included five patients with definite ALS, eight patients expected to be ALS, one PLS plus one and one pure motor neuron disease (LMND). Such as spinal muscular atrophy, Kennedy syndrome, monomelic atrophy, Hirayama syndrome, and multifocal motor neuropathy, which are not considered as ALS spectra. Patients were excluded from the study. During the follow-up period, the physician assessed the degree of functional impairment for diagnosis using ALSFRS-R to objectively assess the response to treatment or disease progression. ALSFRS-R includes the following: language abilities, saliva secretion, swallowing, handwriting, cutting and use of utensils (imperforate or not), dressing and hygiene, rotation and bedside adjustment in bed, walking, stair climbing, dyspnea, orthepnea ) And 12 questions evaluating respiratory failure. The score for each item was summed to give a score between 0 and 48. The progression rate was calculated as DELTA FS (48-ALSFRS-R / time from onset to diagnosis at the time of diagnosis) and the patients were divided into three groups: slow (cut-off value <0.66), median (0.66-1.00) > 1.00). Clinical reports included signs of upper and lower motor neuron damage at the spine and training levels. Sporadic ALS has been defined as a case in which the initiator exhibits symptoms such as progressive upper or lower motor neuron damage and does not have a family history of clinically affected in the same lineage. This study was approved by the Institutional Ethics Review Committee of Hanyang University Hospital (# HYI-10-01-3) and Samsung Seoul Hospital (# 2013-04-131-002) I wrote the agreement. The present inventors conducted preliminary screening for the SOD1 gene, and no pathological variation was found in all the foot terminals.

2) a validation set

A total of 184 ALS patients who visited the neurology and ALS clinic at Hanyang University Hospital in Seoul were included in the ALS trio study as a validation set. All ALS patients were diagnosed by a neurologist specializing in neuromuscular disease according to the revised El Escorial diagnostic criteria that met the likelihood or definite ALS criteria. Patients were pre-screened for the SOD1 gene and no pathological mutations were found. Parental information was obtained before the start of this study.

2. Molecular Genetics Test

1) total exome sequencing

Genomic DNA (gDNA) was isolated from peripheral blood leukocytes using Wizard genomic DNA purification kit (Promega, Madison, Wis.) According to the manufacturer's instructions. DNA was confirmed by 1% agarose gel electrophoresis and PicoGreen® dsDNA Assay (Invitrogen, Life Technologies, Waltham, Mass.). If possible, the DNA should be intact with an OD 260/280 ratio of 1.8-2.0. The SureSelect sequencing library was prepared using the Agilent SureSelect all Exon kit 50Mb (Agilent, Santa Clara, Calif.) Containing The Bravo automated liquid handler according to manufacturer's instructions. (Covaris, Woburn, MA) set at mode frequency sweeping at 10% utilization, intensity 5, 200 cycles per burst, and 4 ° C for 360 seconds. 3 占 퐂 of genomic DNA was cut into a size of 150 bp. The cleavage efficiency was evaluated by capillary electrophoresis of DNA1000 chip (Bioanalyzer, Agilent). Sequencing adapters were coupled to DNA fragments according to the manufacturer's protocol (Agilent). Adapters bound to DNA were amplified by PCR. The quality of the PCR products was assessed by capillary electrophoresis (Bioanalyzer, Agilent). SureSelect hyb # 1, # 2, # 3, and # 4 reagents (Agilent) were mixed to create a hybridization buffer. The amplified DNA fragment was concentrated to 3.4 ng to 750 ng. SureSelect block # 1, # 2, and # 3 reagents (Agilent) were added to 750 ng of DNA. The hybridization buffer and DNA blocker mix were incubated at 95 ° C for 5 minutes and then at 65 ° C for 10 minutes using a gene amplifier. RNase block (Agilent) was added to the SureSelect oligo capture library (Agilent). The capture library was incubated at 65 DEG C for 2 minutes. First, the hybridization buffer, then the DNA blocker mix, was added to the capture library and the mixture was incubated at 65 ° C for 24 hours using a gene amplifier. Dynal MyOne Streptavidin T1 (Invitrogen) coated with 50 ml streptavidin was washed 3 times with 200 ml SureSelect binding buffer (Agilent) and resuspended in 200 l binding buffer. The hybridization mixture was added to the bead suspension and incubated for 30 minutes at room temperature with mixing. Beads were washed with 500 μl SureSelect Wash Buffer # 1 (Agilent) for 15 min at room temperature and then washed three times with 500 μl SureSelect Wash Buffer # 2 (Agilent) at 65 ° C for 10 min. The DNA was eluted with 30 쨉 l of water at room temperature for 5 minutes. The reaction was purified with AMPure XP beads (Beckman Coulter, Brea, Calif.). Herculase II Fusion DNA Polymerase (Finnzymes, Life Technologies) was used to amplify the captured library to add the index tag. The quality of the amplified library was assessed by capillary electrophoresis (Bioanalyzer, Agilent). QPCR was performed using SYBR Green PCR Mastermix (Applied Biosystems, Life Technologies), and then 6 libraries tagged with equimolar amounts in pool were combined. The cluster formation was performed using a cBot automated cluster generation system (illumine, San Diego, Calif.) And sequencing with a HiSeq 2500 sequencing system (illumina) at a unit length of 2 × 100 bp.

2) Bioinformatics analysis

The readout results were mapped to the GRCh37 / hg19 build using the Burrows-Wheeler Aligner (BWA) 0.7.10 (114). Picard-tools 1.114 was used to display duplicate reads (http://picard.sourceforge.net/). The GATK (v3.2-2) IndelRealigner was used to adjust the readout results around the insert / indel position. The quality of the readings was measured using a GATK BaseRecalibrator. Genotypes were generated simultaneously for all samples by the GATK HaplotypeCaller. Variation quality score adjustment was performed using GATK VariantRecalibrator and filtered with 99.7 truth sensitivity level. To identify rare mutations, we identified dbSNP141, the NHLBI exome sequencing project (http://evs.gs.washington.edu/EVS/) and the 1000 Genome project (http://www.1000genomes.org/). The annotation of the variation was performed using in-house custom-made script (Table 1).

Bioinformatics analysis pipeline for total exome sequencing analysis Tools Fastq quality control NGSQCToolkit_v2.3.3 Alignment BWA-0.7.10 mem,
Picard-tools-1.114 / AddOrReplaceReadGroups.jar
Remove duplicate Picard-tools-1.114 / MarkDuplicates.jar
Picard-tools-1.114 / FixMateInformation.jar
Realignment GenomeAnalysisTK-3.2-2 / GenomeAnalysisTK.jar
-T RealignerTargetCreator
GenomeAnalysisTK-3.2-2 / GenomeAnalysisTK.jar
-T IndelRealigner
Recalibration GenomeAnalysisTK-3.2-2 / GenomeAnalysisTK.jar
-T BaseRecalibrator
GenomeAnalysisTK-3.2-2 / GenomeAnalysisTK.jar
-T PrintReads
Variant / Genotype calling
(gVCF method)
GenomeAnalysisTK-3.2-2 / GenomeAnalysisTK.jar
-T HaplotypeCaller
Filtering GenomeAnalysisTK-3.2-2 / GenomeAnalysisTK.jar
-T VariantRecalibrator
GenomeAnalysisTK-3.2-2 / GenomeAnalysisTK.jar
-T ApplyRecalibration sensitivity 99.7 cutoff
Annotation In-house perl script annotation

3) Filtering criteria

In order to distinguish ALS from all legs, mutations of known ALS and FTD genes or related genes, HSP, and other disease genes that require differentiation were screened first (Table 2-5). To identify previously known pathogenic mutations, we compared the mutation lists for the human gene mutation database (HGMD ® 2014.1Proversion).

The new mutation confirmed that the parent was homozygous for the reference sequence and that the leader was heterozygous. We chose mutants with an allele frequency of less than 0.01, identified in the dbSNP141 database, the 1000 Genome project, and the excommunication server, as rare mutations.

In addition, the mutations found in this study were compared to 100 racially matched normal controls. The normal control data was provided by the Korean Genome Analysis Project (4845-301), the Korean Genome and Epidemiology Research (4851-302), and the Korean Biobank Project (4851-307, KBP-2014-031), which were supported by the Korea Centers for Disease Control and Prevention . In addition, the mutations found in this study were compared with the exomata data of 75 non-ALS patients, the disease control group.

ALS and FTD causative genes Phenotype gene RefSeq Gene description Chromosome location Dielectric type ALS SPG11 NM_025137.3 Spastic paraplegia 11 15q14 AR ALS VAPB NM_004738.4 Vesicle-associated membrane protein (VAMP) -associated protein B and C 20q13.3 AD ALS ALS2 NM_020919.3 Amyotrophic lateral sclerosis 2 2q33.1 AD ALS ANG NM_001145.4 Angiogenin, ribonuclease, RNase A family, 5 14q11.1 AD ALS DAO NM_001917.4 D-amino-acid oxidase 12q24 AD ALS FIG4 NM_014845.5 FIG 4 phosphoinositide 5-phosphatase 6q21 AD ALS OPTN NM_021980.4 Optineurin 10p13 AD ALS SETX NM_015046.5 Senataxin 9q34.13 AD FTD MAPT NM_005910.5 Microtubule-associated protein tau 17q21.1 AD FTD PSEN1 NM_000021.3 Presenilin-1 14q24.3 AD FTD PSEN2 NM_000447.2 Presenilin-2 1q42.13 AD FTD TARDBP NM_007375.3 TAR DNA binding protein 1p36.22 AD FTD TREM2 NM_018965.2 Triggering receptor expressed on myeloid cells 2 6p21.1 AR ALS / FTD FUS NM_004960.3 FUS RNA binding protein 16p11.2 AD ALS / FTD GRN NM_002087.2 Granulin 17q21.32 AD ALS / FTD SIGMAR1 NM_005866.2 Sigma non-opioid intracellular receptor 1 9p13.3 AD / AR ALS / FTD SOD1 NM_000454.4 Superoxide dismutase 1 21q22.11 AD ALS / FTD SQSTM1 NM_003900.4 Sequestosome 1 5q35 AD ALS / FTD TAF15 NM_139215.2 TAF15 RNA polymerase II, TATA box binding protein (TBP) -associated factor 17q11.1-q11.2 AD ALS / FTD TARDBP NM_007375.3 TAR DNA binding protein 1p36.22 AD ALS / FTD UBQLN2 NM_013444.3 Ubiquilin 2 Xp11.21 X-linked ALS / FTD VCP NM_007126.3 Valosin-containing protein 9p13.3 AD

ALS and FTD related genes Phenotype gene RefSeq Gene description Chromosome location references ALS APEX1 NM_001641.3 APEX nuclease (multifunctional DNA repair enzyme) 1 14q11.2-q12 (115) ALS ARHGEF28 NM_001080479.2 Rho guanine nucleotide exchange factor (GEF) 28 5q13.2 (116) ALS ERBB4 NM_005235.2 Erb-b2 receptor tyrosine kinase 4 2q33.3-q34 (117) ALS EWSR1 NM_001163285.1 Ewing sarcoma breakpoint region 1 22q12.2 (118) ALS NEFH NM_021076.3 Neurofilament, heavy polypeptide (200 kDa) 22q12.2 (119) ALS PFN1 NM_005022.3 Profin 1 17p13.3 (69) ALS PON1 NM_000446.5 Paraoxonase 1 7q21.3 (120) ALS PON2 NM_000305.2 Paraoxonase 2 7q21.3 (120) ALS PON3 NM_000940.2 Paraoxonase 3 7q21.3 (120) ALS PRPH NM_006262.3 Peripherin 12q12-q13 (121) ALS SRCAP NM_006662.2 Snf2-related CREBBP activator protein 16p11.2 (110) ALS SS18L1 NM_198935.1 Synovial sarcoma translocation gene on chromosome
18-like 1
20q13.3 (122)
ALS CHRNA4 NM_000744.6 Acetylcholine receptor, neuronal nicotinic, alpha-4 subunit 20q13.2-q13.3 (123) ALS / FTD CHMP2B NM_014043.3 Chromatin modifying protein 2B 3p11.2 (124) ALS / FTD DCTN1 NM_004082.4 Dynactin 1 2p13 (125) ALS / FTD HNRNPA1 NM_031157.2 Heterogeneous nuclear ribonucleoprotein A1 12q13.1 (72) ALS / FTD HNRNPA2B1 NM_031243.2 Heterogeneous nuclear ribonucleoprotein A2 / B1 7p15 (72)

HSP causative genes for differential diagnosis of ALS Phenotype gene Locus name Gene description Chromosome location Dielectric type Uncomplicated HSP ATL1 SPG3A Atlastin GTPase 1 14q22.1 AD Uncomplicated HSP SPAST SPG4 Spastin 2p24-p21 AD Uncomplicated HSP NIPA1 SPG6 Non-imprinted in Prader-Willi / Angelman syndrome 1 15q11.2 AD Uncomplicated HSP KIAA0196 SPG8 KIAA0196 8q24.13 AD Uncomplicated HSP KIF5A SPG10 Kinesin family member 5A 12q13.13 AD Uncomplicated HSP RTN2 SPG12 Reticulon 2 19q13.32 AD Uncomplicated HSP HSPD1 SPG13 Heat shock protein 60 kDa protein 1 (chaperonin) 2q33.1 AD Complicated HSP BSCL2 SPG17 Berardinelli-Seip congenital lipodystrophy 2 (seipin) 11q13 AD Uncomplicated HSP REEP1 SPG31 Receptor accessory protein 1 2p11.2 AD Uncomplicated HSP ZFYVE27 SPG33 Zinc finger, FYVE domain containing 27 10q24.2 AD Uncomplicated HSP SLC33A1 SPG42 Solute carrier family 33 (acetyl-CoA transporter), member 1 3q25.31 AD Uncomplicated HSP CYP7B1 SPG5A Cytochrome P450, family 7, subfamily B, polypeptide 1 8q21.3 AR Uncomplicated HSP SPG7 SPG7 Spastic paraplegia 7 16q24.3 AR Uncomplicated HSP SPG11 SPG11 Spastic paraplegia 11 15q14 AR Complicated HSP ZFYVE26 SPG15 Zinc finger, FYVE domain containing 26 14q24.1 AR Complicated HSP ERLIN2 SPG18 ER lipid raft associated 2 8p11.2 AR Complicated HSP SPG20 SPG20 Spastic paraplegia 20 13q13.3 AR Complicated HSP SPG21 SPG21 Spastic paraplegia 21 15q22.31 AR Complicated or uncomplicated HSP DDHD1 SPG28 DDHD domain containing 1 14q21 AR Complicated HSP KIF1A SPG30 Kinesin family member 1A 2q37.3 AR Complicated HSP FA2H SPG35 Fatty acid 2-hydroxylase 16q23 AR Complicated HSP PNPLA6 SPG39 Patatin-like phospholipase domain containing 6 19p13.2 AR Complicated HSP GJC2 SPG44 Gap junction protein, gamma 2 1q42.13 AR Complicated HSP GBA2 SPG46 Glucosidase, beta (bile acid) 2 9p13.3 AR Complicated HSP AP4B1 SPG47 Adapter-related protein complex 4, beta 1 subunit 1p13.2 AR Uncomplicated HSP AP5Z1 SPG48 Adapter-related protein complex 5, zeta 1 subunit 7p22.2 AR Complicated HSP TECPR2 SPG49 Tectinin beta-propeller repeat-containing 2 14q32.31 AR Complicated HSP AP4M1 SPG50 Adapter-related protein complex 4, mu 1 subunit 7q22.1 AR Complicated HSP AP4E1 SPG51 Adapter-related protein complex 4, epsilon 1 subunit 15q21.2 AR Complicated HSP AP4S1 SPG52 Adapter-related protein complex 4, sigma 1 subunit 14q12 AR Complicated HSP VPS37A SPG53 Vacuolar protein sorting 37 homologue 8p22 AR Complicated HSP DDHD2 SPG54 DDHD domain containing 2 8p11.23 AR Complicated HSP CYP2U1 SPG56 Cytochrome P450, family 2, subfamily, polypeptide 1 4q25 AR Complicated HSP GAD1 N / A Glutamate decarboxylase 1 2q31 AR Complicated HSP L1CAM SPG1 L1 cell adhesion molecule Xq28 X-linked Complicated HSP PLP1 SPG2 Proteolipid protein 1 Xq22 X-linked Complicated HSP SLC16A2 SPG22 Solute carrier family 16, member 2 Xq13.2 X-linked

* Abbreviations: AD, autosomal dominant; AR, autosomal recessive; N / A, Not available.

Other disease-related genes for differential diagnosis of ALS Phenotype gene Gene description Chromosome location Dielectric type Hexosaminadase A deficiency HEXA Hexosaminidase A 15q24.1 AR Adult polyglucosan body disease GBE1 Glucan (1,4-alpha-), branching enzyme 1 3p12.3 AR

4) Sanger sequencing for mutation efficacy assessment

New mutations that result in substitution of all amino acids according to the filtering criteria were assessed by biofilm sequencing on father, mother and foot terminal DNA samples. All exon and exon-intron boundaries of the target gene were amplified by PCR using primers (Table 6). PCR was performed using the gene amplifier model GeneAmp PCR system 9700 (Applied Biosystems, Foster City, Calif.) Under the following conditions: denaturation at 32 ° C for 30 seconds at 94 ° C, annealing at 60 ° C for 30 seconds and extension at 72 ° C for 30 seconds . 2U shrimp alkaline phosphatase and 10U exonuclease I (USB Corp., Cleveland, OH) were treated at 37 ° C for 15 minutes and then incubated at 80 ° C for 15 minutes to inactivate the enzyme . Cycle sequencing was performed using the Big Dye Terminator Cycle Sequencing Ready Reaction kit (Applied Biosystems, Foster City, CA, USA) on an ABI 3130xl Genetic Analyzer (Applied Biosystems, Foster City, The name of the mutation was specified according to the GenBank reference sequence. The notation for mutation in the present invention follows the recommendation of the Human Genome Mutation Association (http://www.hgvs.org/mutnomen/), which marks the nucleotide corresponding to A of the ATG start codon as +1.

A primer pair for verifying the sequencing of the live fish for mutations detected by total exon sequencing gene Nucleotide variation RefSeq Forward Reverse FRAS1 c.8393C> T NM_025074.6 TCCCTAAGTCAGCTATGGGAAG AATTCCATGCTTGGTCTTGG RAPGEF2 c.4069G> A NM_014247.2 CACCAGAGAAGCTGGGAGAC GCAATGGAGAAAATGAGGAAA CLEC4C c.629_631delAGA NM_130441.2 TGACCTTGACTTTCGCACTG CCAGCAGTCTCTGGCACATA PSEN1 c.497T> C NM_000021.3 GGCTTAAGCACGAGAATTGC GCAAGGAGCAACAGAAGAATG PLEKHM2 c.1921 + 6C > T NM_015164.2 CTGCTCATGATCCACGTGTT CTTCCTTGGGGTGCCTTT SSH2 c.1408G> T NM_033389.3 CCATCATCAACACTGGCTGT CACAGGCCTTTCTGATTTGC SPAG17 c.2815G> T NM_206996.2 AAGGATGACGTCAAGGCTTC GGGGACTCTTCTGTTACTTCTTGG XRCC3 c.598G> A NM_001100119.1 CAAGGGAACCAGTTGTGTGA TGGTGCTCACCTGGTTGAT IFT80 c.595G> A NM_020800.2 TGGATGTCTTAGGTGCTAGGTG CTCACTGTGTTGTCCAGGCTAA ADGRL3 c.715A> G NM_015236.4 TATGCCCTGGACTCCCTACA ATCCCATGTTCCTTCGATCC

5) In-silico analysis and gene prioritization

The SIFT (126) and Polymorphism Phenotyping 2 (127, 128) servers have been designed to detect non-synonymous single polymorphisms in protein structure, function and phenotype and sequence conservation nucleotide polymorphism) substitution. When PolyPhen-2 had a probabilistic score of 0.85 or higher, the mutation was classified as "probably damaging" and "possibly damaging" if it was greater than 0.15. The remaining mutations were classified as benign. SIFT indicates the effect of specific amino acid substitution on the normalization probability. If the score is less than 0.05, it means that substitution of the amino acid will affect the structure of the protein.

ToppGene Prioritization software (129) was used to determine priorities for specific genes with novel mutations. Gene lists are based on transcripts (gene expression), protein bodies (protein domains and interactions), regulomas (TFBS and miRNA), ontologies, phenotypes, and bibliomas (PubMed literature co-citation) And compared with previously published literature on ALS mechanism. Combined similarity scores and p-values were used in the present invention to prioritize candidate genes.

6) Verification of RAPGEF2 gene

Using targeted next generation sequencing, RAPGEF2 for exon and flanking regions of 184 ALS patients Genetic analysis was performed (Table 7). The library was indexed, pooled and sequenced on the illumina Miseq sequencing system (amplicon size 425bp, paired-ends, read length 250 bp, coverage> 5000x). The readout results were mapped to the GR37 / hg19 build using BWA 0.7.5 (114). Picard-tools 1.84 was used to display duplicate reads (http://picard.sourceforge.net/). Realignment and recalibration were performed using GATK RealignerTargetCreator, IndelRealigner, and BaseRecalibrator. Genotypes of all samples were analyzed using GATK UnifiedGenotyper.

Target location of the RAPGEF2 gene for exome capture chromosome Start coordinates End coordinates Length (bp) Amplicon Coverage 4 160188998 160189367 370 2 100 4 160225494 160225625 132 One 100 4 160235743 160235920 178 One 100 4 160243499 160243635 137 One 100 4 160244611 160244769 159 One 100 4 160250986 160251674 689 3 100 4 160252559 160253873 1315 5 100 4 160259463 160259620 158 One 100 4 160260266 160260506 241 One 100 4 160262716 160263099 384 2 100 4 160264107 160264580 474 2 100 4 160265188 160265211 24 One 100 4 160266258 160266481 224 One 100 4 160267941 160268150 210 One 100 4 160271289 160271441 153 One 100 4 160273837 160274062 226 One 100 4 160274639 160275198 560 3 100 4 160277005 160277310 306 One 100 4 160279266 160281301 2036 7 100

7) Control study using MALDI-TOF

Using a MALDI-TOF MS (matrix assisted laser desorption / ionization time-of-flight mass spectrometry) and a primer designed in the present invention, 364 healthy Korean controls with age and sex matched the novel mutations found in the RAPGEF2 gene Were screened (Table 8). Samples treated on each 38-well chip within approximately 30 minutes were analyzed using the MassARRAY Analyzer Compact (Sequenom, San Diego, Calif.). Data was collected automatically via SpectroACQUIRE software (Sequenom) and reviewed by the TrafficLights module of MassARRAY Typer software. In each experiment, detailed information on peak height and probability value and peak probability statistics for each cell based on signal-to-noise ratio were examined for each sample as needed. In this system, the probability was automatically calculated and the stringency level was analyzed at three levels: conservative, moderate, and aggressive calls. Aggressive calls have a high error rate (<1%), whereas conservative calls have the lowest rate in uncalled genotypes. Low probability calls were excluded. Spectral data were reviewed for individual samples as needed. The Cluster Plot software module was used to visualize atypical heterozygous and homozygous status.

A pair of primers used in a control study of RAPGEF2 mutations using MALDI-TOF gene Nucleotide variation RefSeq Forward Reverse RAPGEF2 c.4069G> A NM_014247.2 ACGTTGGATGGACACAGGCACAATAAAGCG ACGTTGGATGAGTCACAGACGTTAGGCTAC

Experiment result

1. Molecular Genetics Analysis

1) Q.C analysis and descriptive statistics on exome sequencing

Agilent SureSelect all Exon kit A total exome sequencing was performed on 15 ALS feet and their healthy parents (n = 45) using 50 Mb (Agilent). A total reading of at least 50,000,000 bp per individual was obtained. An average of 92% of the bases had a Phred score of 30 or higher. 99.95% of the total reading was mapped to the reference sequence. All samples from 15 feet and their parents averaged 74x. For each individual, an average of 99% of the target base was processed by at least one independent sequence reading, 91% was subjected to at least 10 independent sequence reads, and 82.4% was processed by at least 20 independent sequence reads (Table 9).

No mutations were found in previously reported ALS-FTD causes or related genes, HSP for differential diagnosis of ALS, and other disease genes (Table 2-5).

Summary of statistics for exome sequencing Trio No. Total reads % more than Q30 bases Mapped reads % mapped reads Non-duplicate reads Mean coverage depth % target at 1X % target at 10X % target at 20X 1-P 51,480,912 86.6 51,462,399 99.96 43,389,970 55.3 98.5 88.5 77.7 1-F 65,167,802 86.0 65,139,804 99.95 53,577,017 67.1 98.9 90.7 82.4 1-M 92,465,892 86.5 92,432,848 99.96 64,418,232 82.8 99.0 92.2 85.8 2-P 63,791,280 86.4 63,765,712 99.95 51,913,342 66.4 98.7 90.1 81.6 2-F 53,939,296 89.0 53,917,610 99.95 46,457,814 57.7 98.8 89.6 79.6 2-M 50,089,792 88.6 50,068,431 99.95 44,276,977 56.8 98.6 88.8 78.4 3-P 60,588,212 88.2 60,563,239 99.95 50,151,748 64.1 98.7 90.1 81.3 3-F 53,293,388 88.1 53,270,250 99.95 44,153,932 55.3 98.7 89.2 78.7 3-M 47,072,096 87.9 47,050,572 99.95 41,578,973 52.0 98.7 88.9 77.5 4-P 131, 434, 474 93.3 131,374,780 99.95 99,643,297 126.4 99.7 95.6 91.5 4-F 94,184,158 93.2 94,147,248 99.96 69,072,547 87.9 99.4 93.6 87.5 4-M 127,543,470 93.4 127,488,235 99.95 97,221,570 122.1 99.7 95.6 91.4 5-P 57,160,108 94.5 57,138,906 99.96 55,255,727 73.0 99.0 91.2 83.3 5-F 80,431,798 94.6 80,401,581 99.96 76,811,873 101.5 99.4 93.5 87.9 5-M 60,087,382 94.2 60,061,780 99.95 57,809,232 73.8 98.8 90 81.8 6-P 49,678,674 93.7 49,659,982 99.96 43,296,585 55.3 98.7 88.6 77.1 6-F 56,020,666 93.7 56,000,999 99.96 51,481,301 66.4 99.0 90.5 81.4 6-M 47,568,954 93.7 47,549,366 99.95 42,956,118 54.6 98.8 89.0 77.5 7-P 50,459,952 93.4 50,436,949 99.95 45,070,379 57.2 98.9 89.5 78.6 7-F 58,692,976 93.4 58,666,334 99.95 54,227,119 69.2 99.2 91.4 83.0 7-M 92,118,690 93.6 92,084,906 99.96 72,622,171 94.9 99.2 92.9 86.6 8-P 53,590,510 92.4 53,571,980 99.96 47,992,562 62.1 98.7 89.2 79.1 8-F 56,093,884 92.5 56,073,138 99.96 50,218,779 65.6 98.8 90.0 80.6 8-M 58,010,996 92.6 57,990,089 99.96 51,785,665 67.1 98.9 90.6 81.7 9-P 50,157,706 89.9 50,107,633 99.90 48,327,117 62.3 98.6 88.9 78.8 9-F 64,748,536 92.5 64,725,656 99.96 57,619,562 73.5 99.0 91.0 82.6 9-M 68,247,826 92.4 68,220,992 99.96 61,297,253 79.5 99.1 91.7 84.3 10-P 66,576,932 93.6 66,544,375 99.95 65,055,775 81.2 99.2 92.2 85.3 10-F 57,288,346 93.5 57,265,630 99.96 55,776,398 70.4 99.0 90.7 82.3 10-M 63,224,312 93.3 63,187,574 99.94 62,259,646 73.6 99.3 91.8 84.3 11-P 54,139,302 90.1 54,086,046 99.90 52,123,490 67.9 98.6 89.5 80.4 11-F 55,080,696 89.9 55,018,427 99.89 52,618,323 67.7 98.7 89.8 80.8 11-M 58,156,702 89.8 58,094,439 99.88 55,931,004 72.3 98.7 90.1 81.7 12-P 70,645,628 91.9 70,619,926 99.96 64,640,898 84.1 99.3 92.0 84.7 12-F 80,572,600 91.1 80,542,081 99.96 69,890,686 90.4 99.4 92.6 85.7 12-M 67,083,856 91.4 67,057,069 99.96 60,763,860 79.6 99.2 91.7 83.9 13-P 59,815,598 93.6 59,792,743 99.96 55,052,338 73.6 98.9 90.2 81.4 13-F 65,585,926 93.0 65,553,902 99.95 60,095,261 75.4 99.2 91.4 83.2 13-M 79,320,916 92.9 79,280,711 99.94 72,390,269 91.7 99.4 92.8 86.2 14-P 60,891,562 93.3 60,863,344 99.95 57,820,449 72.9 99.2 91.2 82.8 14-F 61,485,616 92.9 61,463,752 99.96 55,608,163 73.5 99.0 90.5 81.8 14-M 57,261,444 93.8 57,243,205 99.96 53,229,496 71.0 98.8 89.9 80.8 15-P 66,782,838 92.9 66,761,203 99.96 60,425,805 80.4 99.0 91.1 83.1 15-F 56,780,312 93.2 56,761,259 99.96 52,059,338 70.1 98.9 90.0 80.9 15-M 64,590,202 93.5 64,571,321 99.97 58,806,125 78.9 99.0 91.0 83.0

2) the discovery of known pathological variations involving new mutation occurrences

The present inventors have found that PSEN1 We have found one previously reported mutation from sALS trio-7 in the gene. This is the replacement of thymine with cytosine at the 497th nucleotide position, replacing leucine with arginine at codon 166; c.497T > C (p. Leu166Pro) (Fig. 1). At the foot terminal, PSEN1 The mutation reading of c.497T> C is 46% (37/81) of the total reading, which means heterozygosity of the allele. The mutation was confirmed by the occurrence of new mutation through seaweed sequencing, heterozygotes were found at the foot terminal, and not in the parent. PSEN1 c.497T> C has been previously reported in familial early onset Alzheimer's dementia (EOAD) (130).

3) Discovery of new variants of unknown significance (VUS)

After confirming the mutation using biofeedback, we found nine new variants of unknown significance (VUS) from eight sALS trios (Fig. 2-9). Of the nine new VUSs, eight mutations were located in the exon region and were mutations affecting the amino acid sequence. Six missense VUSs were found from five sALS trios; FRAS1 (p.Ala2798Val), RAPGEF2 c.4069G> A (p.Glu1357Lys) , SPAG17 c.2815G> T (p.Ala939Ser), XRCC3 c.598G> A (p.Val200Ile), IFT80 c.595G > A (p.Val199Ile), and ADGRL3 c.715A> G (p.Ser239Gly). The outbreak of sALS trio-12 appeared to have two new VUSs: PAG17 c.2815G> T (p.Ala939Ser) and XRCC3 c.598G> A (p.Val200Ile). Inframe deletion CLEC4C c.629_631delAGA (p.Lys210del) was identified in sALS trio-4, and the nonsense mutation SSH2 c.1408G > T (p.Glu470 *) was identified in sALS trio-11. Nonsense mutations are predicted to produce a premature stop codon at the mRNA level. The remainder were intron mutations located in the flanking region near the exon boundary (PLEKHM2 c.1921 + 6C> T).

In-silico analysis using SIFT and PolyPhen-2 showed that four new mutations were deleterious in at least one of the two tests and that the three missense mutations predicted to be benign in both SIFT and PolyPhen-2 (Table 10). The GEFR ++ score for all variations is XRCC3 It was 4 or more, except for c.598G> A of the gene, which means that the position of the mutation has been conserved evolutionarily. Six new VUSs were not found in dbSNP141, the 1000 Genome Project (total and East Asian allele frequencies) and ExAC (Exome Aggregation Consortium). In addition, three new VUSs, RAPGEF2 c.4069G > A (p.Glu1357Lys) CLEC4C c.629_631delAGA (p.Lys210del) and XRCC3 c.598G> A (p.Val200Ile) have an rs number in the dbSNP141 database and no more than 0.1% allele frequency in one or more of the existing population- Of the patients. All mutations were not found in exogenous Korean exome data of 100 race-matched normal controls and in their disease control (Table 11).

The overall incidence of new mutations was 0.6 (9/15), including previously reported mutations and VUS.

List of new mutations identified from 15 sALS trios via in-silico analysis and conservation scores Trio No. Gene Genomic coordinates (hg38) RefSeq Nucleotide
change
Amino acid change PolyPhen-2
(HumDiv, Probabilistic score)
SIFT
(Tolerance index)
GERP ++
score
2 FRAS1 Chr4: 78,479,668 NM_025074.6 c.8393C> T p.Ala2798Val Benign
(0.347)
Tolerated
(0.23)
5.59
3 RAPGEF2 Chr 4: 159, 353, 947 NM_014247.2 c.4069G> A p.Glu1357Lys Benign
(0.092)
Tolerated
(0.07)
6.17
4 CLEC4C Chr 12: 7,729,607 NM_130441.2 c.629_631delAGA p.Lys210del N / A N / A N / A 7 PSEN1 * Chr 14: 73,186,869 NM_000021.3 c.497T> C p.Leu166Pro Possibly damaging
(0.469)
Deleterious
(0.01)
5.46
8 PLEKHM2 Chrl: 15,728,363 NM_015164.2 c.1921 + 6C > T N / A N / A N / A N / A 11 SSH2 Chr17: 29,636,741 NM_033389.3 c.1408G> T p.Glu470 * N / A N / A 6.16 12 SPAG17 Chr 1: 118,042,042 NM_206996.2 c.2815G> T p.Ala939Ser Probably damaging
(0.999)
Deleterious
(0.01)
5.23
12 XRCC3 Chr14: 103,699,540 NM_001100119.1 c.598G> A p.Val200Ile Benign
(0.021)
Tolerated
(0.66)
-7.12
13 IFT80 Chr 3: 160, 357, 533 NM_020800.2 c.595G> A p.Val199Ile Benign
(0.016)
Deleterious
(0.00)
5.37
15 ADGRL3 Chr4: 61,733,074 NM_015236.4 c.715A> G p.Ser239Gly Probably dagaming
(0.991)
Deleterious
(0.00)
4.04

* Known pathological variations

** Abbreviation: N / A, N / A.

15 Frequency of population of new mutations identified in the sALS trio Trio
No.
Gene RefSeq Nucleotide
change
Amino acid change rs number Allele frequency External Korean exome data
dbSNP
141
1000
Genome
1000
Genome
(EA)
ExAC
2 FRAS1 NM_025074.6 c.8393C> T p.Ala2798Val N / A N / A N / A N / A N / A N / A 3 RAPGEF2 NM_014247.2 c.4069G> A p.Glu1357Lys rs200644232 0.0002 0.000 0.000 0.0001 N / A 4 CLEC4C NM_130441.2 c.639_631delAGA p.Lys210del N / A N / A N / A N / A 0.00002 N / A 7 PSEN1 * NM_000021.3 c.497T> C p.Leu166Pro rs63750265 N / A N / A N / A N / A N / A 8 PLEKHM2 NM_015164.2 c.1921 + 6C > T N / A N / A N / A N / A N / A N / A N / A 11 SSH2 NM_033389.3 c.1408G> T p.Glu470 * N / A N / A N / A N / A N / A N / A 12 SPAG17 NM_206996.2 c.2815G> T p.Ala939Ser N / A N / A N / A N / A N / A N / A 12 XRCC3 NM_001100119.1 c.598G> A p.Val200Ile rs531332562 0.0004 N / A N / A 0.00005 N / A 13 IFT80 NM_020800.2 c.595G> A p.Val199Ile N / A N / A N / A N / A N / A N / A 15 ADGRL3 NM_015236.4 c.715A> G p.Ser239Gly N / A N / A N / A N / A N / A N / A

* Previously reported mutations

** Abbreviation: N / A, N / A. EA, East Asian; ExAC, Exome Aggregation Consortium.

3) Gene priority determination

Candidate genes were evaluated using ToppGene software, which combines human gene annotations and literature and mouse phenotype data (129). As a training gene set, 22 ALS-FTD causative genes and a set of test genes described in Table 2 were analyzed using 9 genes in which new VUS was found. According to the results of the analysis, the RAPGEF2 gene has a p-value of less than 0.05 and is highly related to the known ALS-FTD gene. In particular, the previously known ALS-FTD gene and RAPGEF2 Genes showed a statistically significant association with biological mechanisms and expression sites (p-values were all <0.05) (Table 12). Thus, the present inventors have found that RAPGEF2 We decided to focus on genes.

Priority of new mutation using ToppGene (129) ranking gene Molecular Function
( p-value )
Biological Process
( p-value )
Cellular Component
( p-value )
Pathway
( p-value )
Pubmed ( p -value) Gene Family
( p-value )
Coexpress
-ssion
( p-value )
Disease ( p -value) Average Score Overall
( p-value )
One RAPGEF2 0.017005 0.007194 0.011118 0.501635 0.139961 0.146501 0.007848 0.18705 0.304168 0.003722 2 IFT80 0.576194 0.142577 0.094833 0.23414 0.192283 0.499673 0.51537 0.00327 0.201703 0.076533 3 SSH2 0.104644 0.104644 0.18378 0.501635 0.132112 0.146501 0.51537 0.18705 0.167025 0.146642 4 XRCC3 0.576194 0.158273 0.140615 0.501635 0.06998 0.146501 0.51537 0.503597 0.160944 0.222278 5 SPAG17 0.576194 0.670373 0.080445 0.23414 0.621321 0.146501 0.51537 0.503597 0.071555 0.316402 6 PLEKHM2 0.104644 0.282538 0.338784 0.501635 0.219751 0.146501 0.51537 0.18705 0.062085 0.334397 7 CLEC4C 0.576194 0.223022 0.262263 0.23414 0.621321 0.499673 0.51537 0.18705 0.07439 0.378598 8 FRAS1 0.576194 0.321779 0.197515 0.23414 0.621321 0.146501 0.51537 0.503597 0.106461 0.397609 9 ADGRL3 0.576194 0.324395 0.23087 0.501635 0.621321 0.146501 0.51537 0.503597 0.047731 0.43641

4) Verification of RAPGEF2 gene in ALS and control group

ALS and Was conducted a case-control study on the variation of c.4069G> A gene found in RAPGEF2 targets 385 healthy objects using MALDI-TOF in order to verify the relevance of RAPGEF2 gene (control study), who discovered the mutation There was no. In addition, in this study, 184 ALS patients without ALS trio RAPGEF2 Target sequencing was performed on the gene. As a result, we found two missense VUSs from two: c.1883C> T (p.Thr628Ile) from HS-374, c.3293G> A (p.Arg1098His) from HS-477 (Fig. 10). In this study, one trio case and two patients with sporadic ALS had RAPGEF2 A total of three mutations were found in the gene (3/199, 1.5%). The c.1883C> T (p.Thr628Ile) mutation is located in the UBQ superfamily domain and the c.3293G> A (p.Arg1098His) and c.4069G> A (p.Glu1357Lys) mutations are located outside the RasGEF domain 3'- Terminal region (Fig. 11).

2. Patient characteristics

Table 15 summarizes the clinical information on the 15 foot terminals of the ALS trio. Of 15 patients, 9 were males and 6 were females (male: female ratio 1: 0.6). The mean age at onset was 34.2 years (range, 19-49 years). There was no family history of ALS. None of the subjects had cognitive impairment except in the sALS Trio-7 initiator. Fourteen patients (93.3%) had symptoms in the extremities and one patient had symptoms in the breathing area. The mean ALSFRS-R at the time of diagnosis was 40.5 and the mean delta-FS was 0.57. No patients died during follow-up. Two patients received non-invasive respiratory therapy 21 and 49 months after the onset of symptoms. The ALS trio-12 runner, who developed a febrile epileptic attack, developed symptoms rapidly after the onset of the disease and received a non-invasive respiratory therapy and gastrostomy 10 months later.

PSEN1 The origin of sALS trio-7 with the c.497T> C (p.Leu166Pro) mutation in the gene was a 28-year-old man who had a 24-month history of walking disturbance and leg spasm. Cognitive impairment, including mental motor impairment and decreased spatial perception, was preceded by rigid gait disturbances. Neurological examination showed severe stiffness of the lower limbs, bilateral hyperactive deep tendon reflexes, Hoffman's sign, and Babinski's sign. The Mini Mental State Examination (MMSE) recorded 26/30. Precision neuropsychological tests showed cognitive decline in all areas including attention, language ability, memory, and frontal function. There was no active denervation or chronic denervation in EMG. Brain and spinal MRI revealed diffuse cortical atrophy. There was no evidence of a secondary cause of dementia or cognitive impairment. It was diagnosed as primary scoliosis with dementia involving the muscular nerves of the lower leg according to Gordon and Pringle (18, 131).

RAPGEF2 The sALS trio-3 initiator with the c.4069G> A (p.Glu1357Lys) mutation in the gene was a 36-year-old female with progressive motor impairment in the right hand and lower limb for 7 months. One year later, a speech disorder occurred. There was no family history of neuromuscular disorders. Neurological examination revealed muscle atrophy and weakness in the tongue, both arms and legs. Fasciculation was clearly observed in the extremities, left and right and active deep tendon reflexes, Hoffmann and Barbsche's signs, and ankle spasms. No significant abnormalities were found in the basic blood test. EMG showed activity and chronic denervation in the limbs. Brain MRI showed no abnormal findings. According to the revised E1-Escorial standard, there were 3 cases of upper motor neurological symptoms, and clinically definite ALS was diagnosed.

FRAS1 The sALS trio-2 initiator with the c.8393C> T (p.Ala2798Val) mutation in the gene was found at the upper extremity at 36 years of age. At diagnosis, the patient's ALSFRS-R was 45/48 and Delta-FS was 1.43. The patient was alive at 34 months after the onset of ALS.

CLEC4C The origin of sALS trio-4 with the c.629_631 delAGA (p.Lys210del) mutation in the gene is a 21-year-old woman who developed at the upper limb at age 19 and has a slow ongoing dyskinesia. At diagnosis, the patient's ALSFRS-R was 46/48 and the delta-FS was 0.1. The patient was alive at 23 months after the onset of symptoms.

PLEKHM2 The origin of the sALS trio-8 gene with a c.1921 + 6C> T mutation in the gene was a 39-year-old male with symptoms beginning at 38 years of age and progressing slowly in the upper extremities. At diagnosis, the patient's ALSFRS-R was 39/48 and the delta-FS was 0.89. The patient was alive at 15 months after the onset of symptoms.

The onset of sALS trio-11 with the c.1408G> T (p.Glu470 *) mutation in the SSH2 gene started at the upper limb at age 39 years. At diagnosis, the patient's ALSFRS-R was 33/48 and the delta-FS was 0.75. The patient was alive at 8 months after the onset of symptoms.

At the foot terminal of the sALS trio-12, two new VUSs , SPAG17 The c.2815G> T (p.Ala939Ser) mutation of the gene and the c.598G> A (p.Val200Ile) mutation of the XRCC3 gene were found. The patient was symptomatic in the breathing area at age 40 years. At diagnosis, the patient's ALSFRS-R was 42/48 and Delta-FS was 1.5. The patient was alive at 6 months after the onset of symptoms, and underwent tracheostomy and pylorus formation at 10 months after onset.

IFT80 The onset of sALS trio-13 with the c.595G> A (p.Val199Ile) mutation in the gene was at the lower extremity at 41 years of age. At diagnosis, the patient's ALSFRS-R was 37/48 and the delta-FS was 0.73. The patient was alive at 10 months after the onset of ALS.

ADGRL3 The onset of sALS trio-15 with the c.715A> G (p.Ser239Gly) mutation in the gene occurred at the age of 43 years. At diagnosis, the patient's ALSFRS-R was 43/48 and the delta-FS was 0.25. The patient was alive at 6 months after the onset of symptoms.

Clinical features of 15 patients with sALS Trio No. Sex Age onset Family history Diagnosis rEEC Site of onset ALSFRS-R delta-FS FVC (%) Onset to initial (Mo) Duration of f / u (mo) NIV from onset (mo) Gastrostomy from onset (mo) Death from onset (mo) One M 30 No ALS probable LE 45 0.1 71 29 40 49 - - 2 F 36 No ALS definite UE 38 1.43 71 7 34 - - - 3 F 27 No ALS probable LE 44 0.36 67 11 69 - - - 4 F 19 No ALS probable UE 46 0.1 68 20 23 - - - 5 F 28 No ALS definite UE 35 0.43 73 30 17 - - - 6 M 23 No ALS definite UE 36 0.52 58 23 23 - - - 7 M 26 No PLS plus - LE 37 0.32 56 24 10 - - - 8 M 38 No ALS definite UE 39 0.89 90 9 15 - - - 9 M 26 No ALS probable LE 41 0.37 63 19 38 - - - 10 F 49 No ALS probable LE 45 0.5 71 6 14 21 - - 11 F 39 No ALS definite UE 33 0.75 83 20 8 - - - 12 M 40 No ALS probable bulbar 42 1.5 56.4 4 6 10 10 - 13 M 41 No ALS probable LE 37 0.73 84 15 10 - - - 14 M 49 No ALS probable UE 46 0.25 101.6 8 7 - - - 15 M 43 No pure LMND - LE 43 0.25 not done 20 6 - - -

* Abbreviation: PLS, primary lateral sclerosis; LMND, lower motor neuron disease; rEEC, revised El Escorial criteria; UE, upper extremity; LE, lower extremity; ALSFRS-R, the ALS functional rating scale-revised; delta-FS, delta-functional rating; FVC, forced vital capacity; NIV, non-invasive ventilation.

Argument

1. Discovery of new mutations

In the present invention, total exome sequencing was performed on 15 sALS trios, and from 8 trios PSEN1 We found 10 novel mutations in the gene, including one previously reported mutation and nine VUS. First, the present inventors discovered mutations that cause causative EOAD in a patient with a family history of exome sequencing. Secondly, we evaluated the frequency of new mutations in Korean patients with sALS. Finally, these results provide a systematic analysis of new mutations in ALS and we have identified the RAPGEF2 gene as a new candidate to contribute to the ALS genetic background.

The present inventors have found that a novel PSEN1 We found a pathologic mutation c.497T> C (p.Leu166Pro). This mutation has been reported as a cause of early onset Alzheimer's dementia (EOAD) (130). EOAD in sporadic patients were reported ryeman can report on a new mutation (132-134), which PSEN1 Because genetic testing is performed primarily in patients with family history of EOAD, selection bias may have been involved (134). In addition to the results of the present invention, the onset age of the patients with new mutations was very young, ranging from 26 to 37 years. In this study, several familial EOAD cases with congenital spastic paraplegia have been reported (135-137). Especially, PSEN1 Genetic exon 9 deficiency is known to be associated with early congenital ankylosis (138-140). Targeting gene sequencing through biofluidic sequencing is generally known to be a useful method for finding mutations, but it has been shown that phenotypic variability, genetic heterogeneity, and multiple molecular mechanisms cause many neurodegenerative diseases There are difficulties in determining genes and mutations. Therefore, it is diagnostic useful to perform a total exome sequencing after a test for a common causal gene in the absence of a clear target gene.

In the present invention, the incidence of new mutations was 0.6 (9/15), which is similar to the results of recent studies of autism spectrum disorders (ASD) and ALS (Table 14). A recent study reported a new mutation frequency of 47 sALS trio through total exome sequencing of 0.64 (30/47) (110). O'Roak et al. Performed total exome sequencing of 189 autistic patients and their parents and found 181 non-synonymous mutations (0.96, 181/189), of which 120 were biochemical and interspecific (103). In the present study, we examined the relationship between the severity of disease and the severity of the disease. In another study on ASD, the ratio of new mutations was 0.63 - 0.68, which was consistent with the results of the present invention (141-143).

Comparison of incidence of non-synonymous (NS) mutations Disease phenotype (Reference) NS number of mutations Number of foot terminals Number of variations per foot terminal ASD 141 125 200 0.63 ASD 103 181 189 0.96 ASD 142, 119 175 0.68 ASD 143 232 343 0.68 ALS 110, 30 47 0.64 ALS (invention) 9 15 0.6

Abbreviations: ASD, autism spectrum disorders; ALS, amyotrophic lateral sclerosis.

2. RAPGEF2 gene

In the present invention, RAPGEF2 (Ras guanine nucleotide exchange factor 2) gene was identified as a candidate gene of ALS. The present inventors have found a novel mismatch mutation c.4069G > A (p.Glu1357Lys) of the RAPGEF2 gene in sALS trio-3. In addition, two additional mismatch mutations in the RAPGEF2 gene were found in 184 independent sALS patients; c.1883C > T (p.Thr628Ile) and c.3293G > A (p.Arg1098His). Experimental results of the present invention show that RAPGEF2 Suggesting that the gene may be the causative gene for sALS. First, the above three mutations of the RAPGEF2 gene were absent in 100 homozygous normal controls and 75 self-diseased controls. And the allele frequency of mutations in the dbSNP141, 1000 Genome Project (both total and East Asian) and ExAC (Exome Aggregation Consortium) was extremely rare (less than 0.1%). Second, based on the comparison of published literature, transcript, proteome, regulator, ontology, and phenotypic database, the previously known pathogenesis of ALS and RAPGEF2 As a result of comparing the genes, it was confirmed that the RAPGEF2 gene has a statistically significant relationship with ALS.

The RAPGEF2 gene, located on chromosome 4q32.1, consists of 35 exons and encodes 1,499 amino acids. The RapGEF2 protein is a member of the RAS family member with GTPase function in signal transduction as a GTP / GDP-regulated switch that determines the inactive GDP- and active GTP-binding state (144). RapGEF2 includes several domains including the cyclic nucleotide-binding domain (CNBD), the Ras exchange domain, the PDZ domain, the Ras-associated domain, and the Rap GEF domain (145). The GEF domain of RapGEF2 serves to regulate GTP exchange in Rap2, a close family member of Rap1 and Rap1 (146). Other domains appear to regulate its activity, stability and location (147, 148).

In rats, RapGEF2 was abundantly expressed in rat brain and was found to be abundant in synaptic plasma membrane, suggesting that RapGEF2 would play a role in synapses (Fig. 12) (149). It has also been reported that early brain development and neuronal morphogenesis are associated with the function of RapGEF2 (150-152). RapGEF2 is involved in MAPK and Rap1 signaling pathways. The Rag1 signaling pathway is involved in neuronal migration and is regulated by Cdk5 (153). Recent studies have shown that Cdk5-dependent regulation of RapGEF2 plays an important role in neuronal migration and neuronal circuitry in the cerebral cortex (145).

3. Other genes

The present inventors of sALS-13 IFT80 A novel mutation c.595G > A was found from the gene. The IFT80 (Intraflagellar transport 80) gene is located on chromosome 3q25.33 and consists of 21 exons. This gene encodes an IFT (intraflagellar transport) complex B protein and plays an essential role in motor and sensory cilia. Mutations in the IFT80 gene induce ATD2 (asphyxiating thoracic dystrophy 2) and short-rib polydactyly syndrome (SRP) type III (154). IFT80 is abundantly expressed in soft tissues and kidneys (Fig. 13). Recently, Wang et al. Have shown that IFT80 is essential for chondrocyte differentiation by modulating the Hh and Wnt signaling pathways through immunochemical analysis of mouse tibia with increased expression of IFT80 in the palate and trabecular bone 155).

of sALS trio-11 SSH2 A nonsense novel mutation in the gene c.1408G> T (p.Glu470 *) was found. The SSH2 (Slingshot protein phosphatase 2) gene is located on chromosome 17q11.2 and consists of 24 exons. This gene codes for protein tyrosine phosphatase and plays an important role in regulating actin filaments (156). SSH2 is abundantly expressed in the tongue and blood (Fig. 14). Recent studies in schizophrenic patients have shown that novel mutations in glutamatergic postsynaptic proteins, including the activity-regulated cytoskeleton-associated protein (ARC) and NMDAR (N-methyl-D-aspartate receptor) It is confirmed that many are found. In addition, many mutations occur in proteins that interact with synaptic strength, that is, complexes that regulate actin filament dynamics control proteins, and their mRNA targets fragile X mental retardation protein (FMRP). In this study, SSH2 A novel mutation in the gene c.1477G> A (p.Glu493Lys) was found in one schizophrenic patient, suggesting that the SSH2 gene may be involved in the mechanisms of schizophrenia and other neurodevelopmental disorders (157) .

Trio of sALS- 4 CLEC4C The gene for the inferred deletion c.629_631delAGA was found. CLEC4C (C-type lectin domain family 4, member C) gene is located on chromosome 12p13.2-p12.3 and consists of 7 exons. The protein family members of this gene share a common protein fold structure and have various functions such as cell adhesion, cell signaling, glycoprotein turnover, and role in inflammation and immune response. Type 2 transmembrane proteins play an important role in dendritic cell function (158). Recently, in one study using transgenic mice, it has been reported that antigen delivery of plasmacytosinate resin capsules via CLEC4C is an effective method for the induction of immunological resistance useful for the treatment of autoimmune diseases or for suppressing unwanted antibody responses (159 ).

Trio of sALS- 8 PLEKHM2 The intron mutation c.1921 + 6C> T was found in the gene. The PLEKHM2 [Pleckstrin homology domain containing, family (with RUN domain) member 2] gene is located on chromosome 1q36.21 and consists of 21 exons. PLEKHM2 is expressed abundantly in the thymus (Fig. 17). This gene suppresses kinesin recruitment during Salmonella infection, and PLEKHM2 activity is essential for the localization and maintenance of Salmonella-containing vacuoles (160).

The present inventors have found a cisense mutation c.8393C > T in the FRAS1 gene. The FRAS1 (Fraser extracellular matrix complex subunit 1) gene is located on chromosome 4q21.21 and consists of 74 exons. FRAS1 is abundantly expressed in the small intestine and skin (Fig. 18). This gene encodes extracellular matrix proteins and has the ability to regulate organogenesis during epidermal basement membrane adhesion and developmental periods (161). FRAS1 Mutations in the gene are responsible for Fraser syndrome, which manifests multisystem malformations, including cryptophthalmos, syndactyly, and kidney defects (162).

of sALS-trio 15 ADGR3 Missense variant c.715A> G was found in the gene. The ADGRL3 (Adhesion G protein-coupled receptor L3) gene is also known as LPHN3 (latrophilin 3). This gene is located on chromosome 4q13.1 and consists of 27 exons and is expressed in the brain, placenta and eyes (Fig. 19). This gene encodes a subfamily member of the latrophilin of G-protein coupled receptors (GPCRs). Ratropylin has a long N-terminal extracellular sequence containing sixteen transmembrane domains and 19 amino acid signaling peptides and a serine / threonine-rich glycosylation domain (163). ADGRL3 is the most specific ratophylline in the brain (163). According to recent studies, ADGRL3 It has been reported that genes are associated with attention-deficit / hyperactivity disorder (ADHD) (164). The researchers identified ADGRL3 It has been found that gene mutations are expressed in major brain regions associated with concentration and activity, affecting the metabolism of neuronal circuits associated with ADHD, and related to responses to stimulants (164).

4. Multiple Oligogenic Models in ALS

Two novel missense mutations were found from sALS trio-12: In the SPAG17 gene, c.2815G > T (p.Ala939Ser) and XRCC3 C.598G > A (p.Val200Ile) in the gene. The SPAG17 ( sperm associated antigen 17) gene is located on chromosome 1p12 and consists of 56 exons. SPAG17 is abundantly expressed in the lung (Fig. 15). SPAG17-deficient mice lose the mobility of the nasal ciliary and ciliary ducts, and have been shown to reduce nasal mucus clearance (nasal mucus clearance), respiratory disturbances associated with accumulation of water in the lungs and destruction of the alveolar epithelium, , Suckling failure and neonatal death. These results indicate that Spag17 plays an important role in the function and structure of exercise cilia (165). In addition, SPAG17 Genetic variation is related to the human kidney. Recent skeletal growth and mineralization have been associated with SPAG17 It has been reported that it is regulated by the primary cilia of chondrocytes and osteoblasts through gene function (166).

XRCC3 (X-ray repair complementing defective repair in Chinese hamster cells 3) gene is located on chromosome 14q32.3 and consists of 10 exons. XRCC3 is highly expressed in the small intestine and larynx and is associated with the HR (homologous recombination) pathway (Figure 16) (167). XRCC3 Genetic mutations inhibit the repair mechanism after injury and are sensitive to chromosomal instability and many other DNA damaging agents (168).

A number of oligogenic models have been proposed in familial ALS, which suggests that mutations in a large number of genes can be inherited in a variety of ways to induce ALS (60). Blitterswijk etc., targeted at 97 familial ALS patients ANG Gene and FUS And TARDBP Gene mutation, or with C9orf72 repeat sequence , TARDBP , SOD1 Or FUS We report a case of mutation in the gene. However, if two mutations are found in one patient, one should consider the possibility that it is not a mutation that causes actual disease, and the ANG gene mutation found in this study may be polymorphic (60, 173) . Nevertheless, it is not possible to rule out the possibility that ALS patients may have additional mutations that are related to disease progression or onset age and symptoms, in addition to genetic mutations associated with disease outbreaks.

5. Summary and Conclusions

We conducted a total exome sequencing of the foot-parental sALS trio to find the new ALS causative gene through novel mutation measurements. ToppGene software was used to determine the priorities of the novel mutations found in the present invention by performing multi-level comparative analysis with previously known ALS genes. Through these analyzes, the RAPGEF2 gene was selected as a candidate for a new causative gene. Using a MALDI-TOF MS, 364 healthy, Korean-age-matched control subjects were randomly assigned to RAPGEF2 New mutations in the gene c.4069G > A were screened and no new mutations were found as a result. Also, for 184 independent ALS patients RAPGEF2 Genetic analysis revealed two mismatch mutations from two patients; c.1883C> T and c.3293G> A. In addition, three RAPGEF2 mutations were not found in the exon-treated control exome data from 100 Korean normal controls and 75 non-ALS patients.

The present invention was the first to discover a novel mutation in the Korean sALS trio through total exome sequencing. The results of the present invention provide a wider knowledge of the causes of ALS.

While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> SAMSUNG LIFE PUBLIC WELFARE FOUNDATION <120> Mutant Genes as Diagnosis Marker for Amyotrophic Lateral          Sclerosis and Diagnosis Method Using the Same <130> PN150129 <160> 41 <170> Kopatentin 2.0 <210> 1 <211> 6824 <212> RNA <213> RAPGEF2 mRNA <400> 1 aaatgatctt gttctcttgg aagactgaga gctgtgtgag gttttctcag tcttgtcata 60 gcctaggatg gttagagttt caatgttata aaaatggaga cgaacactgt tgttcggatt 120 ccttttctgg tctacaagtg tgaagggttt ttaagcttac cagtagtgac actttaagct 180 gcagcttggt tttccctcct cccttttttt ttttcctttt tcttttaatt taatgctgta 240 gagggtgact tgccatcgtg agagattggt acatgatgtg taaattcagt tcagcatatg 300 tttcttcatt atgaaaccac tagcaatccc agctaaccat ggagttatgg gccagcagga 360 gaaacactca cttcctgcag atttcacaaa actgcatctt actgacagtc tccacccaca 420 ggtgacccac gtttcttcta gccattcagg atgtagtatc actagtgatt ctgggagcag 480 cagtctttct gatatctacc aggccacaga aagcgaggct ggtgatatgg acctgagtgg 540 gttgccagaa acagcagtgg attccgaaga cgacgacgat gaagaagaca ttgagagagc 600 atcagatcct ctgatgagca gggacattgt gagagactgc ctagagaagg acccaattga 660 ccggacagat gatgacattg aacaactctt ggaatttatg caccagttgc ctgcttttgc 720 caatatgaca atgtcagtga ggcgagaact ctgtgctgtg atggtgttcg cagtggtgga 780 aagagcaggg accatagtgt taaatgatgg tgaagagctg gactcctggt cagtgattct 840 caatggatct gtggaagtga cttatccaga tggaaaagca gaaatactgt gcatgggaaa 900 tagttttggt gtctctccta ccatggacaa agaatacatg aaaggagtga tgagaacaaa 960 ggtggatgac tgccagtttg tctgcatagc ccagcaagat tactgccgta ttctcaatca 1020 agtagaaaag aacattgcaaa aagttgaaga ggaaggagag attgttatgg tgaaagaaca 1080 ccgagaactt gatcgaactg gaacaagaaa gggacacatt gtcatcaagg gtacctcaga 1140 aaggttaaca atgcatttgg tggaagagca ttcagtagta gatccaacat tcatagaaga 1200 ctttctgttg acctatagga cttttctttc tagcccaatg gaagtgggca aaaagttatt 1260 ggagtggttt aatgacccga gcctcaggga taaggttaca cgggtagtat tattgtgggt 1320 aaataatcac ttcaatgact ttgaaggaga tcctgcaatg actcgatttt tagaagaatt 1380 tgaaaacaat ctggaaagag agaaaatggg tggacaccta aggctgttga atatcgcgtg 1440 tgctgctaaa gcaaaaagaa gattgatgac gttaacaaaa ccatcccgag aagctccttt 1500 gccttttatc ttacttggag gctctgagaa gggatttgga atctttgttg acagtgtaga 1560 ttcaggtagc aaagcaactg aagcaggctt gaaacggggg gatcagatat tagaagtaaa 1620 tggccaaaac tttgaaaaca ttcagctgtc aaaagctatg gaaattctta gaaataacac 1680 acatttatct atcactgtga aaaccaattt atttgtattt aaagaacttc taacaagatt 1740 gtcagaagag aaaagaaatg gtgcccccca ccttcctaaa attggtgaca ttaaaaaggc 1800 cagtcgctac tccattccag atcttgctgt agatgtagaa caggtgatag gacttgaaaa 1860 agtgaacaaa aaaagtaaag ccaacactgt gggaggaagg aacaagctga aaaagatact 1920 cgacaagact cggatcagta tcttgccaca gaaaccatac aatgatattg ggattggtca 1980 gtctcaagat gacagcatag taggattaag gcagacaaag cacatcccaa ctgcattgcc 2040 tgtcagtgga accttatcat ccagtaatcc tgatttattg cagtcacatc atcgcatttt 2100 agacttcagt gctactcctg acttgccaga tcaagtgcta agggttttta aggctgatca 2160 gcaaagccgc tacatcatga tcagtaagga cactacagca aaggaagtgg tcattcaggc 2220 tatcagggag tttgctgtta ctgccacccc ggatcaatat tcactatgtg aggtctctgt 2280 cacacctgag ggagtaatca aacaaagaag acttccagat cagctttcca aacttgcaga 2340 cagaatacaa ctgagtggaa ggtattatct gaaaaacaac atggaaacag aaactctttg 2400 ttcagatgaa gatgctcagg agttgttgag agagagtcaa atttccctcc ttcagctcag 2460 cactgtggaa gttgcaacac agctctctat gcgaaatttt gaactctttc gcaacattga 2520 acctactgaa tatatagatg atttatttaa actcagatca aaaaccagct gtgccaacct 2580 gaagagattt gaagaagtca ttaaccagga aacattttgg gtagcatctg aaattctcag 2640 agaaacaaac cagctgaaga ggatgaagat cattaagcat ttcatcaaga tagcactgca 2700 ctgtagggaa tgcaagaatt ttaactcaat gtttgcaatc atcagtggcc taaacctggc 2760 accagtggca agactgcgaa cgacctggga gaaacttccc aataaatacg aaaaactatt 2820 tcaagatctc caagacctgt ttgatccttc cagaaacatg gcaaaatatc gtaatgttct 2880 caatagtcaa aatctacaac ctcccataat ccctctattc ccagttatca aaaaggatct 2940 caccttcctt cacgaaggaa atgactcaaa agtagacggg ctggtcaatt ttgagaagct 3000 aaggatgatt gcaaaagaaa ttcgtcacgt tggccgaatg gcttcagtga acatggaccc 3060 tgccctcatg ttcaggactc ggaagaagaa atggcggagt ttggggtctc tcagccaggg 3120 tagtacaaat gcaacagtgc tagatgttgc tcagacaggt ggtcataaaa agcgggtacg 3180 tcgtagttcc tttctcaatg ccaaaaagct ttatgaagat gcccaaatgg ctcgaaaagt 3240 gaagcagtac ctttccaatt tggagctaga aatggacgag gagagtcttc agacattatc 3300 tctgcagtgt gagccagcaa ccaacacatt gcctaagaat cctggtgaca aaaagcctgt 3360 caaatccgag acctctccag tagctccaag ggcagggtca caacagaaag ctcagtccct 3420 gccacagccc cagcagcagc caccaccagc acataaaatc aaccagggac tacaggttcc 3480 cgccgtgtcc ctttatcctt cacggaagaa agtgcccgta aaggatctcc caccttttgg 3540 cataaactct ccacaagctt taaaaaaaat tctttctttg tctgaagaag gaagtttgga 3600 acgtcacaag aaacaggctg aagatacaat atcaaatgca tcttcgcagc tttcttctcc 3660 tcctacttct ccacagagtt ctccaaggaa aggctatact ttggctccca gtggtactgt 3720 ggataatttt tcagattctg gtcacagtga aatttcttca cgatccagta ttgttagcaa 3780 ttcgtctttt gactcagtgc cagtctcact gcacgatgag aggcgccaga ggcattctgt 3840 cagcatcgtg gaaacaaacc tagggatggg caggatggag aggcggacca tgattgaacc 3900 tgatcagtat agcttggggt cctatgcacc aatgtccgag ggccgaggct tatatgctac 3960 gggatcgcgc 4020 gtcacttgat gctgctgaca gtggccgtgg gagctggacg tcatgctcaa gtggctccca 4080 tgataatata cagacgatcc agcaccagag aagctgggag actcttccat tcgggcatac 4140 tcactttgat tattcagggg atcctgcagg tttatgggca tcaagcagcc atatggacca 4200 aattatgttt tctgatcata gcacaaagta taacaggcaa aatcaaagta gagagagcct 4260 tgaacaagcc cagtcccgag caagctgggc gtcttccaca ggttactggg gagaagactc 4320 agaaggtgac acaggcacaa taaagcggag gggtggaaag gatgtttcca ttgaagccga 4380 aagcagtagc ctaacgtctg tgactacgga agaaaccaag cctgtcccca tgcctgccca 4440 catagctgtg gcatcaagta ctacaaaggg gctcattgca cgaaaggagg gcaggtatcg 4500 agagcccccg cccacccctc ccggctacat tggaattccc attactgact ttccagaagg 4560 gcactcccat ccagccagga aaccgccgga ctacaacgtg gcccttcaga gatcgcggat 4620 ggtcgcacga tcctccgaca cagctgggcc ttcatccgta cagcagccac atgggcatcc 4680 caccagcagc aggcctgtga acaaacctca gtggcataaa ccgaacgagt ctgacccgcg 4740 cctcgccccc tatcagtccc aagggttttc caccgaggag gatgaagatg aacaagtttc 4800 tgctgtttga ggcacagact tttctggaag cagagcgagc cacctgaaag gagagcacaa 4860 gaagacgtcc tgagcattgg agccttggaa ctcacattct gaggacggtg gaccagtttg 4920 cctccttccc tgccttaaaa gcagcatggg gcttcttctc cccttcttcc tttccccttt 4980 gcatgtgaaa tactgtgaag aaattgccct ggcacttttc agactttgtt gcttgaaatg 5040 cacagtgcag caatcttcga gctcccactg ttgctgcctg ccacatcaca cagtatcatt 5100 ccaaattcca agatcatcac aacaagatga ttcactctgg ctgcacttct caatgcctgg 5160 aaggattttt tttaatcttc cttttagatt tcaatccagt cctagcactt gatctcattg 5220 ggataatgag aaaagctagc cattgaacta cttggggcct ttaacccacc aaggaagaca 5280 aagaaaaaca atgaaatcct ttgagtacag tgcttgtcca cttgtttaca atgtcctcct 5340 tttaaaaaaa aaaaatgagt ttaaagattt tgttcagaga gtaaatatat atccatttaa 5400 tgattacagt attattttaa accttaagta gggttgccag cctggtttct gaaaaaccaa 5460 atatgccgga cagggtgtgg ccacaccaag aagacgggaa gacctggctt gtgaccctgg 5520 cttcccatgt ccttctggtc tcacccgcga agtgccctat cctggaagta tgaaatgtta 5580 gccaattaat accaagacac ctcatctgct ccttccccag tggatggggt tcttctgtaa 5640 aactgtttgc acatggccag gggagggaac taggaccctt gtgtcctgtc tgagccttat 5700 ggaggcagga cggtgtcatt ggcggatgtg tcctgctcca ttgagatgga tggcaaaccc 5760 catttttaag ttatatttct ttgatttttg ttaatttaga ggtgtaggtt ttgttttttg 5820 tttttttgtt tttttttaag agaaacattt ataactggat agcattgcag tgaaagcagc 5880 ttgggatgtt ggagctaatg ccagctgttt atactgctct ttcaagacag cctcccttta 5940 ttgaattggc attagggaat aaacaagcct ttaaacgtga taaaagatca aaaacctggt 6000 tagacatgcc agcctttgca aggcaggtta gtcaccaaag actaacctcc aagtggcttt 6060 atggacgctg catatagaga aggcctaagt gtagcaacca tctgctcaca gctgctatta 6120 accctataat gactgaaatg acccctccac tctatttttg tgttgttttg cacagactcc 6180 ggaaaagtga aggctgccaa tctgagtagt actcaaatgt gaggaactgc tggtcttgga 6240 ttttttttcc attaaattca gctgatcata ttgatcagta gataaacgta aatagcttca 6300 aattttaaaa gtggaattgc agtgtttttt cactgtatca aacaatgtca gtgctttatt 6360 taataattct cttctgtatc atggcatttg tctacttgct tattacattg tcaattatgc 6420 atttgtaatt ttacatgtaa tatgcattat ttgccagttt tattatatag gctatggacc 6480 tcatgtgcat atagaaagac agaaatctag ctctaccaca agttgcacaa atgttatcta 6540 agcattaagt aattgtagaa cataggactg ctaatctcag ttcgctctgt gatgtcaagt 6600 gcagaatgta caattaactg gtgatttcct catacttttg atactacttg tacctgtatg 6660 tcttttagaa agacattggt ggagtctgta tcccttttgt atttttaata caataattgt 6720 acatattggt tatatttttg ttgaagatgg tagaaatgta ctatgtttat gcttctacat 6780 ccagtttgta caagctggaa aataaataaa tataacataa aaaa 6824 <210> 2 <211> 4322 <212> RNA <213> IFT80 mRNA <400> 2 gcgcatgcgc gaactcctgg cgggacctac gcggtagaag tttctactaa gtgaaaagga 60 agagcgaggg attcttttct ctgtggtcta cagcagcagc actattatta aaaatatttg 120 gaaagacaac ctggcaagtt ttgaaaaaga tttttttaaa aacggtaggg ttccgctcac 180 agtgggaggc ggggctcagt ggtccagaaa cgcctcttca gaagagggcg ggctcgccga 240 gggcggggt ctcgggccca ctcggatgac gtgccgcgta gaagtatcgc gggaagagga 300 agggagcgta actcttagaa gtcactatgg tgacggggag gtaccaggta tttgagagca 360 atcgccaccg ctttcctgga acttgagtaa atacaatcaa gtggcatctt aaatttttgc 420 tggaagtgga gtcatgagac taaagatatc tcttttaaaa gaaccaaagc atcaagaatt 480 agtaagctgt gtgggctgga ctactgctga agagctgtat tcatgtagtg atgatcacca 540 gatagtgaag tggaacttgt taaccagtga aacaactcaa atagtaaagc ttcctgatga 600 tatttaccct attgattttc actggtttcc aaaaagtttg ggtgtaaaga aacaaaccca 660 ggcagaaagc tttgtcctca caagttctga tggtaaattt catctgattt ccaagttagg 720 aagagtggaa aaaagtgtag aagctcactg tggagcagta cttgcaggaa gatggaatta 780 tgaaggaaca gcattagtta cagttggaga agatggacaa ataaaaattt ggtcaaagac 840 tgggatgctt agatcaactt tagctcagca aggaacacca gtgtattcag tagcgtgggg 900 ccctgattca gaaaaggttc tttatacagc aggcaagcag ctaatcatta aacctcttca 960 accaaatgct aaagttttgc agtggaaagc tcatgatggc attattttaa aagtagattg 1020 gaactcggtc aatgatctta ttttatctgc tggtgaagac tgtaaatata aggtatggga 1080 tagttacggc cgcccactgt acaattcaca acctcatgag catcccatta cttcagttgc 1140 ctgggctcca gatggagaat tatttgctgt tggatcgttt catactttac gcttgtgtga 1200 taaaactggg tggtcatatg cattagaaaa acccaacact ggcagcatat ttaatattgc 1260 atggtctatc gatggcactc agattgctgg agcctgtgga aatggacatg tcgtttttgc 1320 acatgtggtg gaacaacatt gggagtggaa aaattttcaa gtaacattaa cgaaaagaag 1380 agccatgcag gttcgtaatg ttcttaatga tgcagtggat ttactggaat tccgtgatag 1440 agtcattaaa gcatctttga actatgcaca cttagttgtt tcaacgtctc ttcaatgtta 1500 cgtgttctcc acgaagaact ggaacacacc aattatattt gatctcaaag aaggaactgt 1560 tagtttgatt ctgcaggcag aaagacattt tcttcttgta gatggtagta gtatctattt 1620 atattcatat gaagggcgct ttatttcatc tccaaaattt cctggaatga gaacagatat 1680 tctgaatgca cagactgtgt ctttgagtaa tgataccata gcaataagag acaaagctga 1740 tgaaaaaata atcttcctct ttgaggcatc aaccggaaag ccgttaggtg atggaaagtt 1800 tctttctcat aagaatgaaa tcttggaaat tgctctggat caaaaaggac ttaccaatga 1860 tagaaaaatt gctttcattg ataaaaatag agatctctgt atcacttctg tgaaacgatt 1920 tgggaaggaa gaacaaatta tcaagcttgg aacaatggtg catactttgg catggaacga 1980 tacatgcaat atcctttgtg gacttcaaga tactcgattt atagtgtggt attaccccaa 2040 tacagtttat gtggacagag acattttgcc taaaacatta tatgaaaggg atgcaagtga 2100 atttagtaaa aatccccata ttgtgagttt tgttggaaat caagtaacta ttagaagagc 2160 tgatggctcc ctggttcaca tcagcataac accatatcct gctattctcc atgaatatgt 2220 aagcagttca aaatgggaag atgctgtgag actttgtcgc tttgttaagg agcaaaccat 2280 gtgggcttgt ctagctgcta tggcagttgc taatcgagat atgactactg cagaaatagc 2340 ctatgcagca attggtgaaa ttgataaggt tcagtacatc aattctataa aaaatcttcc 2400 atctaaagaa tcaaaaatgg cccacatact actgtttagt gggaacatac aggaggctga 2460 aatagtactt cttcaggctg gccttgttta tcaagcaatc cagatcaata ttaatctcta 2520 caactgggaa agggcactgg aattggctgt aaaatacaaa acacatgttg atacagttct 2580 tgcttaccgt caaaagtttt tggagacatt tggtaaacag gaaactaata aacgatactt 2640 gcattatgca gaaggtctcc aaatagattg ggagaaaatc aaagccaaaa ttgagatgga 2700 aattacaaaa gaaagagagc aatcatcaag cagccaatcc agcaagagta taggtttaaa 2760 gccctaaatg ccatgcgtat ctttaagaaa ttttatcttt tgaaacacgt tctgattaac 2820 caagggtaag catgttttgg ttgctaaaga aaaaagcata atctttaacc gagtataagt 2880 acttgctgtg tatttagtgt aaaagtacat gcagaaagat gaaacacaaa gtaattgatg 2940 tatttctatc ttttatattt tttagtccaa taattagcaa aatattacta tgtacttaag 3000 agatacctgt gtagtgtcga ttatatgtca gttttttgcc cattacttca tccctaaatc 3060 ttcagcatga acaaatatta atgtcgataa taaaacattg gactctttga aatgtatgtt 3120 accattaatt tctatttgac ctctaaattg taaaatgcct ccaaaagttt atttatagaa 3180 caaaaataca tgaggatgga tttgtacaaa tgtataaaat gccactattt atacaccaag 3240 ttcatagcag cattactgga atagcaaaag atggaaacag ctcaagtgtc tatcatgaat 3300 ggataaacaa atgtgctata atacatacaa tggaatatta tttagcttta aaaaggaatg 3360 aaattctgat aaatactacc tcaggataaa ccttgaaaac actatgctaa gtgaaataag 3420 ccagacacaa aaggccaaat atgatgccac ttttatgagg taccagcata ggcaagttca 3480 cagaaacaga aaggagaata gtggttgcca gggactgcag ggaggaggaa atggggggtg 3540 gggttattgt ttaacgagta catagtttct gtttgggatg aacaaattct ggaaatggat 3600 agcgatgatg gttgctcaac attttgaatg ttaatgccac taaattgtac ccataaaaat 3660 ggttaaaatg gtaaattttg ttatgtatat tttatcataa tttaaaaaat atatctagaa 3720 tgggcaagaa ggattctcct cattcctctc ttgacttgag aatgatcagt caataggccc 3780 tgaagtctga atttgtgaaa atttccttgg gtgacaaact tgtttgatta ctctatttag 3840 tgtatcccaa agttattacc acataatctt ttaaacaata aaacaaatac cccttagaaa 3900 gtcttctgca aacccatttc tgaaaatggt acattatagg gtgggtatag atgcatagat 3960 atgggattat gtatgatata tatatatata cacacacaca caaagggata gagagattac 4020 ctctcttaac ccccatttta attactatgt ctaggttttt taaataaaaa tcttttcttt 4080 ttaacatgtt tcttttcttt tccggaatat tggaatattc tgttcttgat ccagatgaaa 4140 tctgattgag cagtgtactt acaagttgta ctgtgtatgt gtttcctata ttgttatatt 4200 tcaataagaa gcttaaaatg tttaaaaata aatggttaaa aggttttatg ttatgtatat 4260 tttaccacaa taaatgcaaa aaataaaaag tctgtgttct aaacaaaaaa aaaaaaaaaa 4320 aa 4322 <210> 3 <211> 9224 <212> RNA <213> SSH2 mRNA <400> 3 gacaagaatg ccctgcccgg aacaacccag cagcgcctag atggctttgg tcacggtcca 60 gcggtcacct acccccagca ccacctccag cccctgcgcc tcggaggcag acagtgggga 120 ggaagaatgc cggtcacagc ccaggagcat cagcgagagc tttctaactg tcaaaggtgc 180 tgcccttttt ctaccacggg gaaatggctc atccacacca agaatcagcc acagacggaa 240 caagcatgca ggcgatctcc aacagcatct ccaagcaatg ttcattttac tccgcccaga 300 agacaacatc aggctggctg taagactgga aagtacttac cagaatcgaa cacgctatat 360 ggtagtggtt tcaactaatg gtagacaaga cactgaagaa agcatcgtcc taggaatgga 420 tttctcctct aatgacagta gcacttgtac catgggctta gttttgcctc tctggagcga 480 cacgctaatt catttggatg gtgatggtgg gttcagtgta tcgacggata acagagttca 540 catattcaaa cctgtatctg tgcaggcaat gtggtctgca ctacagagct tacacaaggc 600 ttgtgaagtc gccagagcgc ataactacta cccaggcagc ctatttctca cttgggtgag 660 ttattatgag agccatatca actcagatca atcctcagtc aatgaatgga atgcaatgca 720 agatgtacaga tcccaccggc ccgactctcc agctctcttc accgacatac ctactgaacg 780 tgaacgaaca gaaaggctaa ttaaaaccaa attaagggag atcatgatgc agaaggattt 840 ggagaatatt acatccaaag agataagaac agagttggaa atgcaaatgg tgtgcaactt 900 gcgggaattc aaggaattta tagacaatga aatgatagtg atccttggtc aaatggatag 960 ccctacacag atatttgagc atgtgttcct gggctcagaa tggaatgcct ccaacttaga 1020 ggacttacag aaccgagggg tacggtatat cttgaatgtc actcgagaga tagataactt 1080 cttcccagga gtctttgagt atcataacat tcgggtatat gatgaagagg caacggatct 1140 cctggcgtac tggaatgaca cttacaaatt catctctaaa gcaaagaaac atggatctaa 1200 atgccttgtg cactgcaaaa tgggggtgag tcgctcagcc tccaccgtga ttgcctatgc 1260 aatgaaggaa tatggctgga atctggaccg agcctatgac tatgtgaaag aaagacgaac 1320 ggtaaccaag cccaacccaa gcttcatgag acaactggaa gagtatcagg ggatcttgct 1380 ggcaagcaaa cagcggcata acaaactatg gagatctcat tcagatagtg acctctcaga 1440 ccaccacgaa cccatctgca aacctgggct agaactcaac aagaaggata tcaccacctc 1500 agcagaccag attgctgagg tgaagaccat ggagagtcac ccacccatac ctcctgtctt 1560 tgtggaacat atggtcccac aagatgcaaa tcagaaaggc ctgtgtacca aagaaagaat 1620 gatctgcttg gagtttactt ctagggaatt tcatgctgga cagattgagg atgaattaaa 1680 cttaaatgac atcaatggat gctcatcagg gtgttgtctg aatgaatcaa aatttcctct 1740 tgacaattgc catgcatcca aagccttaat tcagcctgga catgtcccag aaatggccaa 1800 caagtttcca gacttaacag tggaagattt ggagacagat gcactgaaag cagacatgaa 1860 tgtccaccta ctgcctatgg aagaattgac atctccactg aaagaccccc ccatgtcccc 1920 tgatcctgag tcaccaagcc cccaacccag ttgccagact gaaatctcag atttcagtac 1980 agatcgcatt gactttttta gtgccctaga gaagtttgtg gagctctccc aagaaacccg 2040 gtcacgatct ttttcccatt caaggatgga ggaactgggt ggaggaagga atgagagctg 2100 tcgactgtca gtggtagaag tagccccttc caaagtgaca gctgatgacc agagaagcag 2160 ctctttgagt aatactcccc atgcatcaga agaatcttca atggatgagg aacagtcaaa 2220 ggcaatttca gaactggtca gcccagacat cttcatgcag tctcactcgg aaaatgcaat 2280 ttcagtcaaa gaaattgtca ctgaaattga gtccatcagt caaggagttg ggcagattca 2340 actgaaagga gacatcttac ccaacccatg ccatacacca aagaagaaca gcatccatga 2400 gctgctcctt gagagggccc agactccaga gaacaaacct ggacatatgg agcaagatga 2460 ggactcctgc acagcccagc ctgaactagc caaagactca gggatgtgca acccagaagg 2520 ctgcctaacc acacactcat ctatagcaga cttggaagaa ggggaaccag ctgaggggga 2580 acaagagctc cagggctcag ggatgcaccc aggtgccaag tggtaccctg ggtctgtgag 2640 gcgagccacc ttggagttcg aagagcgctt acggcaggag caagagcatc atggtgctgc 2700 cccaacatgt acctcattgt ccactcgtaa gaattcaaag aatgattctt ctgtggcaga 2760 cctagcacca aaagggaaaa gtgatgaagc ccccccagaa cattcatttg tcctcaagga 2820 accagaaatg agcaaaggca aagggaaata cagtgggtct gaggctggct cactgtccca 2880 ttctgagcag aatgccactg ttccagctcc cagggtgctg gagtttgacc acttgccaga 2940 tcctcaggag ggcccagggt cagatactgg aacacagcag gaaggagtcc tgaaggatct 3000 gaggactgtg attccatacc aggagtctga aacacaagca gtccctcttc cccttcccaa 3060 gagggtagaa atcattgaat atacccacat agttacatca cccaatcaca ctgggccagg 3120 gagtgaaata gccaccagtg agaagagcgg agagcaaggg ctgaggaaag tgaacatgga 3180 aaaatctgtc actgtgctct gcacactgga tgaaaatcta aacaggactc tggaccccaa 3240 ccaggtttct ctgcaccccc aagtgctacc tctgcctcat tcttcctccc ctgagcacaa 3300 cagacccact gaccatccaa cctccatcct gagtagccct gaagacagag gcagcagcct 3360 gtccacagcc ctggagacag cagcaccttt tgtcagtcat acaacccatt tactgtctgc 3420 cagtttggat tacctgcatc cccagactat ggttcacctg gagggcttca cagagcagag 3480 cagcactaca gatgagccct ctgcagaaca ggttagctgg gaagaaagtc aggagagccc 3540 tctctccagt ggcagtgagg tgccatataa ggactcccag ctaagtagcg cagacctaag 3600 tttaattagc aaacttggtg acaacactgg ggagttacag gagaaaatgg acccattgcc 3660 tgtagcctgt cgactcccac atagctctag tagtgaaaac ataaagagtc tcagccacag 3720 ccccggtgtg gtgaaggagc gtgctaaaga aatcgagtct cgagtggttt tccaggcagg 3780 gctcaccaaa ccatcccaaa tgaggcgctc agcttctctc gccaaattag gttacttgga 3840 cctctgtaaa gactgcttac cagagaggga gcctgcctcc tgtgaatccc ctcatctcaa 3900 actgcttcag cctttcctca gaacagactc aggcatgcac gcgatggagg accaagagtc 3960 cctagaaaac ccaggtgccc cccacaaccc agagcccacc aagtcttttg tagaacaact 4020 cacaacaaca gagtgtattg tgcagagcaa gccagtggag aggccccttg tgcagtatgc 4080 caaagaattt ggttctagtc agcagtattt gctccccagg gcaggacttg aattgactag 4140 ttctgaagga ggccttcccg tgctacagac ccagggactg cagtgtgcat gcccagctcc 4200 agggctggcc gtggcacccc gtcagcaaca cggcagaact caccccctta ggagactgaa 4260 aaaggcaaat gacaaaaaac ggacaaccaa ccccttctat aataccatgt gattctgagc 4320 ctacacatgt gactttctag aagaaatgtt tgtaaaaggg gcaggtgtaa tatgtaagga 4380 acatgcactt tattggttaa ttttataata ttttggtcat tttactgttt ctggtgcatg 4440 cagggtttgg gtgtttttca gtgtgtatgt gtgtgtatat gtaaggggaa agagagattg 4500 atctggatgg caagaccgtt tatcattttt tatttaaaaa aatcaaacct caaaaaagtc 4560 attttcagag aacaccttta tcaaaggcaa attgctgttt ttcagtcagc tgccacctgc 4620 ttctcatttt gccctctgag aaaaggcatg gtttcttaat tgagggaagg aagcagattc 4680 ggaggggtgg agataaagct ggggattgga gatgttcccc tgcctttgtg atgatggttt 4740 ggtttccaga cctgaggcat cgaatgggct aaaggtcagc cagaagtcag agggctctca 4800 gccttcatcc agccgcagcc ctttagagtt cctgaaggag gcaggttccg ctttgcttta 4860 aaagagggtc ttccggtgtt ccagagtgta tcgttacagt aagacatgat aatggccggc 4920 tctgcaaatt tatcatatag tttttttccc aagaaaatta tttttgaaat taaaacagga 4980 ccccaaatga aatccaagtg gtcttctgta gaggaaagca tgataagagg aggaagacat 5040 aaagttgggg gtggagaggc tgctgcccag aaactgctgg gttggtggga tccacacaga 5100 tgggcatctt ggctctccct gccagaaaaa tgtgctctgc agtgtcctcc caactgaaaa 5160 caacagtgac atgtttgaaa agcagcaatc gaaagtcagt gtgttcttgt aaaatgaata 5220 tgtatgtagg gttttaaccc ttccattact tgaataattc tttgggcctt ctgagtttaa 5280 tggccatatt ttcttccagt ttattttcct tccccatgct gttgtcccca tgctgcctat 5340 ttttttaaat ttcatagatt atatttgaat tgttacatat gtttaacatc cattgaatgc 5400 aacgttttat ttttggtatt atcactgtta acactttttt ttccttttcc tggaaggttt 5460 gtcatttctc taaagtttgt acacagtatt tatgtacata atattgtcac tgtcttagtg 5520 tcttgttcat gttgtagggt aattttgatt tattcttttt aagaaggagt agagttgcaa 5580 ctggaaaaca cagacaccag aaatgaaagt gttgggtgtt gataggaatc tgtacaatat 5640 gttgatggtg gctgtagttg tttaaatgga gacttccaat caccagctcc tgccaaatta 5700 tgcattagta actttttcct cagagacacc cctaaaggct cccattaggt cacagcgtga 5760 ctgaaagctg atttctctgt gagactgaaa tcccagaaca ttgtttgcca gtatctcaac 5820 cacagccagg aagtatatgt gagttgccca gagtggaagc tcctagtaga ggctgaaggc 5880 cacaggggag gcctcagcca ggggcaagtg cccacagtga ctccatttag gatgctgtcg 5940 ttttgctact gttgtggaga tccttaacgc agcagcgcct gtcataaaca agcctcttgt 6000 agcttcttac agaaaacaga tttagtctag catgaaacac ctctgcatct cattgaaact 6060 gaagaggctt gcagatttgc tttcgttgat gtccacgtta ctgaggattg actgagtata 6120 gactggagac aggtttttgg cttatcacag cactgaggaa aatacaaatg cacagactgt 6180 cagcatgatg tcagaggcca gagtttggtg ggggcagatg gcagggcgac ccaaaagatg 6240 cagaaaaggt agactggggc cactgggtct taagaggagc tgtgaagttg tgtggaagcc 6300 aaggctgggt ctgacatccc tgccaggaag caggttggac agaaaccact tgctaaaagc 6360 gtctctatgg tgcagtgatt atgtgtaccc tgtgctgttg ctcagtagtc tccttgaatg 6420 ttcaagtatc tcatccactc agttttgtga ttcctggata tttgtgtgtt gtaaagtgtt 6480 ttgttaggtg gtatgaacca atgtgaggag gcttgagaca gggttatgga tttccagagc 6540 tcttccatgt agaataccct gccttcttga agcagttcca ccaccaatat gatggggaag 6600 ggcaggaact tatggcaggg tggggagagg gtttgcctgg aagttaagag agtggcatcc 6660 acttgtggta accccttacg atgatgacat cccacacact aagaggtaca agcaggacca 6720 aagttttgga ctgttccctc ttctcccctc cactgtgttt aatgttcact cactgcatta 6780 aataacaca aaaacccact aatactgtgg ggaaaaaaaa ttttcaagag 6840 cagaggaaag tctttctgcc tttttataat tacttttttt atcatttaat ttacctgcct 6900 aaataaacat cttctacaga atatctgtca ttcaaccatg ccaaggagtt tgtgccagcc 6960 ttttcagact cccagaattg ggtgttcctg ggttatttac atagctgagc agtgtccagg 7020 ggaggtgcgc agtgaactgt caaggacttt ccagactgtc ttctcttcag acttttataa 7080 tctccagtgg catctttccc ttttcttttg ttcatgacct gacctgaagc agcagatttg 7140 atagactggc aaagatgaat aggaaaaact ttgactcttg cccagtgcct gcctgcctct 7200 ctctctctcc tctctctctc tctcttttta aaccaccata gactctcact tattttggag 7260 gagtgtatgt gcatgtgtac acatatgtac atatataaaa acagttgatg ttttggtgta 7320 tggggtaaaa gccccaggag catacagaac ttgagctgaa cctggtcagt agaaagggaa 7380 accccaaccc tttcttgatt tttggagaca cccaggacta atggatactg tagtagacat 7440 gtagtactat agtaccgtaa tattcatctc tcctcatttt agttgccttt cagattctaa 7500 atgtttggga tcattcctat catcttagtc tcttcaggat ctttagtatt ttcctggttc 7560 tgaggaggct tgagacaggg ttatggattt ccttgttctg tgtctttatc cctactgata 7620 gttcctcttt ctcattttgc aaactaccca gagctccaag gacagcctga agatctcagt 7680 gcctcaggct ctgaggtact ctgctcacag gccccagaca gatgctgttg ggtaaactca 7740 aagcttccta tgagaagctt ctgagatgta gcaggtcaca gaagtgttca cctgtttcat 7800 ctgaggattt cagttctgaa gtgatctagg catgtttggt aaaaatgttt ttgtgagagt 7860 tcttttttta agaaagcatt atgcaaaaag tcacttttaa gggcatttaa aaatttttaa 7920 gtaaagccat tttttggctt ttttggacta tttgtggata ctttgtttac attttgaata 7980 ttaaaatgtg catcatcttg tcggccatgc agtcctgcag gcatcagtgc cctggctgtc 8040 ctgtgagtcc tcatgcagag cagggccatc atggtcagcc cttgtgagta agtgggtata 8100 cgctgaagct gacttccgtc tgtgtcctgc cctcccatcc agcactctct atggaaatag 8160 ttgtcatttc ctcagtgatg gtgtgtctta tagtgatggt tgtaatggtg aatggctagt 8220 gtcattttgt ttaattttgt tttgcttttt gatggtggat aagatgaaat tttagctgtt 8280 tcagcatcaa tccaacttaa aagcatcttg gactttgttt tcccttccaa actaaaagat 8340 caaggcatgt attagacaca agcatatttg ctgcctcaac tcctctgaca cccatattag 8400 gaaaaggcct gccaccaaag caggaagctg cacactccta acccttctcc cagggtgtgg 8460 ggtcccttga cgtcatgaag agctattgca aggtgcttct gtacttttcc agcctggaaa 8520 tggagggtga ctggccctgg ctcctgctat gagaagataa ccagcctcat tttctcagtg 8580 ccccagaggt ctaggatagg atttctaaac tggaatcatc cttaatcacc ttgaagatcc 8640 cttaagaggc atttgactgg tgctgccgtc tgtgtcctca aagcaatgct ggtggcagcg 8700 tcctgtgtac acatgcagag ctaataccca aactaaaaac tgggtaactg gccctgaagt 8760 gcttcccaat cagtaagccc acagggaaat gtttgatttt tatgttctgt tggattttgg 8820 tttgcttggc atatctaaag gtgcctttac ttttcttttt tttttttttt ctttctgctt 8880 tgttttgtag gacttgttct aacatggaaa acaagtccag aagactctcc tctgactgtt 8940 acctttgccc caagccaccc caaactttta tgctcatgtt ttattaaagc aggtgctccc 9000 tggaatctct gggacatttt tgaggcattt gaagcagaat atagagtggt ctcatctcct 9060 tccttaatct tcctggtggt tgggatgttc cacttgtatc atagattttt ttattacaga 9120 tatgctccac tgtttttaaa tgtgaacttg tgcgcaaatg tgcagattca atgttcttgt 9180 tacagattga ataaattttt attttgaaga tgaaaaaaaa aaaa 9224 <210> 4 <211> 2620 <212> RNA <213> XRCC3 mRNA <400> 4 ctattggagg agaaggccga gaggagcagg acggcgggaa gaggagtgcg gaacccgcgg 60 gaggatgtgc acagagggcc caggaggagc ctcaggagcc ggactgccgt tggccaaccg 120 agtccccagg gagacactta agggaaatta aactgcagag tgcaagagat gcctcagtca 180 agtcagccaa aaacacgcgg gtcatcccca agccccagag agtgacagag ccccgatgac 240 acggacacct cggctgctgt cacttccctg gttcgggcct cccacaggct ttgaattgaa 300 ggcgagtgcc tcagaatttg catccattgt tctgtctttc ctgggaagtt attcatcctg 360 gtggccagcc caccgacaaa atggatttgg atctactgga cctgaatccc agaattattg 420 ctgcaattaa gaaagccaaa ctgaaatcgg taaaggaggt tttacacttt tctggaccag 480 acttgaagag actgaccaac ctctccagcc ccgaggtctg gcacttgctg agaacggcct 540 ccttacactt gcggggaagc agcatcctta cagcactgca gctgcaccag cagaaggagc 600 ggttccccac gcagcaccag cgcctgagcc tgggctgccc ggtgctggac gcgctgctcc 660 gcggtggcct gcccctggac ggcatcactg agctggccgg acgcagctcg gcagggaaga 720 cccagctggc gctgcagctc tgcctggctg tgcagttccc gcggcagcac ggaggcctgg 780 aggctggagc cgtctacatc tgcacggaag acgccttccc gcacaagcgc ctgcagcagc 840 tcatggccca gcagccgcgg ctgcgcactg acgttccagg agagctgctt cagaagctcc 900 gatttggcag ccagatcttc atcgagcacg tggccgatgt ggacaccttg ttggagtgtg 960 tgaataagaa ggtccccgta ctgctgtctc ggggcatggc tcgcctggtg gtcatcgact 1020 cggtggcagc cccattccgc tgtgaatttg acagccaggc ctccgccccc agggccaggc 1080 atctgcagtc cctgggggcc acgctgcgtg agctgagcag tgccttccag agccctgtgc 1140 tgtgcatcaa ccaggtgaca gaggccatgg aggagcaggg cgcagcacac gggccgctgg 1200 ggttctggga cgaacgtgtt tccccagccc ttggcataac ctgggctaac cagctcctgg 1260 tgagactgct ggctgaccgg ctccgcgagg aagaggctgc cctcggctgc ccagcccgga 1320 ccctgcgggt gctctctgcc ccccacctgc ccccctcctc ctgttcctac acgatcagtg 1380 ccgaaggggt gcgagggaca cctgggaccc agtcccactg acacggtggc ggctgcacaa 1440 cagccctgcc tgagaagccc cgacacacgg ggctcgggcc tttaaaacgc gtctgcctgg 1500 gccgtggcac agctgggagc ctggttcaga cacagctctt ccagggcagc ggctccactt 1560 tctcatccga agatggtggc cacagactga cccccatctg agctgggggg atgttctgcc 1620 tctccctggg tctggggaca ggcccgcttg ctgggtacct ggtccccact gctgagctgg 1680 cccttgggga gaggtgattc tcagggctgg agcctggggt gtcctacagt gactccctgg 1740 gagccgcctg cttcttctct ccacatggaa gcccaactgg ggttgcgtct gaggcctgcc 1800 ccctgggctg gggcctcaga ccccctcagc cttgggaccg tgcccacgag ggtctcccct 1860 cctgcacaca gggcagtcct tactccccca ccactcaggc cacagtgggg ctgcaggcag 1920 gcggctcctc ctcacccacc tctgggtcct tggctcccgg gggccccacc tcggcacaca 1980 ctgtgcccca caaaacttca gtgtggtaca aggtggagaa agcatatccc accaacctcc 2040 agtgtcaggg tccaggagag cctgggggtg gggggactgc cttgtctcta gtagtgtggc 2100 ctgtgccagc accacagccg gtcagaggag cgcaggcagc gcagggctgg cacgtgacag 2160 gctcgtcagc cacctgggaa cacagttctg ggcaaagagg atccgaggtt gagaggaagg 2220 agggtcccgg tgtatcctgg ccctgggggt ctgggcgtcc agctcagccc tggcctggct 2280 gggtggtatt ctggtaggga tatggcagga ctcctggcag ggccacctgc aggaccctgt 2340 cctgcagtcc cacactgtgc agacccagtc ccacactgtg gccaggcctt acatctggct 2400 ggaaagcaga gcctcctggg aacacatctg gctgcacagg ctgaaatatc cacccagcag 2460 gcagagtggc gtggcctccc catgggcaca gtggtgaccc ccttgattcc caccgtacaa 2520 ccccctccac cccccactca gtgcctccac atgctgcctg gcacagacca ggcctttgac 2580 aaataaatgt tcaatggatg caaaaaaaaa aaaaaaaaaa 2620 <210> 5 <211> 7125 <212> RNA <213> SPAG17 mRNA <400> 5 gtggtagcgg ggacgcttag gcagggcctg cgcccagttt agaggccaat gcttctcccg 60 tcctttgcat ggcacccaag aaggagaaag gaggaactgt gaacaccagt tctaagatat 120 gggaaccctc gctcatagct gcacagttca atcagaacga ttggcaggcc tccattgctt 180 ttgtggttgg gaaccagatt gaagatgatc ttctcatcca agcccttacc gtggctgtcc 240 aggtccctca gcgtaaactc ttcagtatgg tgtcgtggca agacattctc cagcagatta 300 atgaaataaa tacacttgtt ggatctgctt catctaaaaa ggcaaaaaaa cctgtaggtg 360 gtaatgctcc tttatattat gaggtgttaa cggcagcaaa agcaattatg gatagtggag 420 agaaattaac cttaccactg atagggaaac tcttgaaatt tcaacttctc cagattaaat 480 ttaaggacca acagcgacgg gaaaatgaaa agaaggtaat agaagacaaa cctaagttag 540 aaaaggataa agggaaagca aaatctccca aggagaaaaa ggctccaagt gccaagcctg 600 ccaaaggaaa gggaaaggat cagcctgagg caaatgcacc agtgaaaaag accacccagt 660 taaagcggag aggagaagac gaccacacca atcgttacat tgacgatgag ccagatgatg 720 gtgcccaaca ttacattata gttgtgggct ttaacaatcc tcagctatta gcaattatgg 780 ctgagcttgg cattcctata accagcgtga ttaaaatatc ttcagagaat tatgaacctc 840 tgcagacaca cctggcagca gttaaccagc agcaggaagt tcttcttcag tcagaagatc 900 tagaagcaga aaaattgaag aaagaaaatg ccataaaaga gcttaaaact ttctggaagt 960 acttggaacc agtcctgaat aatgagaaac ctgaaacaaa tctctttgat gttgctcgac 1020 ttgagtacat ggtcaaagca gctgattttc cttctgactg gtcagatggt gagatgatgc 1080 tgaaattggg cactgatatt tttgaaaata ttgcctgctt gatgtatgac atcctggatt 1140 ggaaaaggca gcaccagcac tatttggaaa gcatgcagct tattaatgtt ccacaagtgg 1200 ttaatgagaa acctgtatta gaagccatgc caacttcaga ggctccacaa cctgctgtac 1260 cagctcctgg aaagaagaaa gcacagtatg aagaaccgca agctccacca ccagtgactt 1320 cagtcatcac aactgaagta gacatgagat attacaatta tttgctgaat ccaattcgag 1380 aggaattcat ttctgtgccc ctgatactgc attgtatgct ggaacaggtt gttgcaactg 1440 aagaagatct cgtcccaccc agtctgcggg agccatcccc cagagcagac gggctagacc 1500 acagaatcgc agctcacatt gtgtcccttc tgccctcact ctgtctctca gagagggaga 1560 aaaagaatct tcatgacata tttttatctg aagaagaaaa tgaaagcaaa gcagtgccca 1620 aaggccccct cctactgaac tatcatgatg cacacgccca caagaagtac gcactacagg 1680 accaaaagaa ttttgatcca gttcaaattg agcaggagat gcagtccaag ttgccactgt 1740 gggaatttct tcaattccct ctacccccac catggaacaa cactaaacgt ctagctacaa 1800 ttcatgagct tatgcacttt tgtacgagtg atgtcttgag ctggaatgaa gtagaacgag 1860 ccttcaaggt gtttactttt gagagcctga agctctctga ggttgatgaa aaagggaaac 1920 tgaaaccttc tgggatgatg tgtgggtcag attctgaaat gttcaacata ccgtgggaca 1980 accctgccag atttgctaaa cagataaggc agcaatatgt catgaaaatg aatactcaag 2040 aggccaagca gaaagcagat attaaaatca aagacagaac actatttgtg gatcagaatt 2100 tgtcaatgtc tgtgcaagat aatgaaagca accgagaacc ttcagatcct agtcagtgtg 2160 atgctaacaa tatgaagcat tctgacttga ataatctcaa actctcagtc cctgataata 2220 gacagctgtt agagcaggag agcatcatga aggctcagcc ccaacatgag tctctggagc 2280 agaccacaaa caatgagatc aaagatgatg cagtcacaaa ggctgattct catgaaaaga 2340 aacccaagaa gatgatggtg gaagcagatt tagaggacat aaagaaaaca cagcagcgca 2400 gtctaatgga ctggagtttt actgaacatt ttaaaccgaa agtactgctt caggtccttc 2460 aagaagccca taagcaatat aggtgtgttg attcttacta ccacacccaa gacaactctt 2520 tacttttagt ctttcacaat ccaatgaata gacaacgttt gcattgtgaa tattggaaca 2580 ttgctctcca ctccaatgtt ggattcagga attatttgga acttgttgca aaatctattc 2640 aagattggat tacaaaagaa gaagctatat atcaggaatc taaaatgaat gagaaaatca 2700 tcaggaccag agctgagctg gaattgaaat cttctgctaa tgccaaactt acttctgcta 2760 gcaaaatttt ttccattaaa gaatctaaaa gtaacaaagg aatcagcaaa acagagatat 2820 cagatcaaga aaaagaaaaa gagaaggaaa agattccttt cattttagaa ggctctctca 2880 aggcatggaa agaagagcaa catcgattag cagaagagga gcgcttaagg gaagaaaaga 2940 aagcagagaa gaagggtaaa gaagctggta aaaagaaagg caaggataac gcagagaaag 3000 aggatagtag gtctttgaag aaaaaatcac cttacaagga gaaatctaaa gaagaacaag 3060 tcaagatcca agaagtaaca gaagagtccc cccaccaacc agaacctaag ataacttacc 3120 cgtttcacgg atacaatatg ggaaatatac ccactcaaat ctcagggtca aattactacc 3180 tgtatccttc tgatgggggg cagattgaag tggaaaagac aatgtttgaa aaaggcccaa 3240 cttttatcaa agtgagagtg gtaaaggaca accacaattt tatgattcat ttaaatgacc 3300 ctaaggaaat tgtgaaaaag gaagagaaag gggattatta tttagaagag gaagaagaag 3360 gagatgagga acaaagtctt gaaacggaag tatcagatgc aaagaataaa gctttcagca 3420 agtttggatc tttttctgcc accttagaaa atggaatctg cctctcgata agttactatg 3480 gatcaaatgg aatggcacca gaagataagg atcctgattt agaaacaata ttgaatatcc 3540 cttcagcact cactccaaca gtggttcctg ttatagtgac cgttcctcaa agcaaagcta 3600 aagggaaaat aaaaggcaaa gaaaaaccca aagaatccct taaagaagaa gaacacccaa 3660 aagaagaaga gaaaaaggaa gaagaagtag aaccagaacc tgttttacaa gagactttgg 3720 atgttcccac cttccagagc ctaaatgtgt cttgccccag tgggctcctg ttgactttca 3780 ttggacaaga atctacaggt caatatgtta tagatgagga acccacctgg gacatcatgg 3840 tccgtcagag ctacccccag agggtgaagc actatgagtt ctataaaacg gtgatgccac 3900 ccgcagagca ggaggcttca agggttatca ccagtcaagg cactgttgtc aaatatatgt 3960 tggatggatc cacacagatt ctctttgcag atggtgctgt gagcaggagt cccaattcag 4020 gtcttatttg tcctccttct gaaatgccag caacgcctca cagtggagat ttgatggact 4080 ctatttctca gcagaaatca gaaacgatac catctgagat taccaacaca aagaaaggaa 4140 aaagtcacaa aagtcagtca tcaatggccc ataagggtga aatccatgac cctcctccag 4200 aggcagttca aactgtaact cctgtggagg ttcacatagg cacctggttt acaaccacac 4260 ctgaaggaaa tcggatcggc accaaaggat tagaaagaat agcagacttg accccattgt 4320 tatcctttca ggccacagat cctgtcaatg gaacggttat gacaactcga gaagacaaag 4380 ttgtcatagt tgaaaggaaa gatggtactc ggatagtgga tcatgctgat ggtaccagaa 4440 tcacaacctt ttatcaagtt tatgaagatc aaattattct gccagatgat caagaaacaa 4500 ccgagggtcc tcggactgtc accaggcagg tgaagtgtat gcgggtagaa agctcacgct 4560 atgccactgt tatcgccaac tgtgaggaca gtagctgctg tgccaccttt ggagatggaa 4620 caactattat tgcaaagcca cagggaacat accaggtgtt acctccaaac acaggctctc 4680 tttatattga caaggattgt tcagctgtgt actgccatga gtcaagcagt aatatatact 4740 atccttttca aaagcgtgag cagctgcgag ctggcaggta catcatgagg catacttcag 4800 aggttatctg tgaggttctg gatcctgagg gaaacacttt tcaggtcatg gctgatggta 4860 gcatatcaac tatattacct gaaaaaaaat tggaagatga tttaaatgag aaaactgagg 4920 gctatgatag tctgtcctct atgcaccttg aaaagaatca tcagcaaatc tatggtgaac 4980 atgtccccag gttttttgtt atgtatgctg atggatcagg aatggaactt cttcgagaca 5040 gtgacataga agaatatcta tctttggcat ataaagaatc aaatactgtt gttctccaag 5100 agccagtgca ggaacagcca ggcaccctaa ccatcacagt ccttcgccct ttccatgaag 5160 catcaccatg gcaagtaaaa aaggaagata caattgtccc tcctaatctc cggtcaaggt 5220 catgggaaac atttccctca gttgagaaaa aaactccagg acctccgttt ggtactcaga 5280 tttggaaagg cctttgcatt gagtccaaac agctagtgag tgccccgggt gccatactca 5340 agagccccag tgtgctacag atgcgccaat tcattcagca tgaggtcata aagaatgagg 5400 tgaaactgag gctgcaggtt tcccttaagg attacataaa ctatattcta aagaaagaag 5460 atgagctgca ggaaatgatg gttaaagatt ccagaactga ggaggagaga ggcaatgctg 5520 ctgatctcct caagctggtt atgtctttcc ctaaaatgga ggaaactaca aaaagtcatg 5580 ttactgaagt tgcagctcac ctaactgatt tattcaagca gtctttggct acgcctccaa 5640 aatgcccacc agacacattt ggtaaagatt tctttgaaaa gacatggaga cacacagcat 5700 cctcaaaacg ctggaaagaa aagatagaca aaacgaggaa ggaaattgag acaacacaga 5760 attacctaat ggatattaag aaccgcataa taccaccctt ttttaaatct gaattgaacc 5820 agttatatca gtctcagtat aatcacctgg acagtctttc caaaaaactg ccttctttta 5880 caaagaaaaa tgaagatgca aacgaaacag ctgttcaaga tacatctgat cttaatctag 5940 atttcaagcc acataaggtt tcagaacaga aatcctcaag tgtgcctagt cttccaaaac 6000 cagagatttc tgcagataag aaggatttca ctgctcagaa ccaaactgaa aatttaacaa 6060 aatctcctga agaagcagaa tcttatgagc ccgtgaaaat tccaacccag tccttgctgc 6120 aggatgttgc gggacaaaca agaaaagaaa aagtgaagtt gcctcattat ttgctgagtt 6180 ccaagcctaa gtctcaacct cttgcaaagg tgcaagattc tgttggagga aaagtgaaca 6240 catcctctgt tgcatctgct gccattaata atgcaaagtc atcccttttt gggttccatc 6300 ttctcccatc atcagtcaag tttggagtgc ttaaggaagg acatacctat gccacagttg 6360 taaagctcaa gaatgttgga gtggacttct gcaggtttaa agtaaagcag cccccaccca 6420 gcacaggact gaaagtgact tacaaacctg gacctgtggc agctggtatg cagacagaac 6480 tgaatataga gttatttgcc acagctgttg gagaggatgg ggccaaggga tcagcacaca 6540 tctctcacaa tatcgagatt atgacagagc atgaggttct gttcctacct gtggaagcaa 6600 ctgttttaac aagcagcaat tatgataaac gaccaaaaga ctttccccag ggaaaagaaa 6660 atccaatggt ccagagaact tctacaattt attcctccac acttggagtc ttcatgtctc 6720 gtaaagtttc tccacattag tttcttctcg gtacaactca atagcctcca taatcctctc 6780 agcctacaga ggatgagaaa ggaaagaagt catcacaaca tactccatca tcccaggaca 6840 ctgaaactgg aagaactgac cagaaatttg ccaaatgaaa tagcttcaat ctgtttaata 6900 aagacgtgcg aatagagtgc caaaaagcat ttaaagacat ttttggtttt cttatttttt 6960 aatgtacagg gaagagactg agtgtcatgg actcaggtgg gatgatatct agacactctg 7020 aatagggcag gtcccaggaa cacctgaaag gagcacatat tgatcaaaga gattcaggac 7080 tactcccatc tttggttaca agagaaggaa acaggttata atccc 7125 <210> 6 <211> 4138 <212> RNA <213> PLEKHM2 mRNA <400> 6 gcctccttcc ccgccggccg cgctccggag cctccgggcc gcggtggagc gagggcccag 60 gcgaggcgag ggccgggcgg cgggcgccgg gccccgcggc cggcacgacg gagcccccgt 120 acggccggcg gcagcggttg gcggcggccc ccggcccccg gcgcgggaag cggcggcggg 180 gcggcggcgg cggtggcggt ggcggtggcg gcgacggtgg cagcgccatg gagccggggg 240 aggtgaagga ccggatcctg gagaacatct cgctgtcggt gaagaagttg cagagctatt 300 ttgctgcatg tgaggatgag atccctgcca tccggaacca tgacaaggtc ctacagcgtc 360 tgtgtgagca cctggaccac gccctgctgt acggactgca agacctctcc tctggctact 420 gggtgctcgt ggtgcatttt actcggagag aggccatcaa gcagatcgag gtgctgcagc 480 acgtggccac caacctgggg cgcagccgtg cctggctgta cctggccctc aacgagaact 540 ccttggagag ctacctgcgg ttgttccagg agaacctggg cctgctgcat aagtactacg 600 tcaagaatgc cctggtctgc agccacgatc acctgacgct cttcctgacc ttggtgtccg 660 ggctagagtt cattcgtttc gagctggatc tggatgcccc ttacctagac ctggccccct 720 acatgcccga ctactacaaa cctcagtacc tgctggactt tgaagaccgc cttcccagct 780 cggtccacgg ctcagacagt ctgtccctca actctttcaa ctccgtcacc tccaccaacc 840 tggagtggga tgacagtgcg attgccccat ctagtgagga ttatgatttt ggagatgtgt 900 ttccagcagt gccgtctgta cccagcacag actgggaaga tggagacctc acagacacgg 960 tcagtggtcc ccgctccaca gcctccgacc tgaccagcag caaggcctcc accaggagcc 1020 ccacccagcg ccagaacccc ttcaacgagg agccggcaga gactgtgtcc tcctctgaca 1080 ccacccccgt gcacaccacc tctcaggaga aggaggaggc ccaggccctg gacccgccgg 1140 atgcctgcac ggagctcgag gtcatcaggg tcaccaagaa gaagaaaatt ggcaagaaga 1200 aaaagagcag atcagatgag gaggcaagtc cactccaccc cgcctgcagc cagaagaaat 1260 gtgccaagca gggggacggt gacagccgca acggcagccc aagccttggg cgggactcgc 1320 cagacactat gcttgcctcc ccccaggagg agggagaggg gccgagcagc accacggaga 1380 gcagcgagcg ctccgagccg ggcctgctga tccctgagat gaaggacacc tccatggagc 1440 gcttggggca gcccctgagc aaggttatcg accagctcaa cgggcagctg gaccccagca 1500 cctggtgctc ccgtgctgag cccccagacc agtcctttcg gaccggctct cccggggatg 1560 ccccggagag gccgccgctt tgcgacttta gtgaggggct ttcagcccca atggacttct 1620 accgctttac cgtcgagagt ccaagcactg ttacatcagg tggcggccac catgaccctg 1680 cagggcttgg ccaaccgctg catgttccta gtagccctga ggctgctggc caagaagaag 1740 agggaggagg aggagaggga cagacgcctc ggcccctaga ggataccacg agggaggctc 1800 aggagctgga ggcccagctg tccctggtca gggaggggcc tgtgtctgag ccagagcctg 1860 ggacccagga ggttctctgc cagctcaagc gagaccagcc cagcccgtgt ctgagtagcg 1920 ctgaggattc tggggtggat gagggacagg ggagcccttc ggagatggtc cattcctcgg 1980 agttcagagt agacaacaat cacctgctcc tgctcatgat ccacgtgttc cgagaaaacg 2040 aagagcagct gttcaaaatg atccggatga gcaccgggca catggagggc aacctgcagc 2100 tgctgtacgt gctgctcaca gactgctatg tctacctgct ccggaaaggg gccacagaga 2160 agccatacct ggtggaagag gccgtttctt acaatgaact tgactatgtg tcggttggcc 2220 ttgaccagca gacggtgaag ctggtgtgca ccaaccgcag gaagcagttt ctgctggaca 2280 cggctgatgt ggcgctggct gagttctttt tggcttcttt gaagtcagcc atgatcaaag 2340 gctgtcgaga acctccctac cccagcatcc tgacggatgc caccatggag aagctggcac 2400 tggccaaatt tgtggcccaa gaatcgaagt gtgaggcatc tgctgtcacc gtgcgcttct 2460 acggccttgt gcactgggag gaccccacag acgagtccct gggccccacg ccctgccact 2520 gctcaccccc cgagggcacc atcaccaaag aaggcatgct gcactacaag gcgggcacct 2580 cctacctggg caaggaacac tggaagacgt gcttcgtggt gctcagcaac gggatcctct 2640 accagtaccc ggaccgcacc gacgtcatcc ctctgctctc ggtgaacatg gggggggagc 2700 agtgcggtgg ctgccggaga gccaacacca cggatcggcc ccacgccttc caggtcattc 2760 tctccgaccg gccctgcctg gagctaagtg ccgagagcga ggccgagatg gccgagtgga 2820 tgcagcatct ctgccaggct gtgtccaaag gggtcatccc ccagggcgta gctcccagcc 2880 cctgcatacc ctgctgcctg gtcctcacgg atgaccgcct ctttacgtgc catgaggatt 2940 gccagaccag cttcttccgc tctttgggca cagccaagct gggcgacatc agcgccgtct 3000 ccaccgagcc gggcaaggag tactgcgtct tggagttctc ccaggacagc cagcagctcc 3060 tcccgccctg ggtcatctac ctgagctgca cttctgaact ggaccgattg ctgtctgcac 3120 tgaactctgg gtggaaaacc atctatcagg tggacctccc ccacacggcg atccaggaag 3180 cctccaacaa gaagaaattc gaggatgcct tgagcctcat ccacagcgcc tggcagcgga 3240 gcgacagtct ctgccgcggc cgagcctccc gagacccctg gtgctgaggc agagctggtt 3300 ggcgtccctg gtgggcagga aaggaaggca cgccagccgg caggcacact gtcacggctg 3360 ttgtcatgct gtcgggagcc tacagtccac ccctgccctg ggcggcagaa ccaccgagtg 3420 tggcttaaga cagggtccct ccactccagg gatccagatc aggtgcccgg cacccctggg 3480 catcctgccc gacaggtagc gaatggaggt cgctgggggc agagggtccg agccctgtgg 3540 gctctgcgga tgcacgccct cctcccgggc ctccgcctca gtctgcagaa tttctgccga 3600 gtggcaccga gaacaccatc catctaagga cgaacaaaag aaccaggagg gcgggacccc 3660 cctcttcctc tcctgggttg ggggctgggg ccctgagtgc ccagccatcc ttgttcgtgt 3720 ttgaacactc tcctggccac gtggggaagc gggaacacgg ggtgtctgcg catgtttcct 3780 cctcctagct ccatcactgc gcacacagct gcctgcctcg ccagatgcag gggggcgggc 3840 agccctccct ggctgccagg aggctctgca tgcccacagt cctgccctgc ctgtcccctc 3900 aacccggcag tgcctgtagc accgaggagc aaagggggtg gatggggggc ttggagaagg 3960 gcggagccca ccagcctggc atccatgttg acatcttctg actgtcccct gcttggctgg 4020 agccaggccc ttccctagag tttcgtcaag agcctcctgg ggaaggggtc aggtggtttg 4080 ggttttgttt tttaaaataa aatagacatg ttatattgcc aaaaaaaaaaaaaaaaa 4138 <210> 7 <211> 1314 <212> RNA <213> CLEC4C mRNA <400> 7 cagtgattct cgtgcctcag cctcctgagt agccgaaatt acagacgtgt gccaccatgc 60 ttggctaatt ttttggattt ttagtagaga tggggtttca ctatgttggc caggctagtc 120 ttgaactcct ggcctgaagc aatccgccca cctcagcctc ccaaagtgct gagattatag 180 gcacgagcca ctacacctgg ccacaaaatt ctttaaagaa gccaatccca tcctccctca 240 agagccaagg ggccacctca ccctcttgtt acagcagatc ctgcctccca cagtcaccct 300 gctcccaagt gcaacctctg tctgaccctg catggtgtgc ggtgccctcc tgcctcaggc 360 cgcgaagaag gatctaaggg cttggcttgt ttgaaagaac cacaccccga aagtaacatc 420 tttggagaaa gtgatacaag agcttctgca cccacctgat agaggaagtc caaagggtgt 480 gcgcacacac aatggtgcct gaagaagagc ctcaagaccg agagaaagga ctctggtggt 540 tccagttgaa ggtctggtcc atggcagtcg tatccatctt gctcctcagt gtctgtttca 600 ctgtgagttc tgtggtgcct cacaatttta tgtatagcaa aactgtcaag aggctgtcca 660 agttacgaga gtatcaacag tatcatccaa gcctgacctg cgtcatggaa ggaaaggaca 720 tagaagattg gagctgctgc ccaacccctt ggacttcatt tcagtctagt tgctacttta 780 tttctactgg gatgcaatct tggactaaga gtcaaaagaa ctgttctgtg atgggggctg 840 atctggtggt gatcaacacc agggaagaac aggatttcat cattcagaat ctgaaaagaa 900 attcttctta ttttctgggg ctgtcagatc cagggggtcg gcgacattgg caatgggttg 960 accagacacc atacaatgaa aatgtcacat tctggcactc aggtgaaccc aataaccttg 1020 atgagcgttg tgcgataata aatttccgtt cttcagaaga atggggctgg aatgacattc 1080 actgtcatgt acctcagaag tcaatttgca agatgaagaa gatctacata taaatgaaat 1140 attctccctg gaaatgtgtt tgggttggca tccaccgttg tagaaagcta aattgatttt 1200 ttaatttatg tgtaagtttt gtacaaggaa tgcccctaaa atgtttcagc aggctgtcac 1260 ctattacact tatgatataa tccattcaca cattcattta ttcatttatt catt 1314 <210> 8 <211> 15643 <212> RNA <213> FRAS1 mRNA <400> 8 aactttaaaa agctgcttcg gacaaaccag agccaggatt tccactgtcg gggacccggg 60 atcggaaggg tctagcccga gggaaatgct ggaagatccc atcggccagt gaccagcaac 120 tttccggcga gattttgacg cggagaactg tgctctgcct cctcttattc tcccaaagct 180 cacgttggcg tcctgccttg cgggggaact cggcgcgctc tctgcctgag cagcgagtga 240 attgaacccc agcccgctcc ggcgcctccg ggctgatgag tgtcgctctc cgcccgtcca 300 tctctttttc ccggaggtaa aggcccgcgg tcccccacct tcagtgcgcc cgggttccaa 360 gcgccggagc cagcgttttg gcggagccgc ttcttggatg ctgaaggctg ggctcctcca 420 tcgtgggtgc cgaggcggcg atgggtgtcc tcaaagtgtg gctcgggctg gccctagcgt 480 tggcggaatt tgcagtattg cctcatcatt ccgaaggtgc ttgtgtctat caggattcct 540 tgttggcgga tgccacaatt tggaagcccg attcatgcca gagctgccgt tgccatggtg 600 atattgttat ctgcaaacct gctgtttgca gaaaccctca atgtgccttt gagaagggag 660 aagtgcttca aatagctgcc aaccaatgct gtcctgagtg tgttttgagg actccaggat 720 cttgccatca tgaaaagaaa atccatgagc atgggacaga atgggcctct tctccatgta 780 gtgtgtgctc ttgcaatcat ggggaagtcc gatgtacccc ccaaccatgc ccaccgctgt 840 catgtggaca ccaggagctg gcattcatcc ctgaaggaag ctgctgccca gtttgtgtgg 900 gccttgggaa accctgttcc tatgaaggcc atgtgtttca ggatggggag gactggcggc 960 tgagccggtg tgccaaatgt ctgtgtagaa atggggttgc ccagtgcttc acagctcagt 1020 gtcagcctct attttgtaac caggatgaga ctgtagtccg agtccctgga aaatgttgcc 1080 cgcagtgctc tgcaagatcc tgctctgcag ctggccaagt atacgagcat ggtgagcagt 1140 ggagcgaaaa tgcctgcacc acgtgtatat gtgaccgggg tgaggtcagg tgtcacaagc 1200 aggcctgcct gcccctgaga tgcggaaagg gtcagagcag ggctcggcgt catgggcaat 1260 gctgtgagga atgtgtgtct cctgccggga gctgctccta tgatggagtt gtgcggtacc 1320 aggacgaaat gtggaagggc tcggcctgtg agttctgcat gtgtgatcat ggccaagtga 1380 cctgccagac tggagagtgt gccaaagtgg agtgtgcccg ggatgaagaa ttaattcact 1440 tagatggaaa gtgttgtcct gaatgcattt caaggaatgg ttattgtgtt tatgaagaaa 1500 ctggagaatt tatgtcatca aatgctagtg aagttaaacg tattccagag ggagagaagt 1560 gggaagatgg cccttgcaag gtgtgtgagt gccgaggggc tcaggtaact tgctacgagc 1620 cctcttgccc accatgtcca gtgggcacac tggccttaga ggtgaaggga cagtgctgtc 1680 cagactgcac atcagttcat tgccatccag attgtttgac atgctctcag tctccagacc 1740 actgtgacct ctgccaagat cctaccaagt tactgcagaa tggatggtgt gtgcacagct 1800 gtggactggg tttttaccaa gctggcagtc tctgtttagc ctgccagccc cagtgctcca 1860 cgtgtaccag tgggctggag tgctcatcct gccagcctcc cctgctgatg cggcacgggc 1920 agtgtgtgcc tacctgtggg gacggcttct accaagatcg ccattcctgt gcagtctgcc 1980 atgagtcctg tgcaggttgc tggggcccaa cggagaagca ctgcttggcc tgcagagatc 2040 ccctccacgt gctgagagat ggcggctgtg agagcagctg tggaaaaggc ttctacaaca 2100 ggcagggcac ctgtagcgct tgtgaccaat cctgtgacag ttgtggcccc agtagcccca 2160 ggtgtcttac ctgtactgag aagacagtgc tgcatgatgg gaaatgcatg tctgaatgcc 2220 ctggcgggta ctatgctgat gccactggca ggtgcaaagt ttgtcataac tcatgtgcca 2280 gctgctctgg gcccacaccc tctcactgta cagcctgcag cccccccaag gctctgcgtc 2340 aaggccactg tctgccccgc tgtggagagg gtttctactc tgaccatgga gtctgcaaag 2400 cctgtcactc ctcctgcctg gcttgtatgg gtcccgcacc ctctcactgt actgggtgta 2460 agaagccaga ggaaggactg caagtggagc agctgtctga cgtgggcatc ccctctggcg 2520 agtgtctagc ccagtgtaga gcccattttt acttggagag cactggcata tgtgaagctt 2580 gccaccagtc ctgtttcaga tgtgcaggga aaagcccaca taactgcaca gactgtgggc 2640 cttcccatgt gctgttggat gggcagtgcc tctcccagtg cccagatggc tactttcacc 2700 aggaaggtag ttgcacagag tgtcacccaa cctgcaggca gtgtcatggg ccgttggagt 2760 ctgactgcat ctcctgttac cctcacatct ctcttaccaa tggtaactgc aggaccagct 2820 gcagggaaga gcagttcctc aacctcgtgg gatactgtgc tgactgccat cacctgtgcc 2880 agcactgtgc agctgatctc cacaacactg ggagcatctg cctcaggtgc cagaatgccc 2940 actacctgct gctcggggac cactgtgttc ctgactgccc ttcaggatac tatgcagaga 3000 gaggagcttg taaaaaatgc cactcctcct gcagaacctg ccagggcaga ggacctttct 3060 cctgctcctc atgtgacacc aacctcgtgc tgtcccacac tggcacctgc agcaccacct 3120 gcttccctgg gcactatctt gatgacaatc atgtttgcca gccatgcaac acacactgtg 3180 gaagctgtga ttcacaggcc agctgtacct cctgccgaga tccaaacaag gttctgctct 3240 ttggggaatg tcaatacgag agctgcgccc cacagtacta tcttgacttc tccaccaaca 3300 cgtgcaaaga gtgtgattgg agctgcagtg catgcagtgg gcccctgaaa acagactgcc 3360 tgcagtgcat ggatggctat gttctccagg atggggcctg cgtggagcag tgcttgtcat 3420 cattttacca ggactcgggc ctctgcaaga actgtgacag ctactgtctc cagtgccaag 3480 gtccccatga gtgtacccgc tgcaaagggc catttctcct cttggaagcc cagtgtgtcc 3540 aggaatgtgg gaaggggtac tttgcagatc atgcaaagca caaatgcaca gcctgccctc 3600 aggggtgctt gcagtgcagc cacagggacc gttgtcacct ctgtgaccat gggttctttc 3660 tgaagagtgg cctctgtgtt tacaactgtg ttcctggctt ttctgtccac acctctaatg 3720 aaacatgttc tggcaaaata cacaccccta gtcttcatgt gaatggttcc ctgatcctcc 3780 caattggttc aataaagcca ctggattttt ccctcctgaa tgtccaagac caggagggta 3840 gggtcgaaga tctcctattt catgttgtga gcactcccac caatggtcag ctagtgctct 3900 caagaaatgg aaaagaggtt cagctggaca aggctggccg ttttagctgg aaagatgtga 3960 acgagaagaa agtgcgtttt gtgcacagca aagaaaaact caggaaaggt taccttttcc 4020 tgaaaattag tgaccagcag ttcttctctg agccacagct gatcaacata caagcatttt 4080 caacacaggc cccctatgtg ctgagaaatg aagttctcca cattagcaga ggagagaggg 4140 caaccatcac cacccagatg cttgacatcc gagatgatga caacccacag gatgtggtca 4200 ttgaaataat cgatcctcca cttcatggcc aattgcttca gacacttcag tccccggcaa 4260 cccctatcta tcaattccag ctggatgaac tctctagagg ccttctccac tatgctcatg 4320 atggttcaga cagcacatcc gatgttgcag tcttgcaggc caatgatgga cactccttcc 4380 ataatatact gttccaagtg aagaccgtgc ctcagaatga caggggtctt cagcttgtgg 4440 ctaattcgat ggtgtgggtt ccagaagggg ggatgctgca gatcaccaac agaatcttac 4500 aggccgaggc tcctggtgcc agtgctgaag aaatcatcta caagattaca caagactacc 4560 cccagtttgg ggaggtggtc cttctagtga atatgcctgc agacagccct gcagatgaag 4620 ggcagcacct gcctgatggg aggacagcta cccccaccag caccttcacc cagcaggaca 4680 tcaatgaagg catcgtatgg tacaggcact caggagcccc agcccagagc gactccttcc 4740 gcttcgaggt gtccagtgcc tccaatgccc agacccgcct ggagagccac atgttcaaca 4800 tcgcgatctt accacagaca cctgaagcac ctaaagtgtc tctggaagca tctctccata 4860 tgactgctag agaagatggc ctgactgtta ttcagcctca ttccctctcc ttcataaact 4920 ctgagaagcc aagtggaaag attgtctaca acatcactct acctctgcat ccaaatcaag 4980 gtatcatcga gcaccgggac caccctcact ctcctatccg gtatttcacg caagaggata 5040 ttaaccaggg caaagtcatg taccgccctc ccccggcagc accccacctc caggagctca 5100 tggccttctc gttcgctggt ctcccagaat cagtgaaatt ccacttcaca gtttcagatg 5160 gagaacacac aagtccggag atggtcctca ccattcactt acttcccagt gatcagcaac 5220 tgccagtgtt ccaggtcaca gctccacggc tggcggtcag cccaggaggc agcacttctg 5280 taggacttca ggtggtagta agagatgctg agacagcgcc caaagaactc ttctttgagc 5340 ttcggagacc tccacagcat ggtgtgcttc ttaagcatac agctgagttc cgaaggccga 5400 tggccacagg tgacactttc acctatgagg atgttgagaa aaatgctcta cagtatatac 5460 atgatggttc ctctacccgg gaagacagca tggagatctc agtcacagat ggcctcacag 5520 tgacaatgct ggaggtgaga gtagaggtgt ccctgtcaga agaccgaggg cctcgactgg 5580 ctgctggctc ctctctgagc attactgttg ccagtaaaag cacagccata atcactaggt 5640 cacaccttgc ttacgtggat gattcttccc ccgacccaga gatctggatt cagttaaatt 5700 atctgccctc atatggtact ctcttaagaa tctcaggatc tgaggtggaa gagctctcag 5760 aagtttccaa tttcacaatg gaagacatca ataacaagaa aatcagatac tcagctgtgt 5820 ttgaaactga tggtcatctg gttactgata gcttctattt ctctgtctct gacatggacc 5880 acaaccatct ggataatcag atatttacca tcatgatcac tcctgctgaa aatccacctc 5940 cagtcattgc ttttgctgac cttatcacgg ttgatgaggg agggagagca ccactctcat 6000 ttcaccattt ttttgctact gatgatgatg acaacctcca gagagatgcc atcattaaac 6060 taagtgctct gcccaaatat ggctgcattg agaacacagg aacaggtgat cgttttggcc 6120 ctgaaactgc cagtgaccta gaggcatcat ttcctattca agacgtcctg gaaaactaca 6180 tttactactt tcagagtgtt catgaaagca ttgagccaac ccatgatatt tttagttttt 6240 atgtgagtga tggaaccagt cgttcagaaa ttcacagcat caatatcacc attgagagga 6300 agaacgatga gcctcccagg atgaccttgc agcccctcag agtgcagctg agctcgggag 6360 tggtgataag caattcttct ttgagcctgc aagacctgga caccccagat aatgagctca 6420 tttttgtatt gacaaaaaag cctgaccacg gtcatgtact ctggaggcaa actgcttctg 6480 agcctctgga gaatgggaga gttttagtcc agggctcaac cttcacctac caggatatcc 6540 tagctgggct ggttgggtat gtgcctagtg tccctggcat ggtcgtggat gagttccagt 6600 tctccctcac tgatggcctc cacgtggaca cagggaggat gaagatctac acagaactgc 6660 ctgcaagtga cacacctcac ttggctataa accaaggcct acagctctca gcagggtctg 6720 tagcacgcat cacagaacag cacttgaaag tgacagatat tgactcagat gaccatcagg 6780 ttatgtacat catgaaggaa gatcctggtg cagggcgcct gcagatgatg aagcatggca 6840 acctggagca aatttctatt aaaggcccca tccgaagttt cacccaggca gacattagcc 6900 aaggccacgt agaatatagt catggaacag gagaacctgg agggagcttt gcttttaaat 6960 ttgatgtggt tgatggagaa ggcaacagat tgattgacaa gtcattttcc atcagcattc 7020 tagaagacaa atccccacca gtcatcacca ccaataaagg actggtcttg gatgaaaact 7080 cagtgaagaa aatcaccacc ctgcagctgt ctgccactga ccaggacagt gggcctacag 7140 aattgatcta cagaatcacc agacagcccc agctgggcca cttggaacat gcagcatcac 7200 caggtatcca gattagttcc tttactcaag ctgatctgac ttcacgaaat gttcagtatg 7260 tccattctag tgaggctgag aaacattcag atgccttcag ctttacactg tctgatggag 7320 tcagtgaggt gactcagact ttccatatca ctcttcaccc tgtcgatgat tcgctgcccg 7380 tcgtacagaa cttaggaatg cgggtgcagg agggcatgag gaagaccatc acagagtttg 7440 agcttaaggc ggtggatgct gacacagagg ccgagtctgt cacattcacc atcgtgcagc 7500 ctccacgcca tggcaccatc gagcgaacca gcaatgggca gcatttccac ctcacctcca 7560 ccttcaccat gaaagatatc taccagaacc gggtcagcta cagccatgac ggcagtaact 7620 ccctcaagga ccggttcacc ttcactgttt ctgatgggac aaaccccttc tttatcattg 7680 aggaaggggg aaaagagatt atgacagcag cacctcagcc gttccgagta gacatcctcc 7740 cggtagatga tggcacgcct agaattgtca ccaacctggg actccagtgg ctggaataca 7800 tggatggcaa ggcaaccaac ctgatcacca agaaggaact gctgaccatg gcccagaca 7860 ccgaggacgc gcagcttgtc tatgagataa cgacgggccc taagcatggc tttgtggaga 7920 acaagctgca gcctggcaga gctgctgcca ctttcaccca ggaggatgtg aacttggggt 7980 tgattcgtta tgtgttgcac aaggagaaga tccgtgagat gatggatagt tttcagtttc 8040 tggtgaaaga cagtaaaccc aatgtggtca gcgacaatgt cttccatatc cagtggtcac 8100 tcatcagctt taaatatacc agctacaatg tcagtgagaa ggcagggtct gtcagtgtca 8160 cggtgcagag gactgggaac ctgaaccaat atgccatcgt cctgtgtcgc accgagcaag 8220 gcaccgccag ctccagctcc agggtcagct cccaacctgg gcaacaggac tatgtagagt 8280 atgctggcca ggtccagttt gatgagcgag aggacaccaa gtcctgcacc attgtcatca 8340 acgatgatga cgtgtttgaa aatgttgaga gtttcactgt ggagctcagc atgccagctt 8400 atgccctgtt aggggaattc acccaggcga aggtcattat caacgatacc gaggatgaac 8460 ccacattaga gtttgacaag aagatctact gggttaacga gagcgctggt tttctgtttg 8520 cacctattga aagaaaagga gatgcaagca gcattgtatc tgcaatttgc tacacagtcc 8580 ctaagtcagc tatgggaagt agcctctatg ctctagaatc aggctctgat tttaaatcta 8640 ggggatgtc tgccgcgagt cgtgtgatat tcgggcctgg tgtgaccatg tccacctgtg 8700 atgtcatgct tattgatgac agcgagtatg aagaggaaga agagtttgag attgccttgg 8760 cagatgcctc tgacaatgcc cgcattggaa gggtggcgac agccaaggtg ctcattagtg 8820 gtcccaacga tgcctcgact gtgtccctgg gcaacacggc tttcactgtc agtgaggacg 8880 caggcacagt aaagattcca gttatccgcc atggtactga cctctctact ttcgcatctg 8940 tctggtgtgc aacgcggccc tcagacccag cttctgccac accaggagtt gactacgttc 9000 ccagctctcg gaaggtggaa tttgggcctg gtgtcattga acagtattgc accttgacta 9060 tcttggatga cactcagtat ccggtaattg aaggactgga gacatttgtg gttttcctca 9120 gctcagcaca aggagccgaa ctgaccaaac ccttccaggc agtcattgca attaatgaca 9180 cattccaaga tgtgcccagc atgcagtttg ccaaggattt gctcctagtg aaggagaagg 9240 agggtgtcct gcatgtccct atcactcgga gcggagacct gagctatgag tcatcagtga 9300 ggtgctatac tcagagccat tccgctcagg tcatggagga ctttgaggag agacaaaatg 9360 cagactcttc acggattaca tttctcaaag gggacaaagt gaagaactgt acggtctata 9420 tccacgatga ctccatgttt gagccagagg aacagttcag ggtctacctc ggccttcctc 9480 ttggaaacca ctggagtgga gctagaattg gaaagaataa catggccacc atcaccatat 9540 ccaatgatga agatgccccc accattgagt ttgaagaagc tgcataccaa gtccgggaac 9600 ccgcaggccc agatgccatt gcgattctga acatcaaggt gatccgcaga ggggatcaga 9660 acaggacctc caaggttcgc tgcagcacgc gggatggctc tgcccagtct ggtgtggatt 9720 attacccaaa gagccgagtc ttgaagttca gtcccggtgt ggatcatatc ttttttaaag 9780 ttgagatcct gtccaatgaa gaccgggaat ggcatgaatc tttctcacta gtccttggcc 9840 cagatgaccc agtggaagca gttcttgggg atgtgactac tgccacggtg acaattctag 9900 accaggaggc agcagggagc ctcatattgc cagcaccacc cattgtggtc acacttgctg 9960 actatgacca tgtggaagaa gttaccaagg aaggagtcaa gaaatccccc tccccaggct 10020 acccactggt ctgtgtcacc ccctgcgacc ctcatttccc cagatacgct gtcatgaagg 10080 agcgctgcag tgaggccggc atcaaccaga catctgtgca gttcagctgg gaagtggctg 10140 cccccactga tggcaatggg gcccggtctc cctttgaaac catcactgac aacacaccat 10200 tcaccagtgt caaccacatg gtcctggaca gcatttactt cagccggagg ttccatgtgc 10260 gttgtgtggc caaggctgtg gacaaggtgg gccatgtggg gaccccctta aggagcaaca 10320 ttgttaccat tggaacagac agtgctatct gccacacacc agtggtggct gggacatcca 10380 gaggcttcca ggctcagtcc ttcatcgcaa ccttgaaata cctggatgtc aaacataagg 10440 agcatccgaa cagaatccac atttcggtgc agatcccaca ccaggatgga atgctgcccc 10500 ttatctccac catgccgttg cacaacttac attttctact gtctgagtcc atctacagac 10560 accagcacgt ctgctccaat ttagttacca cctatgacct gagaggcatc tcagaggcag 10620 ggttcctgga tgatgtggtc tatgatagca ctgccctggg gcctggctac gatcgcccct 10680 tccagtttga ccccagcgtg cgagagccga agaccatcca gctctacaaa cacctgaacc 10740 tgaagagctg cgtgtggacc tttgatgctt attatgacat gactgagctg attgacgtct 10800 gtgggggctc tgtaaccgct gacttccagg tgagggactc tgcccagtcc ttcttgacag 10860 tgcacgtgcc tctatatgtg tcctacatct atgtgacagc ccccaggggc tgggcctcct 10920 tggagcacca caccgagatg gagttttctt tcttctatga cactgttctc tggagaacag 10980 gaatccagac agacagcgtg ctctctgcaa ggcttcagat aataagaatc tacattcgag 11040 aggatggccg tcttgtcatt gaattcaaga cccatgccaa attcagagga cagtttgtga 11100 tggagcatca cactctccca gaagtgaaat ctttcgtatt gactccagac cacctaggag 11160 gaattgaatt tgacttgcag ctattatgga gcgctcagac ttttgattct ccacatcaac 11220 tctggagagc cacaagctct tataacagga aggactactc aggagagtac accatctacc 11280 tgatcccttg cacagtgcag cccacacagc catgggttga cccaggagag aagcctttgg 11340 cctgcactgc acatgcccca gaaagattcc tgatacccat tgcattccag cagaccaacc 11400 gccctgtgcc agttgtgtat tcacttaaca ctgaatttca gctctgcaat aatgagaagg 11460 tgttcctaat ggatcccaat acatctgata tgtcactagc agaaatggat tacaaaggag 11520 ccttttcaaa aggtcaaatc ctttatggcc gagtactttg gaatccagaa caaaatctta 11580 attctgctta caaactccag ctggagaaag tctatctttg tacgggcaag gatggttatg 11640 tgcctttctt tgatcccacg gggacaatct acaatgaagg gccccagtat ggatgcattc 11700 agccaaacaa acacctaaaa cacagattcc tgctgttgga ccgcaatcag ccagaggtaa 11760 ctgataagta cttccatgat gtgccttttg aggctcactt tgcctctgag ttgcctgatt 11820 tccatgtggt cagtaacatg ccaggtgtgg atggatttac tctaaaagta gatgcactct 11880 ataaggtgga agcaggacac cagtggtatc tccaggtcat ctacatcatt ggccctgaca 11940 ccatctcagg gccccgggtc cagcgctctc tcacagctcc actcagacgc aaccgaaggg 12000 acctggtaga gcccgatggc cagctgatcc ttgatgattc cctcatctat gacaatgaag 12060 gagaccaagt caagaatggc accaatatga agtccctgaa tctggagatg caagagttgg 12120 cggtagctgc gtccctgtg cagactgggg cgtccattgg cagtgccctg gctgcaatca 12180 tgcttctact tctggtgttt ttggtggctt gttttatcaa caggaaatgc cagaaacaga 12240 ggaagaagaa gcccgcagag gacattttgg aagaatatcc tctgaatacc aaggtagaag 12300 tgcccaagag gcacccggac cgggtggaga agaacgtgaa tagacactac tgcactgtgc 12360 ggaacgtcaa catcctgagt gagcctgagg cggcttacac gttcaaaggt gctaaagtca 12420 aaagactgaa tctagaagtc agagttcaca acaatttaca agatggaaca gaagtttaat 12480 ggaggagacc tatgtgtatt tttttctaaa atcattttta taaaatgggg ggaaatactg 12540 gtatttttat aatctcgcag ataaaaaagg gaaaactata gctttgagtg gcagacagca 12600 cacatcacat gcatcaactc acaactgagc tacctcattc agcaaagaac cactgagaac 12660 cccagagtat tacagttatt tccgtagatc cctttaatag tgtcaacaac tgtacacagc 12720 tccttctgta aggctggtct tagaaaacaa gtactttagt atcaggacag gagttgaaca 12780 attaggttag cagatggaga tgagaggact gggtagagta ccatggcaga tctcagagag 12840 aagaagtagg tacgggcctt tggttccctc ccccagcccc agctttctcc tacagggctt 12900 ttcctgagtc cccagacagc agagtatgaa ctgctgacac ccagattcca ttaaaaattc 12960 tgctaatcga cacaacacat atatttgctc atgatttcac ttgacagcgt atgctccttg 13020 gcctctaatt gtactttgct tttccagagc cctttttacc tggggatttc agtgtgctta 13080 agtaaaatcc tctgaaaacc acgggagcct ctgcctcctc agccacagag aactccctcc 13140 tacaaagggg gagactgaaa cccgagttaa ggaggggcct ggcaggcgta tcagagcaca 13200 ttagtgatgc ccttcacccc agggaggtgt ctgttcccaa ctagtttatg tggcactgag 13260 acatccatcc ctgaccaagg atgctgcgaa acaggatcaa tgtactacgg ccttttaatt 13320 caacattgcc ataaatgctt taaagaaaac ccaccacact ttcctcctac tccggtcttt 13380 gcccgttcct gtaacagaca atcccatgtc ctaggtatgg ttttttattc tgttagtgct 13440 tcgggaaagt aagtgattca tttgaataag gcaaattagg agaaagccca ggttggggtg 13500 aaatcagact taacagatac atgctggttc tccttgctgt gtgtgacaca gcagacagag 13560 gcactattcc tggtgcagta tttcagggat ttctctttga ggggttcttt tctggtagct 13620 caggcaatta tttttaccat atcagcacat gacaaggcca tgaacacatg gctctaaaat 13680 aatttagtgt tcaagtatca gcttaactat tttgtgtagg ctacacacag cttgcttttg 13740 tttctcttct gtttctgcct tattggcgga aacataagcg tgcatgccat gttgttttga 13800 attggaggca caatttcatt attcgagagt aaaagacatg tcctcttctg atgcatggca 13860 caccatagtc accaagcaaa taacagagcc ttcacattgt gtaatatttg tatgagaatg 13920 actcaagctc tttgagaaca ttccaaacta gtaacatttc gctactaaaa gctagaaagg 13980 atgaactgtg aaaggttcta ggcagctctg tgagactcca agctccttga aagtaggacc 14040 tttgtgagcc acgcctttca ttcttcaaca gtgccttgca tgtaacaagc actccagaaa 14100 tgtttgttga atgaatgaat ggtgtcatgg gtgaatgatg gggagtaaat ttaggaaggg 14160 gaagtgagag agtatggtgg caatatcaca agggaggaga gaggaaaaca attatcttct 14220 ctacttggat tatgagataa ccttttcttg gaggaaagaa acaccgcttt acaaaggcat 14280 gactctggcg gtggtcctaa ggaagcatga gcagaaaatt cataaaaatg tatcatcagc 14340 aggagatgag actatgaatt ggcatccaga acaggagatt tagagcaaaa tctaatttag 14400 cattctgaga tgagtgtcag gttttcagga gagaatgagt tggggtgagc ccagagtctg 14460 aaactcctga ctggtcaggt gctacttaag accagcttgg gcaattcagg gcagaactcc 14520 tgtatcagcc tcatggacac ccagaattgg tatctcatgg ctggagagct gatcagccag 14580 gcacagaatc tccagaacaa cctagagagt gaatgctaat ttgtagagcg aacttccatt 14640 tggcccatta tttgtaactg tgtaactgct ccaagtgcca gaatgcttac acgttaaagc 14700 agcacctttc catttgccca catattcttc ttgcacaccc cttccattac tgctgaatag 14760 gacattgcat gggaagagta cagaggtggc agaatgaagc tagagtggga aggactaaag 14820 actgagcccc agagtgctcc cagcaaccgc cacgtacaag gtctgaaatg acaagggcaa 14880 gagtgagata ggaaactgtg tgtgaaagga aagcccttgc agtatttctg cctccctttc 14940 tttctgcctt tcaccccact aaatgtatgt tattgaatgc cagtacttct ctagtggatg 15000 cacacttgtt aaatagtgtt aagagatgtg gagatgagat ataccccttt gatgtagaat 15060 tattcatttg gtttgtttca tacttcatta taggaatcaa gtaatttgat gactaatgtg 15120 gattatattt cagtcaaagc tctgctttca atttctctga tttgctcact aatgccttgt 15180 gtgtgtttta ctaacctttt atatcttgcc ttcaagtgag aaggaacaaa caactctcag 15240 tggttactac ttgcttttat atgctggctg tgaaggttaa aagaaagaat ggtctgtacc 15300 attctgcttt gctgcccttt tattgtaccc caggcctcct agaggactcc tgcagattct 15360 attgttgggt gggaaatagt gttggaatgt gtttgcacaga tcttatgata ttcagtctca 15420 gtctgctata ggtatttgtt attcttggat actacacacc tgctcagact gagtaaacat 15480 ttgtggtgct gtcaacctga tttcttgact ctcaaatgat ttttgtattt ccaatatgaa 15540 tttgtgtgtt atgaatttct gatttctcca atagtatatg ccactatata aatttgtatt 15600 aataaatgac agtcttgttg gtttaaaaaa aaaaaaaaaa aaa 15643 <210> 9 <211> 6141 <212> RNA <213> ADGRL3 mRNA <400> 9 gtttcagatt tgggatattg gtgtttctgt tttggagaaa ttattctttt tctttttaat 60 ttgaagaaaa atcatcagtc ttggaataca gaagagaaac tagaaatata cgtattttgt 120 ttcacatttg aacagtcatt cttgaggaat actccatacc tgagtagaca gccatgtggc 180 catcgcagct actaattttc atgatgctct tagctccaat aattcatgct ttcagccgtg 240 ccccaattcc aatggctgtg gtccgcagag agctatcctg tgagagctat cctatagagc 300 ttcgctgtcc aggaacagac gtcatcatga tagaaagtgc caactatggc aggactgatg 360 acaaaatttg tgactctgac cctgctcaga tggagaatat ccgatgttat ctgccagatg 420 cctataagat tatgtctcaa agatgcaata acagaaccca gtgtgcagtg gtggcaggtc 480 ctgatgtttt tccagacccg tgtccaggaa cctataaata ccttgaagtg cagtatgaat 540 gtgtccctta caaagtggaa caaaaagttt ttctttgtcc tggactacta aaaggagtat 600 accagagtga acatttgttt gagtccgacc accaatctgg ggcgtggtgc aaagaccctc 660 tgcaggcatc tgacaagatt tattatatgc cctggactcc ctacagaact gataccctga 720 ctgagtattc atccaaggat gacttcattg ctggaagacc aactacaacc tacaagctcc 780 ctcacagggt ggatggcaca ggatttgtag tgtatgatgg agctttgttc ttcaacaaag 840 agcgcaccag gaacatagta aagtttgatt tgcggactag gataaagagt ggagaggcta 900 tcatagcaaa tgccaattac catgatacct ccccttaccg atggggaggc aaatctgaca 960 tagacctggc agtagatgag aatgggctat gggtaatcta tgcaacagaa caaaacaatg 1020 gtaaaattgt cattagtcaa ttgaaccctt acaccctacg gatcgaagga acatgggata 1080 ctgcatatga taaaaggtca gcttccaatg cctttatgat ttgtggaatt ctgtatgtgg 1140 tcaaatctgt atatgaggat gatgacaatg aggctactgg aaataagatt gactacattt 1200 acaacactga ccaaagcaag gatagtttgg tggatgtacc ctttcctaat tcataccagt 1260 acattgcagc tgtggattac aaccccaggg acaacctact ttatgtatgg aataactatc 1320 acgtcgtgaa atattctttg gattttggac ctctggatag tagatcaggg caggcacatc 1380 atggacaagt ttcatacatt tctccgccaa ttcaccttga ctctgagcta gaaagaccct 1440 ctgttaaaga tatctctacc acaggacctc ttggcatggg aagcactacc accagtacca 1500 cccttcggac cacaactttg agcccaggaa ggagtaccac cccgtcagtg tcaggaagaa 1560 gaaaccggag tactagtacc ccatctccag ctgtcgaggt acttgatgac atgaccacac 1620 accttccatc agcatcgtcc caaatcccag ctctcgaaga gagctgtgag gctgtggaag 1680 cccgagaaat catgtggttt aagactcgtc aaggacagat agcaaagcag ccatgccctg 1740 cggaactat aggtgtatca acttatctat gccttgctcc tgatggaatt tgggatcccc 1800 aaggtccaga tctcagcaac tgttcttctc cttgggtcaa tcatataaca cagaagttga 1860 aatctggtga aacagctgcc aacattgcta gagagctggc tgaacagaca agaaatcact 1920 tgaatgctgg ggacatcacc tactctgtcc gggccatgga ccagctggta ggcctcctag 1980 atgtacagct tcggaacttg accccaggtg gaaaagatag tgctgcccgg agtttgaaca 2040 agcttcagaa aagagagcgc tcttgcagag cctatgtcca ggcaatggtc gagacagtta 2100 acaacctcct tcagccacaa gctttgaatg catggagaga cctgactacg agtgatcagc 2160 tgcgtgcggc caccatgttg cttcatactg tggaggaaag tgcttttgtg ctggctgata 2220 accttttgaa gactgacatt gtcagggaga atacagacaa tattaaattg gaagttgcaa 2280 gactgagcac agaaggaaac ttagaagacc taaaatttcc agaaaacatg ggccatggaa 2340 gcactatcca gctgtctgca aataccttaa agcaaaatgg ccgaaatgga gagatcagag 2400 tggcctttgt cctgtataac aacttgggtc cttatttatc cacggagaat gccagtatga 2460 agttgggaac ggaagctttg tccacaaatc attctgttat tgtcaattcc cctgttatta 2520 cggcagcaat aaacaaagag ttcagtaaca aggtttattt ggctgatcct gtggtattta 2580 ctgttaaaca tatcaagcag tcagaggaaa atttcaaccc taactgttca ttttggagct 2640 actccaagcg tacaatgaca ggttattggt caacacaagg ctgtcggctc ctgacaacaa 2700 ataagacaca tactacatgc tcttgtaacc acctaacaaa ttttgcagta ctgatggcac 2760 atgtggaagt taagcacagt gatgcggtcc atgacctcct tctggatgtg atcacgtggg 2820 ttggaatttt gctgtccctt gtttgtctcc tgatttgcat cttcacattt tgctttttcc 2880 gggggctcca gagtgaccgt aacaccatcc acaagaacct ctgcatcagt ctctttgtag 2940 cagagctgct cttcctgatt gggatcaacc gaactgacca accaattgcc tgtgctgttt 3000 tcgctgccct gttacatttc ttcttcttgg ctgccttcac ctggatgttc ctggaggggg 3060 tgcagcttta tatcatgctg gtggaggttt ttgagagtga acattcacgt aggaaatact 3120 tttatctggt cggctatggg atgcctgcac tcattgtggc tgtgtcagct gcagtagact 3180 acaggagtta tggaacagat aaagtatgtt ggctccgact tgacacctac ttcatttgga 3240 gttttatagg accagcaact ttgataatta tgcttaatgt aatcttcctt gggattgctt 3300 tatataaaat gtttcatcat actgctatac tgaaacctga atcaggctgt cttgataaca 3360 tcaactatga ggataacaga cccttcatca agtcatgggt tataggtgca atagctcttc 3420 tctgcctatt aggattgacc tgggcctttg gactcatgta tattaatgaa agcacagtca 3480 tcatggccta tctcttcacc attttcaatt ctctacaggg aatgtttata tttattttcc 3540 attgtgtcct acagaagaag gtacgaaaag agtatgggaa atgcctgcga acacattgct 3600 gtagtggcaa aagtacagag agttccattg gttcagggaa aacatctggt tctcgaactc 3660 ctggacgcta ctccacaggc tcacagagcc gaatccgtag aatgtggaat gacacggttc 3720 gaaagcagtc agagtcttcc tttattactg gagacataaa cagttcagcg tcactcaaca 3780 gagaggggct tctgaacaat gccagggata caagtgtcat ggatactcta ccactgaatg 3840 gtaaccatgg caatagttac agcattgcca gcggcgaata cctgagcaac tgtgtgcaaa 3900 tcatagaccg tggctataac cataacgaga ccgccctaga gaaaaagatt ctgaaggaac 3960 tcacttccaa ctatatccct tcttacctga acaaccatga gcgctccagt gaacagaaca 4020 ggaatctgat gaacaagctg gtgaataacc ttggcagtgg aagggaagat gatgccattg 4080 tcctggatga tgccacctcg tttaaccacg aggagagttt gggcctggaa ctcattcatg 4140 aggaatctga tgctcctttg ctgcccccaa gagtatactc caccgagaac caccagccac 4200 accattatac cagaaggcgg atcccccaag accacagtga gagctttttc cctttgctaa 4260 ccaacgagca cacagaagat ctccagtcac cccatagaga ctctctctat accagcatgc 4320 cgacactggc tggtgtggcc gccacagaga gtgttaccac cagcacccag accgaacccc 4380 caccggccaa atgtggtgat gccgaagatg tttactacaa aagcatgcca aacctaggct 4440 ccagaaacca cgtccatcag ctgcatactt actaccagct aggtcgcggc agcagtgatg 4500 gatttatagt tcctccaaac aaagatggga cccctcccga gggaagttca aaaggaccgg 4560 ctcatttggt cactagtcta tagaagatga cacagaaatt ggaaccaaca aaactgctaa 4620 caccttgttg actgttctga gttgatataa gcagtggtaa taatgtgtgt actcctaaat 4680 ctttatgctg tcctctaaag acaaacacaa actctcagac tttttttttt ttaatgggat 4740 ttttaggtca gcccagggga gaaagataac tgctaaaatt cccctgtacc ccatcctttc 4800 ttgtcctttc cccttcagat ggagacttca ttatgttaat gaacaagata tgaagaaaat 4860 ggcactcatt gtggccttgt tgaattatgt tgtgtatgtt ttaacatctc tgatgctgtg 4920 ttactaaaat tacaaggacc tgctttttaa aaggccagaa caattgtctg aaattagtaa 4980 caatgctgca tctagattgg agtgctgcac aaacaaacat aagagcaaag caaaactgta 5040 tcacataggg tttttggtca ctcacaacct gaattcacca cagctggaat agctgtggaa 5100 aacaaaataa aacaacaaaa ttaataatga aatggagggg aattctagaa ttatatgcta 5160 aatgcatatt ttatgatttg ctgtattaac tgatgataaa actaatggca gaaaaagaag 5220 ttgagcaatt tctatgtaat gtacagatac tagcattgca catatagtct gctttctgtt 5280 cctccagaat ttgagtcctg ttaatgtagt agaaaaaaaa aaaagaaatt ttctttttct 5340 tttgtgctgg tcttgcaagt ttgtctacca gtaagagagc aaagtttcct tcctttcttc 5400 tctttcttca ttttcttttt ttcttttttg ccttttattc ctttaaaatt tcgcctggca 5460 aaaaataaat aaatggaact atcactttat aagaatcatt ttctagtaat gcaaacaaat 5520 tattttttac aaaaaaacaa aataaataaa attagacttc cttccctcac tatatatctt 5580 tatgcagtca gaatatttcc aacagtgttt tttgcaaatt agagcaggac aaacttttat 5640 gtttacaggg cacgtctgtt gtaatgcaaa gcatatttgg caagcagttc atcaccagga 5700 cactagctat gattctagaa gtcaaaaggt gtctatagaa ctagtggggc ttctgcatgt 5760 gaaaaacggt tttccatagg cattaaagtg ctgaatgctc agtctgatca acaagtgggc 5820 acctgcacta ccacttttta gaggaaattc actccctcgt aagcattgga aggtcaaatt 5880 attttgaagt gattttttta aaaaaaagtc ttctgtttat taacaggaaa atttatttat 5940 ttgacaggat tttgagtaat gtaggaatac aaaaggtaaa ttagcagcac atataatttt 6000 tttttaattt atgatccatt ttgtatggtc tcaaagttgg atgacctcat tactaatatt 6060 tgttgtaaaa gtgaaacttg tttgccaacc aataaacaac tgattgagat ttagaagata 6120 ttgtaaaaaa aaaaaaaaaa a 6141 <210> 10 <211> 6107 <212> RNA <213> PSEN1 mRNA <400> 10 aaatgacgac aacggtgagg gttctcgggc ggggcctggg acaggcagct ccggggtccg 60 cggtttcaca tcggaaacaa aacagcggct ggtctggaag gaacctgagc tacgagccgc 120 ggcggcagcg gggcggcggg gaagcgtata cctaatctgg gagcctgcaa gtgacaacag 180 cctttgcggt ccttagacag cttggcctgg aggagaacac atgaaagaaa gaacctcaag 240 aggctttgtt ttctgtgaaa cagtatttct atacagttgc tccaatgaca gagttacctg 300 caccgttgtc ctacttccag aatgcacaga tgtctgagga caaccacctg agcaatactg 360 tacgtagcca gaatgacaat agagaacggc aggagcacaa cgacagacgg agccttggcc 420 accctgagcc attatctaat ggacgacccc agggtaactc ccggcaggtg gtggagcaag 480 atgaggaaga agatgaggag ctgacattga aatatggcgc caagcatgtg atcatgctct 540 ttgtccctgt gactctctgc atggtggtgg tcgtggctac cattaagtca gtcagctttt 600 atacccggaa ggatgggcag ctaatctata ccccattcac agaagatacc gagactgtgg 660 gccagagagc cctgcactca attctgaatg ctgccatcat gatcagtgtc attgttgtca 720 tgactatcct cctggtggtt ctgtataaat acaggtgcta taaggtcatc catgcctggc 780 ttattatatc atctctattg ttgctgttct ttttttcatt catttacttg ggggaagtgt 840 ttaaaaccta taacgttgct gtggactaca ttactgttgc actcctgatc tggaattttg 900 gtgtggtggg aatgatttcc attcactgga aaggtccact tcgactccag caggcatatc 960 tcattatgat tagtgccctc atggccctgg tgtttatcaa gtacctccct gaatggactg 1020 cgtggctcat cttggctgtg atttcagtat atgatttagt ggctgttttg tgtccgaaag 1080 gtccacttcg tatgctggtt gaaacagctc aggagagaaa tgaaacgctt tttccagctc 1140 tcatttactc ctcaacaatg gtgtggttgg tgaatatggc agaaggagac ccggaagctc 1200 aaaggagagt atccaaaaat tccaagtata atgcagaaag cacagaaagg gagtcacaag 1260 acactgttgc agagaatgat gatggcgggt tcagtgagga atgggaagcc cagagggaca 1320 gtcatctagg gcctcatcgc tctacacctg agtcacgagc tgctgtccag gaactttcca 1380 gcagtatcct cgctggtgaa gacccagagg aaaggggagt aaaacttgga ttgggagatt 1440 tcattttcta cagtgttctg gttggtaaag cctcagcaac agccagtgga gactggaaca 1500 caaccatagc ctgtttcgta gccatattaa ttggtttgtg ccttacatta ttactccttg 1560 ccattttcaa gaaagcattg ccagctcttc caatctccat cacctttggg cttgttttct 1620 actttgccac agattatctt gtacagcctt ttatggacca attagcattc catcaatttt 1680 atatctagca tatttgcggt tagaatccca tggatgtttc ttctttgact ataacaaaat 1740 ctggggagga caaaggtgat tttcctgtgt ccacatctaa caaagtcaag attcccggct 1800 ggacttttgc agcttccttc caagtcttcc tgaccacctt gcactattgg actttggaag 1860 gaggtgccta tagaaaacga ttttgaacat acttcatcgc agtggactgt gtccctcggt 1920 gcagaaacta ccagatttga gggacgaggt caaggagata tgataggccc ggaagttgct 1980 gtgccccatc agcagcttga cgcgtggtca caggacgatt tcactgacac tgcgaactct 2040 cggactacc gttaccaaga ggttaggtga agtggtttaa accaaacgga actcttcatc 2100 ttaaactaca cgttgaaaat caacccaata attctgtatt aactgaattc tgaacttttc 2160 aggaggtact gtgaggaaga gcaggcacca gcagcagaat ggggaatgga gaggtgggca 2220 ggggttccag cttccctttg attttttgct gcagactcat cctttttaaa tgagacttgt 2280 tttcccctct ctttgagtca agtcaaatat gtagattgcc tttggcaatt cttcttctca 2340 agcactgaca ctcattaccg tctgtgattg ccatttcttc ccaaggccag tctgaacctg 2400 aggttgcttt atcctaaaag ttttaacctc aggttccaaa ttcagtaaat tttggaaaca 2460 gtacagctat ttctcatcaa ttctctatca tgttgaagtc aaatttggat tttccaccaa 2520 attctgaatt tgtagacata cttgtacgct cacttgcccc agatgcctcc tctgtcctca 2580 ttcttctctc ccacacaagc agtctttttc tacagccagt aaggcagctc tgtcgtggta 2640 gcagatggtc ccattattct agggtcttac tctttgtatg atgaaaagaa tgtgttatga 2700 atcggtgctg tcagccctgc tgtcagacct tcttccacag caaatgagat gtatgcccaa 2760 agacggtaga attaaagaag agtaaaatgg ctgttgaagc actttctgtc ctggtatttt 2820 gtttttgctt ttgccacaca gtagctcaga atttgaacaa atagccaaaa gctggtggtt 2880 gatgaattat gaactagttg tatcaacaca aagcaagagt tggggaaagc catatttaac 2940 ttggtgagct gtgggagaac ctggtggcag aaggagaacc aactgccaag gggaaagaga 3000 aggggcctcc agcagcgaag gggatacagt gagctaatga tgtcaaggag gagtttcagg 3060 ttattctcgt cagctccaca aatgggtgct ttgtggtctc tgcccgcgtt acctttcctc 3120 tcaatgtacc tttgtgtgaa ctgggcagtg gaggtgcctg ctgcagttac catggagttc 3180 aggctctggg cagctcagtc aggcaaaaca cacaaacagc catcagcctg tgtgggctca 3240 gggcacctct ggacaaaggc ttgtggggca taaccttctt taccacagag agcccttagc 3300 tatgctgatc agaccgtaag cgtttatgag aaacttagtt tcctcctgtg gctgaggagg 3360 ggccagcttt ttcttctttt gcctgctgtt ttctctccca atctatgata tgatatgacc 3420 tggtttgggg ctgtctttgg tgtttagaat atttgttttc tgtcccagga tatttcttat 3480 aagaacctaa cttcaagagt agtgtgcgag tactgatctg aatttaaatt aaaattggct 3540 tatattaggc agtcacagac aggaaaaata agagctatgc aaagaaaggg ggatttaaag 3600 tagtaggttc tatcatctca attcattttt ttccatgaaa tcccttcttc caagattcat 3660 tccctctctc agacatgtgc tagcatgggt attatcattg agaaagcaca gctacagcaa 3720 agccacctga atagcaattt gtgattggaa gcattcttga gggatcccta atctagagta 3780 atttatttgt gtaaggatcc caaatgtgtt gcacctttca tgatacattt cttctctgaa 3840 gagggtacgt ggggtgtgtg tatttaaatc catcctatgt attactgatt gtcctgtgta 3900 gaaagatggc aattattctg tctctttctc caagtttgag ccacatctca gccacattgt 3960 tagacagtgt acagagaacc tatctttcct tttttttttt ttaaaggaca ggattttgct 4020 gtgttgccca ggctagactt gaactcctgg gctcaagtaa tccacctcag cctgagtagc 4080 tgagactaca gcccatctta tttctttaaa tcattcatct caggcagaga acttttccct 4140 caaacattct ttttagaatt agttcagtca ttcctaaaac atccaaatgc tagtcttcca 4200 ccatgaaaaa tagattgtca ctggaaagaa cagtagcaat ttccataagg atgtgccttc 4260 actcacacgg gacaggcggt ggttatagag tcgggcaaaa ccagcagtag agtatgacca 4320 gccaagccaa tctgcttaat aaaaagatgg aagacagtaa ggaaggaaag tagccactaa 4380 gagtctgagt ctgactgggc tacagaataa agggtattta tggacagaat gtcattacat 4440 gcctatggga ataccaatca tatttggaag atttgcagat tttttttcag agaggaaaga 4500 ctcaccttcc tgtttttggt tctcagtagg ttcgtgtgtg ttcctagaat cacagctctg 4560 actccaaatg actcaatttc tcaattagaa aaagtagaag ctttctaagc aacttggaag 4620 aaaacagtca taagtaagca atttgttgat tttactacag aagcaacaac tgaagaggca 4680 gtgtttttac tttcagactc cgggattccc attctgtagt ctctctgctt ttaaaaaccc 4740 tccttttgca atagatgccc aaacagatga tgtttattac ttgttattta cgtggcctca 4800 gacagtgtat gtattctcga tataacttgt agagtgtgaa atataagttt aactaccaaa 4860 taaggtctcc cagggttaga tgactgcggg aagcctttga tcccaacccc caaggctttg 4920 tatatttgat catttgtgat ctaaccctgg aagaaaaaga gctcagaaac cactatgaaa 4980 aaatttgttc agtgttttct gtgttcccgt aggttctgga gtctgaggat gcaaagatga 5040 ataagataaa ttctcagaat gtagttataa tctcttgttt tctggtatat gccatctttc 5100 tttaacttct ctaaaatatt gggtatttgt caaataacca cttttaacag ttaccattac 5160 tgagggctta tacattggtg ttataaaagt gacttgattc agaaatcaat ccattcagta 5220 aagtactcct tctctaaatt tgctgttatg tctataagga acagtttgac ctgcccttct 5280 cctcacctcc tcacctgcct tccaacattg aatttggaag gagacgtgaa aattggacat 5340 ttggttttgc ccttgggctg gaaactatca tataatcata agtttgagcc tagaagtgat 5400 ccttgtgatc ttctcacctc tttaaattcc cacaacacaa gagattaaaa acagaggttt 5460 cagctcttca tagtgcgttg tgaaatggct ggccagagtg taccaacaaa gctgtcatcg 5520 ggctcacagc tcagagacat ctgcatgtga tcatctgcat agtcctctcc tctaacggga 5580 aacacctcag atttgcatat aaaaaagcac cctggtgctg aaatgaaccc ctttcttgaa 5640 catcaaagct gtctcccaca gccttgggca gcagggtgcc tcttagtgga tgtgctgggt 5700 ccaccctgag ccctgacatg tggtggcagc attgccagtt ggtctgtgtg tctgtgtagc 5760 agggacgatt tcccagaaag caattttcct tttgaaatac gtaattgttg agactaggca 5820 gtttcaaagt cagctgcata tagtagcaag tacaggactg tcttgttttt ggtgtccttg 5880 gaggtgctgg ggtgagggtt tcagtgggat catttactct cacatgttgt ctgccttctg 5940 cttctgtgga cactgctttg tacttaattc agacagactg tgaatacacc ttttttataa 6000 atacctttca aattcttggt aagatataat tttgatagct gattgcagat tttctgtatt 6060 tgtcagatta ataaagactg catgaatcca aaaaaaaaaaaaaaaaa 6107 <210> 11 <211> 1499 <212> PRT <213> RAPGEF2 protein <400> 11 Met Lys Pro Leu Ala Ile Pro Ala Asn His Gly Val Met Gly Gln Gln   1 5 10 15 Glu Lys His Ser Leu Pro Ala Asp Phe Thr Lys Leu His Leu Thr Asp              20 25 30 Ser Leu His Pro Gln Val Thr His Val Ser Ser Ser His Ser Gly Cys          35 40 45 Ser Ile Thr Ser Asp Ser Gly Ser Ser Ser Ser Ser Ser Ser Ser Ser Asp Ile Tyr Gln      50 55 60 Ala Thr Glu Ser Glu Ala Gly Asp Met Asp Leu Ser Gly Leu Pro Glu  65 70 75 80 Thr Ala Val Asp Ser Glu Asp Asp Asp Asp Glu Glu Asp Ile Glu Arg                  85 90 95 Ala Ser Asp Pro Leu Met Ser Arg Asp Ile Val Arg Asp Cys Leu Glu             100 105 110 Lys Asp Pro Ile Asp Arg Thr Asp Asp Asp Ile Glu Gln Leu Leu Glu         115 120 125 Phe Met His Gln Leu Pro Ala Phe Ala Asn Met Thr Met Ser Val Arg     130 135 140 Arg Glu Leu Cys Ala Val Met Val Phe Ala Val Val Glu Arg Ala Gly 145 150 155 160 Thr Ile Val Leu Asn Asp Gly Glu Glu Leu Asp Ser Trp Ser Val Ile                 165 170 175 Leu Asn Gly Ser Val Glu Val Thr Tyr Pro Asp Gly Lys Ala Glu Ile             180 185 190 Leu Cys Met Gly Asn Ser Phe Gly Val Ser Pro Thr Met Asp Lys Glu         195 200 205 Tyr Met Lys Gly Val Met Arg Thr Lys Val Asp Asp Cys Gln Phe Val     210 215 220 Cys Ile Ala Gln Gln Asp Tyr Cys Arg Ile Leu Asn Gln Val Glu Lys 225 230 235 240 Asn Met Gln Lys Val Glu Glu Glu Gly Glu Ile Val Met Val Lys Glu                 245 250 255 His Arg Glu Leu Asp Arg Thr Gly Thr Arg Lys Gly His Ile Val Ile             260 265 270 Lys Gly Thr Ser Glu Arg Leu Thr Met His Leu Val Glu Glu His Ser         275 280 285 Val Val Asp Pro Thr Phe Ile Glu Asp Phe Leu Leu Thr Tyr Arg Thr     290 295 300 Phe Leu Ser Ser Pro Met Glu Val Gly Lys Lys Leu Leu Glu Trp Phe 305 310 315 320 Asn Asp Pro Ser Leu Arg Asp Lys Val Thr Arg Val Val Leu Leu Trp                 325 330 335 Val Asn Asn His Phe Asn Asp Phe Glu Gly Asp Pro Ala Met Thr Arg             340 345 350 Phe Leu Glu Glu Phe Glu Asn Leu Glu Arg Glu Lys Met Gly Gly         355 360 365 His Leu Arg Leu Leu Asn Ile Ala Cys Ala Ala Lys Ala Lys Arg Arg     370 375 380 Leu Met Thr Leu Thr Lys Pro Ser Arg Glu Ala Pro Leu Pro Phe Ile 385 390 395 400 Leu Leu Gly Gly Ser Glu Lys Gly Phe Gly Ile Phe Val Asp Ser Val                 405 410 415 Asp Ser Gly Ser Lys Ala Thr Glu Ala Gly Leu Lys Arg Gly Asp Gln             420 425 430 Ile Leu Glu Val Asn Gly Gln Asn Phe Glu Asn Ile Gln Leu Ser Lys         435 440 445 Ala Met Glu Ile Leu Arg Asn Asn Thr His Leu Ser Ile Thr Val Lys     450 455 460 Thr Asn Leu Phe Val Phe Lys Glu Leu Leu Thr Arg Leu Ser Glu Glu 465 470 475 480 Lys Arg Asn Gly Ala Pro His Leu Pro Lys Ile Gly Asp Ile Lys Lys                 485 490 495 Ala Ser Arg Tyr Ser Ile Pro Asp Leu Ala Val Asp Val Glu Gln Val             500 505 510 Ile Gly Leu Glu Lys Val Asn Lys Lys Ser Lys Ala Asn Thr Val Gly         515 520 525 Gly Arg Asn Lys Leu Lys Lys Ile Leu Asp Lys Thr Arg Ile Ser Ile     530 535 540 Leu Pro Gln Lys Pro Tyr Asn Asp Ile Gly Ile Gly Gln Ser Gln Asp 545 550 555 560 Asp Ser Ile Val Gly Leu Arg Gln Thr Lys His Ile Pro Thr Ala Leu                 565 570 575 Pro Val Ser Gly Thr Leu Ser Ser Ser Asn Pro Asp Leu Leu Gln Ser             580 585 590 His His Arg Ile Leu Asp Phe Ser Ala Thr Pro Asp Leu Pro Asp Gln         595 600 605 Val Leu Arg Val Phe Lys Ala Asp Gln Gln Ser Arg Tyr Ile Met Ile     610 615 620 Ser Lys Asp Thr Thr Ala Lys Glu Val Valle Gln Ala Ile Arg Glu 625 630 635 640 Phe Ala Val Thr Ala Thr Pro Asp Gln Tyr Ser Leu Cys Glu Val Ser                 645 650 655 Val Thr Pro Glu Gly Val Ile Lys Gln Arg Arg Leu Pro Asp Gln Leu             660 665 670 Ser Lys Leu Ala Asp Arg Ile Gln Leu Ser Gly Arg Tyr Tyr Leu Lys         675 680 685 Asn Asn Met Glu Thr Glu Thr Leu Cys Ser Asp Glu Asp Ala Gln Glu     690 695 700 Leu Leu Arg Glu Ser Gln Ile Ser Leu Leu Gln Leu Ser Thr Val Glu 705 710 715 720 Val Ala Thr Gln Leu Ser Met Arg Asn Phe Glu Leu Phe Arg Asn Ile                 725 730 735 Glu Pro Thr Glu Tyr Ile Asp Asp Leu Phe Lys Leu Arg Ser Ser Lys Thr             740 745 750 Ser Cys Ala Asn Leu Lys Arg Phe Glu Glu Val Ile Asn Gln Glu Thr         755 760 765 Phe Trp Val Ala Ser Glu Ile Leu Arg Glu Thr Asn Gln Leu Lys Arg     770 775 780 Met Lys Ile Ile Lys His Phe Ile Lys Ile Ala Leu His Cys Arg Glu 785 790 795 800 Cys Lys Asn Phe Asn Ser Met Phe Ala Ile Ile Ser Gly Leu Asn Leu                 805 810 815 Ala Pro Val Ala Arg Leu Arg Thr Thr Trp Glu Lys Leu Pro Asn Lys             820 825 830 Tyr Glu Lys Leu Phe Gln Asp Leu Gln Asp Leu Phe Asp Pro Ser Arg         835 840 845 Asn Met Ala Lys Tyr Arg Asn Val Leu Asn Ser Gln Asn Leu Gln Pro     850 855 860 Pro Ile Ile Pro Leu Phe Pro Val Ile Lys Lys Asp Leu Thr Phe Leu 865 870 875 880 His Glu Gly Asn Asp Ser Lys Val Asp Gly Leu Val Asn Phe Glu Lys                 885 890 895 Leu Arg Met Ile Ala Lys Glu Ile Arg His Val Gly Arg Met Ala Ser             900 905 910 Val Asn Met Asp Pro Ala Leu Met Phe Arg Thr Arg Lys Lys Lys Trp         915 920 925 Arg Ser Leu Gly Ser Leu Ser Gln Gly Ser Thr Asn Ala Thr Val Leu     930 935 940 Asp Val Ala Gln Thr Gly Gly His Lys Lys Arg Val Arg Arg Ser Ser 945 950 955 960 Phe Leu Asn Ala Lys Lys Leu Tyr Glu Asp Ala Gln Met Ala Arg Lys                 965 970 975 Val Lys Gln Tyr Leu Ser Asn Leu Glu Leu Glu Met Asp Glu Glu Ser             980 985 990 Leu Gln Thr Leu Ser Leu Gln Cys Glu Pro Ala Thr Asn Thr Leu Pro         995 1000 1005 Lys Asn Pro Gly Asp Lys Lys Pro Val Lys Ser Glu Thr Ser Pro Val    1010 1015 1020 Ala Pro Arg Ala Gly Ser Gln Gln Lys Ala Gln Ser Leu Pro Gln Pro 1025 1030 1035 1040 Gln Gln Gln Pro Pro Pro Ala His Lys Ile Asn Gln Gly Leu Gln Val                1045 1050 1055 Pro Ala Val Ser Leu Tyr Pro Ser Arg Lys Lys Val Pro Val Lys Asp            1060 1065 1070 Leu Pro Pro Phe Gly Ile Asn Ser Pro Gln Ala Leu Lys Lys Ile Leu        1075 1080 1085 Ser Leu Ser Glu Glu Gly Ser Leu Glu Arg His Lys Lys Gln Ala Glu    1090 1095 1100 Asp Thr Ile Ser Asn Ala Ser Ser Gln Leu Ser Ser Pro Pro Thr Ser 1105 1110 1115 1120 Pro Gln Ser Ser Pro Arg Lys Gly Tyr Thr Leu Ala Pro Ser Gly Thr                1125 1130 1135 Val Asp Asn Phe Ser Asp Ser Gly His Ser Glu Ile Ser Ser Ser Ser            1140 1145 1150 Ser Ile Val Ser Asn Ser Ser Phe Asp Ser Val Pro Val Ser Leu His        1155 1160 1165 Asp Glu Arg Arg Gln Arg His Ser Val Ser Ile Val Glu Thr Asn Leu    1170 1175 1180 Gly Met Gly Arg Met Glu Arg Arg Thr Met Ile Glu Pro Asp Gln Tyr 1185 1190 1195 1200 Ser Leu Gly Ser Tyr Ala Pro Met Ser Glu Gly Arg Gly Leu Tyr Ala                1205 1210 1215 Thr Ala Thr Val Ile Ser Ser Ser Thr Glu Glu Leu Ser Gln Asp            1220 1225 1230 Gln Gly Asp Arg Ala Ser Leu Asp Ala Ala Asp Ser Gly Arg Gly Ser        1235 1240 1245 Trp Thr Ser Cys Ser Ser Gly Ser His Asp Asn Ile Gln Thr Ile Gln    1250 1255 1260 His Gln Arg Ser Trp Glu Thr Leu Pro Phe Gly His Thr His Phe Asp 1265 1270 1275 1280 Tyr Ser Gly Asp Pro Ala Gly Leu Trp Ala Ser Ser Ser His Met Asp                1285 1290 1295 Gln Ile Met Phe Ser Asp His Ser Thr Lys Tyr Asn Arg Gln Asn Gln            1300 1305 1310 Ser Arg Glu Ser Leu Glu Gln Ala Gln Ser Arg Ala Ser Trp Ala Ser        1315 1320 1325 Ser Thr Gly Tyr Trp Gly Asp Ser Glu Gly Asp Thr Gly Thr Ile    1330 1335 1340 Lys Arg Arg Gly Gly Lys Asp Val Ser Ile Glu Ala Glu Ser Ser Ser 1345 1350 1355 1360 Leu Thr Ser Val Thr Thr Glu Glu Thr Lys Pro Val                1365 1370 1375 His Ile Ala Val Ala Ser Ser Thr Thr Lys Gly Leu Ile Ala Arg Lys            1380 1385 1390 Glu Gly Arg Tyr Arg Glu Pro Pro Thr Pro Pro Gly Tyr Ile Gly        1395 1400 1405 Ile Pro Ile Thr Asp Phe Pro Glu Gly His Ser His Pro Ala Arg Lys    1410 1415 1420 Pro Pro Asp Tyr Asn Val Ala Leu Gln Arg Ser Ser Met Met Val Ala Arg 1425 1430 1435 1440 Ser Ser Asp Thr Ala Gly Pro Ser Ser Val Gln Gln Pro His Gly His                1445 1450 1455 Pro Thr Ser Ser Arg Pro Val Asn Lys Pro Gln Trp His Lys Pro Asn            1460 1465 1470 Glu Ser Asp Pro Arg Leu Ala Pro Tyr Gln Ser Gln Gly Phe Ser Thr        1475 1480 1485 Glu Glu Asp Glu Asp Glu Gln Val Ser Ala Val    1490 1495 <210> 12 <211> 777 <212> PRT <213> IFT80 protein <400> 12 Met Arg Leu Lys Ile Ser Leu Leu Lys Glu Pro Lys His Gln Glu Leu   1 5 10 15 Val Ser Cys Val Gly Trp Thr Thr Ala Glu Glu Leu Tyr Ser Cys Ser              20 25 30 Asp Asp His Gln Ile Val Lys Trp Asn Leu Leu Thr Ser Glu Thr Thr          35 40 45 Gln Ile Val Lys Leu Pro Asp Asp Ile Tyr Pro Ile Asp Phe His Trp      50 55 60 Phe Pro Lys Ser Leu Gly Val Lys Lys Gln Thr Gln Ala Glu Ser Phe  65 70 75 80 Val Leu Thr Ser Ser Asp Gly Lys Phe His Leu Ile Ser Lys Leu Gly                  85 90 95 Arg Val Glu Lys Ser Val Glu Ala His Cys Gly Ala Val Leu Ala Gly             100 105 110 Arg Trp Asn Tyr Glu Gly Thr Ala Leu Val Thr Val Gly Glu Asp Gly         115 120 125 Gln Ile Lys Ile Trp Ser Lys Thr Gly Met Leu Arg Ser Thr Leu Ala     130 135 140 Gln Gln Gly Thr Pro Val Tyr Ser Val Ala Trp Gly Pro Asp Ser Glu 145 150 155 160 Lys Val Leu Tyr Thr Ala Gly Lys Gln Leu Ile Ile Lys Pro Leu Gln                 165 170 175 Pro Asn Ala Lys Val Leu Gln Trp Lys Ala His Asp Gly Ile Ile Leu             180 185 190 Lys Val Asp Trp Asn Ser Val Asn Asp Leu Ile Leu Ser Ala Gly Glu         195 200 205 Asp Cys Lys Tyr Lys Val Trp Asp Ser Tyr Gly Arg Pro Leu Tyr Asn     210 215 220 Ser Gln Pro His Glu His Pro Ile Thr Ser Val Ala Trp Ala Pro Asp 225 230 235 240 Gly Glu Leu Phe Ala Val Gly Ser Phe His Thr Leu Arg Leu Cys Asp                 245 250 255 Lys Thr Gly Trp Ser Tyr Ala Leu Glu Lys Pro Asn Thr Gly Ser Ile             260 265 270 Phe Asn Ile Ala Trp Ser Ile Asp Gly Thr Gln Ile Ala Gly Ala Cys         275 280 285 Gly Asn Gly His Val Val Phe Ala His Val Val Glu Gln His Trp Glu     290 295 300 Trp Lys Asn Phe Gln Val Thr Leu Thr Lys Arg Arg Ala Met Gln Val 305 310 315 320 Arg Asn Val Leu Asn Asp Ala Val Asp Leu Leu Glu Phe Arg Asp Arg                 325 330 335 Val Ile Lys Ala Ser Leu Asn Tyr Ala His Leu Val Val Ser Thr Ser             340 345 350 Leu Gln Cys Tyr Val Phe Ser Thr Lys Asn Trp Asn Thr Pro Ile Ile         355 360 365 Phe Asp Leu Lys Glu Gly Thr Val Ser Leu Ile Leu Gln Ala Glu Arg     370 375 380 His Phe Leu Leu Val Asp Gly Ser Ser Ile Tyr Leu Tyr Ser Tyr Glu 385 390 395 400 Gly Arg Phe Ile Ser Ser Pro Lys Phe Pro Gly Met Arg Thr Asp Ile                 405 410 415 Leu Asn Ala Gln Thr Val Ser Leu Ser Asn Asp Thr Ile Ala Ile Arg             420 425 430 Asp Lys Ala Asp Glu Lys Ile Ile Phe Leu Phe Glu Ala Ser Thr Gly         435 440 445 Lys Pro Leu Gly Asp Gly Lys Phe Leu Ser His Lys Asn Glu Ile Leu     450 455 460 Glu Ile Ala Leu Asp Gln Lys Gly Leu Thr Asn Asp Arg Lys Ile Ala 465 470 475 480 Phe Ile Asp Lys Asn Arg Asp Leu Cys Ile Thr Ser Val Lys Arg Phe                 485 490 495 Gly Lys Glu Glu Gln Ile Ile Lys Leu Gly Thr Met Val His Thr Leu             500 505 510 Ala Trp Asn Asp Thr Cys Asn Ile Leu Cys Gly Leu Gln Asp Thr Arg         515 520 525 Phe Ile Val Trp Tyr Tyr Pro Asn Thr Val Tyr Val Asp Arg Asp Ile     530 535 540 Leu Pro Lys Thr Leu Tyr Glu Arg Asp Ala Ser Glu Phe Ser Lys Asn 545 550 555 560 Pro His Ile Val Ser Phe Val Gly Asn Gln Val Thr Ile Arg Arg Ala                 565 570 575 Asp Gly Ser Leu Val His Ile Ser Ile Thr Pro Tyr Pro Ala Ile Leu             580 585 590 His Glu Tyr Val Ser Ser Ser Lys Trp Glu Asp Ala Val Arg Leu Cys         595 600 605 Arg Phe Val Lys Glu Gln Thr Met Trp Ala Cys Leu Ala Ala Met Ala     610 615 620 Val Ala Asn Arg Asp Met Thr Thr Ala Glu Ile Ala Tyr Ala Ala Ile 625 630 635 640 Gly Glu Ile Asp Lys Val Gln Tyr Ile Asn Ser Ile Lys Asn Leu Pro                 645 650 655 Ser Lys Glu Ser Lys Met Ala His Ile Leu Leu Phe Ser Gly Asn Ile             660 665 670 Gln Glu Ala Glu Ile Val Leu Leu Gln Ala Gly Leu Val Tyr Gln Ala         675 680 685 Ile Gln Ile Asn Ile Asn Leu Tyr Asn Trp Glu Arg Ala Leu Glu Leu     690 695 700 Ala Val Lys Tyr Lys Thr His Val Asp Thr Val Leu Ala Tyr Arg Gln 705 710 715 720 Lys Phe Leu Glu Thr Phe Gly Lys Gln Glu Thr Asn Lys Arg Tyr Leu                 725 730 735 His Tyr Ala Glu Gly Leu Gln Ile Asp Trp Glu Lys Ile Lys Ala Lys             740 745 750 Ile Glu Met Glu Ile Thr Lys Glu Arg Glu Gln Ser Ser Ser Ser Gln         755 760 765 Ser Ser Lys Ser Ile Gly Leu Lys Pro     770 775 <210> 13 <211> 1423 <212> PRT <213> SSH2 protein <400> 13 Met Ala Leu Val Thr Val Gln Arg Ser Pro Thr Pro Ser Thr Thr Ser   1 5 10 15 Ser Pro Cys Ala Ser Glu Ala Asp Ser Gly Glu Glu Glu Cys Arg Ser              20 25 30 Gln Pro Arg Ser Ser Ser Ser Ser Phe Leu Thr Val Lys Gly Ala Ala          35 40 45 Leu Phe Leu Pro Arg Gly Asn Gly Ser Ser Thr Pro Arg Ile Ser His      50 55 60 Arg Arg Asn Lys His Ala Gly Asp Leu Gln Gln His Leu Gln Ala Met  65 70 75 80 Phe Ile Leu Leu Arg Pro Glu Asp Asn Ile Arg Leu Ala Val Arg Leu                  85 90 95 Glu Ser Thr Tyr Gln Asn Arg Thr Arg Tyr Met Val Val Val Ser Thr             100 105 110 Asn Gly Arg Gln Asp Thr Glu Glu Ser Ile Val Leu Gly Met Asp Phe         115 120 125 Ser Ser Asn Ser Ser Thr Cys Thr Met Gly Leu Val Leu Pro Leu     130 135 140 Trp Ser Asp Thr Leu Ile His Leu Asp Gly Asp Gly Gly Phe Ser Val 145 150 155 160 Ser Thr Asp Asn Arg Val His Ile Phe Lys Pro Val Ser Val Gln Ala                 165 170 175 Met Trp Ser Ala Leu Gln Ser Leu His Lys Ala Cys Glu Val Ala Arg             180 185 190 Ala His Asn Tyr Tyr Pro Gly Ser Leu Phe Leu Thr Trp Val Ser Tyr         195 200 205 Tyr Glu Ser His Ile Asn Ser Asp Gln Ser Ser Val Asn Glu Trp Asn     210 215 220 Ala Met Gln Asp Val Gln Ser His Arg Pro Asp Ser Pro Ala Leu Phe 225 230 235 240 Thr Asp Ile Pro Thr Glu Arg Glu Arg Thr Glu Arg Leu Ile Lys Thr                 245 250 255 Lys Leu Arg Glu Ile Met Met Gln Lys Asp Leu Glu Asn Ile Thr Ser             260 265 270 Lys Glu Ile Arg Thr Glu Leu Glu Met Gln Met Val Cys Asn Leu Arg         275 280 285 Glu Phe Lys Glu Phe Ile Asp Asn Glu Met Ile Val Ile Leu Gly Gln     290 295 300 Met Asp Ser Pro Thr Gln Ile Phe Glu His Val Phe Leu Gly Ser Glu 305 310 315 320 Trp Asn Ala Ser Asn Leu Glu Asp Leu Gln Asn Arg Gly Val Arg Tyr                 325 330 335 Ile Leu Asn Val Thr Arg Glu Ile Asp Asn Phe Phe Pro Gly Val Phe             340 345 350 Glu Tyr His Asn Ile Arg Val Tyr Asp Glu Glu Ala Thr Asp Leu Leu         355 360 365 Ala Tyr Trp Asn Asp Thr Tyr Lys Phe Ile Ser Lys Ala Lys Lys His     370 375 380 Gly Ser Lys Cys Leu Val His Cys Lys Met Gly Val Ser Ser Ser Ala 385 390 395 400 Ser Thr Val Ile Ala Tyr Ala Met Lys Glu Tyr Gly Trp Asn Leu Asp                 405 410 415 Arg Ala Tyr Asp Tyr Val Lys Glu Arg Arg Thr Val Thr Lys Pro Asn             420 425 430 Pro Ser Phe Met Arg Gln Leu Glu Glu Tyr Gln Gly Ile Leu Leu Ala         435 440 445 Ser Lys Gln Arg His His Lys Leu Trp Arg Ser His Ser Asp Ser Asp     450 455 460 Leu Ser Asp His His Glu Pro Ile Cys Lys Pro Gly Leu Glu Leu Asn 465 470 475 480 Lys Lys Asp Ile Thr Thr Ser Ala Asp Gln Ile Ala Glu Val Lys Thr                 485 490 495 Met Glu Ser His Pro Pro Ile Pro Pro Val Phe Val Glu His Met Val             500 505 510 Pro Gln Asp Ala Asn Gln Lys Gly Leu Cys Thr Lys Glu Arg Met Ile         515 520 525 Cys Leu Glu Phe Thr Ser Arg Glu Phe His Ala Gly Gln Ile Glu Asp     530 535 540 Glu Leu Asn Leu Asn Asp Ile Asn Gly Cys Ser Ser Gly Cys Cys Leu 545 550 555 560 Asn Glu Ser Lys Phe Pro Leu Asp Asn Cys His Ala Ser Lys Ala Leu                 565 570 575 Ile Gln Pro Gly His Val Pro Glu Met Ala Asn Lys Phe Pro Asp Leu             580 585 590 Thr Val Glu Asp Leu Glu Thr Asp Ala Leu Lys Ala Asp Met Asn Val         595 600 605 His Leu Leu Pro Met Glu Glu Leu Thr Ser Pro Leu Lys Asp Pro Pro     610 615 620 Met Ser Pro Asp Pro Glu Ser Pro Ser Pro Gln Pro Ser Cys Gln Thr 625 630 635 640 Glu Ile Ser Asp Phe Ser Thr Asp Arg Ile Asp Phe Phe Ser Ala Leu                 645 650 655 Glu Lys Phe Val Glu Leu Ser Gln Glu Thr Arg Ser Ser Arg Ser Ser Ser             660 665 670 His Ser Arg Met Glu Glu Leu Gly Gly Gly Arg Asn Glu Ser Cys Arg         675 680 685 Leu Ser Val Val Glu Val Ala Pro Ser Lys Val Thr Ala Asp Asp Gln     690 695 700 Arg Ser Ser Ser Leu Ser Asn Thr Pro His Ala Ser Glu Glu Ser Ser 705 710 715 720 Met Asp Glu Glu Gln Ser Lys Ala Ile Ser Glu Leu Val Ser Pro Asp                 725 730 735 Ile Phe Met Gln Ser His Ser Glu Asn Ala Ile Ser Val Lys Glu Ile             740 745 750 Val Thr Glu Ile Glu Ser Ile Ser Gln Gly Val Gly Gln Ile Gln Leu         755 760 765 Lys Gly Asp Ile Leu Pro Asn Pro Cys His Thr Pro Lys Lys Asn Ser     770 775 780 Ile His Glu Leu Leu Leu Glu Arg Ala Gln Thr Pro Glu Asn Lys Pro 785 790 795 800 Gly His Met Glu Gln Asp Glu Asp Ser Cys Thr Ala Gln Pro Glu Leu                 805 810 815 Ala Lys Asp Ser Gly Met Cys Asn Pro Glu Gly Cys Leu Thr Thr His             820 825 830 Ser Ser Ile Ala Asp Leu Glu Glu Gly Glu Pro Ala Glu Gly Glu Gln         835 840 845 Glu Leu Gln Gly Ser Gly Met His Pro Gly Ala Lys Trp Tyr Pro Gly     850 855 860 Ser Val Arg Arg Ala Thr Leu Glu Phe Glu Glu Arg Leu Arg Gln Glu 865 870 875 880 Gln Glu His His Gly Ala Ala Pro Thr Cys Thr Ser Leu Ser Thr Arg                 885 890 895 Lys Asn Ser Lys Asn Asp Ser Ser Val Ala Asp Leu Ala Pro Lys Gly             900 905 910 Lys Ser Asp Glu Ala Pro Pro Glu His Ser Phe Val Leu Lys Glu Pro         915 920 925 Glu Met Ser Lys Gly Lys Gly Lys Tyr Ser Gly Ser Glu Ala Gly Ser     930 935 940 Leu Ser His Ser Glu Gln Asn Ala Thr Val Pro Ala Pro Arg Val Leu 945 950 955 960 Glu Phe Asp His Leu Pro Asp Pro Gln Glu Gly Pro Gly Ser Asp Thr                 965 970 975 Gly Thr Gln Gln Glu Gly Val Leu Lys Asp Leu Arg Thr Val Ile Pro             980 985 990 Tyr Gln Glu Ser Glu Thr Gln Ala Val Pro Leu Pro Leu Pro Lys Arg         995 1000 1005 Val Glu Ile Ile Glu Tyr Thr His Ile Val Thr Ser Pro Asn His Thr    1010 1015 1020 Gly Pro Gly Ser Glu Ile Ala Thr Ser Glu Lys Ser Gly Glu Gln Gly 1025 1030 1035 1040 Leu Arg Lys Val Asn Met Glu Lys Ser Val Thr Val Leu Cys Thr Leu                1045 1050 1055 Asp Glu Asn Leu Asn Arg Thr Leu Asp Pro Asn Gln Val Ser Leu His            1060 1065 1070 Pro Gln Val Leu Pro Leu Pro His Ser Ser Ser Pro Glu His Asn Arg        1075 1080 1085 Pro Thr Asp His Pro Thr Ser Ile Leu Ser Ser Pro Glu Asp Arg Gly    1090 1095 1100 Ser Ser Leu Ser Thr Ala Leu Glu Thr Ala Ala Pro Phe Val Ser His 1105 1110 1115 1120 Thr His Leu Leu Ser Ala Ser Leu Asp Tyr Leu His Pro Gln Thr                1125 1130 1135 Met Val His Leu Glu Gly Phe Thr Glu Gln Ser Ser Thr Thr Asp Glu            1140 1145 1150 Pro Ser Ala Glu Gln Val Ser Trp Glu Glu Ser Gln Glu Ser Pro Leu        1155 1160 1165 Ser Ser Gly Ser Glu Val Ser Ser Ala    1170 1175 1180 Asp Leu Ser Leu Ile Ser Lys Leu Gly Asp Asn Thr Gly Glu Leu Gln 1185 1190 1195 1200 Glu Lys Met Asp Pro Leu Pro Val Ala Cys Arg Leu Pro His Ser Ser                1205 1210 1215 Ser Ser Glu Asn Ile Lys Ser Leu Ser Ser Ser Pro Gly Val Val Lys            1220 1225 1230 Glu Arg Ala Lys Glu Ile Glu Ser Arg Val Val Phe Gln Ala Gly Leu        1235 1240 1245 Thr Lys Pro Ser Gln Met Arg Arg Ser Ala Ser Leu Ala Lys Leu Gly    1250 1255 1260 Tyr Leu Asp Leu Cys Lys Asp Cys Leu Pro Glu Arg Glu Pro Ala Ser 1265 1270 1275 1280 Cys Glu Ser Pro His Leu Lys Leu Leu Gln Pro Phe Leu Arg Thr Asp                1285 1290 1295 Ser Gly Met His Ala Met Glu Asp Gln Glu Ser Leu Glu Asn Pro Gly            1300 1305 1310 Ala Pro His Asn Pro Glu Pro Thr Lys Ser Phe Val Glu Gln Leu Thr        1315 1320 1325 Thr Thr Glu Cys Ile Val Gln Ser Lys Pro Val Glu Arg Pro Leu Val    1330 1335 1340 Gln Tyr Ala Lys Glu Phe Gly Ser Ser Gln Gln Tyr Leu Leu Pro Arg 1345 1350 1355 1360 Ala Gly Leu Glu Leu Thr Ser Ser Glu Gly Gly Leu Pro Val Leu Gln                1365 1370 1375 Thr Gln Gly Leu Gln Cys Ala Cys Pro Ala Pro Gly Leu Ala Val Ala            1380 1385 1390 Pro Arg Gln Gln His Gly Arg Thr His Pro Leu Arg Arg Leu Lys Lys        1395 1400 1405 Ala Asn Asp Lys Lys Arg Thr Thr Asn Pro Phe Tyr Asn Thr Met    1410 1415 1420 <210> 14 <211> 346 <212> PRT &Lt; 213 > XRCC3 protein <400> 14 Met Asp Leu Asp Leu Leu Asp Leu Asn Pro Arg Ile Ile Ala Ala Ile   1 5 10 15 Lys Lys Ala Lys Leu Lys Ser Val Lys Glu Val Leu His Phe Ser Gly              20 25 30 Pro Asp Leu Lys Arg Leu Thr Asn Leu Ser Ser Pro Glu Val Trp His          35 40 45 Leu Leu Arg Thr Ala Ser Leu His Leu Arg Gly Ser Ser Ile Leu Thr      50 55 60 Ala Leu Gln Leu His Gln Gln Lys Glu Arg Phe Pro Thr Gln His Gln  65 70 75 80 Arg Leu Ser Leu Gly Cys Pro Val Leu Asp Ala Leu Leu Arg Gly Gly                  85 90 95 Leu Pro Leu Asp Gly Ile Thr Glu Leu Ala Gly Arg Ser Ser Ala Gly             100 105 110 Lys Thr Gln Leu Ala Leu Gln Leu Cys Leu Ala Val Gln Phe Pro Arg         115 120 125 Gln His Gly Gly Leu Glu Ala Gly Ala Val Tyr Ile Cys Thr Glu Asp     130 135 140 Ala Phe Pro His Lys Arg Leu Gln Gln Leu Met Ala Gln Gln Pro Arg 145 150 155 160 Leu Arg Thr Asp Val Pro Gly Glu Leu Gln Lys Leu Arg Phe Gly                 165 170 175 Ser Gln Ile Phe Ile Glu His Val Ala Asp Val Asp Thr Leu Leu Glu             180 185 190 Cys Val Asn Lys Lys Val Pro Leu Leu Ser Arg Gly Met Ala Arg         195 200 205 Leu Val Val Ile Asp Ser Val Ala Ala Pro Phe Arg Cys Glu Phe Asp     210 215 220 Ser Gln Ala Ser Ala Pro Arg Ala Arg His Leu Gln Ser Leu Gly Ala 225 230 235 240 Thr Leu Arg Glu Leu Ser Ser Ala Phe Gln Ser Ser Val Leu Cys Ile                 245 250 255 Asn Gln Val Thr Glu Ala Met Glu Glu Gln Gly Ala Ala His Gly Pro             260 265 270 Leu Gly Phe Trp Asp Glu Arg Val Ser Ser Ala Leu Gly Ile Thr Trp         275 280 285 Ala Asn Gln Leu Le Val Arg Leu Leu Ala Asp Arg Leu Arg Glu Glu     290 295 300 Glu Ala Ala Leu Gly Cys Pro Ala Arg Thr Leu Arg Val Leu Ser Ala 305 310 315 320 Pro His Leu Pro Pro Ser Ser Cys Ser Tyr Thr Ile Ser Ala Glu Gly                 325 330 335 Val Arg Gly Thr Pro Gly Thr Gln Ser His             340 345 <210> 15 <211> 2223 <212> PRT <213> SPAG17 protein <400> 15 Met Ala Pro Lys Lys Glu Lys Gly Gly Thr Val Asn Thr Ser Ser Lys   1 5 10 15 Ile Trp Glu Pro Ser Leu Ile Ala Ala Gln Phe Asn Gln Asn Asp Trp              20 25 30 Gln Ala Ser Ile Ala Phe Val Val Gly Asn Gln Ile Glu Asp Asp Leu          35 40 45 Leu Ile Gln Ala Leu Thr Val Ala Val Gln Val Pro Gln Arg Lys Leu      50 55 60 Phe Ser Met Val Ser Trp Gln Asp Ile Leu Gln Gln Ile Asn Glu Ile  65 70 75 80 Asn Thr Leu Val Gly Ser Ser Ser Ser Lys Lys Ala Lys Lys Pro Val                  85 90 95 Gly Gly Asn Ala Pro Leu Tyr Tyr Glu Val Leu Thr Ala Ala Lys Ala             100 105 110 Ile Met Asp Ser Gly Glu Lys Leu Thr Leu Pro Leu Ile Gly Lys Leu         115 120 125 Leu Lys Phe Gln Leu Leu Gln Ile Lys Phe Lys Asp Gln Gln Arg Arg     130 135 140 Glu Asn Glu Lys Lys Val Ile Glu Asp Lys Pro Lys Leu Glu Lys Asp 145 150 155 160 Lys Gly Lys Ala Lys Ser Pro Lys Glu Lys Lys Ala Pro Ser Ala Lys                 165 170 175 Pro Ala Lys Gly Lys Gly Lys Asp Gln Pro Glu Ala Asn Ala Pro Val             180 185 190 Lys Lys Thr Thr Gln Leu Lys Arg Arg Gly Glu Asp Asp His Thr Asn         195 200 205 Arg Tyr Ile Asp Asp Glu Pro Asp Asp Gly Ala Gln His Tyr Ile Ile     210 215 220 Val Val Gly Phe Asn Asn Pro Gln Leu Leu Ala Ile Met Ala Glu Leu 225 230 235 240 Gly Ile Pro Ile Thr Ser Val Ile Lys Ile Ser Ser Glu Asn Tyr Glu                 245 250 255 Pro Leu Gln Thr His Leu Ala Ala Val Asn Gln Gln Gln Glu Val Leu             260 265 270 Leu Gln Ser Glu Asp Leu Glu Ala Glu Lys Leu Lys Lys Glu Asn Ala         275 280 285 Ile Lys Glu Leu Lys Thr Phe Trp Lys Tyr Leu Glu Pro Val Leu Asn     290 295 300 Asn Glu Lys Pro Glu Thr Asn Leu Phe Asp Val Ala Arg Leu Glu Tyr 305 310 315 320 Met Val Lys Ala Ala Asp Phe Pro Ser Asp Trp Ser Asp Gly Glu Met                 325 330 335 Met Leu Lys Leu Gly Thr Asp Ile Phe Glu Asn Ile Ala Cys Leu Met             340 345 350 Tyr Asp Ile Leu Asp Trp Lys Arg Gln His Gln His Tyr Leu Glu Ser         355 360 365 Met Gln Leu Ile Asn Val Pro Gln Val Val Asn Glu Lys Pro Val Leu     370 375 380 Glu Ala Met Pro Thr Ser Glu Ala Pro Gln Pro Ala Val Pro Ala Pro 385 390 395 400 Gly Lys Lys Lys Ala Gln Tyr Glu Glu Pro Gln Ala Pro Pro Pro Val                 405 410 415 Thr Ser Val Ile Thr Thr Glu Val Asp Met Arg Tyr Tyr Asn Tyr Leu             420 425 430 Leu Asn Pro Ile Arg Glu Glu Phe Ile Ser Val Pro Leu Ile Leu His         435 440 445 Cys Met Leu Glu Gln Val Val Ala Thr Glu Glu Asp Leu Val Pro Pro     450 455 460 Ser Leu Arg Glu Pro Ser Pro Arg Ala Asp Gly Leu Asp His Arg Ile 465 470 475 480 Ala Ala His Ile Val Ser Leu Pro Ser Leu Cys Leu Ser Glu Arg                 485 490 495 Glu Lys Lys Asn Leu His Asp Ile Phe Leu Ser Glu Glu Glu Asn Glu             500 505 510 Ser Lys Ala Val Pro Lys Gly Pro Leu Leu Leu Asn Tyr His Asp Ala         515 520 525 His Ala His Lys Lys Tyr Ala Leu Gln Asp Gln Lys Asn Phe Asp Pro     530 535 540 Val Gln Ile Glu Gln Glu Met Gln Ser Lys Leu Pro Leu Trp Glu Phe 545 550 555 560 Leu Gln Phe Pro Leu Pro Pro Pro Trp Asn Asn Thr Lys Arg Leu Ala                 565 570 575 Thr Ile His Glu Leu Met His Phe Cys Thr Ser Asp Val Leu Ser Trp             580 585 590 Asn Glu Val Glu Arg Ala Phe Lys Val Phe Thr Phe Glu Ser Leu Lys         595 600 605 Leu Ser Glu Val Asp Glu Lys Gly Lys Leu Lys Pro Ser Gly Met Met     610 615 620 Cys Gly Ser Asp Ser Glu Met Phe Asn Ile Pro Trp Asp Asn Pro Ala 625 630 635 640 Arg Phe Ala Lys Gln Ile Arg Gln Gln Tyr Val Met Lys Met Asn Thr                 645 650 655 Gln Glu Ala Lys Gln Lys Ala Asp Ile Lys Ile Lys Asp Arg Thr Leu             660 665 670 Phe Val Asp Gln Asn Leu Ser Met Ser Val Gln Asp Asn Glu Ser Asn         675 680 685 Arg Glu Pro Ser Asp Pro Ser Gln Cys Asp Ala Asn Asn Met Lys His     690 695 700 Ser Asp Leu Asn Asn Leu Lys Leu Ser Val Pro Asp Asn Arg Gln Leu 705 710 715 720 Leu Glu Gln Glu Ser Ile Met Lys Ala Gln Pro Gln His Glu Ser Leu                 725 730 735 Glu Gln Thr Thr Asn Asn Glu Ile Lys Asp Asp Ala Val Thr Lys Ala             740 745 750 Asp Ser His Glu Lys Lys Pro Lys Lys Met Met Val Glu Ala Asp Leu         755 760 765 Glu Asp Ile Lys Lys Thr Gln Gln Arg Ser Leu Met Asp Trp Ser Phe     770 775 780 Thr Glu His Phe Lys Pro Lys Val Leu Leu Gln Val Leu Gln Glu Ala 785 790 795 800 His Lys Gln Tyr Arg Cys Val Asp Ser Tyr Tyr His Thr Gln Asp Asn                 805 810 815 Ser Leu Leu Leu Val Phe His Asn Pro Met Asn Arg Gln Arg Leu His             820 825 830 Cys Glu Tyr Trp Asn Ile Ala Leu His Ser Asn Val Gly Phe Arg Asn         835 840 845 Tyr Leu Glu Leu Val Ala Lys Ser Ile Gln Asp Trp Ile Thr Lys Glu     850 855 860 Glu Ala Ile Tyr Gln Glu Ser Lys Met Asn Glu Lys Ile Ile Arg Thr 865 870 875 880 Arg Ala Glu Leu Glu Leu Lys Ser Ser Ala Asn Ala Lys Leu Thr Ser                 885 890 895 Ala Ser Lys Ile Phe Ser Ile Lys Glu Ser Lys Ser Asn Lys Gly Ile             900 905 910 Ser Lys Thr Glu Ile Ser Asp Gln Glu Lys Glu Lys Glu Lys Glu Lys         915 920 925 Ile Pro Phe Ile Leu Glu Gly Ser Leu Lys Ala Trp Lys Glu Glu Gln     930 935 940 His Arg Leu Ala Glu Glu Glu Arg Leu Arg Glu Glu Lys Lys Ala Glu 945 950 955 960 Lys Lys Gly Lys Glu Ala Gly Lys Lys Lys Gly Lys Asp Asn Ala Glu                 965 970 975 Lys Glu Asp Ser Ser Ser Leu Lys Lys Lys Ser Pro Tyr Lys Glu Lys             980 985 990 Ser Lys Glu Glu Gln Val Lys Ile Glu Glu Val Thr Glu Glu Ser Pro         995 1000 1005 His Gln Pro Glu Pro Lys Ile Thr Tyr Pro Phe His Gly Tyr Asn Met    1010 1015 1020 Gly Asn Ile Pro Thr Gln Ile Ser Gly Ser Asn Tyr Tyr Leu Tyr Pro 1025 1030 1035 1040 Ser Asp Gly Gly Gln Ile Glu Val Glu Lys Thr Met Phe Glu Lys Gly                1045 1050 1055 Pro Thr Phe Ile Lys Val Arg Val Val Lys Asp Asn His Asn Phe Met            1060 1065 1070 Ile His Leu Asn Asp Pro Lys Glu Ile Val Lys Lys Glu Glu Lys Gly        1075 1080 1085 Asp Tyr Tyr Leu Glu Glu Glu Glu Glu Gly Asp Glu Glu Gln Ser Leu    1090 1095 1100 Glu Thr Glu Val Ser Asp Ala Lys Asn Lys Ala Phe Ser Lys Phe Gly 1105 1110 1115 1120 Ser Phe Ser Ala Thr Leu Glu Asn Gly Ile Cys Leu Ser Ile Ser Tyr                1125 1130 1135 Tyr Gly Ser Asn Gly Met Ala Pro Glu Asp Lys Asp Pro Asp Leu Glu            1140 1145 1150 Thr Ile Leu Asn Ile Pro Ser Ala Leu Thr Pro Thr Val Val        1155 1160 1165 Ile Val Thr Val Pro Gln Ser Lys Ala Lys Gly Lys Ile Lys Gly Lys    1170 1175 1180 Glu Lys Pro Lys Glu Ser Leu Lys Glu Glu Glu His Pro Lys Glu Glu 1185 1190 1195 1200 Glu Lys Lys Glu Glu Glu Val Glu Pro Glu Pro Val Leu Gln Glu Thr                1205 1210 1215 Leu Asp Val Pro Thr Phe Gln Ser Leu Asn Val Ser Cys Pro Ser Gly            1220 1225 1230 Leu Leu Leu Thr Phe Ile Gly Gln Glu Ser Thr Gly Gln Tyr Val Ile        1235 1240 1245 Asp Glu Glu Pro Thr Trp Asp Ile Met Val Arg Gln Ser Tyr Pro Gln    1250 1255 1260 Arg Val Lys His Tyr Glu Phe Tyr Lys Thr Val Met Pro Pro Ala Glu 1265 1270 1275 1280 Gln Glu Ala Ser Arg Val Ile Thr Ser Gln Gly Thr Val Val Lys Tyr                1285 1290 1295 Met Leu Asp Gly Ser Thr Gln Ile Leu Phe Ala Asp Gly Ala Val Ser            1300 1305 1310 Arg Ser Pro Asn Ser Gly Leu Ile Cys Pro Pro Ser Glu Met Pro Ala        1315 1320 1325 Thr Pro His Ser Gly Asp Leu Met Asp Ser Ile Ser Gln Gln Lys Ser    1330 1335 1340 Glu Thr Ile Pro Ser Glu Ile Thr Asn Thr Lys Lys Gly Lys Ser His 1345 1350 1355 1360 Lys Ser Gln Ser Ser Ala His Lys Gly Glu Ile His Asp Pro Pro                1365 1370 1375 Pro Glu Ala Val Gln Thr Val Thr Pro Val Glu Val His Ile Gly Thr            1380 1385 1390 Trp Phe Thr Thr Thr Pro Glu Gly Asn Arg Ile Gly Thr Lys Gly Leu        1395 1400 1405 Glu Arg Ile Ala Asp Leu Thr Pro Leu Leu Ser Phe Gln Ala Thr Asp    1410 1415 1420 Pro Val Asn Gly Thr Val Met Thr Thr Arg Glu Asp Lys Val Val Ile 1425 1430 1435 1440 Val Glu Arg Lys Asp Gly Thr Arg Ile Val Asp His Ala Asp Gly Thr                1445 1450 1455 Arg Ile Thr Thr Phe Tyr Gln Val Tyr Glu Asp Gln Ile Ile Leu Pro            1460 1465 1470 Asp Asp Gln Glu Thr Thr Glu Gly Pro Arg Thr Val Thr Arg Gln Val        1475 1480 1485 Lys Cys Met Arg Val Glu Ser Ser Arg Tyr Ala Thr Val Ile Ala Asn    1490 1495 1500 Cys Glu Asp Ser Ser Cys Cys Ala Thr Phe Gly Asp Gly Thr Thr Ile 1505 1510 1515 1520 Ile Ala Lys Pro Gln Gly Thr Tyr Gln Val Leu Pro Pro Asn Thr Gly                1525 1530 1535 Ser Leu Tyr Ile Asp Lys Asp Cys Ser Ala Val Tyr Cys His Glu Ser            1540 1545 1550 Ser Ser Asn Ile Tyr Tyr Pro Phe Gln Lys Arg Glu Gln Leu Arg Ala        1555 1560 1565 Gly Arg Tyr Ile Met Arg His Thr Ser Glu Val Ile Cys Glu Val Leu    1570 1575 1580 Asp Pro Glu Gly Asn Thr Phe Gln Val Met Ala Asp Gly Ser Ile Ser 1585 1590 1595 1600 Thr Ile Leu Pro Glu Lys Lys Leu Glu Asp Asp Leu Asn Glu Lys Thr                1605 1610 1615 Glu Gly Tyr Asp Ser Leu Ser Ser Met His Leu Glu Lys Asn His Gln            1620 1625 1630 Gln Ile Tyr Gly Glu His Val Pro Arg Phe Phe Val Met Tyr Ala Asp        1635 1640 1645 Gly Ser Gly Met Glu Leu Leu Arg Asp Ser Asp Ile Glu Glu Tyr Leu    1650 1655 1660 Ser Leu Ala Tyr Lys Glu Ser Asn Thr Val Val Leu Gln Glu Pro Val 1665 1670 1675 1680 Gln Glu Gln Pro Gly Thr Leu Thr Ile Thr Val Leu Arg Pro Phe His                1685 1690 1695 Glu Ala Ser Pro Trp Gln Val Lys Lys Glu Asp Thr Ile Val Pro Pro            1700 1705 1710 Asn Leu Arg Ser Ser Ser Trp Glu Thr Phe Pro Ser Val Glu Lys Lys        1715 1720 1725 Thr Pro Gly Pro Pro Phe Gly Thr Gln Ile Trp Lys Gly Leu Cys Ile    1730 1735 1740 Glu Ser Lys Gln Leu Val Ser Ala Pro Gly Ala Ile Leu Lys Ser Pro 1745 1750 1755 1760 Ser Val Leu Gln Met Arg Gln Phe Ile Gln His Glu Val Ile Lys Asn                1765 1770 1775 Glu Val Lys Leu Arg Leu Gln Val Ser Leu Lys Asp Tyr Ile Asn Tyr            1780 1785 1790 Ile Leu Lys Lys Glu Asp Glu Leu Gln Glu Met Met Val Lys Asp Ser        1795 1800 1805 Arg Thr Glu Glu Glu Arg Gly Asn Ala Ala Asp Leu Leu Lys Leu Val    1810 1815 1820 Met Ser Phe Pro Lys Met Glu Glu Thr Thr Lys Ser His Val Thr Glu 1825 1830 1835 1840 Val Ala Ala His Leu Thr Asp Leu Phe Lys Gln Ser Leu Ala Thr Pro                1845 1850 1855 Pro Lys Cys Pro Pro Asp Thr Phe Gly Lys Asp Phe Phe Glu Lys Thr            1860 1865 1870 Trp Arg His Thr Ala Ser Ser Lys Arg Trp Lys Glu Lys Ile Asp Lys        1875 1880 1885 Thr Arg Lys Glu Ile Glu Thr Thr Gln Asn Tyr Leu Met Asp Ile Lys    1890 1895 1900 Asn Arg Ile Ile Pro Pro Phe Phe Lys Ser Glu Leu Asn Gln Leu Tyr 1905 1910 1915 1920 Gln Ser Gln Tyr Asn His Leu Asp Ser Leu Ser Lys Lys Leu Pro Ser                1925 1930 1935 Phe Thr Lys Lys Asn Glu Asp Ala Asn Glu Thr Ala Val Gln Asp Thr            1940 1945 1950 Ser Asp Leu Asn Leu Asp Phe Lys Pro His Lys Val Ser Glu Gln Lys        1955 1960 1965 Ser Ser Ser Val Pro Ser Leu Pro Lys Pro Glu Ile Ser Ala Asp Lys    1970 1975 1980 Lys Asp Phe Thr Ala Gln Asn Gln Thr Glu Asn Leu Thr Lys Ser Pro 1985 1990 1995 2000 Glu Glu Ala Glu Ser Tyr Glu Pro Val Lys Ile Pro Thr Gln Ser Leu                2005 2010 2015 Leu Gln Asp Val Ala Gly Gln Thr Arg Lys Glu Lys Val Lys Leu Pro            2020 2025 2030 His Tyr Leu Leu Ser Ser Lys Pro Lys Ser Gln Pro Leu Ala Lys Val        2035 2040 2045 Gln Asp Ser Val Gly Gly Lys Val Asn Thr Ser Ser Val Ala Ser Ala    2050 2055 2060 Ala Ile Asn Asn Ala Lys Ser Ser Leu Phe Gly Phe His Leu Leu Pro 2065 2070 2075 2080 Ser Ser Val Lys Phe Gly Val Leu Lys Glu Gly His Thr Tyr Ala Thr                2085 2090 2095 Val Val Lys Leu Lys Asn Val Gly Val Asp Phe Cys Arg Phe Lys Val            2100 2105 2110 Lys Gln Pro Pro Ser Thr Gly Leu Lys Val Thr Tyr Lys Pro Gly        2115 2120 2125 Pro Val Ala Gly Met Gln Thr Glu Leu Asn Ile Glu Leu Phe Ala    2130 2135 2140 Thr Ala Val Gly Glu Asp Gly Ala Lys Gly Ser Ala His Ile Ser His 2145 2150 2155 2160 Asn Ile Glu Ile Met Thr Glu His Glu Val Leu Phe Leu Pro Val Glu                2165 2170 2175 Ala Thr Val Leu Thr Ser Ser Asn Tyr Asp Lys Arg Pro Lys Asp Phe            2180 2185 2190 Pro Gln Gly Lys Glu Asn Pro Met Val Gln Arg Thr Ser Thr Ile Tyr        2195 2200 2205 Ser Ser Thr Leu Gly Val Phe Met Ser Ser Lys Val Ser Pro His    2210 2215 2220 <210> 16 <211> 213 <212> PRT <213> CLEC4C protein <400> 16 Met Val Pro Glu Glu Glu Pro Gln Asp Arg Glu Lys Gly Leu Trp Trp   1 5 10 15 Phe Gln Leu Lys Val Trp Ser Met Ala Val Val Ser Ile Leu Leu Leu              20 25 30 Ser Val Cys Phe Thr Val Ser Ser Val Val Pro His Asn Phe Met Tyr          35 40 45 Ser Lys Thr Val Lys Arg Leu Ser Lys Leu Arg Glu Tyr Gln Gln Tyr      50 55 60 His Pro Ser Leu Thr Cys Val Met Glu Gly Lys Asp Ile Glu Asp Trp  65 70 75 80 Ser Cys Cys Pro Thr Pro Trp Thr Ser Phe Gln Ser Ser Cys Tyr Phe                  85 90 95 Ile Ser Thr Gly Met Gln Ser Trp Thr Lys Ser Gln Lys Asn Cys Ser             100 105 110 Val Met Gly Ala Asp Leu Val Val Ile Asn Thr Arg Glu Glu Gln Asp         115 120 125 Phe Ile Ile Gln Asn Leu Lys Arg Asn Ser Ser Tyr Phe Leu Gly Leu     130 135 140 Ser Asp Pro Gly Gly Arg Arg His Trp Gln Trp Val Asp Gln Thr Pro 145 150 155 160 Tyr Asn Glu Asn Val Thr Phe Trp His Ser Gly Glu Pro Asn Asn Leu                 165 170 175 Asp Glu Arg Cys Ala Ile Ile Asn Phe Arg Ser Ser Glu Glu Trp Gly             180 185 190 Trp Asn Asp Ile His Cys His Val Pro Gln Lys Ser Ile Cys Lys Met         195 200 205 Lys Lys Ile Tyr Ile     210 <210> 17 <211> 4012 <212> PRT <213> FRAS1 protein <400> 17 Met Gly Val Leu Lys Val Trp Leu Gly Leu Ala Leu Ala Leu Ala Glu   1 5 10 15 Phe Ala Val Leu Pro His His Ser Glu Gly Ala Cys Val Tyr Gln Asp              20 25 30 Ser Leu Leu Ala Asp Ala Thr Ile Trp Lys Pro Asp Ser Cys Gln Ser          35 40 45 Cys Arg Cys His Gly Asp Ile Val Ile Cys Lys Pro Ala Val Cys Arg      50 55 60 Asn Pro Gln Cys Ala Phe Glu Lys Gly Glu Val Leu Gln Ile Ala Ala  65 70 75 80 Asn Gln Cys Cys Pro Glu Cys Val Leu Arg Thr Pro Gly Ser Cys His                  85 90 95 His Glu Lys Lys Ile His Glu His Gly Thr Glu Trp Ala Ser Ser Pro             100 105 110 Cys Ser Val Cys Ser Cys Asn His Gly Glu Val Arg Cys Thr Pro Gln         115 120 125 Pro Cys Pro Pro Leu Ser Cys Gly His Gln Glu Leu Ala Phe Ile Pro     130 135 140 Glu Gly Ser Cys Cys Pro Val Cys Val Gly Leu Gly Lys Pro Cys Ser 145 150 155 160 Tyr Glu Gly His Val Phe Gln Asp Gly Glu Asp Trp Arg Leu Ser Arg                 165 170 175 Cys Ala Lys Cys Leu Cys Arg Asn Gly Val Ala Gln Cys Phe Thr Ala             180 185 190 Gln Cys Gln Pro Leu Phe Cys Asn Gln Asp Glu Thr Val Val Arg Val         195 200 205 Pro Gly Lys Cys Cys Pro Gln Cys Ser Ala Arg Ser Cys Ser Ala Ala     210 215 220 Gly Gln Val Tyr Glu His Gly Glu Gln Trp Ser Glu Asn Ala Cys Thr 225 230 235 240 Thr Cys Ile Cys Asp Arg Gly Glu Val Arg Cys His Lys Gln Ala Cys                 245 250 255 Leu Pro Leu Arg Cys Gly Lys Gly Gln Ser Arg Ala Arg Arg His Gly             260 265 270 Gln Cys Cys Glu Glu Cys Val Ser Pro Ala Gly Ser Cys Ser Tyr Asp         275 280 285 Gly Val Val Arg Tyr Gln Asp Glu Met Trp Lys Gly Ser Ala Cys Glu     290 295 300 Phe Cys Met Cys Asp His Gly Gln Val Thr Cys Gln Thr Gly Glu Cys 305 310 315 320 Ala Lys Val Glu Cys Ala Arg Asp Glu Glu Leu Ile His Leu Asp Gly                 325 330 335 Lys Cys Cys Pro Glu Cys Ile Ser Arg Asn Gly Tyr Cys Val Tyr Glu             340 345 350 Glu Thr Gly Glu Phe Met Ser Ser Asn Ala Ser Glu Val Lys Arg Ile         355 360 365 Pro Glu Gly Glu Lys Trp Glu Asp Gly Pro Cys Lys Val Cys Glu Cys     370 375 380 Arg Gly Ala Gln Val Thr Cys Tyr Glu Pro Ser Cys Pro Pro Cys Pro 385 390 395 400 Val Gly Thr Leu Ala Leu Glu Val Lys Gly Gln Cys Cys Pro Asp Cys                 405 410 415 Thr Ser Val His Cys His Pro Asp Cys Leu Thr Cys Ser Gln Ser Pro             420 425 430 Asp His Cys Asp Leu Cys Gln Asp Pro Thr Lys Leu Leu Gln Asn Gly         435 440 445 Trp Cys Val His Ser Cys Gly Leu Gly Phe Tyr Gln Ala Gly Ser Leu     450 455 460 Cys Leu Ala Cys Gln Pro Gln Cys Ser Thr Cys Thr Ser Gly Leu Glu 465 470 475 480 Cys Ser Ser Cys Gln Pro Pro Leu Leu Met Arg His Gly Gln Cys Val                 485 490 495 Pro Thr Cys Gly Asp Gly Phe Tyr Gln Asp Arg His Ser Cys Ala Val             500 505 510 Cys His Glu Ser Cys Ala Gly Cys Trp Gly Pro Thr Glu Lys His Cys         515 520 525 Leu Ala Cys Arg Asp Pro Leu His Val Leu Arg Asp Gly Gly Cys Glu     530 535 540 Ser Ser Cys Gly Lys Gly Phe Tyr Asn Arg Gln Gly Thr Cys Ser Ala 545 550 555 560 Cys Asp Gln Ser Cys Asp Ser Cys Gly Pro Ser Ser Pro Arg Cys Leu                 565 570 575 Thr Cys Thr Glu Lys Thr Val Leu His Asp Gly Lys Cys Met Ser Glu             580 585 590 Cys Pro Gly Gly Tyr Tyr Ala Asp Ala Thr Gly Arg Cys Lys Val Cys         595 600 605 His Asn Ser Cys Ala Ser Cys Ser Gly Pro Thr Pro Ser His Cys Thr     610 615 620 Ala Cys Ser Pro Pro Lys Ala Leu Arg Gln Gly His Cys Leu Pro Arg 625 630 635 640 Cys Gly Glu Gly Phe Tyr Ser Asp His Gly Val Cys Lys Ala Cys His                 645 650 655 Ser Ser Cys Leu Ala Cys Met Gly Pro Ala Pro Ser His Cys Thr Gly             660 665 670 Cys Lys Lys Pro Glu Glu Gly Leu Gln Val Glu Gln Leu Ser Asp Val         675 680 685 Gly Ile Pro Ser Gly Glu Cys Leu Ala Gln Cys Arg Ala His Phe Tyr     690 695 700 Leu Glu Ser Thr Gly Ile Cys Glu Ala Cys His Gln Ser Cys Phe Arg 705 710 715 720 Cys Ala Gly Lys Ser Pro His Asn Cys Thr Asp Cys Gly Pro Ser His                 725 730 735 Val Leu Leu Asp Gly Gln Cys Leu Ser Gln Cys Pro Asp Gly Tyr Phe             740 745 750 His Gln Glu Gly Ser Cys Thr Glu Cys His Pro Thr Cys Arg Gln Cys         755 760 765 His Gly Pro Leu Glu Ser Asp Cys Ile Ser Cys Tyr Pro His Ile Ser     770 775 780 Leu Thr Asn Gly Asn Cys Arg Thr Ser Cys Arg Glu Glu Gln Phe Leu 785 790 795 800 Asn Leu Val Gly Tyr Cys Ala Asp Cys His His Leu Cys Gln His Cys                 805 810 815 Ala Ala Asp Leu His Asn Thr Gly Ser Ile Cys Leu Arg Cys Gln Asn             820 825 830 Ala His Tyr Leu Leu Leu Gly Asp His Cys Val Pro Asp Cys Pro Ser         835 840 845 Gly Tyr Tyr Ala Glu Arg Gly Ala Cys Lys Lys Cys His Ser Ser Cys     850 855 860 Arg Thr Cys Gln Gly Arg Gly Pro Phe Ser Cys Ser Ser Cys Asp Thr 865 870 875 880 Asn Leu Val Leu Ser His Thr Gly Thr Cys Ser Thr Thr Cys Phe Pro                 885 890 895 Gly His Tyr Leu Asp Asp Asn His Val Cys Gln Pro Cys Asn Thr His             900 905 910 Cys Gly Ser Cys Asp Ser Gln Ala Ser Cys Thr Ser Cys Arg Asp Pro         915 920 925 Asn Lys Val Leu Leu Phe Gly Glu Cys Gln Tyr Glu Ser Cys Ala Pro     930 935 940 Gln Tyr Tyr Leu Asp Phe Ser Thr Asn Thr Cys Lys Glu Cys Asp Trp 945 950 955 960 Ser Cys Ser Ala Cys Ser Gly Pro Leu Lys Thr Asp Cys Leu Gln Cys                 965 970 975 Met Asp Gly Tyr Val Leu Gln Asp Gly Ala Cys Val Glu Gln Cys Leu             980 985 990 Ser Ser Phe Tyr Gln Asp Ser Gly Leu Cys Lys Asn Cys Asp Ser Tyr         995 1000 1005 Cys Leu Gln Cys Gln Gly Pro His Glu Cys Thr Arg Cys Lys Gly Pro    1010 1015 1020 Phe Leu Leu Leu Glu Ala Gln Cys Val Gln Glu Cys Gly Lys Gly Tyr 1025 1030 1035 1040 Phe Ala Asp His Ala Lys His Lys Cys Thr Ala Cys Pro Gln Gly Cys                1045 1050 1055 Leu Gln Cys Ser His Arg Arg Asp Arg Cys His Leu Cys Asp His Gly Phe            1060 1065 1070 Phe Leu Lys Ser Gly Leu Cys Val Tyr Asn Cys Val Pro Gly Phe Ser        1075 1080 1085 Val His Thr Ser Asn Glu Thr Cys Ser Gly Lys Ile His Thr Pro Ser    1090 1095 1100 Leu His Val Asn Gly Ser Leu Ile Leu Pro Ile Gly Ser Ile Lys Pro 1105 1110 1115 1120 Leu Asp Phe Ser Leu Leu Asn Val Gln Asp Gln Glu Gly Arg Val Glu                1125 1130 1135 Asp Leu Leu Phe His Val Val Ser Thr Pro Thr Asn Gly Gln Leu Val            1140 1145 1150 Leu Ser Arg Asn Gly Lys Glu Val Gln Leu Asp Lys Ala Gly Arg Phe        1155 1160 1165 Ser Trp Lys Asp Val Asn Glu Lys Lys Val Arg Phe Val His Ser Lys    1170 1175 1180 Glu Lys Leu Arg Lys Gly Tyr Leu Phe Leu Lys Ile Ser Asp Gln Gln 1185 1190 1195 1200 Phe Phe Ser Glu Pro Gln Leu Ile Asn Ile Gln Ala Phe Ser Thr Gln                1205 1210 1215 Ala Pro Tyr Val Leu Arg Asn Glu Val Leu His Ile Ser Arg Gly Glu            1220 1225 1230 Arg Ala Thr Ile Thr Thr Gln Met Leu Asp Ile Arg Asp Asp Asp Asn        1235 1240 1245 Pro Gln Asp Val Val Ile Glu Ile Ile Asp Pro Pro Leu His Gly Gln    1250 1255 1260 Leu Leu Gln Thr Leu Gln Ser Pro Ala Thr Pro Ile Tyr Gln Phe Gln 1265 1270 1275 1280 Leu Asp Glu Leu Ser Arg Gly Leu Leu His Tyr Ala His Asp Gly Ser                1285 1290 1295 Asp Ser Thr Ser Asp Val Ala Val Leu Gln Ala Asn Asp Gly His Ser            1300 1305 1310 Phe His Asn Ile Leu Phe Gln Val Lys Thr Val Pro Gln Asn Asp Arg        1315 1320 1325 Gly Leu Gln Leu Val Ala Asn Ser Met Val Trp Val Pro Glu Gly Gly    1330 1335 1340 Met Leu Gln Ile Thr Asn Arg Ile Leu Gln Ala Glu Ala Pro Gly Ala 1345 1350 1355 1360 Ser Ala Glu Glu Ile Ile Tyr Lys Ile Thr Gln Asp Tyr Pro Gln Phe                1365 1370 1375 Gly Glu Val Val Leu Leu Val Asn Met Pro Ala Asp Ser Pro Ala Asp            1380 1385 1390 Glu Gly Gln His Leu Pro Asp Gly Arg Thr Ala Thr Pro Thr Ser Thr        1395 1400 1405 Phe Thr Gln Gln Asp Ile Asn Glu Gly Ile Val Trp Tyr Arg His Ser    1410 1415 1420 Gly Ala Pro Ala Gln Ser Asp Ser Phe Arg Phe Glu Val Ser Ser Ala 1425 1430 1435 1440 Ser Asn Ala Gln Thr Arg Leu Glu Ser His Met Phe Asn Ile Ala Ile                1445 1450 1455 Leu Pro Gln Thr Pro Glu Ala Pro Lys Val Ser Leu Glu Ala Ser Leu            1460 1465 1470 His Met Thr Ala Arg Glu Asp Gly Leu Thr Val Ile Gln Pro His Ser        1475 1480 1485 Leu Ser Phe Ile Asn Ser Glu Lys Pro Ser Gly Lys Ile Val Tyr Asn    1490 1495 1500 Ile Thr Leu Pro Leu His Pro Asn Gln Gly Ile Ile Glu His Arg Asp 1505 1510 1515 1520 His Pro His Ser Pro Ile Arg Tyr Phe Thr Gln Glu Asp Ile Asn Gln                1525 1530 1535 Gly Lys Val Met Tyr Arg Pro Pro Pro Ala Ala Pro His Leu Gln Glu            1540 1545 1550 Leu Met Ala Phe Ser Phe Ala Gly Leu Pro Glu Ser Val Lys Phe His        1555 1560 1565 Phe Thr Val Ser Asp Gly Glu His Thr Ser Pro Glu Met Val Leu Thr    1570 1575 1580 Ile His Leu Leu Pro Ser Asp Gln Gln Leu Pro Val Phe Gln Val Thr 1585 1590 1595 1600 Ala Pro Arg Leu Ala Val Ser Pro Gly Gly Ser Thr Ser Val Gly Leu                1605 1610 1615 Gln Val Val Val Arg Asp Ala Glu Thr Ala Pro Lys Glu Leu Phe Phe            1620 1625 1630 Glu Leu Arg Arg Pro Pro Gln His Gly Val Leu Leu Lys His Thr Ala        1635 1640 1645 Glu Phe Arg Arg Pro Met Ala Thr Gly Asp Thr Phe Thr Tyr Glu Asp    1650 1655 1660 Val Glu Lys Asn Ala Leu Gln Tyr Ile His Asp Gly Ser Ser Thr Arg 1665 1670 1675 1680 Glu Asp Ser Met Glu Ile Ser Val Thr Asp Gly Leu Thr Val Thr Met                1685 1690 1695 Leu Glu Val Arg Val Glu Val Ser Leu Ser Glu Asp Arg Gly Pro Arg            1700 1705 1710 Leu Ala Ala Gly Ser Ser Leu Ser Ile Thr Val Ala Ser Lys Ser Thr        1715 1720 1725 Ala Ile Ile Thr Arg Ser His Leu Ala Tyr Val Asp Asp Ser Ser Pro    1730 1735 1740 Asp Pro Glu Ile Trp Ile Gln Leu Asn Tyr Leu Pro Ser Tyr Gly Thr 1745 1750 1755 1760 Leu Leu Arg Ile Ser Gly Ser Glu Val Glu Glu Leu Ser Glu Val Ser                1765 1770 1775 Asn Phe Thr Met Glu Asp Ile Asn Asn Lys Lys Ile Arg Tyr Ser Ala            1780 1785 1790 Val Phe Glu Thr Asp Gly His Leu Val Thr Asp Ser Phe Tyr Phe Ser        1795 1800 1805 Val Ser Asp Met Asp His Asn His Leu Asp Asn Gln Ile Phe Thr Ile    1810 1815 1820 Met Ile Thr Pro Ala Glu Asn Pro Pro Pro Val Ile Ala Phe Ala Asp 1825 1830 1835 1840 Leu Ile Thr Val Asp Glu Gly Gly Arg Ala Pro Leu Ser Phe His His                1845 1850 1855 Phe Phe Ala Thr Asp Asp Asp Asp Asn Leu Gln Arg Asp Ala Ile Ile            1860 1865 1870 Lys Leu Ser Ala Leu Pro Lys Tyr Gly Cys Ile Glu Asn Thr Gly Thr        1875 1880 1885 Gly Asp Arg Phe Gly Pro Glu Thr Ala Ser Asp Leu Glu Ala Ser Phe    1890 1895 1900 Pro Ile Gln Asp Val Leu Glu Asn Tyr Ile Tyr Tyr Phe Gln Ser Val 1905 1910 1915 1920 His Glu Ser Ile Glu Pro Thr His Asp Ile Phe Ser Phe Tyr Val Ser                1925 1930 1935 Asp Gly Thr Ser Arg Ser Glu Ile His Ser Ile Asn Ile Thr Ile Glu            1940 1945 1950 Arg Lys Asn Asp Glu Pro Pro Arg Met Thr Leu Gln Pro Leu Arg Val        1955 1960 1965 Gln Leu Ser Ser Gly Val Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Gl Ser    1970 1975 1980 Asp Leu Asp Thr Pro Asp Asn Glu Leu Ile Phe Val Leu Thr Lys Lys 1985 1990 1995 2000 Pro Asp His Gly His Val Leu Trp Arg Gln Thr Ala Ser Glu Pro Leu                2005 2010 2015 Glu Asn Gly Arg Val Leu Val Gln Gly Ser Thr Phe Thr Tyr Gln Asp            2020 2025 2030 Ile Leu Ala Gly Leu Val Gly Tyr Val Pro Ser Val Pro Gly Met Val        2035 2040 2045 Val Asp Glu Phe Gln Phe Ser Leu Thr Asp Gly Leu His Val Asp Thr    2050 2055 2060 Gly Arg Met Lys Ile Tyr Thr Glu Leu Pro Ala Ser Asp Thr Pro His 2065 2070 2075 2080 Leu Ala Ile Asn Gln Gly Leu Gln Leu Ser Ala Gly Ser Val Ala Arg                2085 2090 2095 Ile Thr Glu Gln His Leu Lys Val Thr Asp Ile Asp Ser Asp Asp His            2100 2105 2110 Gln Val Met Tyr Ile Met Lys Glu Asp Pro Gly Ala Gly Arg Leu Gln        2115 2120 2125 Met Met Lys His Gly Asn Leu Glu Gln Ile Ser Ile Lys Gly Pro Ile    2130 2135 2140 Arg Ser Phe Thr Gln Ala Asp Ile Ser Gln Gly His Val Glu Tyr Ser 2145 2150 2155 2160 His Gly Thr Gly Glu Gly Gly Gly Ser Phe Ala Phe Lys Phe Asp Val                2165 2170 2175 Val Asp Gly Glu Gly Asn Arg Leu Ile Asp Lys Ser Phe Ser Ile Ser            2180 2185 2190 Ile Leu Glu Asp Lys Ser Pro Pro Val Ile Thr Asn Lys Gly Leu        2195 2200 2205 Val Leu Asp Glu Asn Ser Val Lys Lys Ile Thr Thr Leu Gln Leu Ser    2210 2215 2220 Ala Thr Asp Gln Asp Ser Gly Pro Thr Glu Leu Ile Tyr Arg Ile Thr 2225 2230 2235 2240 Arg Gln Pro Gln Leu Gly His Leu Glu His Ala Ala Ser Pro Gly Ile                2245 2250 2255 Gln Ile Ser Ser Phe Thr Gln Ala Asp Leu Thr Ser Arg Asn Val Gln            2260 2265 2270 Tyr Val His Ser Ser Glu Ala Glu Lys His Ser Asp Ala Phe Ser Phe        2275 2280 2285 Thr Leu Ser Asp Gly Val Ser Glu Val Thr Gln Thr Phe His Ile Thr    2290 2295 2300 Leu His Pro Val Asp Asp Ser Leu Pro Val Val Gln Asn Leu Gly Met 2305 2310 2315 2320 Arg Val Gln Glu Gly Met Arg Lys Thr Ile Thr Glu Phe Glu Leu Lys                2325 2330 2335 Ala Val Asp Ala Asp Thr Glu Ala Glu Ser Val Thr Phe Thr Ile Val            2340 2345 2350 Gln Pro Pro Arg His Gly Thr Ile Glu Arg Thr Ser Asn Gly Gln His        2355 2360 2365 Phe His Leu Thr Ser Thr Phe Thr Met Lys Asp Ile Tyr Gln Asn Arg    2370 2375 2380 Val Ser Tyr Ser His Asp Gly Ser Asn Ser Leu Lys Asp Arg Phe Thr 2385 2390 2395 2400 Phe Thr Val Ser Asp Gly Thr Asn Pro Phe Phe Ile Ile Glu Glu Gly                2405 2410 2415 Gly Lys Glu Ile Met Thr Ala Ala Pro Gln Pro Phe Arg Val Asp Ile            2420 2425 2430 Leu Pro Val Asp Asp Gly Thr Pro Arg Ile Val Thr Asn Leu Gly Leu        2435 2440 2445 Gln Trp Leu Glu Tyr Met Asp Gly Lys Ala Thr Asn Leu Ile Thr Lys    2450 2455 2460 Lys Glu Leu Leu Thr Met Asp Pro Asp Thr Glu Asp Ala Gln Leu Val 2465 2470 2475 2480 Tyr Glu Ile Thr Thr Gly Pro Lys His Gly Phe Val Glu Asn Lys Leu                2485 2490 2495 Gln Pro Gly Arg Ala Ala Thr Phe Thr Gln Glu Asp Val Asn Leu            2500 2505 2510 Gly Leu Ile Arg Tyr Val Leu His Lys Glu Lys Ile Arg Glu Met Met        2515 2520 2525 Asp Ser Phe Gln Phe Leu Val Lys Asp Ser Lys Pro Asn Val Val Ser    2530 2535 2540 Asp Asn Val Phe His Ile Gln Trp Ser Leu Ile Ser Phe Lys Tyr Thr 2545 2550 2555 2560 Ser Tyr Asn Val Ser Glu Lys Ala Gly Ser Val Ser Val Thr Val Gln                2565 2570 2575 Arg Thr Gly Asn Leu Asn Gln Tyr Ala Ile Val Leu Cys Arg Thr Glu            2580 2585 2590 Gln Gly Thr Ala Ser Ser Ser Ser Arg Val Ser Ser Gln Pro Gly Gln        2595 2600 2605 Gln Asp Tyr Val Glu Tyr Ala Gly Gln Val Gln Phe Asp Glu Arg Glu    2610 2615 2620 Asp Thr Lys Ser Cys Thr Ile Val Ile Asn Asp Asp Asp Val Phe Glu 2625 2630 2635 2640 Asn Val Glu Ser Phe Thr Val Glu Leu Ser Met Pro Ala Tyr Ala Leu                2645 2650 2655 Leu Gly Glu Phe Thr Gln Ala Lys Val Ile Ile Asn Asp Thr Glu Asp            2660 2665 2670 Glu Pro Thr Leu Glu Phe Asp Lys Lys Ile Tyr Trp Val Asn Glu Ser        2675 2680 2685 Ala Gly Phe Leu Phe Ala Pro Ile Glu Arg Lys Gly Asp Ala Ser Ser    2690 2695 2700 Ile Val Ser Ala Ile Cys Tyr Thr Val Pro Lys Ser Ala Met Gly Ser 2705 2710 2715 2720 Ser Leu Tyr Ala Leu Glu Ser Gly Ser Asp Phe Lys Ser Arg Gly Met                2725 2730 2735 Ser Ala Ala Ser Arg Val Ile Phe Gly Pro Gly Val Thr Met Ser Thr            2740 2745 2750 Cys Asp Val Met Leu Ile Asp Asp Ser Glu Tyr Glu Glu Glu Glu Glu        2755 2760 2765 Phe Glu Ile Ala Leu Ala Asp Ala Ser Asp Asn Ala Arg Ile Gly Arg    2770 2775 2780 Val Ala Thr Ala Lys Val Leu Ile Ser Gly Pro Asn Asp Ala Ser Thr 2785 2790 2795 2800 Val Ser Leu Gly Asn Thr Ala Phe Thr Val Ser Glu Asp Ala Gly Thr                2805 2810 2815 Val Lys Ile Pro Val Ile Arg His Gly Thr Asp Leu Ser Thr Phe Ala            2820 2825 2830 Ser Val Trp Cys Ala Thr Arg Pro Ser Asp Pro Ala Ser Ala Thr Pro        2835 2840 2845 Gly Val Asp Tyr Val Ser Ser Ser Arg Lys Val Glu Phe Gly Pro Gly    2850 2855 2860 Val Ile Glu Gln Tyr Cys Thr Leu Thr Ile Leu Asp Asp Thr Gln Tyr 2865 2870 2875 2880 Pro Val Ile Glu Gly Leu Glu Thr Phe Val Val Phe Leu Ser Ser Ala                2885 2890 2895 Gln Gly Ala Glu Leu Thr Lys Pro Phe Gln Ala Val Ile Ala Ile Asn            2900 2905 2910 Asp Thr Phe Gln Asp Val Ser Ser Met Gln Phe Ala Lys Asp Leu Leu        2915 2920 2925 Leu Val Lys Glu Lys Glu Gly Val Leu His Val Pro Ile Thr Arg Ser    2930 2935 2940 Gly Asp Leu Ser Tyr Glu Ser Ser Val Arg Cys Tyr Thr Gln Ser His 2945 2950 2955 2960 Ser Ala Gln Val Met Glu Asp Phe Glu Glu Arg Gln Asn Ala Asp Ser                2965 2970 2975 Ser Arg Ile Thr Phe Leu Lys Gly Asp Lys Val Lys Asn Cys Thr Val            2980 2985 2990 Tyr Ile His Asp Asp Ser Met Phe Glu Pro Glu Glu Gln Phe Arg Val        2995 3000 3005 Tyr Leu Gly Leu Pro Leu Gly Asn His Trp Ser Gly Ala Arg Ile Gly    3010 3015 3020 Lys Asn As Met Ala Thr Ile Thr Ile Asp Asp Glu Asp Ala Pro 3025 3030 3035 3040 Thr Ile Glu Phe Glu Glu Ala Ala Tyr Gln Val Arg Glu Pro Ala Gly                3045 3050 3055 Pro Asp Ile Ale Ile Leu Asn Ile Lys Val Ile Arg Arg Gly Asp            3060 3065 3070 Gln Asn Arg Thr Ser Lys Val Arg Cys Ser Thr Arg Asp Gly Ser Ala        3075 3080 3085 Gln Ser Gly Val Asp Tyr Tyr Pro Lys Ser Arg Val Leu Lys Phe Ser    3090 3095 3100 Pro Gly Val Asp His Ile Phe Phe Lys Val Glu Ile Leu Ser Asn Glu 3105 3110 3115 3120 Asp Arg Glu Trp His Glu Ser Phe Ser Leu Val Leu Gly Pro Asp Asp                3125 3130 3135 Pro Val Glu Ala Val Leu Gly Asp Val Thr Thr Ala Thr Val Thr Ile            3140 3145 3150 Leu Asp Gln Glu Ala Ala Gly Ser Leu Ile Leu Pro Ala Pro Pro Ile        3155 3160 3165 Val Val Thr Leu Ala Asp Tyr Asp His Val Glu Glu Val Thr Lys Glu    3170 3175 3180 Gly Val Lys Lys Ser Ser Ser Pro Gly Tyr Pro Leu Val Cys Val Thr 3185 3190 3195 3200 Pro Cys Asp Pro His Phe Pro Arg Tyr Ala Val Met Lys Glu Arg Cys                3205 3210 3215 Ser Glu Ala Gly Ile Asn Gln Thr Ser Val Gln Phe Ser Trp Glu Val            3220 3225 3230 Ala Ala Pro Thr Asp Gly Asn Gly Ala Arg Ser Pro Phe Glu Thr Ile        3235 3240 3245 Thr Asp Thr Pro Phe Thr Ser Val Asn His Met Val Leu Asp Ser    3250 3255 3260 Ile Tyr Phe Ser Arg Arg Phe His Val Arg Cys Val Ala Lys Ala Val 3265 3270 3275 3280 Asp Lys Val Gly His Val Gly Thr Pro Leu Arg Ser Asn Ile Val Thr                3285 3290 3295 Ile Gly Thr Asp Ser Ala Ile Cys His Thr Pro Val Val Ala Gly Thr            3300 3305 3310 Ser Arg Gly Phe Gln Ala Gln Ser Phe Ile Ala Thr Leu Lys Tyr Leu        3315 3320 3325 Asp Val Lys His Lys Glu His Pro Asn Arg Ile His Ile Ser Val Gln    3330 3335 3340 Ile Pro His Gln Asp Gly Met Leu Pro Leu Ile Ser Thr Met Pro Leu 3345 3350 3355 3360 His Asn Leu His Phe Leu Leu Ser Glu Ser Ile Tyr Arg His Gln His                3365 3370 3375 Val Cys Ser Asn Leu Val Thr Thr Tyr Asp Leu Arg Gly Ile Ser Glu            3380 3385 3390 Ala Gly Phe Leu Asp Asp Val Val Tyr Asp Ser Thr Ala Leu Gly Pro        3395 3400 3405 Gly Tyr Asp Arg Pro Phe Gln Phe Asp Pro Ser Val Arg Glu Pro Lys    3410 3415 3420 Thr Ile Gln Leu Tyr Lys His Leu Asn Leu Lys Ser Cys Val Trp Thr 3425 3430 3435 3440 Phe Asp Ala Tyr Tyr Asp Met Thr Glu Leu Ile Asp Val Cys Gly Gly                3445 3450 3455 Ser Val Thr Ala Asp Phe Gln Val Arg Asp Ser Ala Gln Ser Phe Leu            3460 3465 3470 Thr Val His Val Pro Leu Tyr Val Ser Tyr Ile Tyr Val Thr Ala Pro        3475 3480 3485 Arg Gly Trp Ala Ser Leu Glu His His Thr Glu Met Glu Phe Ser Phe    3490 3495 3500 Phe Tyr Asp Thr Val Leu Trp Arg Thr Gly Ile Gln Thr Asp Ser Val 3505 3510 3515 3520 Leu Ser Ala Arg Leu Gln Ile Ile Arg Ile Tyr Ile Arg Glu Asp Gly                3525 3530 3535 Arg Leu Val Ile Glu Phe Lys Thr His Ala Lys Phe Arg Gly Gln Phe            3540 3545 3550 Val Met Glu His His Thr Leu Pro Glu Val Lys Ser Phe Val Leu Thr        3555 3560 3565 Pro Asp His Leu Gly Gly Ile Glu Phe Asp Leu Gln Leu Leu Trp Ser    3570 3575 3580 Ala Gln Thr Phe Asp Ser Pro His Gln Leu Trp Arg Ala Thr Ser Ser 3585 3590 3595 3600 Tyr Asn Arg Lys Asp Tyr Ser Gly Glu Tyr Thr Ile Tyr Leu Ile Pro                3605 3610 3615 Cys Thr Val Gln Pro Thr Gln Pro Trp Val Asp Pro Gly Glu Lys Pro            3620 3625 3630 Leu Ala Cys Thr Ala His Ala Pro Glu Arg Phe Leu Ile Pro Ile Ala        3635 3640 3645 Phe Gln Gln Thr Asn Arg Pro Val Val Val Tyr Ser Leu Asn Thr    3650 3655 3660 Glu Phe Gln Leu Cys Asn Asn Glu Lys Val Phe Leu Met Asp Pro Asn 3665 3670 3675 3680 Thr Ser Asp Met Ser Leu Ala Glu Met Asp Tyr Lys Gly Ala Phe Ser                3685 3690 3695 Lys Gly Gln Ile Leu Tyr Gly Arg Val Leu Trp Asn Pro Glu Gln Asn            3700 3705 3710 Leu Asn Ser Ala Tyr Lys Leu Gln Leu Glu Lys Val Tyr Leu Cys Thr        3715 3720 3725 Gly Lys Asp Gly Tyr Val Pro Phe Phe Asp Pro Thr Gly Thr Ile Tyr    3730 3735 3740 Asn Glu Gly Pro Gln Tyr Gly Cys Ile Gln Pro Asn Lys His Leu Lys 3745 3750 3755 3760 His Arg Phe Leu Leu Leu Asp Arg Asn Gln Pro Glu Val Thr Asp Lys                3765 3770 3775 Tyr Phe His Asp Val Pro Phe Glu Ala His Phe Ala Ser Glu Leu Pro            3780 3785 3790 Asp Phe His Val Val Ser Asn Met Pro Gly Val Asp Gly Phe Thr Leu        3795 3800 3805 Lys Val Asp Ala Leu Tyr Lys Val Glu Ala Gly His Gln Trp Tyr Leu    3810 3815 3820 Gln Val Ile Tyr Ile Ile Gly Pro Asp Thr Ile Ser Gly Pro Arg Val 3825 3830 3835 3840 Gln Arg Ser Leu Thr Ala Pro Leu Arg Arg Asn Arg Arg Asp Leu Val                3845 3850 3855 Glu Pro Asp Gly Gln Leu Ile Leu Asp Asp Ser Leu Ile Tyr Asp Asn            3860 3865 3870 Glu Gly Asp Gln Val Lys Asn Gly Thr Asn Met Lys Ser Leu Asn Leu        3875 3880 3885 Glu Met Gln Glu Leu Ala Val Ala Ala Ser Leu Ser Gln Thr Gly Ala    3890 3895 3900 Ser Ile Gly Ser Ala Leu Ala Ala Ile Met Leu Leu Leu Leu Val Phe 3905 3910 3915 3920 Leu Val Ala Cys Phe Ile Asn Arg Lys Cys Gln Lys Gln Arg Lys Lys                3925 3930 3935 Lys Pro Ala Glu Asp Ile Leu Glu Glu Tyr Pro Leu Asn Thr Lys Val            3940 3945 3950 Glu Val Pro Lys Arg His Pro Asp Arg Val Glu Lys Asn Val Asn Arg        3955 3960 3965 His Tyr Cys Thr Val Arg Asn Val Asn Ile Leu Ser Glu Pro Glu Ala    3970 3975 3980 Ala Tyr Thr Phe Lys Gly Ala Lys Val Lys Arg Leu Asn Leu Glu Val 3985 3990 3995 4000 Arg Val His Asn Asn Leu Gln Asp Gly Thr Glu Val                4005 4010 <210> 18 <211> 1469 <212> PRT <213> ADGRL3 protein <400> 18 Met Trp Pro Ser Gln Leu Leu Ile Phe Met Met Leu Leu Ala Pro Ile   1 5 10 15 Ile His Ala Phe Ser Arg Ala Pro Ile Pro Met Ala Val Val Arg Arg              20 25 30 Glu Leu Ser Cys Glu Ser Tyr Pro Ile Glu Leu Arg Cys Pro Gly Thr          35 40 45 Asp Val Ile Met Ile Glu Ser Ala Asn Tyr Gly Arg Thr Asp Asp Lys      50 55 60 Ile Cys Asp Ser Asp Pro Ala Gln Met Glu Asn Ile Arg Cys Tyr Leu  65 70 75 80 Pro Asp Ala Tyr Lys Ile Met Ser Gln Arg Cys Asn Asn Arg Thr Gln                  85 90 95 Cys Ala Val Val Ala Gly Pro Asp Val Phe Pro Asp Pro Cys Pro Gly             100 105 110 Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Glu Cys Val Pro Tyr Lys Val         115 120 125 Glu Gln Lys Val Phe Leu Cys Pro Gly Leu Leu Lys Gly Val Tyr Gln     130 135 140 Ser Glu His Leu Phe Glu Ser Asp His Gln Ser Gly Ala Trp Cys Lys 145 150 155 160 Asp Pro Leu Gln Ala Ser Asp Lys Ile Tyr Tyr Met Pro Trp Thr Pro                 165 170 175 Tyr Arg Thr Asp Thr Leu Thr Glu Tyr Ser Ser Lys Asp Asp Phe Ile             180 185 190 Ala Gly Arg Pro Thr Thr Thr Tyr Lys Leu Pro His Arg Val Asp Gly         195 200 205 Thr Gly Phe Val Val Tyr Asp Gly Ala Leu Phe Phe Asn Lys Glu Arg     210 215 220 Thr Arg Asn Ile Val Lys Phe Asp Leu Arg Thr Arg Ile Lys Ser Gly 225 230 235 240 Glu Ala Ile Ile Ala Asn Ala Asn Tyr His Asp Thr Ser Pro Tyr Arg                 245 250 255 Trp Gly Gly Lys Ser Asp Ile Asp Leu Ala Val Asp Glu Asn Gly Leu             260 265 270 Trp Val Ile Tyr Ala Thr Glu Gln Asn Asn Gly Lys Ile Val Ile Ser         275 280 285 Gln Leu Asn Pro Tyr Thr Leu Arg Ile Glu Gly Thr Trp Asp Thr Ala     290 295 300 Tyr Asp Lys Arg Ser Ala Ser Asn Ala Phe Met Ile Cys Gly Ile Leu 305 310 315 320 Tyr Val Val Lys Ser Val Tyr Glu Asp Asp Asp Asn Glu Ala Thr Gly                 325 330 335 Asn Lys Ile Asp Tyr Ile Tyr Asn Thr Asp Gln Ser Lys Asp Ser Leu             340 345 350 Val Asp Val Pro Phe Pro Asn Ser Tyr Gln Tyr Ile Ala Ala Val Asp         355 360 365 Tyr Asn Pro Arg Asp Asn Leu Leu Tyr Val Trp Asn Asn Tyr His Val     370 375 380 Val Lys Tyr Ser Leu Asp Phe Gly Pro Leu Asp Ser Ser Ser Ser Gly Gln 385 390 395 400 Ala His His Gly Gln Val Ser Tyr Ile Ser Pro Pro Ile His Leu Asp                 405 410 415 Ser Glu Leu Glu Arg Pro Ser Val Lys Asp Ile Ser Thr Thr Gly Pro             420 425 430 Leu Gly Met Gly Ser Thr Thr Thr Ser Thr Thr Leu Arg Thr Thr Thr         435 440 445 Leu Ser Pro Gly Arg Ser Thr Thr Pro Ser Val Ser Gly Arg Arg Asn     450 455 460 Arg Ser Thr Ser Thr Ser Ser Ala Val Glu Val Leu Asp Asp Met 465 470 475 480 Thr His Leu Ser Ser Ser Ser Ser Gln Ile Pro Ala Leu Glu Glu                 485 490 495 Ser Cys Glu Ala Val Glu Ala Arg Glu Ile Met Trp Phe Lys Thr Arg             500 505 510 Gln Gly Gln Ile Ala Lys Gln Pro Cys Pro Ala Gly Thr Ile Gly Val         515 520 525 Ser Thr Tyr Leu Cys Leu Ala Pro Asp Gly Ile Trp Asp Pro Gln Gly     530 535 540 Pro Asp Leu Ser Asn Cys Ser Ser Pro Trp Val Asn His Ile Thr Gln 545 550 555 560 Lys Leu Lys Ser Gly Glu Thr Ala Ala Asn Ile Ala Arg Glu Leu Ala                 565 570 575 Glu Gln Thr Arg Asn His Leu Asn Ala Gly Asp Ile Thr Tyr Ser Val             580 585 590 Arg Ala Met Asp Gln Leu Val Gly Leu Leu Asp Val Gln Leu Arg Asn         595 600 605 Leu Thr Pro Gly Gly Lys Asp Ser Ala Ala Arg Ser Leu Asn Lys Leu     610 615 620 Gln Lys Arg Glu Arg Ser Cys Arg Ala Tyr Val Gln Ala Met Val Glu 625 630 635 640 Thr Val Asn Asn Leu Leu Gln Pro Gln Ala Leu Asn Ala Trp Arg Asp                 645 650 655 Leu Thr Thr Ser Asp Gln Leu Arg Ala Ala Thr Met Leu Leu His Thr             660 665 670 Val Glu Glu Ser Ala Phe Val Leu Ala Asp Asn Leu Leu Lys Thr Asp         675 680 685 Ile Val Arg Glu Asn Thr Asp Asn Ile Lys Leu Glu Val Ala Arg Leu     690 695 700 Ser Thr Glu Gly Asn Leu Glu Asp Leu Lys Phe Pro Glu Asn Met Gly 705 710 715 720 His Gly Ser Thr Ile Gln Leu Ser Ala Asn Thr Leu Lys Gln Asn Gly                 725 730 735 Arg Asn Gly Glu Ile Arg Val Ala Phe Val Leu Tyr Asn Asn Leu Gly             740 745 750 Pro Tyr Leu Ser Thr Glu Asn Ala Ser Met Lys Leu Gly Thr Glu Ala         755 760 765 Leu Ser Thr Asn His Ser Val Ile Val Asn Ser Pro Val Ile Thr Ala     770 775 780 Ala Ile Asn Lys Glu Phe Ser Asn Lys Val Tyr Leu Ala Asp Pro Val 785 790 795 800 Val Phe Thr Val Lys His Ile Lys Gln Ser Glu Glu Asn Phe Asn Pro                 805 810 815 Asn Cys Ser Phe Trp Ser Tyr Ser Lys Arg Thr Met Thr Gly Tyr Trp             820 825 830 Ser Thr Gln Gly Cys Arg Leu Leu Thr Thr Asn Lys Thr His Thr Thr         835 840 845 Cys Ser Cys Asn His Leu Thr Asn Phe Ala Val Leu Met Ala His Val     850 855 860 Glu Val Lys His Ser Asp Ala Val His Asp Leu Leu Leu Asp Val Ile 865 870 875 880 Thr Trp Val Gly Ile Leu Leu Ser Leu Val Cys Leu Leu Ile Cys Ile                 885 890 895 Phe Thr Phe Cys Phe Phe Arg Gly Leu Gln Ser Asp Arg Asn Thr Ile             900 905 910 His Lys Asn Leu Cys Ile Ser Leu Phe Val Ala Glu Leu Leu Phe Leu         915 920 925 Ile Gly Ile Asn Arg Thr Asp Gln Pro Ile Ala Cys Ala Val Phe Ala     930 935 940 Ala Leu Leu His Phe Phe Phe Leu Ala Phe Thr Trp Met Phe Leu 945 950 955 960 Glu Gly Val Gln Leu Tyr Ile Met Leu Val Glu Val Phe Glu Ser Glu                 965 970 975 His Ser Arg Arg Lys Tyr Phe Tyr Leu Val Gly Tyr Gly Met Pro Ala             980 985 990 Leu Ile Val Ala Val Ser Ala Ala Val Asp Tyr Arg Ser Tyr Gly Thr         995 1000 1005 Asp Lys Val Cys Trp Leu Arg Leu Asp Thr Tyr Phe Ile Trp Ser Phe    1010 1015 1020 Ile Gly Pro Ala Thr Leu Ile Met Leu Asn Val Ile Phe Leu Gly 1025 1030 1035 1040 Ile Ala Leu Tyr Lys Met Phe His His Thr Ala Ile Leu Lys Pro Glu                1045 1050 1055 Ser Gly Cys Leu Asp Asn Ile Asn Tyr Glu Asp Asn Arg Pro Phe Ile            1060 1065 1070 Lys Ser Trp Val Ile Gly Ala Ile Ala Leu Leu Cys Leu Leu Gly Leu        1075 1080 1085 Thr Trp Ala Phe Gly Leu Met Tyr Ile Asn Glu Ser Thr Val Ile Met    1090 1095 1100 Ala Tyr Leu Phe Thr Ile Phe Asn Ser Leu Gln Gly Met Phe Ile Phe 1105 1110 1115 1120 Ile Phe His Cys Val Leu Gln Lys Lys Val Arg Lys Glu Tyr Gly Lys                1125 1130 1135 Cys Leu Arg Thr His Cys Cys Ser Gly Lys Ser Thr Glu Ser Ser Ile            1140 1145 1150 Gly Ser Gly Lys Thr Ser Gly Ser Arg Thr Pro Gly Arg Tyr Ser Thr        1155 1160 1165 Gly Ser Gln Ser Arg Ile Arg Arg Met Trp Asn Asp Thr Val Arg Lys    1170 1175 1180 Gln Ser Glu Ser Ser Phe Ile Thr Gly Asp Ile Asn Ser Ser Ala Ser 1185 1190 1195 1200 Leu Asn Arg Glu Gly Leu Leu Asn Asn Ala Arg Asp Thr Ser Val Met                1205 1210 1215 Asp Thr Leu Pro Leu Asn Gly Asn His Gly Asn Ser Tyr Ser Ile Ala            1220 1225 1230 Ser Gly Glu Tyr Leu Ser Asn Cys Val Gln Ile Ile Asp Arg Gly Tyr        1235 1240 1245 Asn His Asn Glu Thr Ala Leu Glu Lys Lys Ile Leu Lys Glu Leu Thr    1250 1255 1260 Ser Asn Tyr Ile Pro Ser Tyr Leu Asn Asn His Glu Arg Ser Ser Glu 1265 1270 1275 1280 Gln Asn Arg Asn Leu Met Asn Lys Leu Val Asn Asn Leu Gly Ser Gly                1285 1290 1295 Arg Glu Asp Asp Ala Ile Val Leu Asp Asp Ala Thr Ser Phe Asn His            1300 1305 1310 Glu Ser Leu Gly Leu Glu Leu Ile His Glu Glu Ser Asp Ala Pro        1315 1320 1325 Leu Leu Pro Pro Arg Val Tyr Ser Thr Glu Asn His Gln Pro His His    1330 1335 1340 Tyr Thr Arg Arg Ile Pro Gln Asp His Ser Glu Ser Phe Phe Pro 1345 1350 1355 1360 Leu Leu Thr Asn Glu His Thr Glu Asp Leu Gln Ser Pro His Arg Asp                1365 1370 1375 Ser Leu Tyr Thr Ser Met Pro Thr Leu Ala Gly Val Ala Ala Thr Glu            1380 1385 1390 Ser Val Thr Thr Ser Thr Gln Thr Glu Pro Pro Pro Ala Lys Cys Gly        1395 1400 1405 Asp Ala Glu Asp Val Tyr Tyr Lys Ser Met Pro Asn Leu Gly Ser Arg    1410 1415 1420 Asn His Val His Gln Leu His Thr Tyr Tyr Gln Leu Gly Arg Gly Ser 1425 1430 1435 1440 Ser Asp Gly Phe Ile Val Pro Pro Asn Lys Asp Gly Thr Pro Pro Glu                1445 1450 1455 Gly Ser Ser Lys Gly Pro Ala His Leu Val Thr Ser Leu            1460 1465 <210> 19 <211> 467 <212> PRT <213> PSEN1 protein <400> 19 Met Thr Glu Leu Pro Ala Pro Leu Ser Tyr Phe Gln Asn Ala Gln Met   1 5 10 15 Ser Glu Asp Asn His Leu Ser Asn Thr Val Arg Ser Gln Asn Asp Asn              20 25 30 Arg Glu Arg Gln Glu His Asn Asp Arg Arg Ser Leu Gly His Pro Glu          35 40 45 Pro Leu Ser Asn Gly Arg Pro Gln Gly Asn Ser Ser Gln Val Val Glu      50 55 60 Gln Asp Glu Glu Glu Asp Glu Glu Leu Thr Leu Lys Tyr Gly Ala Lys  65 70 75 80 His Val Ile Met Leu Phe Val Pro Val Thr Leu Cys Met Val Val Val                  85 90 95 Val Ala Thr Ile Lys Ser Val Ser Phe Tyr Thr Arg Lys Asp Gly Gln             100 105 110 Leu Ile Tyr Thr Pro Phe Thr Glu Asp Thr Glu Thr Val Gly Gln Arg         115 120 125 Ala Leu His Ser Ile Leu Asn Ala Ile Met Ile Ser Val Ile Val     130 135 140 Val Met Thr Ile Leu Leu Val Val Leu Tyr Lys Tyr Arg Cys Tyr Lys 145 150 155 160 Val Ile His Ala Trp Leu Ile Ile Ser Ser Leu Leu Leu Leu Phe Phe                 165 170 175 Phe Ser Phe Ile Tyr Leu Gly Glu Val Phe Lys Thr Tyr Asn Val Ala             180 185 190 Val Asp Tyr Ile Thr Val Ala Leu Leu Ile Trp Asn Phe Gly Val Val         195 200 205 Gly Met Ile Ser Ile His Trp Lys Gly Pro Leu Arg Leu Gln Gln Ala     210 215 220 Tyr Leu Ile Met Ile Ser Ala Leu Met Ala Leu Val Phe Ile Lys Tyr 225 230 235 240 Leu Pro Glu Trp Thr Ala Trp Leu Ile Leu Ala Val Ile Ser Val Tyr                 245 250 255 Asp Leu Val Ala Val Leu Cys Pro Lys Gly Pro Leu Arg Met Leu Val             260 265 270 Glu Thr Ala Gln Glu Arg Asn Glu Thr Leu Phe Pro Ala Leu Ile Tyr         275 280 285 Ser Ser Thr Met Val Trp Leu Val Asn Met Ala Glu Gly Asp Pro Glu     290 295 300 Ala Gln Arg Arg Val Ser Lys Asn Ser Lys Tyr Asn Ala Glu Ser Thr 305 310 315 320 Glu Arg Glu Ser Gln Asp Thr Val Ala Glu Asn Asp Asp Gly Gly Phe                 325 330 335 Ser Glu Glu Trp Glu Ala Gln Arg Asp Ser His Leu Gly Pro His Arg             340 345 350 Ser Thr Pro Glu Ser Ser Ale Val Glu Glu Ser Ser Ser Ile         355 360 365 Leu Ala Gly Glu Asp Pro Glu Glu Arg Gly Val Lys Leu Gly Leu Gly     370 375 380 Asp Phe Ile Phe Tyr Ser Val Leu Val Gly Lys Ala Ser Ala Thr Ala 385 390 395 400 Ser Gly Asp Trp Asn Thr Thr Ile Ala Cys Phe Val Ala Ile Leu Ile                 405 410 415 Gly Leu Cys Leu Thr Leu Leu Leu Leu Ala Ile Phe Lys Lys Ala Leu             420 425 430 Pro Ala Leu Pro Ile Ser Ile Thr Phe Gly Leu Val Phe Tyr Phe Ala         435 440 445 Thr Asp Tyr Leu Val Gln Pro Phe Met Asp Gln Leu Ala Phe His Gln     450 455 460 Phe Tyr Ile 465 <210> 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> FRAS1 Forward Primer <400> 20 tccctaagtc agctatggga ag 22 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> FRAS1 Reverse Primer <400> 21 aattccatgc ttggtcttgg 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RAPGEF2 Forward Primer <400> 22 caccagagaa gctgggagac 20 <210> 23 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RAPGEF2 Reverse Primer <400> 23 gcaatggaga aaatgaggaa a 21 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CLEC4C Forward Primer <400> 24 tgaccttgac tttcgcactg 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CLEC4C Reverse Primer <400> 25 ccagcagtct ctggcacata 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PSEN1 Forward Primer <400> 26 ggcttaagca cgagaattgc 20 <210> 27 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PSEN1 Reverse Primer <400> 27 gcaaggagca acagaagaat g 21 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PLEKHM2 Forward Primer <400> 28 ctgctcatga tccacgtgtt 20 <210> 29 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> PLEKHM2 Reverse Primer <400> 29 cttccttggg gtgccttt 18 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SSH2 Forward Primer <400> 30 ccatcatcaa cactggctgt 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SSH2 Reverse Primer <400> 31 cacaggcctt tctgatttgc 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPAG17 Forward Primer <400> 32 aaggatgacg tcaaggcttc 20 <210> 33 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> SPAG17 Reverse Primer <400> 33 ggggactctt ctgttacttc ttgg 24 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> XRCC3 Forward Primer <400> 34 caagggaacc agttgtgtga 20 <210> 35 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> XRCC3 Reverse Primer <400> 35 tggtgctcac ctggttgat 19 <210> 36 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> IFT80 Forward Primer <400> 36 tggatgtctt aggtgctagg tg 22 <210> 37 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> IFT80 Reverse Primer <400> 37 ctcactgtgt tgtccaggct aa 22 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ADGRL3 Forward Primer <400> 38 tatgccctgg actccctaca 20 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ADGRL3 Reverse Primer <400> 39 atcccatgtt ccttcgatcc 20 <210> 40 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> RAPGEF2 MALDI-TOF Forward Primer <400> 40 acgttggatg gacacaggca caataaagcg 30 <210> 41 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> RAPGEF2 MALDI-TOF Reverse Primer <400> 41 acgttggatg agtcacagac gttaggctac 30

Claims (11)

As a diagnostic marker for amyotrophic lateral sclerosis (ALS)
(Ⅰ) to the 4069th nucleotide sequence of guanine in the base sequence of the list of the first sequence substituted adenine, cytosine 1883rd base in the RAPGEF2 a substituted or 3293rd base guanine as a thymine substituted by adenine Mutant genes; (Ii) a nucleotide sequence in which the guanine at position 595 in the nucleotide sequence of SEQ ID NO: 2 is substituted with adenine IFT80 Mutant genes; (Iii) SSH2 mutant gene substituted with guanine thymine, which is the 1408th base in the nucleotide sequence of Sequence Listing 3; (Iv) the guanine at position 598 in the nucleotide sequence of Sequence Listing 4 is substituted with adenine XRCC3 mutation gene; (V) SPAG17 substituted with guanine thymine, which is the 2815th base in the nucleotide sequence of Sequence Listing 5 Mutant genes; ( Vi) PLEKHM2 substituted with a cytosine thymine of 1921 + 6 base in the nucleotide sequence of SEQ ID NO: 6 Mutant genes; (Viii) In the nucleotide sequence of SEQ ID NO: 7, adenine, guanine and adenine residues 629 to 631 CLEC4C mutation gene; (Viii) In the nucleotide sequence of Sequence Listing 8, the 8393th base, cytosine, is substituted with thymine FRAS1 Mutant genes; (Viii) In the nucleotide sequence of SEQ ID NO: 9, adenine at position 715 is substituted with guanine ADGRL3 Mutant genes; And (x) the thymine, which is the 497th base in the nucleotide sequence of SEQ ID NO: 10, PSEN1 A mutant gene selected from the group consisting of mutant genes.
As a diagnostic marker for amyotrophic lateral sclerosis
(Ⅰ) to the 4069th nucleotide sequence of guanine in the base sequence of the list of the first sequence substituted adenine, cytosine 1883rd base in the RAPGEF2 a substituted or 3293rd base guanine as a thymine substituted by adenine A RapGEF2 mutant protein encoded from a mutant gene; ( Ii) IFT80 in which the guanine as the 595th base in the nucleotide sequence of the second sequence is substituted with adenine An IFT80 mutant protein encoded from a mutant gene; (Iii) an SSH2 mutant protein encoded by an SSH2 mutant gene substituted with guanine thymine, which is the 1408th base in the nucleotide sequence of Sequence Listing 3; (Iv) the guanine at position 598 in the nucleotide sequence of Sequence Listing 4 is substituted with adenine XRCC3 An XRCC3 mutant protein encoded from a mutant gene; (V) a SPAG17 mutant protein encoded by a SPAG17 mutant gene substituted with guanine thymine, which is the 2815th base in the nucleotide sequence of Sequence Listing 5; ( Vi) CLEC4C having deletion of the 629th to 631st bases adenine, guanine and adenine in the nucleotide sequence of SEQ ID NO: 7 A CLEC4C mutant protein encoded from a mutant gene; (Viii) In the nucleotide sequence of Sequence Listing 8, the 8393th base, cytosine, is substituted with thymine FRAS1 A FRAS1 mutant protein encoded from a mutant gene; (Viii) In the nucleotide sequence of SEQ ID NO: 9, adenine at position 715 is substituted with guanine ADGRL3 An ADGRL3 mutant protein encoded from a mutant gene; And ( iii) a PSEN1 mutant protein encoded by a PSEN1 mutant gene in which the thymine, which is the 497th base in the nucleotide sequence of SEQ ID NO: 10, is replaced by a cytosine.
The method according to claim 2, wherein the (i) RapGEF2 mutant protein comprises the amino acid sequence of SEQ ID NO: 11, wherein glutamate, which is the 1357th amino acid residue in the amino acid sequence of SEQ ID NO: 11, is substituted with lysine, tyrosine isoleucine substituted at 628th amino acid, A RapGEF2 mutant protein substituted with this histidine; (Ii) the IFT80 mutant protein is an IFT80 mutant protein in which valine, the 199th amino acid residue in the amino acid sequence of SEQ ID NO: 12, is replaced by isoleucine; (Iii) the SSH2 mutant protein is an SSH2 mutant protein in which glutamate, the 470th amino acid residue in the amino acid sequence of SEQ ID NO: 13, is replaced with a stop codon; (Iv) the XRCC3 mutant protein is an XRCC3 mutant protein substituted with isoleucine valine, the 200th amino acid residue in the amino acid sequence of SEQ ID NO: 14; (V) the SPAG17 mutant protein is a SPAG17 mutant protein in which alanine, the 939th amino acid residue in the amino acid sequence of Sequence Listing 15 sequence, is replaced with serine; (Vi) the CLEC4C mutant protein is a CLEC4C mutant protein in which the lysine, which is the 210th amino acid residue in the amino acid sequence of SEQ ID NO: 16, is deleted; (Iii) FRAS1 mutant protein is a FRAS1 mutant protein in which alanine, the 2798th amino acid residue in the amino acid sequence of Sequence Listing 17 sequence, is substituted with valine; (Iii) the ADGRL3 mutant protein is an ADGRL3 mutant protein substituted with serine glycine, the 239th amino acid residue in the amino acid sequence of SEQ ID NO: 18; (Iii) A mutant protein characterized in that the PSEN1 mutant protein is a PSEN1 mutant protein substituted with leucine iprroline, which is the 166th amino acid residue in the amino acid sequence of SEQ ID NO: 19.
A method for providing information necessary for the diagnosis of amyotrophic lateral sclerosis comprising the steps of:
(a) from a biological sample isolated from a subject, (i) guanine at position 4069 in the nucleotide sequence of SEQ ID NO: 1 is replaced with adenine, guanine at position 1883, substituted with cytosine thymine, or guanine RAPGEF2 substituted with this adenine Mutant genes; (Ii) a nucleotide sequence in which the guanine at position 595 in the nucleotide sequence of SEQ ID NO: 2 is substituted with adenine IFT80 mutation gene; (Iii) a nucleotide sequence in which the guanine at position 1408 in the nucleotide sequence of SEQ ID NO: 3 is substituted with thymine SSH2 mutation gene; ( Iv) an XRCC3 mutant gene in which the guanine at position 598 in the nucleotide sequence of Sequence Listing 4 is substituted with adenine; (V) a SPAG17 mutant gene in which the 2815th base, guanine, is substituted with thymine in the nucleotide sequence of Sequence Listing 5; ( Vi) PLEKHM2 in which the nucleotide sequence of SEQ ID NO: 6 is substituted with cytosine thymine, 1921 + 6th base Mutant genes; (Viii) In the nucleotide sequence of SEQ ID NO: 7, adenine, guanine and adenine residues 629 to 631 CLEC4C Mutant genes; (Viii) In the nucleotide sequence of Sequence Listing 8, the 8393th base, cytosine, is substituted with thymine FRAS1 Mutant genes; ( Ⅸ) ADGRL3 in which the 715th base, adenine, is replaced by guanine in the nucleotide sequence of SEQ ID NO: 9 Mutant genes; Or (x) mNRA of a PSEN1 mutant gene in which the thymine, which is the 497th base in the nucleotide sequence of Sequence Listing 10, is replaced with a cytosine, or a mutant protein encoded by the gene; And
(b) when the mRNA or mutant protein of the mutant gene is detected in the sample, determining that the subject is amyotrophic lateral sclerosis.
5. The method according to claim 4, wherein the mRNA in the step (a) is measured using a primer or a probe that specifically binds to the mutant gene.
5. The method according to claim 4, wherein the mutant protein in the step (a) is measured using an antibody that specifically binds to the mutant protein.
A composition for diagnosing amyotrophic lateral sclerosis comprising a detection agent capable of detecting the mRNA of the mutant gene of claim 1 or a mutant protein encoded by the gene from the biological sample.
[8] The composition for diagnosing amyotrophic lateral sclerosis according to claim 7, wherein the detecting agent capable of detecting the mRNA is a primer or a probe that specifically binds to the mutant gene.
8. The composition for diagnosing amyotrophic lateral sclerosis according to claim 7, wherein the detectable agent capable of detecting the protein is an antibody specific to a protein encoded by the mutant gene.
A kit for diagnosing amyotrophic lateral sclerosis comprising the composition of any one of claims 7 to 9.
[Claim 11] The kit for diagnosing amyotrophic lateral sclerosis according to claim 10, wherein the kit is a microarray, a gene amplification kit or an immunoassay kit.
KR1020150141113A 2015-10-07 2015-10-07 Mutant Genes as Diagnosis Marker for Amyotrophic Lateral Sclerosis and Diagnosis Method Using the Same KR102018369B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020150141113A KR102018369B1 (en) 2015-10-07 2015-10-07 Mutant Genes as Diagnosis Marker for Amyotrophic Lateral Sclerosis and Diagnosis Method Using the Same
PCT/KR2016/011254 WO2017061818A1 (en) 2015-10-07 2016-10-07 Mutant genes as diagnostic markers for amyotrophic lateral sclerosis and diagnostic method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150141113A KR102018369B1 (en) 2015-10-07 2015-10-07 Mutant Genes as Diagnosis Marker for Amyotrophic Lateral Sclerosis and Diagnosis Method Using the Same

Publications (2)

Publication Number Publication Date
KR20170041955A true KR20170041955A (en) 2017-04-18
KR102018369B1 KR102018369B1 (en) 2019-09-06

Family

ID=58488244

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150141113A KR102018369B1 (en) 2015-10-07 2015-10-07 Mutant Genes as Diagnosis Marker for Amyotrophic Lateral Sclerosis and Diagnosis Method Using the Same

Country Status (2)

Country Link
KR (1) KR102018369B1 (en)
WO (1) WO2017061818A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107713A1 (en) * 2019-11-29 2021-06-03 주식회사 녹십자지놈 Method for diagnosing amyotrophic lateral sclerosis on basis of lats1 gene mutation marker

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107354139B (en) * 2017-09-18 2021-04-30 江苏省农业科学院 ALS mutant protein of wheat, nucleic acid and application thereof
WO2024011093A1 (en) * 2022-07-08 2024-01-11 Woolsey Pharmaceuticals, Inc. Treating amyotrophic lateral sclerosis having onset 24 months prior to treatment
WO2024011094A1 (en) * 2022-07-08 2024-01-11 Woolsey Pharmaceuticals, Inc. Regimen for treating amyotrophic lateral sclerosis having onset 24 months prior to treatment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140130846A (en) * 2013-05-02 2014-11-12 서울대학교산학협력단 Marker for diagnosing neurodegenerative diseases and its use

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130209999A1 (en) * 2011-08-19 2013-08-15 Northwestern University Sqstm1 mutations in amyotrophic lateral sclerosis
KR20150015226A (en) * 2013-07-31 2015-02-10 한남대학교 산학협력단 A Marker for Detecting a Neuro-Degenerative Disease and a Method for Detecting the Neuro-Degenerative Disease by Using the Same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140130846A (en) * 2013-05-02 2014-11-12 서울대학교산학협력단 Marker for diagnosing neurodegenerative diseases and its use

Non-Patent Citations (169)

* Cited by examiner, † Cited by third party
Title
A controlled trial of recombinant methionyl human BDNF in ALS: The BDNF Study Group (Phase III). Neurology 1999;52:1427-1433
A VB. Allg Z Psychiat Psychischgerichtliche Med 1932;96:364-366
Abhinav K et al., Neuroepidemiology 2007;29:44-48
Adzhubei IA et al., Nat Methods 2010;7:248-249
Al-Chalabi A et al., Hum Mol Genet 1999;8:157-164
Al-Chalabi A, Lewis CM. Hum Hered 2011;71:281-288
Alexander MD et al., Ann Neurol 2002;52:680-683
Andersen PM et al., Brain 1996;119 ( Pt 4):1153-1172
Andersen PM, Al-Chalabi A. Nat Rev Neurol 2011;7:603-615
Andersen PM. Curr Neurol Neurosci Rep 2006;6:37-46
Annesi G et al., Ann Neurol 2005;58:803-807
Arcos-Burgos M et al., Mol Psychiatry 2010;15:1053-1066
Armon C. Neuroepidemiology 2003;22:217-228
Ataka S et al., Arch Neurol 2004;61:1773-1776
Bak TH, Hodges JR. J Neurol 2001;248:260-270
Baltadzhieva R, Gurevich T, Korczyn AD. Curr Opin Neurol 2005;18:487-493
Beales PL et al., Nat Genet 2007;39:727-729
Bilasy SE et al., Eur J Neurosci 2009;29:1994-2008
Boillee S et al., Science 2006;312:1389-1392
Boucrot E et al., Science 2005;308:1174-1178
Brain L, Walton JN. Oxford university press, London, 1969
Brenneman MA et al., Mol Cell 2002;10:387-395
Brooks BR, Miller RG, Swash M, Munsat TL. Amyotroph Lateral Scler Other Motor Neuron Disord 2000;1:293-299
Brooks WS et al., Brain 2003;126:783-791
Bruijn LI et al., Science 1998;281:1851-1854
Buratti E et al., J Biol Chem 2005;280:37572-37584
Buratti E, Baralle FE. Front Biosci 2008;13:867-878
Calvo A et al., Neurobiol Aging 2014;35:1513 e1517-1513 e1511
Cedarbaum JM et al., J Neurol Sci 1997;152 Suppl 1:S1-9
Cedarbaum JM et al., J Neurol Sci 1999;169:13-21
Chappell CP et al., J Immunol 2014;192:5789-5801
Charcot J, Joffroy A. Arch Physiol Norm Pathol 1869;2:744-760
Chen J et al., Nucleic Acids Res 2009;37:W305-311
Chesi A et al., Nat Neurosci 2013;16:851-855
Chew J et al., Science 2015
Chio A et al., Brain 2005;128:472-476
Chio A et al., Neurobiol Aging 2011;32:553 e523-556
Chio A et al., Neurology 2008;70:533-537
Chio A et al., Neurology 2012;79:1983-1989
Chio A, Calvo A, Moglia C, Mazzini L, Mora G. J Neurol Neurosurg Psychiatry 2011;82:740-746
Cirulli ET et al., Science 2015;347:1436-1441
Cleveland DW, Rothstein JD. Nat Rev Neurosci 2001;2:806-819
Conrad DF et al., Nat Genet 2011;43:712-714
Couthouis J et al., Hum Mol Genet 2012;21:2899-2911
Crook R et al., Nat Med 1998;4:452-455
Crow JF. Nat Rev Genet 2000;1:40-47
Cudkowicz ME et al., Ann Neurol 1997;41:210-221
Cudkowicz ME et al., Neurology 2003;61:456-464
Damiano M et al., J Neurochem 2006;96:1349-1361
de Carvalho M et al., Clin Neurophysiol 2008;119:497-503
de Rooij J et al., J Biol Chem 1999;274:38125-38130
DeJesus-Hernandez M et al., Hum Mutat 2010;31:E1377-1389
DeJesus-Hernandez M et al., Neuron 2011;72:245-256
Deng HX et al., Nature 2011;477:211-215
Droppelmann CA et al., Amyotroph Lateral Scler Frontotemporal Degener 2013;14:444-451
Dumanchin C et al., J Med Genet 1998;35:672-673
Ezquerra M, Carnero C, Blesa R, Oliva R. Arch Neurol 2000;57:485-488
Fecto F et al., Arch Neurol 2011;68:1440-1446
Forbes RB, Colville S, Swingler RJ. Age Ageing 2004;33:131-134
Franchignoni F et al., J Neurol Neurosurg Psychiatry 2013;84:1340-1345
Franchignoni F, Mandrioli J, Giordano A, Ferro S. Amyotroph Lateral Scler Frontotemporal Degener 2015:1-7
Freischmidt A et al., Nat Neurosci 2015
Fromer M et al., Nature 2014;506:179-184
Gallo V et al., Ann Neurol 2009;65:378-385
Gilbert RM et al., Mov Disord 2010;25:1868-1875
Golan MP et al., Exp Neurol 2007;208:264-268
Gordon PH et al., Neurology 2006;66:647-653
Gouveia LO, de Carvalho M. Amyotroph Lateral Scler 2007;8:323-327
Gratten J, Visscher PM, Mowry BJ, Wray NR. Nat Genet 2013;45:234-238
Groeneveld GJ et al., Ann Neurol 2003;53:437-445
Gurney ME et al., Science 1994;264:1772-1775
Harwood CA, McDermott CJ, Shaw PJ. Amyotroph Lateral Scler 2009;10:191-204
Hattori S et al., Neurosci Lett 2004;368:319-322
Haverkamp LJ, Appel V, Appel SH. Brain 1995;118 ( Pt 3):707-719
Heath PR, Shaw PJ. Muscle Nerve 2002;26:438-458
Hensman Moss DJ et al., Neurology 2014;82:292-299
Hisata S et al., J Cell Biol 2007;178:843-860
Iossifov I et al., Neuron 2012;74:285-299
Isaacs JD et al., J Neurol Neurosurg Psychiatry 2007;78:750-753
Ivanchuk SM, Myers SM, Eng C, Mulligan LM. Hum Mol Genet 1996;5:2023-2026
Jang JH et al., Neurobiol Aging 2013;34:1311.e1317-1319
Jeong Y et al., Neurology 2005;64:734-736
Johnson JO et al., Nat Neurosci 2014;17:664-666
Johnson JO et al., Neuron 2010;68:857-864
Kasarskis EJ et al., Amyotroph Lateral Scler 2009;10:35-41
Kiernan MC et al., The Lancet 2011;377:942-955
Kim HJ et al., Nature 2013;495:467-473
Kim HJ et al., Neurobiol Aging 2014;35:1957.e1957-1958
Kim YE et al., Neurobiol Aging 2015;36:1604.e1617-1609
Kinsley L, Siddique T. Amyotrophic Lateral Sclerosis Overview. GeneReviews?http://www.ncbi.nlm.nih.gov/books/NBK1450/, Seattle, University of Washington, 2001
Kong A et al., Nature 2012;488:471-475
Kwiatkowski TJ et al., Science 2009;323:1205-1208
Kwon MJ et al., Neurobiol Aging 2012;33:1017 e1017-1023
Lee KJ et al., Neuron 2011;69:957-973
Leung CL et al., Brain Pathol 2004;14:290-296
Li H, Durbin R. Bioinformatics 2009;25:1754-1760
Lindquist SG et al., Clin Genet 2013;83:279-283
Littler M, Morton NE. J Med Genet 1990;27:307-310
Liu R et al., Ann Neurol 1998;44:763-770
Luty AA et al., Ann Neurol 2010;68:639-649
Maher P, Davis JB. J Neurosci 1996;16:6394-6401
Majounie E et al., Lancet Neurol 2012;11:323-330
Manjaly ZR et al., Amyotroph Lateral Scler 2010;11:439-442
Maruyama H et al., Nature 2010;465:223-226
McGregor L et al., Nat Genet 2003;34:203-208
Meldrum B, Garthwaite J. Trends Pharmacol Sci 1990;11:379-387
Menzies FM et al., Brain 2002;125:1522-1533
Mioshi E et al., Neurology 2014;82:149-155
Mitchell JD. J Neurol 2000;247:7-12
Munch C et al., Neurology 2004;63:724-726
Neale BM et al., Nature 2012;485:242-245
Neumann M et al., Science 2006;314:130-133
Ng PC et al., Nucleic Acids Res 2003;31:3812-3814
Niwa R et al., Cell 2002;108:233-246
Ohtsuka T et al., Biochem Biophys Res Commun 1999;265:38-44
Olkowski ZL. Neuroreport 1998;9:239-242
O'Roak BJ et al., Nature 2012;485:246-250
Pasinelli P, Brown RH. Nat Rev Neurosci 2006;7:710-723
Petrou P et al., J Biol Chem 2005;280:10350-10356
Pham N, Rotin D. J Biol Chem 2001;276:28478-28483
Phukan J, Pender NP, Hardiman O. Lancet Neurol 2007;6:994-1003
Pinto S, Pinto A, De Carvalho M. Eura Medicophys 2007;43:505-509
PNAS, vol.99(12), pp.8025-8030(2002)* *
Portet F et al., Neurology 2003;61:1136-1137
Pringle CE et al., Brain 1992;115 ( Pt 2):495-520
Rademakers R, van Blitterswijk M. Neuron 2014;84:241-243
Raman A et al., J Neurol Sci 2007;260:78-82
Ramensky V, Bork P, Sunyaev S. Nucleic Acids Res 2002;30:3894-3900
Rebhun JF, Castro AF, Quilliam LA. J Biol Chem 2000;275:34901-34908
Renton AE et al., Neuron 2011;72:257-268
Renton AE, Chio A, Traynor BJ. Nat Neurosci 2014;17:17-23
Riboldi E et al., J Biol Chem 2011;286:35329-35333
Rizzardini M et al., Brain Res Bull 2006;69:465-474
Roach JC et al., Science 2010;328:636-639
Roelofs-Iverson RA et al., Neurology 1984;34:393-395
Rosen DR et al., Nature 1993;362:59-62
Rowland LP, Shneider NA. N Engl J Med 2001;344:1688-1700
Sabatelli M et al., Amyotroph Lateral Scler 2012;13:580-584
Sanders SJ et al., Nature 2012;485:237-241
Shoesmith CL, Findlater K, Rowe A, Strong MJ. J Neurol Neurosurg Psychiatry 2007;78:629-631
Smith BN et al., Neuron 2014;84:324-331
Sreedharan J et al., Science 2008;319:1668-1672
Sreedharan J, Brown RH, Jr. Ann Neurol 2013;74:309-316
Sugita S et al., J Biol Chem 1998;273:32715-32724
Swinnen B, Robberecht W. Nat Rev Neurol 2014;10:661-670
Takahashi Y et al., Am J Hum Genet 2013;93:900-905
Talbot PR et al., J Neurol Neurosurg Psychiatry 1995;58:541-547
Teves ME et al., Am J Respir Cell Mol Biol 2013;48:765-772
Teves ME et al., PLoS One 2015;10:e0125936
Teyssou E et al., Neurobiol Aging 2014;35:1213.e1219-1213.e1212
Ticozzi N et al., Ann Neurol 2010;68:102-107
Traynor BJ, Codd MB, Corr B, Forde C, Frost E, Hardiman O. Neurology 1999;52:504-509
Turner MR et al., J Neurol Sci 2010;294:81-85
Utreras E et al., Neurochem Int 2013;62:848-853
van Blitterswijk M et al., Hum Mol Genet 2012;21:3776-3784
van Blitterswijk M et al., PLoS One 2012;7:e48983
Vance C et al., Science 2009;323:1208-1211
Veltman JA, Brunner HG. Nat Rev Genet 2012;13:565-575
Verkkoniemi A et al., Neurology 2000;54:1103-1109
Vissers LE et al., Nat Genet 2010;42:1109-1112
Wang C, Yuan X, Yang S. Exp Cell Res 2013;319:623-632
Wang J, Xu G, Borchelt DR. Neurobiol Dis 2002;9:139-148
Watkins JC, Evans RH. Annu Rev Pharmacol Toxicol 1981;21:165-204
Wijesekera LC, Leigh PN. Orphanet J Rare Dis 2009;4:3
Winton MJ et al., J Biol Chem 2008;283:13302-13309
Wojciechowska M, Krzyzosiak WJ. Hum Mol Genet 2011;20:3811-3821
Wu CH et al., Nature 2012;488:499-503
Ye T, Ip JP, Fu AK, Ip NY. Nat Commun 2014;5:4826
Zhang B et al., , Wang M, Tang D, Li Y, Xu M, Gu M, Cheng Z, Yu H. J Exp Bot 2015

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107713A1 (en) * 2019-11-29 2021-06-03 주식회사 녹십자지놈 Method for diagnosing amyotrophic lateral sclerosis on basis of lats1 gene mutation marker
KR20210067530A (en) * 2019-11-29 2021-06-08 주식회사 녹십자지놈 LATS1 Gene Mutation Marker Based Diagnosis of Amyotrophic Lateral Sclerosis

Also Published As

Publication number Publication date
KR102018369B1 (en) 2019-09-06
WO2017061818A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
CA2566256C (en) Genetic polymorphisms associated with liver fibrosis methods of detection and uses thereof
KR101582321B1 (en) Genetic markers for risk management of cardiac arrhythmia
DK2471954T3 (en) Susceptibility genetic variants associated with cardiovascular diseases
US11674188B2 (en) Biomarkers and combinations thereof for diagnosing tuberculosis
CN101874120B (en) Genetic variants on chr2 and chr16 as markers for use in breast cancer risk assessment, diagnosis, prognosis and treatment
KR20110015409A (en) Gene expression markers for inflammatory bowel disease
US20030129176A1 (en) Atherosclerosis-associated genes
KR20110036608A (en) Genetic variants for breast cancer risk assessment
CN101641451A (en) Cancer susceptibility variants on the chr8q24.21
KR20160117606A (en) Molecular diagnostic test for predicting response to anti-angiogenic drugs and prognosis of cancer
CA2651376A1 (en) Method for diagnosis and treatment of a mental disease
KR102018369B1 (en) Mutant Genes as Diagnosis Marker for Amyotrophic Lateral Sclerosis and Diagnosis Method Using the Same
JPWO2002052006A1 (en) Allergic disease test method
AU2002318972B2 (en) Mutations in ion channels
JP2005518786A (en) Growth hormone mutations in humans and their uses
US7172867B2 (en) Methods of testing for allergic diseases, and therapeutic agents for treating same
CA2852631A1 (en) A gene and mutations thereof associated with seizure and movement disorders
US7148011B2 (en) Method of testing for allergic diseases
KR102480128B1 (en) Single nucleotide polymorphisms associated with immunity of African indicine breeds and their application
CA2826522A1 (en) Genetic polymorphism in pnlpa3 associated with liver fibrosis methods of detection and uses thereof
EP2501825B1 (en) Methods for diagnosing skin diseases
US20040023263A1 (en) Method of testing for allergic diseases
JP2006516387A (en) Gene whose expression is increased in response to stimulation by corticotropin-releasing hormone
US20030224423A1 (en) Method of testing for allergic diseases
US20040058351A1 (en) Method of examining for allergic disease

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant